Applications of 2D MXenes in energy conversion and sto

Chemical Society Reviews 48, 72-133

DOI: 10.1039/c8cs00324f

Citation Report

#	Article	IF	CITATIONS
1	Superfast high-energy storage hybrid device composed of MXene and Chevrel-phase electrodes operated in saturated LiCl electrolyte solution. Journal of Materials Chemistry A, 2019, 7, 19761-19773.	5.2	32
2	Hybrid catalyst with monoclinic MoTe2 and platinum for efficient hydrogen evolution. APL Materials, 2019, 7, .	2.2	24
3	Tuning the Photoresponse of Nanoâ€Heterojunction: Pressureâ€Induced Inverse Photoconductance in Functionalized WO ₃ Nanocuboids. Advanced Science, 2019, 6, 1901132.	5.6	28
4	Electrochemical Behavior of Ti ₃ C ₂ T _{<i>x</i>} MXene in Environmentally Friendly Methanesulfonic Acid Electrolyte. ChemSusChem, 2019, 12, 4480-4486.	3.6	19
5	Synthesis and characterisation of [Cu ₄ In(PPh ₃) ₃ SePh($\hat{1}/4$ -SePh) ₃ ($\hat{1}/4$ ₃ -SePh) _{and its application as a precursor of a sensitizer for a photocatalyst. New Journal of Chemistry, 2019, 43, 14196-14201.}	>3]	7
6	Multiple roles of a heterointerface in two-dimensional van der Waals heterostructures: insights into energy-related applications. Journal of Materials Chemistry A, 2019, 7, 23577-23603.	5.2	43
7	Recent progress on synthesis, structure and electrocatalytic applications of MXenes. FlatChem, 2019, 17, 100129.	2.8	33
8	2D Stacks of MXene Ti ₃ C ₂ and 1Tâ€Phase WS ₂ with Enhanced Capacitive Behavior. ChemElectroChem, 2019, 6, 3982-3986.	1.7	39
9	Tin Oxide Based Nanomaterials and Their Application as Anodes in Lithiumâ€lon Batteries and Beyond. ChemSusChem, 2019, 12, 4140-4159.	3.6	82
10	Electrocatalytic/photocatalytic properties and aqueous media applications of 2D transition metal carbides (MXenes). Current Opinion in Solid State and Materials Science, 2019, 23, 100760.	5.6	47
11	Template-free synthesized 3D macroporous MXene with superior performance for supercapacitors. Applied Materials Today, 2019, 16, 315-321.	2.3	65
12	MnSe2/Se Composite Nanobelts as an Improved Performance Anode for Lithium Storage. International Journal of Electrochemical Science, 2019, , 6000-6008.	0.5	14
13	Ti3C2 nanosheets modified Zr-MOFs with Schottky junction for boosting photocatalytic HER performance. Solar Energy, 2019, 188, 750-759.	2.9	39
14	Atomic-scale dynamic observation reveals temperature-dependent multistep nucleation pathways in crystallization. Nanoscale Horizons, 2019, 4, 1302-1309.	4.1	17
15	Effect of Cationic Exchange on the Hydration and Swelling Behavior of Ti ₃ C ₂ T <i>>_z</i> MXenes. Journal of Physical Chemistry C, 2019, 123, 20044-20050.	1.5	45
16	Synthesis of Iron–Nickel Sulfide Porous Nanosheets via a Chemical Etching/Anion Exchange Method for Efficient Oxygen Evolution Reaction in Alkaline Media. Advanced Materials Interfaces, 2019, 6, 1900788.	1.9	27
17	Conductive MXene Nanocomposite Organohydrogel for Flexible, Healable, Lowâ€Temperature Tolerant Strain Sensors. Advanced Functional Materials, 2019, 29, 1904507.	7.8	560
18	Zinc Ferrite Nanorodâ€Assembled Mesoporous Microspheres as Advanced Anode Materials for Sodiumâ€ion Batteries. Energy Technology, 2019, 7, 1900479.	1.8	9

#	Article	IF	CITATIONS
19	Sodium-ion battery anodes: Status and future trends. EnergyChem, 2019, 1, 100012.	10.1	217
20	Study on synthesis and application of tetrabasic lead sulfate as the positive active material additive for lead-acid batteries. Royal Society Open Science, 2019, 6, 190882.	1.1	8
21	Ni2P2O7 micro-sheets supported ultra-thin MnO2 nanoflakes: A promising positive electrode for stable solid-state hybrid supercapacitor. Electrochimica Acta, 2019, 319, 435-443.	2.6	31
22	Biological reduction of nitroimidazole-functionalized gold nanorods for photoacoustic imaging of tumor hypoxia. RSC Advances, 2019, 9, 16863-16868.	1.7	11
23	Environmental stability of bismuthene: oxidation mechanism and structural stability of 2D pnictogens. Journal of Materials Chemistry C, 2019, 7, 9195-9202.	2.7	40
24	Surfaceâ€Modified Metallic Ti ₃ C ₂ T _x MXene as Electron Transport Layer for Planar Heterojunction Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1905694.	7.8	125
25	Heteroatomâ€Mediated Interactions between Ruthenium Single Atoms and an MXene Support for Efficient Hydrogen Evolution. Advanced Materials, 2019, 31, e1903841.	11.1	363
26	Roomâ€Temperature Liquid Metal Confined in MXene Paper as a Flexible, Freestanding, and Binderâ€Free Anode for Nextâ€Generation Lithiumâ€Ion Batteries. Small, 2019, 15, e1903214.	5.2	79
27	Carbon materials from melamine sponges for supercapacitors and lithium battery electrode materials: A review., 2019, 1, 253-275.		135
28	<i>Ab initio</i> study of the effective Coulomb interactions and Stoner ferromagnetism in <mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>M</mml:mi><mml:m athvariant="normal">C</mml:m></mml:msub></mml:mrow> and <mml:math xmlns:mml:mi="">M<mml:mi>M</mml:mi><mml:m< mml<="" p=""></mml:m<></mml:math></mmi:math>	1.1	22
29	Physical Review 8, 2019, 100, . Rational Design of Flexible Two-Dimensional MXenes with Multiple Functionalities. Chemical Reviews, 2019, 119, 11980-12031.	23.0	242
30	Cytotoxicity Assessment of Ti–Al–C Based MAX Phases and Ti ₃ C ₂ T _{<i>x</i>Cells. ACS Biomaterials Science and Engineering, 2019, 5, 6557-6569.}	2.6	65
31	Beyond Gold: Spinâ€Coated Ti ₃ C ₂ â€Based MXene Photodetectors. Advanced Materials, 2019, 31, e1903271.	11.1	114
32	Ultrafine Pt Nanoparticle-Decorated 3D Hybrid Architectures Built from Reduced Graphene Oxide and MXene Nanosheets for Methanol Oxidation. Chemistry of Materials, 2019, 31, 9277-9287.	3.2	141
33	Probability-driven transmission expansion planning with high-penetration renewable power generation: A case study in northwestern China. Applied Energy, 2019, 255, 113610.	5.1	36
34	2D MXenes as Co-catalysts in Photocatalysis: Synthetic Methods. Nano-Micro Letters, 2019, 11, 79.	14.4	160
35	Tunable pseudocapacitive contribution by dimension control in nanocrystalline-constructed (Mg _{0.2} Co _{0.2} Did solutions to achieve superior lithium-storage properties. RSC Advances, 2019, 9, 28908-28915.	1.7	36
36	Organometal-catalyzed synthesis of high molecular weight poly-(<scp>l</scp> -lactic acid) with a covalently attached imidazolium salt: performance-enhanced reduced graphene oxide–PLLA biomaterials. New Journal of Chemistry, 2019, 43, 16367-16373.	1.4	6

