Marker-free monitoring of the grandstand structures as computer vision methods

Structural Health Monitoring 18, 1491-1509 DOI: 10.1177/1475921718806895

Citation Report

#	Article	IF	CITATIONS
1	Non-Target Structural Displacement Measurement Using Reference Frame-Based Deepflow. Sensors, 2019, 19, 2992.	2.1	23
2	A Robust Vision-Based Method for Displacement Measurement under Adverse Environmental Factors Using Spatio-Temporal Context Learning and Taylor Approximation. Sensors, 2019, 19, 3197.	2.1	31
3	A non-target structural displacement measurement method using advanced feature matching strategy. Advances in Structural Engineering, 2019, 22, 3461-3472.	1.2	43
4	Structural displacement monitoring using deep learning-based full field optical flow methods. Structure and Infrastructure Engineering, 2020, 16, 51-71.	2.0	100
5	Investigation of vibration serviceability of a footbridge using computer vision-based methods. Engineering Structures, 2020, 224, 111224.	2.6	31
6	A marker-free method for structural dynamic displacement measurement based on optical flow. Structure and Infrastructure Engineering, 2022, 18, 84-96.	2.0	23
7	An Improved Vision Method for Robust Monitoring of Multi-Point Dynamic Displacements with Smartphones in an Interference Environment. Sensors, 2020, 20, 5929.	2.1	2
8	A portable monitoring approach using cameras and computer vision for bridge load rating in smart cities. Journal of Civil Structural Health Monitoring, 2020, 10, 1001-1021.	2.0	25
9	Computer Vision–Based Human Comfort Assessment of Stadiums. Journal of Performance of Constructed Facilities, 2020, 34, .	1.0	10
10	A Novel Dense Full-Field Displacement Monitoring Method Based on Image Sequences and Optical Flow Algorithm. Applied Sciences (Switzerland), 2020, 10, 2118.	1.3	16
11	Noncontact cable force estimation with unmanned aerial vehicle and computer vision. Computer-Aided Civil and Infrastructure Engineering, 2021, 36, 73-88.	6.3	81
12	A review of computer vision–based structural health monitoring at local and global levels. Structural Health Monitoring, 2021, 20, 692-743.	4.3	296
13	Two-stage Bayesian system identification using Gaussian discrepancy model. Structural Health Monitoring, 2021, 20, 580-595.	4.3	17
14	A Novel Vision-Based Framework for Identifying Dynamic Vehicle Loads on Long-Span Bridges: A Case Study of Jiangyin Bridge, China. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 10441-10457.	4.7	11
15	Displacement Identification by Computer Vision for Condition Monitoring of Rail Vehicle Bearings. Sensors, 2021, 21, 2100.	2.1	6
16	Damage cross detection between bridges monitored within one cluster using the difference ratio of projected strain monitoring data. Structural Health Monitoring, 2022, 21, 571-595.	4.3	14
17	Computerâ€visionâ€based differential remeshing for updating the geometry of finite element model. Computer-Aided Civil and Infrastructure Engineering, 2022, 37, 185-203.	6.3	22
18	Review of electromagnetic waves-based distance measurement technologies for remote monitoring of civil engineering structures. Measurement: Journal of the International Measurement Confederation, 2021, 176, 109193.	2.5	17

#	Article	IF	CITATIONS
19	Pixel-Level Fatigue Crack Segmentation in Large-Scale Images of Steel Structures Using an Encoder–Decoder Network. Sensors, 2021, 21, 4135.	2.1	23
20	Vision-based modal parameter identification for bridges using a novel holographic visual sensor. Measurement: Journal of the International Measurement Confederation, 2021, 179, 109551.	2.5	7
21	ArUco marker-based displacement measurement technique: uncertainty analysis. Engineering Research Express, 2021, 3, 035032.	0.8	11
22	Visionâ€based displacement and joint rotation tracking of frame structure using feature mix with single consumerâ€grade camera. Structural Control and Health Monitoring, 2021, 28, e2832.	1.9	11
23	Two flexible vision-based methods for remote deflection monitoring of a long-span bridge. Measurement: Journal of the International Measurement Confederation, 2021, 181, 109658.	2.5	19
24	Realâ€time structural displacement estimation by fusing asynchronous acceleration and computer vision measurements. Computer-Aided Civil and Infrastructure Engineering, 2022, 37, 688-703.	6.3	41
25	Performance of Camera-Based Vibration Monitoring Systems in Input-Output Modal Identification Using Shaker Excitation. Remote Sensing, 2021, 13, 3471.	1.8	12
26	A multi-resolution deep feature framework for dynamic displacement measurement of bridges using vision-based tracking system. Measurement: Journal of the International Measurement Confederation, 2021, 183, 109847.	2.5	22
27	A method to distinguish harmonic frequencies and remove the harmonic effect in operational modal analysis of rotating structures. Mechanical Systems and Signal Processing, 2021, 161, 107928.	4.4	22
28	Vision-Based Vibration Monitoring of Structures and Infrastructures: An Overview of Recent Applications. Infrastructures, 2021, 6, 4.	1.4	44
29	Technology development and commercial applications of industrial fault diagnosis system: a review. International Journal of Advanced Manufacturing Technology, 2022, 118, 3497-3529.	1.5	15
30	Structural damage identification of offshore wind turbines: A twoâ€step strategy via FE model updating. Structural Control and Health Monitoring, 2022, 29, e2872.	1.9	4
31	Optical Flow Dynamic Measurements with High-Speed Camera on a Small-Scale Steel Frame Structure. Lecture Notes in Mechanical Engineering, 2020, , 1543-1555.	0.3	0
32	NOVEL APPROACH TO EXTRACT DENSE FULL-FIELD DYNAMIC PARAMETERS OF LARGE-SCALE BRIDGES USING SPATIAL SEQUENCE VIDEO. Journal of Civil Engineering and Management, 2021, 27, 617-636.	1.9	2
33	Automatic Displacement and Vibration Measurement in Laboratory Experiments with A Deep Learning Method. , 2021, , .		2
34	Damage localization for bridges monitored within one cluster based on a spatiotemporal correlation model of strain monitoring data. Structural Health Monitoring, 2023, 22, 105-130.	4.3	2
35	Multi-level deformation behavior monitoring of flexural structures via vision-based continuous boundary tracking: proof-of-concept study. Measurement: Journal of the International Measurement Confederation, 2022, 194, 111031.	2.5	9
36	A detailed investigation of uplift and damping of a railway catenary span in traffic using a vision-based line-tracking system. Journal of Sound and Vibration, 2022, 527, 116875.	2.1	12