#	ARTICLE	IF	CITATIONS
37	1T/2H MoSe2-on-MXene heterostructure as bifunctional electrocatalyst for efficient overall water splitting. Electrochimica Acta, 2019, 326, 134976.	2.6	125
38	High-performance p-type MoS ₂ field-effect transistor by toroidal-magnetic-field controlled oxygen plasma doping. 2D Materials, 2019, 6, 025007.	2.0	44
39	Facile Synthesis of Binary Transition Metal Sulfide Tubes Derived from NiCoâ€MOFâ€74 for Highâ€Performance Supercapacitors. Energy Technology, 2019, 7, 1900018.	1.8	67
40	Magnesium-lon Storage Capability of MXenes. ACS Applied Energy Materials, 2019, 2, 1572-1578.	2.5	89
41	Recent advances in MXenes: From fundamentals to applications. Current Opinion in Solid State and Materials Science, 2019, 23, 164-178.	5.6	247
42	Engineering Two-Dimensional Materials and Their Heterostructures as High-Performance Electrocatalysts. Electrochemical Energy Reviews, 2019, 2, 373-394.	13.1	74
43	A Simple Strategy towards Highly Conductive Silverâ€Nanowire Inks for Screenâ€Printed Flexible Transparent Conductive Films and Wearable Energyâ€Storage Devices. Advanced Materials Technologies, 2019, 4, 1900196.	3.0	89
44	Three-dimensional carambola-like MXene/polypyrrole composite produced by one-step co-electrodeposition method for electrochemical energy storage. Electrochimica Acta, 2019, 318, 820-827.	2.6	84
45	Electrode Materials for High-Performance Sodium-Ion Batteries. Materials, 2019, 12, 1952.	1.3	62
46	Synthesis of novel nanomaterials and their application in efficient removal of radionuclides. Science China Chemistry, 2019, 62, 933-967.	4.2	256
47	Synthesis, structure, properties and applications of MXenes: Current status and perspectives. Ceramics International, 2019, 45, 18167-18188.	2.3	371
48	Bonding and electronics of the silicene/MoTe2 interface under strain. Applied Surface Science, 2019, 491, 469-477.	3.1	16
49	Self-healing liquid metal nanoparticles encapsulated in hollow carbon fibers as a free-standing anode for lithium-ion batteries. Nano Energy, 2019, 62, 883-889.	8.2	93
50	2D Nanomaterials for Photocatalytic Hydrogen Production. ACS Energy Letters, 2019, 4, 1687-1709.	8.8	375
51	Etching and Exfoliation Properties of Cr ₂ AlC into Cr ₂ CO ₂ and the Electrocatalytic Performances of 2D Cr ₂ CO ₂ MXene. Journal of Physical Chemistry C, 2019, 123, 15629-15636.	1.5	29
52	MXenes: An Introduction of Their Synthesis, Select Properties, and Applications. Trends in Chemistry, 2019, 1, 656-669.	4.4	302
53	Hard X-ray spectroscopic methods using emitted X-ray to understand charge compensation in positive electrode materials for lithium-ion batteries. Journal of Power Sources, 2019, 434, 226721.	4.0	4
54	Ultrafine Co ₂ P nanorods wrapped by graphene enable a long cycle life performance for a hybrid potassium-ion capacitor. Nanoscale Horizons, 2019, 4, 1394-1401.	4.1	96

#	Article	IF	CITATIONS
55	The art of two-dimensional soft nanomaterials. Science China Chemistry, 2019, 62, 1145-1193.	4.2	52
56	Surface Modified MXeneâ€Based Nanocomposites for Electrochemical Energy Conversion and Storage. Small, 2019, 15, e1901503.	5.2	159
57	Transition metal carbide catalysts for biomass conversion: A review. Applied Catalysis B: Environmental, 2019, 254, 510-522.	10.8	149
58	Ag cluster beam deposition for TCO/Ag/TCO multilayer. Solar Energy Materials and Solar Cells, 2019, 199, 114-121.	3.0	20
59	Novel MAB phases and insights into their exfoliation into 2D MBenes. Nanoscale, 2019, 11, 11305-11314.	2.8	120
60	Fabrication of wide visible-light response porous graphitic carbon nitride with excellent visible light photocatalytic performance. Materials Research Express, 2019, 6, 086207.	0.8	4
61	Computational Discovery and Design of MXenes for Energy Applications: Status, Successes, and Opportunities. ACS Applied Materials & Successes, 2019, 11, 24885-24905.	4.0	105
62	High-Energy-Density Hydrogen-Ion-Rocking-Chair Hybrid Supercapacitors Based on Ti ₃ C ₂ <i>T</i> > 13,6899-6905.	7.3	129
63	Tuning the photoluminescence property of carbon dots by ultraviolet light irradiation. RSC Advances, 2019, 9, 12732-12736.	1.7	7
64	The use of two-dimensional materials in high-temperature rechargeable batteries: current issues and preventative measures. Materials Research Express, 2019, 6, 092003.	0.8	2
65	MXeneâ€Contacted Silicon Solar Cells with 11.5% Efficiency. Advanced Energy Materials, 2019, 9, 1900180.	10.2	161
66	MoS2-Based Photodetectors Powered by Asymmetric Contact Structure with Large Work Function Difference. Nano-Micro Letters, 2019, 11, 34.	14.4	49
67	Hâ€IdTâ€MoS ₂ â€onâ€MXene Heterostructures as Promising 2D Anode Materials for Lithiumâ€Ion Batteries: Insights from First Principles. Advanced Theory and Simulations, 2019, 2, 1900045.	1.3	20
68	NiO decorated CeO ₂ nanostructures as room temperature isopropanol gas sensors. RSC Advances, 2019, 9, 13765-13775.	1.7	60
69	3D cross-linking N-doped graphene framework for high sulfur nanocrystal storage. Journal Physics D: Applied Physics, 2019, 52, 295502.	1.3	6
70	Interfacial transmetallation synthesis of a platinadithiolene nanosheet as a potential 2D topological insulator. Chemical Science, 2019, 10, 5218-5225.	3.7	41
71	Flexible electrode based on multi-scaled MXene (Ti3C2Tx) for supercapacitors. Journal of Alloys and Compounds, 2019, 790, 517-523.	2.8	49
72	Growth of radially aligned porous carbon nanotube arrays on pyrolytic carbon coated carbon fibers. Vacuum, 2019, 164, 170-174.	1.6	10

#	ARTICLE	IF	Citations
73	Overview of the synthesis of MXenes and other ultrathin 2D transition metal carbides and nitrides. Current Opinion in Solid State and Materials Science, 2019, 23, 149-163.	5.6	353
74	Nitroaniline chemi-sensor based on bitter gourd shaped ytterbium oxide (Yb2O3) doped zinc oxide (ZnO) nanostructures. Ceramics International, 2019, 45, 13825-13831.	2.3	24
75	Inhibition of polysulfide diffusion in lithium–sulfur batteries: mechanism and improvement strategies. Journal of Materials Chemistry A, 2019, 7, 12381-12413.	5.2	147
76	Hierarchical heterostructure based on molybdenum dichalcogenide nanosheets assembled nitrogen doped graphene layers for efficient hydrogen evolution reaction. Materials Research Bulletin, 2019, 115, 201-210.	2.7	12
77	MXenes and ultrasonication. Journal of Materials Chemistry A, 2019, 7, 10843-10857.	5.2	230
78	MnB ₂ nanosheet and nanotube: stability, electronic structures, novel functionalization and application for Li-ion batteries. Nanoscale, 2019, 11, 7857-7865.	2.8	18
79	On the Chemical Diversity of the MAX Phases. Trends in Chemistry, 2019, 1, 210-223.	4.4	490
80	Nitrogen and oxygen co-doping carbon microspheres by a sustainable route for fast sodium-ion batteries. Electrochimica Acta, 2019, 303, 140-147.	2.6	41
81	Engineering 3D Ion Transport Channels for Flexible MXene Films with Superior Capacitive Performance. Advanced Functional Materials, 2019, 29, 1900326.	7.8	214
82	Determination of Transfer Capacity Region of Tie Lines in Electricity Markets: Theory and Analysis. Applied Energy, 2019, 239, 1441-1458.	5.1	25
83	Fluorination of MXene by Elemental F ₂ as Electrode Material for Lithiumâ€ion Batteries. ChemSusChem, 2019, 12, 1316-1324.	3.6	28
84	Giant Rashba spin splitting induced by heavy element adsorption at germanene. FlatChem, 2019, 18, 100141.	2.8	7
85	Few-layered Ti ₃ C ₂ T _x MXenes coupled with Fe ₂ O ₃ nanorod arrays grown on carbon cloth as anodes for flexible asymmetric supercapacitors. Journal of Materials Chemistry A, 2019, 7, 22631-22641.	5.2	93
86	Theoretical prediction and atomic-scale investigation of a tetra-VN ₂ monolayer as a high energy alkali ion storage material for rechargeable batteries. Journal of Materials Chemistry A, 2019, 7, 26858-26866.	5.2	18
87	Three dimensional nanosuperstructures made of two-dimensional materials by design: Synthesis, properties, and applications. Nano Today, 2019, 29, 100799.	6.2	23
88	Two-Dimensional AXenes: A New Family of Room-Temperature d ⁰ Ferromagnets and Their Structural Phase Transitions. Journal of Physical Chemistry Letters, 2019, 10, 7753-7759.	2.1	23
89	312 MAX Phases: Elastic Properties and Lithiation. Materials, 2019, 12, 4098.	1.3	20
90	Modulation engineering of 2D MXene-based compounds for metal-ion batteries. Nanoscale, 2019, 11, 23092-23104.	2.8	36

#	ARTICLE	IF	CITATIONS
91	Electrical promotion of spatially photoinduced charge separation via interfacial-built-in quasi-alloying effect in hierarchical Zn2In2S5/Ti3C2(O, OH)x hybrids toward efficient photocatalytic hydrogen evolution and environmental remediation. Applied Catalysis B: Environmental, 2019, 245, 290-301.	10.8	229
92	Cation-intercalated engineering and X-ray absorption spectroscopic characterizations of two dimensional MXenes. Chinese Chemical Letters, 2020, 31, 969-979.	4.8	12
93	Construction of ternary CdxMo1â^'xSe quantum dots for enhanced photocatalytic hydrogen production. Journal of Materials Science, 2020, 55, 1117-1125.	1.7	13
94	Going green with batteries and supercapacitor: Two dimensional materials and their nanocomposites based energy storage applications. Progress in Solid State Chemistry, 2020, 58, 100254.	3.9	87
95	2 D MXeneâ€based Energy Storage Materials: Interfacial Structure Design and Functionalization. ChemSusChem, 2020, 13, 1409-1419.	3.6	63
96	Self-limiting interactions in 2D–0D systems: A case study of graphene oxide and 12-tungstophosphoric acid nanocomposite. Carbon, 2020, 156, 166-178.	5.4	8
97	Photoexcited charge carrier behaviors in solar energy conversion systems from theoretical simulations. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2020, 10, e1441.	6.2	7
98	Recent advances in integration of 2D materials with soft matter for multifunctional robotic materials. Materials Horizons, 2020, 7, 54-70.	6.4	55
99	Advanced Cu0.5Co0.5Se2 nanosheets and MXene electrodes for high-performance asymmetric supercapacitors. Chemical Engineering Journal, 2020, 385, 123455.	6.6	55
100	Ultrahigh Sensitivity Surface Plasmon Resonance–Based Fiber-Optic Sensors Using Metal-Graphene Layers with Ti3C2TxÂMXeneÂOverlayers. Plasmonics, 2020, 15, 457-466.	1.8	25
101	3D TiO2@nitrogen-doped carbon/Fe7S8 composite derived from polypyrrole-encapsulated alkalized MXene as anode material for high-performance lithium-ion batteries. Chemical Engineering Journal, 2020, 385, 123394.	6.6	139
102	MXeneâ€Supported FeCoâ€LDHs as Highly Efficient Catalysts for Enhanced Electrocatalytic Oxygen Evolution Reaction. ChemNanoMat, 2020, 6, 154-159.	1.5	57
103	Polyoxometalate/reduced graphene oxide modified pencil graphite sensor for the electrochemical trace determination of paroxetine in biological and pharmaceutical media. Materials Science and Engineering C, 2020, 108, 110407.	3.8	41
104	Graphene oxide in aqueous and nonaqueous media: Dispersion behaviour and solution chemistry. Carbon, 2020, 158, 568-579.	5.4	50
105	2D Materials in Light: Excitedâ€State Dynamics and Applications. Chemical Record, 2020, 20, 413-428.	2.9	10
106	Black Phosphorous Nanosheets: A Novel Solar Vapor Generator. Solar Rrl, 2020, 4, 1900537.	3.1	18
107	Phase Transition Induced Unusual Electrochemical Performance of V ₂ CT _X MXene for Aqueous Zinc Hybrid-Ion Battery. ACS Nano, 2020, 14, 541-551.	7.3	179
108	Rational design of two-dimensional nanomaterials for lithium–sulfur batteries. Energy and Environmental Science, 2020, 13, 1049-1075.	15.6	285

#	Article	IF	CITATIONS
109	Ion-assisted self-assembly of macroporous MXene films as supercapacitor electrodes. Journal of Materials Chemistry C, 2020, 8, 2008-2013.	2.7	43
110	2 D Materials for Electrochemical Energy Storage: Design, Preparation, and Application. ChemSusChem, 2020, 13, 1155-1171.	3.6	77
111	Scalable construction of SiO/wrinkled MXene composite by a simple electrostatic self-assembly strategy as anode for high-energy lithium-ion batteries. Chinese Chemical Letters, 2020, 31, 980-983.	4.8	41
112	MXeneâ€Based Anodes for Metalâ€lon Batteries. Batteries and Supercaps, 2020, 3, 214-235.	2.4	75
113	Exfoliated MXene as a mediator for efficient laser desorption/ionization mass spectrometry analysis of various analytes. Talanta, 2020, 209, 120531.	2.9	13
114	Chemistry of two-dimensional MXene nanosheets in theranostic nanomedicine. Chinese Chemical Letters, 2020, 31, 937-946.	4.8	52
115	Catalytic effect of sandwich-like Ti ₃ C ₂ /TiO ₂ (A)-C on hydrogen storage performance of MgH ₂ . Nanotechnology, 2020, 31, 115404.	1.3	25
116	Strain-tunable electronic properties and lithium storage of 2D transition metal carbide (MXene) Ti ₂ CO ₂ as a flexible electrode. Journal of Materials Chemistry A, 2020, 8, 760-769.	5.2	35
117	Twoâ€dimensional Ti ₃ C ₂ T _x /poly(vinylidene fluoride) metacomposites with weakly negative permittivity. Polymer Composites, 2020, 41, 1820-1829.	2.3	6
118	Recent progress in TiO2-based photocatalysts for hydrogen evolution reaction: A review. Arabian Journal of Chemistry, 2020, 13, 3653-3671.	2.3	120
119	Progress of Twoâ€Dimensional Ti ₃ C ₂ T _{<i>x</i>} in Supercapacitors. ChemSusChem, 2020, 13, 1296-1329.	3.6	45
120	Twoâ€Dimensional Transition Metal Carbides and Nitrides (MXenes): Synthesis, Properties, and Electrochemical Energy Storage Applications. Energy and Environmental Materials, 2020, 3, 29-55.	7. 3	319
121	Photocatalytic H2 Evolution on TiO2 Assembled with Ti3C2 MXene and Metallic 1T-WS2 as Co-catalysts. Nano-Micro Letters, 2020, 12, 6.	14.4	141
122	Ti ₂ CT _{<i>x</i>} MXeneâ€based allâ€optical modulator. InformaÄnÃ-Materiály, 2020, 2, 601-609.	8.5	39
123	A facile method to produce MoSe2/MXene hybrid nanoflowers with enhanced electrocatalytic activity for hydrogen evolution. Journal of Electroanalytical Chemistry, 2020, 856, 113727.	1.9	37
124	Interfacing Boron Monophosphide with Molybdenum Disulfide for an Ultrahigh Performance in Thermoelectrics, Two-Dimensional Excitonic Solar Cells, and Nanopiezotronics. ACS Applied Materials & Longia &	4.0	84
125	Recent Advances in Chemical Functionalization of 2D Black Phosphorous Nanosheets. Advanced Science, 2020, 7, 1902359.	5.6	76
126	Emerging Layered Metallic Vanadium Disulfide for Rechargeable Metalâ€ion Batteries: Progress and Opportunities. ChemSusChem, 2020, 13, 1172-1202.	3.6	27