#	Article	IF	CITATIONS
37	Bayesian inference for the dynamic properties of long-span bridges under vortex-induced vibration with Scanlan's model and dense optical flow scheme. Mechanical Systems and Signal Processing, 2022, 174, 109078.	4.4	11
38	Challenges in the application of digital transformation to inspection and maintenance of bridges. Structure and Infrastructure Engineering, 2022, 18, 1581-1600.	2.0	14
39	Using lightweight convolutional neural network to track vibration displacement in rotating body video. Mechanical Systems and Signal Processing, 2022, 177, 109137.	4.4	20
40	Structural displacement estimation by fusing vision camera and accelerometer using hybrid computer vision algorithm and adaptive multi-rate Kalman filter. Automation in Construction, 2022, 140, 104338.	4.8	31
41	A Review of Computer Vision-Based Structural Deformation Monitoring in Field Environments. Sensors, 2022, 22, 3789.	2.1	20
42	Marker-free fatigue crack detection and localization by integrating the optical flow and information entropy. Structural Health Monitoring, 2023, 22, 1008-1026.	4.3	3
43	A robust subpixel refinement technique using selfâ€adaptive edge points matching for visionâ€based structural displacement measurement. Computer-Aided Civil and Infrastructure Engineering, 2023, 38, 562-579.	6.3	9
44	A hybrid method for damage detection and condition assessment of hinge joints in hollow slab bridges using physical models and vision-based measurements. Mechanical Systems and Signal Processing, 2023, 183, 109631.	4.4	15
45	Vision-based modal analysis of built environment structures with multiple drones. Automation in Construction, 2022, 143, 104550.	4.8	8
46	Noncontact dynamic displacements measurements for structural identification using a multiâ€channel Lidar. Structural Control and Health Monitoring, 2022, 29, .	1.9	2
47	Computer-Vision-Based Vibration Tracking Using a Digital Camera: A Sparse-Optical-Flow-Based Target Tracking Method. Sensors, 2022, 22, 6869.	2.1	8
48	A robust structural vibration recognition system based on computer vision. Journal of Sound and Vibration, 2022, 541, 117321.	2.1	10
49	Completely non-contact modal testing of full-scale bridge in challenging conditions using vision sensing systems. Engineering Structures, 2022, 272, 114994.	2.6	4
50	Review of robot-based automated measurement of vibration for civil engineering structures. Measurement: Journal of the International Measurement Confederation, 2023, 207, 112382.	2.5	9
51	Development of a low-cost vision-based real-time displacement system using Raspberry Pi. Engineering Structures, 2023, 278, 115493.	2.6	6
52	A novel marker for robust and accurate phase-based 2D motion estimation from noisy image data. Mechanical Systems and Signal Processing, 2023, 187, 109931.	4.4	3
53	A Hybrid Method for Vibration-Based Bridge Damage Detection. Remote Sensing, 2022, 14, 6054.	1.8	12
54	Dynamic Characteristic Monitoring of Wind Turbine Structure Using Smartphone and Optical Flow Method. Buildings, 2022, 12, 2021.	1.4	2

#	Article	IF	CITATIONS
55	Displacement measurement of large structures using nonoverlapping field of view multiâ€camera systems under six degrees of freedom egoâ€motion. Computer-Aided Civil and Infrastructure Engineering, 2023, 38, 1483-1503.	6.3	9
56	Wireless Binocular Stereovision Measurement System Based on Improved Coarse-to-Fine Matching Algorithm. Structural Control and Health Monitoring, 2023, 2023, 1-19.	1.9	0
57	Improved image-based, full-field structural displacement measurement using template matching and camera calibration methods. Measurement: Journal of the International Measurement Confederation, 2023, 211, 112650.	2.5	9
58	Large Displacement Detection Using Improved Lucas–Kanade Optical Flow. Sensors, 2023, 23, 3152.	2.1	2
59	An Improved Structural Displacement Monitoring Approach by Acceleration-Aided Tilt Camera Measurement. Structural Control and Health Monitoring, 2023, 2023, 1-30.	1.9	2
60	Robust and efficient feature-based method for structural health monitoring of large structures. Journal of Civil Structural Health Monitoring, 0, , .	2.0	0
78	Research on Underwater Non-Contact Displacement Measurement Based on Vision. , 2023, , .		0