#	Article	IF	CITATIONS
127	Work Function Tunability of Graphene with Thermally Evaporated Rhenium Heptoxide for Transparent Electrode Applications. Advanced Engineering Materials, 2020, 22, 1900955.	1.6	6
128	Recent advances in 2D MXenes for enhanced cation intercalation in energy harvesting Applications: A review. Chemical Engineering Journal, 2020, 392, 123678.	6.6	127
129	Emerging Soft Conductors for Bioelectronic Interfaces. Advanced Functional Materials, 2020, 30, 1907184.	7.8	70
130	Three-Dimensional Hierarchical Porous Structures Constructed by Two-Stage MXene-Wrapped Si Nanoparticles for Li-Ion Batteries. ACS Applied Materials & Emp; Interfaces, 2020, 12, 48718-48728.	4.0	45
131	Exploring the Influence of Critical Parameters for the Effective Synthesis of High-Quality 2D MXene. ACS Omega, 2020, 5, 26845-26854.	1.6	56
132	High performance electrode of few-layer-carbon@bulk-carbon synthesized via controlling diffusion depth from liquid phase to solid phase for supercapacitors. Journal of Energy Storage, 2020, 32, 101672.	3.9	12
133	Lithium Metal-Based Composite: An Emerging Material for Next-Generation Batteries. Matter, 2020, 3, 1009-1030.	5.0	35
134	MoSe2 nanoflowers as efficient electrode materials for supercapacitors. Journal of Materials Science: Materials in Electronics, 2020, 31, 20571-20577.	1.1	19
135	MXenes as co-catalysts for the solar-driven photocatalytic reduction of CO ₂ . Journal of Materials Chemistry C, 2020, 8, 16258-16281.	2.7	61
136	Recent progress of two-dimensional MXenes in photocatalytic applications: a review. Materials Today Energy, 2020, 18, 100521.	2.5	76
137	In Situ Growth of Tetrametallic FeCoMnNi-MOF-74 on Nickel Foam as Efficient Bifunctional Electrocatalysts for the Evolution Reaction of Oxygen and Hydrogen. Inorganic Chemistry, 2020, 59, 15467-15477.	1.9	41
138	Screening effective single-atom ORR and OER electrocatalysts from Pt decorated MXenes by first-principles calculations. Journal of Materials Chemistry A, 2020, 8, 17065-17077.	5.2	70
139	Ti3C2Tx MXene-Based Light-Responsive Hydrogel Composite for Bendable Bilayer Photoactuator. Nanomaterials, 2020, 10, 1419.	1.9	18
140	One MAX phase, different MXenes: A guideline to understand the crucial role of etching conditions on Ti3C2Tx surface chemistry. Applied Surface Science, 2020, 530, 147209.	3.1	172
141	Electronic structure engineering on two-dimensional (2D) electrocatalytic materials for oxygen reduction, oxygen evolution, and hydrogen evolution reactions. Nano Energy, 2020, 77, 105080.	8.2	157
142	Electromagnetic microwave absorption theory and recent achievements in microwave absorbers. Carbon, 2020, 168, 606-623.	5.4	490
143	Size-dependent electronic, optical and photocatalytic properties of Ti3C2O2 quantum dots studied by first-principles calculations. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 124, 114328.	1.3	6
144	Pristine Titanium Carbide MXene Hydrogel Matrix. ACS Nano, 2020, 14, 10471-10479.	7.3	87

#	Article	IF	CITATIONS
145	Density functional theory calculation of Ti3C2 MXene monolayer as catalytic support for platinum towards the dehydrogenation of methylcyclohexane. Applied Surface Science, 2020, 529, 147186.	3.1	34
146	Trifunctional Singleâ€Atomic Ru Sites Enable Efficient Overall Water Splitting and Oxygen Reduction in Acidic Media. Small, 2020, 16, e2002888.	5. 2	120
147	3D Printing of NiCoP/Ti3C2 MXene Architectures for Energy Storage Devices with High Areal and Volumetric Energy Density. Nano-Micro Letters, 2020, 12, 143.	14.4	90
148	Electrocatalytic properties of two-dimensional transition metal dichalcogenides and their hetrostructures in energy applications. , 2020, , 215-241.		6
149	Recent developments of advanced micro-supercapacitors: design, fabrication and applications. Npj Flexible Electronics, 2020, 4, .	5.1	147
150	Molecular recognition at the air–water interface: nanoarchitectonic design and physicochemical understanding. Physical Chemistry Chemical Physics, 2020, 22, 24856-24869.	1.3	30
151	A high-throughput assessment of the adsorption capacity and Li-ion diffusion dynamics in Mo-based ordered double-transition-metal MXenes as anode materials for fast-charging LIBs. Nanoscale, 2020, 12, 24510-24526.	2.8	27
152	CO2 capture and conversion to value-added products promoted by MXene-based materials. Green Energy and Environment, 2022, 7, 394-410.	4.7	54
153	X-ray Photoelectron Spectroscopy of Ti ₃ AlC ₂ , Ti ₃ C ₂ T <i>>_z</i> , and TiC Provides Evidence for the Electrostatic Interaction between Laminated Layers in MAX-Phase Materials. Journal of Physical Chemistry C, 2020, 124, 27732-27742.	1.5	71
154	Evaluating the Cytotoxicity of Ti ₃ C ₂ MXene to Neural Stem Cells. Chemical Research in Toxicology, 2020, 33, 2953-2962.	1.7	38
155	Thermoelectric, Electronic, and Optical Response of Nanostructured Alâ€doped ZnO @ 2Dâ€√iC Composite. ChemistrySelect, 2020, 5, 13144-13154.	0.7	5
156	High catalytic performance of 2D Ti3C2Tx MXene in $\hat{l}\pm$ -pinene isomerization to camphene. Applied Catalysis A: General, 2020, 604, 117765.	2.2	13
157	Nb-based MXenes for efficient electrochemical sensing of small biomolecules in the anodic potential. Electrochemistry Communications, 2020, 119, 106811.	2.3	47
158	In Situ Electrochemical Synthesis of MXenes without Acid/Alkali Usage in/for an Aqueous Zinc Ion Battery. Advanced Energy Materials, 2020, 10, 2001791.	10.2	128
159	Three dimensional Ti ₃ C ₂ MXene nanoribbon frameworks with uniform potassiophilic sites for the dendrite-free potassium metal anodes. Nanoscale Advances, 2020, 2, 4212-4219.	2.2	39
160	Multidimensional B4N materials as novel anode materials for lithium ion batteries. Physical Chemistry Chemical Physics, 2020, 22, 19913-19922.	1.3	7
161	Emerging 2D MXenes for supercapacitors: status, challenges and prospects. Chemical Society Reviews, 2020, 49, 6666-6693.	18.7	466
162	Room-Temperature Gas Sensors Under Photoactivation: From Metal Oxides to 2D Materials. Nano-Micro Letters, 2020, 12, 164.	14.4	201

#	Article	IF	CITATIONS
163	Harnessing the unique features of MXenes for sulfur cathodes. Tungsten, 2020, 2, 162-175.	2.0	25
164	Ruddlesden–Popper Perovskite Oxides for Photocatalysis-Based Water Splitting and Wastewater Treatment. Energy & Dy Summer Sum	2.5	53
165	MXene derivatives for energy storage applications. Sustainable Energy and Fuels, 2020, 4, 4988-5004.	2.5	45
166	Highly sensitive, robust and anisotropic MXene aerogels for efficient broadband microwave absorption. Composites Part B: Engineering, 2020, 200, 108263.	5.9	134
167	Recent advances and perspectives of 2D silicon: Synthesis and application for energy storage and conversion. Energy Storage Materials, 2020, 32, 115-150.	9.5	74
168	Enhancing N ₂ Fixation Activity by Converting Ti ₃ C ₂ MXenes Nanosheets to Nanoribbons. ChemSusChem, 2020, 13, 5614-5619.	3.6	26
169	Two-dimensional polar metal of a PbTe monolayer by electrostatic doping. Nanoscale Horizons, 2020, 5, 1400-1406.	4.1	16
170	Advanced Electrocatalysts with Single-Metal-Atom Active Sites. Chemical Reviews, 2020, 120, 12217-12314.	23.0	563
171	Theoretical Insights into the Favorable Functionalized Ti ₂ C-Based MXenes for Lithium–Sulfur Batteries. ACS Omega, 2020, 5, 29272-29283.	1.6	28
172	Chromium Carbide Nanosheets Prepared by Selective Etching of Aluminum from Cr ₂ AlC for Hydrazine Detection. ACS Applied Nano Materials, 2020, 3, 11007-11016.	2.4	17
173	Three-dimensional porous phosphorus-graphdiyne as a universal anode material for both K- and Ca-ion batteries with high performance. Journal of Power Sources, 2020, 480, 228876.	4.0	28
174	One-Step Synthesis of Modified Ti ₃ C ₂ MXene-Supported Amorphous Molybdenum Sulfide Electrocatalysts by a Facile Gamma Radiation Strategy for Efficient Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2020, 3, 10882-10891.	2.5	29
175	Fe ₂ O ₃ Nanoparticles Anchored on the Ti ₃ C ₂ T _{<i>x</i>Ultrahigh Volumetric Capacitance. ACS Applied Materials & Description (2008). The Company of the Company of the Company (2008) and the Company of the Company of the Company (2008). The Company of the Company}	4.0	88
176	Synergistic Antimicrobial Titanium Carbide (MXene) Conjugated with Gold Nanoclusters. Advanced Healthcare Materials, 2020, 9, e2001007.	3.9	71
177	Gas adsorption properties (N ₂ , H ₂ , O ₂ , NO, NO ₂ , CO,) Tj ETO first-principles study. New Journal of Chemistry, 2020, 44, 18763-18769.	Qq0 0 0 rg 1.4	gBT /Overlock 30
178	Synergistic engineering of defects and architecture in Co3O4@C nanosheets toward Li/Na ion batteries with enhanced pseudocapacitances. Nano Energy, 2020, 78, 105366.	8.2	86
179	Electrical Conduction Characteristic of a 2D MXene Device with Cu/Cr2C/TiN Structure Based on Density Functional Theory. Materials, 2020, 13, 3671.	1.3	7
180	Surface Functionalization of Ti ₃ C ₂ T _{<i>x</i>} MXene with Highly Reliable Superhydrophobic Protection for Volatile Organic Compounds Sensing. ACS Nano, 2020, 14, 11490-11501.	7.3	247

#	Article	IF	CITATIONS
181	Recent Progress, Challenges, and Prospects in Two-Dimensional Photo-Catalyst Materials and Environmental Remediation. Nano-Micro Letters, 2020, 12, 167.	14.4	57
182	MXene hydrogels: fundamentals and applications. Chemical Society Reviews, 2020, 49, 7229-7251.	18.7	368
183	Recent advances in two-dimensional nanomaterials for photocatalytic reduction of CO ₂ : insights into performance, theories and perspective. Journal of Materials Chemistry A, 2020, 8, 19156-19195.	5.2	101
184	Interface Chemistry on MXeneâ€Based Materials for Enhanced Energy Storage and Conversion Performance. Advanced Functional Materials, 2020, 30, 2005190.	7.8	136
185	Terahertz Spectroscopy of Emerging Materials. Journal of Physical Chemistry C, 2020, 124, 22335-22346.	1.5	55
186	Blue phosphorene/Sc ₂ CX ₂ (X = O, F) van der Waals heterostructures as suitable candidates for water-splitting photocatalysts and solar cells. Sustainable Energy and Fuels, 2020, 4, 5277-5283.	2.5	23
187	Electrocatalysts Derived from 2D Mxenes for Oxygen Reduction and Hydrogen Evolution Reactions. ACS Symposium Series, 2020, , 167-189.	0.5	0
188	Theoretical investigation on $\$ BeN $_{\{2\}}$ monolayer for an efficient bifunctional water splitting catalyst. Scientific Reports, 2020, 10, 21411.	1.6	6
189	Recent Advances in 2D MXene Integrated Smart-Textile Interfaces for Multifunctional Applications. Chemistry of Materials, 2020, 32, 10296-10320.	3.2	101
190	Ti ₃ C ₂ 2D MXene: Recent Progress and Perspectives in Photocatalysis. ACS Applied Materials & Description of the Ap	4.0	148
191	Facile Synthesis of MnO ₂ /Ti ₃ C ₂ T _x /CC as Positive Electrode of Allâ€Solidâ€State Flexible Asymmetric Supercapacitor. ChemistrySelect, 2020, 5, 14768-14775.	0.7	24
192	A perspective on MXenes: Their synthesis, properties, and recent applications. Journal of Applied Physics, 2020, 128, .	1.1	72
193	Ti3C2Tx MXene for wearable energy devices: Supercapacitors and triboelectric nanogenerators. APL Materials, 2020, 8, .	2.2	30
194	3D high-density MXene@MnO ₂ microflowers for advanced aqueous zinc-ion batteries. Journal of Materials Chemistry A, 2020, 8, 24635-24644.	5.2	82
195	First-principles study of heterostructures of MXene and nitrogen-doped graphene as anode materials for Li-ion batteries. Surfaces and Interfaces, 2020, 21, 100788.	1.5	9
196	MXenes: New Horizons in Catalysis. ACS Catalysis, 2020, 10, 13487-13503.	5.5	239
197	Recent Progress in 2D Metalâ€Organic Frameworks for Optical Applications. Advanced Optical Materials, 2020, 8, 2000110.	3.6	85
198	Construction of 2D BiVO ₄ â^'CdSâ^'Ti ₃ C ₂ T _x Heterostructures for Enhanced Photoâ€redox Activities. ChemCatChem, 2020, 12, 3496-3503.	1.8	25

#	Article	IF	CITATIONS
199	Tunable Schottky barrier in InTe/graphene van der Waals heterostructure. Nanotechnology, 2020, 31, 335201.	1.3	14
200	Current Trends in MXene-Based Nanomaterials for Energy Storage and Conversion System: A Mini Review. Catalysts, 2020, 10, 495.	1.6	89
201	Near-infrared light-driven photofixation of nitrogen over Ti3C2Tx/TiO2 hybrid structures with superior activity and stability. Applied Catalysis B: Environmental, 2020, 273, 119072.	10.8	86
202	Thermoplastic polyurethane – Ti3C2(Tx) MXene nanocomposite: The influence of functional groups upon the matrix–reinforcement interaction. Applied Surface Science, 2020, 528, 146526.	3.1	24
203	Interface-Amorphized Ti ₃ C ₂ @Si/SiO <i>_x</i> @TiO ₂ Anodes with Sandwiched Structures and Stable Lithium Storage. ACS Applied Materials & Samp; Interfaces, 2020, 12, 24796-24805.	4.0	51
204	Ultrafast Relaxation Dynamics and Nonlinear Response of Few‣ayer Niobium Carbide MXene. Small Methods, 2020, 4, 2000250.	4.6	84
205	An Overview of Bacterial Cellulose in Flexible Electrochemical Energy Storage. ChemSusChem, 2020, 13, 3731-3753.	3.6	29
206	Creating active interfaces as a strategy to improve electrochemical water splitting reactions. JPhys Energy, 2020, 2, 041001.	2.3	10
207	Hydrothermally synthesized zinc phosphate-rGO composites for supercapattery devices. Journal of Electroanalytical Chemistry, 2020, 871, 114299.	1.9	57
208	Intercalation in Twoâ€Dimensional Transition Metal Carbides and Nitrides (MXenes) toward Electrochemical Capacitor and Beyond. Energy and Environmental Materials, 2020, 3, 306-322.	7.3	66
209	Facile synthesis of transition metal complexes wrapped Ti3C2T by a PVP-assisted liquid impregnation strategy with enhanced electrochemical performance for supercapacitors. Ceramics International, 2020, 46, 15492-15501.	2.3	14
210	3D MXene Architectures for Efficient Energy Storage and Conversion. Advanced Functional Materials, 2020, 30, 2000842.	7.8	276
211	In Situ Grown MWCNTs/MXenes Nanocomposites on Carbon Cloth for Highâ€Performance Flexible Supercapacitors. Advanced Functional Materials, 2020, 30, 2002739.	7.8	92
212	MXene Materials for Designing Advanced Separation Membranes. Advanced Materials, 2020, 32, e1906697.	11.1	295
213	3D assembly of MXene-stabilized spinel ZnMn2O4 for highly durable aqueous zinc-ion batteries. Chemical Engineering Journal, 2020, 399, 125627.	6.6	140
214	Morphology and photocatalytic activity of TiO2/MXene composites by in-situ solvothermal method. Ceramics International, 2020, 46, 20088-20096.	2.3	56
215	H2O2 assisted hydrothermal oxidation of partially etched vanadium carbides (MXene) and their electrochemical properties as anode for Li-ion batteries. Applied Surface Science, 2020, 523, 146387.	3.1	37
216	MXene: An emerging two-dimensional layered material for removal of radioactive pollutants. Chemical Engineering Journal, 2020, 397, 125428.	6.6	112

#	ARTICLE	IF	CITATIONS
217	Facile synthesis of colloidal nitrogenâ€doped titanium carbide sheets with enhanced electrochemical performance. , 2020, 2, 624-634.		13
218	Many-body effects in an MXene Ti ₂ CO ₂ monolayer modified by tensile strain: GW-BSE calculations. Nanoscale Advances, 2020, 2, 2471-2477.	2.2	10
219	A covalently linked dual network structure achieved by rapid grafting of poly(<i>p</i> pi>phenylenediamine)-phosphomolybdic acid on reduced graphene oxide aerogel for improving the performance of supercapacitors. Chemical Communications, 2020, 56, 7305-7308.	2.2	12
220	sp3-Defect and pore engineered carbon framework for high energy density supercapacitors. Journal of Power Sources, 2020, 464, 228203.	4.0	27
221	Chemistry of Germanene: Surface Modification of Germanane Using Alkyl Halides. ACS Nano, 2020, 14, 7319-7327.	7.3	26
222	Physical properties of 2D MXenes: from a theoretical perspective. JPhys Materials, 2021, 3, 032006.	1.8	67
223	3D Flexible, Conductive, and Recyclable Ti ₃ C ₂ T _{<i>x</i><} MXene-Melamine Foam for High-Areal-Capacity and Long-Lifetime Alkali-Metal Anode. ACS Nano, 2020, 14, 8678-8688.	7.3	164
224	BiVO4@ZnIn2S4/Ti3C2 MXene quantum dots assembly all-solid-state direct Z-Scheme photocatalysts for efficient visible-light-driven overall water splitting. Applied Materials Today, 2020, 20, 100719.	2.3	61
225	Revealing ion transport in supercapacitors with Sub-2 nm two-dimensional graphene channels. Energy Storage Materials, 2020, 31, 64-71.	9.5	31
226	Insights to pseudocapacitive charge storage of binary metal-oxide nanobelts decorated activated carbon cloth for highly-flexible hybrid-supercapacitors. Journal of Energy Storage, 2020, 31, 101602.	3.9	34
227	Implementing Hybrid Energy Harvesting in 3D Spherical Evaporator for Solar Steam Generation and Synergic Water Purification. Solar Rrl, 2020, 4, 2000232.	3.1	84
228	Prospects for Functionalizing Elemental 2D Pnictogens: A Study of Molecular Models. ACS Nano, 2020, 14, 7722-7733.	7.3	13
229	2D Germanane Derivative as a Vector for Overcoming Doxorubicin Resistance in Cancer Cells. Applied Materials Today, 2020, 20, 100697.	2.3	8
230	Biogenic Hybrid Nanosheets Activated Photothermal Therapy and Promoted Anti-PD-L1 Efficacy for Synergetic Antitumor Strategy. ACS Applied Materials & Synergetic Antitumor Strategy.	4.0	6
231	Surface modification engineering of two-dimensional titanium carbide for efficient synergistic multitherapy of breast cancer. Journal of Materials Chemistry B, 2020, 8, 6402-6417.	2.9	58
232	2D nano-materials beyond graphene: from synthesis to tribological studies. Applied Nanoscience (Switzerland), 2020, 10, 3353-3388.	1.6	89
233	Mechanical and tribological properties of nanocomposites incorporated with two-dimensional materials. Friction, 2020, 8, 813-846.	3.4	79
234	Intercalating Ultrathin MoO3 Nanobelts into MXene Film with Ultrahigh Volumetric Capacitance and Excellent Deformation for High-Energy-Density Devices. Nano-Micro Letters, 2020, 12, 115.	14.4	72

#	Article	IF	CITATIONS
235	TiO ₂ Nanoparticles In Situ Formed on Ti ₃ C ₂ Nanosheets by a Oneâ€Step Ethanolâ€Thermal Method for Enhanced Reversible Lithiumâ€Ion Storage. ChemistrySelect, 2020, 5, 3124-3129.	0.7	21
236	The effect of <i>in situ</i> nitrogen doping on the oxygen evolution reaction of MXenes. Nanoscale Advances, 2020, 2, 1187-1194.	2.2	50
237	The effect of strain on the Li-storage performance of V2C and Nb2C: From first-principles study. Solid State Communications, 2020, 311, 113857.	0.9	7
238	Boosting Sodium Storage in Two-Dimensional Phosphorene/Ti ₃ C ₂ T _{<i>x</i>} MXene Nanoarchitectures with Stable Fluorinated Interphase. ACS Nano, 2020, 14, 3651-3659.	7.3	155
239	Interfacial and Electronic Modulation via Localized Sulfurization for Boosting Lithium Storage Kinetics. Advanced Materials, 2020, 32, e2000151.	11.1	98
240	Electronic structures and optical properties of two-dimensional (W2â^•3X1â^•3)2CO2 (X=SC,Y) iMXene by first-principles calculations. Materials Chemistry and Physics, 2020, 248, 122896.	2.0	3
241	Nanohybrids of a MXene and transition metal dichalcogenide for selective detection of volatile organic compounds. Nature Communications, 2020, 11, 1302.	5.8	294
242	"Top-down―Arsenene Production by Low-Potential Electrochemical Exfoliation. Inorganic Chemistry, 2020, 59, 11259-11265.	1.9	23
243	Sandwich-like Co ₃ O ₄ /MXene composites as high capacity electrodes for lithium-ion batteries. New Journal of Chemistry, 2020, 44, 5913-5920.	1.4	21
244	MXene-based photocatalysts. Journal of Materials Science and Technology, 2020, 56, 18-44.	5.6	269
245	Interfacial Synthesis of a Monolayered Fluorescent Twoâ€Dimensional Polymer through Dynamic Imine Chemistry. ChemistryOpen, 2020, 9, 381-385.	0.9	7
246	3D Porous Self-Standing Sb Foam Anode with a Conformal Indium Layer for Enhanced Sodium Storage. ACS Applied Materials & Diterfaces, 2020, 12, 20344-20353.	4.0	26
247	Novel Architecture Titanium Carbide (Ti3C2Tx) MXene Cocatalysts toward Photocatalytic Hydrogen Production: A Mini-Review. Nanomaterials, 2020, 10, 602.	1.9	114
249	Nanoscale Assembly of 2D Materials for Energy and Environmental Applications. Advanced Materials, 2020, 32, e1907006.	11.1	106
250	MXene Printing and Patterned Coating for Device Applications. Advanced Materials, 2020, 32, e1908486.	11.1	239
251	Carbon nanotube-based electrodes for flexible supercapacitors. Nano Research, 2020, 13, 1825-1841.	5.8	142
252	Insights into the Genesis of a Selective and Coke-Resistant MXene-Based Catalyst for the Dry Reforming of Methane. ACS Catalysis, 2020, 10, 5124-5134.	5. 5	43
253	Recent Advances in 2D MXenes for Photodetection. Advanced Functional Materials, 2020, 30, 2000907.	7.8	143

#	Article	IF	Citations
254	Layerâ€by‣ayer Motif Heteroarchitecturing of N,Sâ€Codoped Reduced Graphene Oxideâ€Wrapped Ni/NiS Nanoparticles for the Electrochemical Oxidation of Water. ChemSusChem, 2020, 13, 3269-3276.	3.6	19
255	Twoâ€Dimensional MOF and COF Nanosheets: Synthesis and Applications in Electrochemistry. Chemistry - A European Journal, 2020, 26, 6402-6422.	1.7	168
256	A simple, economical one-pot microwave assisted synthesis of nitrogen and sulfur co-doped graphene for high energy supercapacitors. Electrochimica Acta, 2020, 341, 135999.	2.6	42
257	Sulfur functions as the activity centers for high-capacity lithium ion batteries in S- and O-bifunctionalized MXenes: A density functional theory (DFT) study. Applied Surface Science, 2020, 525, 146501.	3.1	26
258	A Mini-Review: MXene composites for sodium/potassium-ion batteries. Nanoscale, 2020, 12, 15993-16007.	2.8	102
259	A general approach to the synthesis of transition metal phosphide nanoarrays on MXene nanosheets for pH-universal hydrogen evolution and alkaline overall water splitting. Journal of Materials Chemistry A, 2020, 8, 14234-14242.	5.2	120
260	Enhanced Functional Properties of Ti 3 C 2 T x MXenes as Negative Electrodes in Sodiumâ€lon Batteries by Chemical Tuning. Small Methods, 2020, 4, 2000314.	4.6	27
261	Hydration and swelling: a theoretical investigation on the cooperativity effect of H-bonding interactions between p-hydroxy hydroxymethyl calix[4]/[5]arene and H2O by many-body interaction and density functional reactivity theory. Journal of Molecular Modeling, 2020, 26, 190.	0.8	2
262	Recent advances in homojunction-based photocatalysis for sustainable environmental remediation and clean energy generation. Applied Materials Today, 2020, 20, 100741.	2.3	28
263	Vacancies and edges: Enhancing supercapacitive performance metrics of electrode materials. Journal of Energy Storage, 2020, 31, 101614.	3.9	25
264	Functionalized MXene Enabled Sustainable Water Harvesting and Desalination. Advanced Sustainable Systems, 2020, 4, 2000102.	2.7	36
265	A description of the formation and growth processes of CaTiO3 mesocrystals: a joint experimental and theoretical approach. Molecular Systems Design and Engineering, 2020, 5, 1255-1266.	1.7	5
266	Positioning MXenes in the Photocatalysis Landscape: Competitiveness, Challenges, and Future Perspectives. Advanced Functional Materials, 2020, 30, 2002528.	7.8	162
267	MXene as a tolerable anode material accommodating large ions in dual-ion batteries. Ceramics International, 2020, 46, 24887-24892.	2.3	8
268	Large interlayer spacing Nb ₄ C ₃ T _x (MXene) promotes the ultrasensitive electrochemical detection of Pb ²⁺ on glassy carbon electrodes. RSC Advances, 2020, 10, 24697-24704.	1.7	34
269	ZnSe nanoparticles with bulk WC as cocatalyst: A novel and noble-metal-free heterojunction photocatalyst for enhancing photocatalytic hydrogen evolution under visible light irradiation. Applied Materials Today, 2020, 20, 100731.	2.3	23
270	Recent Progress in MXeneâ€Based Materials: Potential Highâ€Performance Electrocatalysts. Advanced Functional Materials, 2020, 30, 2003437.	7.8	181
271	3D Assembly of Graphene Nanomaterials for Advanced Electronics. Advanced Intelligent Systems, 2020, 2, 1900151.	3.3	10

#	Article	IF	CITATIONS
272	A two-dimensional Ru@MXene catalyst for highly selective ambient electrocatalytic nitrogen reduction. Nanoscale, 2020, 12, 10933-10938.	2.8	100
273	There is plenty of space in the MXene layers: The confinement and fillings. Journal of Energy Chemistry, 2020, 48, 344-363.	7.1	72
274	A multidimensional nanostructural design towards electrochemically stable and mechanically strong hydrogel electrodes. Nanoscale, 2020, 12, 6637-6643.	2.8	49
275	Natural Biopolymers for Flexible Sensing and Energy Devices. Chinese Journal of Polymer Science (English Edition), 2020, 38, 459-490.	2.0	69
276	Modulation of nearly free electron states in hydroxyl-functionalized MXenes: a first-principles study. Journal of Materials Chemistry C, 2020, 8, 5211-5221.	2.7	21
277	MXene-based 3D porous macrostructures for electrochemical energy storage. JPhys Materials, 2020, 3, 022001.	1.8	42
278	Dynamism of Supramolecular DNA/RNA Nanoarchitectonics: From Interlocked Structures to Molecular Machines. Bulletin of the Chemical Society of Japan, 2020, 93, 581-603.	2.0	75
279	Surface wettability engineering: CoSx-Ni3S2 nanoarray electrode for improving overall water splitting. Applied Catalysis B: Environmental, 2020, 269, 118780.	10.8	95
280	The Role of Cation Vacancies in Electrode Materials for Enhanced Electrochemical Energy Storage: Synthesis, Advanced Characterization, and Fundamentals. Advanced Energy Materials, 2020, 10, 1903780.	10.2	138
281	Recent Advances of Twoâ€Dimensional (2 D) MXenes and Phosphorene for Highâ€Performance Rechargeable Batteries. ChemSusChem, 2020, 13, 1047-1070.	3.6	59
282	Intercalated MXene-based layered composites: Preparation and application. Chinese Chemical Letters, 2020, 31, 961-968.	4.8	23
283	Growth of Film Electrodes through Electrospray Coating of Precursor Sol for Use in Asymmetric Supercapacitor. Industrial & Engineering Chemistry Research, 2020, 59, 4428-4436.	1.8	6
284	Two-Dimensional Materials to Address the Lithium Battery Challenges. ACS Nano, 2020, 14, 2628-2658.	7.3	214
285	MXenes: Applications in electrocatalytic, photocatalytic hydrogen evolution reaction and CO2 reduction. Molecular Catalysis, 2020, 486, 110850.	1.0	97
286	WSe ₂ 2D pâ€type semiconductorâ€based electronic devices for information technology: Design, preparation, and applications. InformaÄnÃ-Materiály, 2020, 2, 656-697.	8.5	115
287	MXene/Polymer Membranes: Synthesis, Properties, and Emerging Applications. Chemistry of Materials, 2020, 32, 1703-1747.	3.2	429
288	Layered structure-based materials: challenges and opportunities for radionuclide sequestration. Environmental Science: Nano, 2020, 7, 724-752.	2.2	44
289	The Assembly of MXenes from 2D to 3D. Advanced Science, 2020, 7, 1903077.	5.6	231

#	Article	IF	CITATIONS
290	3D Printing for Electrochemical Energy Applications. Chemical Reviews, 2020, 120, 2783-2810.	23.0	255
291	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	8.5	85
292	A synergistic Bi ₂ S ₃ /MXene composite with enhanced performance as an anode material of sodium-ion batteries. New Journal of Chemistry, 2020, 44, 3072-3077.	1.4	40
293	Pillar-free TiO2/Ti3C2 composite with expanded interlayer spacing for high-capacity sodium ion batteries. Journal of Power Sources, 2020, 451, 227756.	4.0	64
294	Recent advances in MXenes supported semiconductors based photocatalysts: Properties, synthesis and photocatalytic applications. Journal of Industrial and Engineering Chemistry, 2020, 85, 1-33.	2.9	107
295	Two-dimensional MXenes: From morphological to optical, electric, and magnetic properties and applications. Physics Reports, 2020, 848, 1-58.	10.3	594
296	Application of polyoxometalate derivatives in rechargeable batteries. Journal of Materials Chemistry A, 2020, 8, 4593-4628.	5.2	94
297	In Situ Nâ€Doped Graphene and Mo Nanoribbon Formation from Mo ₂ Ti ₂ C ₃ MXene Monolayers. Small, 2020, 16, e1907115.	5.2	14
298	Precise and controllable N/C ratio in graphdiyne for superior Li and Na ions storage capacities. 2D Materials, 2020, 7, 025032.	2.0	23
299	Scalable Synthesis of Ti ₃ C ₂ T _{<i>x</i>} MXene. Advanced Engineering Materials, 2020, 22, 1901241.	1.6	468
300	Nanoarchitectonics from Atom to Life. Chemistry - an Asian Journal, 2020, 15, 718-728.	1.7	66
301	Advances in Two-Dimensional MXenes for Nitrogen Electrocatalytic Reduction to Ammonia. International Journal of Photoenergy, 2020, 2020, 1-11.	1.4	28
302	MXene Composite and Coaxial Fibers with High Stretchability and Conductivity for Wearable Strain Sensing Textiles. Advanced Functional Materials, 2020, 30, 1910504.	7.8	308
303	Mainstream avenues for boosting graphitic carbon nitride efficiency: towards enhanced solar light-driven photocatalytic hydrogen production and environmental remediation. Journal of Materials Chemistry A, 2020, 8, 10571-10603.	5.2	80
304	Surface reformation of 2D MXene by in situ LaF3-decorated and enhancement of energy storage in lithium-ion batteries. Journal of Materials Science: Materials in Electronics, 2020, 31, 6735-6743.	1.1	12
305	Enhanced VRLA deep cycling performance via lattice modification using Bi doping. lonics, 2020, 26, 3989-3995.	1.2	1
306	Ti3C2Tx MXene and Vanadium nitride/Porous carbon as electrodes for asymmetric supercapacitors. Electrochimica Acta, 2020, 341, 136035.	2.6	76
307	Candle soot carbon nanoparticles as high-performance universal anode for M-ion (M = Li+, Na+ and) Tj $ETQq1\ 1$	0.784314	rgBT /Overloo

#	Article	IF	CITATIONS
308	MXene based new class of silicone oil nanofluids for the performance improvement of concentrated photovoltaic thermal collector. Solar Energy Materials and Solar Cells, 2020, 211, 110526.	3.0	88
309	Porous Silica-Pillared MXenes with Controllable Interlayer Distances for Long-Life Na-Ion Batteries. Langmuir, 2020, 36, 4370-4382.	1.6	30
310	Hierarchical Mesoporous MXene–NiCoP Electrocatalyst for Water-Splitting. ACS Applied Materials & Lamp; Interfaces, 2020, 12, 18570-18577.	4.0	137
311	A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nature Materials, 2020, 19, 894-899.	13.3	870
312	Two-dimensional transition metal carbide and nitride (MXene) derived quantum dots (QDs): synthesis, properties, applications and prospects. Journal of Materials Chemistry A, 2020, 8, 7508-7535.	5.2	201
313	Achieving indirectâ€toâ€direct band gap transition and enhanced photocatalytic performance in blue phosphorene through doping and strain. International Journal of Quantum Chemistry, 2020, 120, e26230.	1.0	14
314	CuO Nanoparticles/Ti ₃ C ₂ T _{<i>x</i>} MXene Hybrid Nanocomposites for Detection of Toluene Gas. ACS Applied Nano Materials, 2020, 3, 4755-4766.	2.4	162
315	High-entropy M2AlC-MC (M=Ti, Zr, Hf, Nb, Ta) composite: Synthesis and microstructures. Scripta Materialia, 2020, 183, 33-38.	2.6	49
316	MXeneâ€Based Nanocomposites for Energy Conversion and Storage Applications. Chemistry - A European Journal, 2020, 26, 6342-6359.	1.7	66
317	Novel 2D Transitionâ€Metal Carbides: Ultrahigh Performance Electrocatalysts for Overall Water Splitting and Oxygen Reduction. Advanced Functional Materials, 2020, 30, 2000570.	7.8	186
318	Recent Advances and Promise of MXeneâ€Based Nanostructures for Highâ€Performance Metal Ion Batteries. Advanced Functional Materials, 2020, 30, 2000706.	7.8	192
319	Flexible Nb ₄ C ₃ T <i>>_x</i> Film with Large Interlayer Spacing for Highâ€Performance Supercapacitors. Advanced Functional Materials, 2020, 30, 2000815.	7.8	92
320	Nitrogenâ€Doped Ti ₃ C ₂ MXene: Mechanism Investigation and Electrochemical Analysis. Advanced Functional Materials, 2020, 30, 2000852.	7.8	166
321	In Situ Ice Template Approach to Fabricate 3D Flexible MXene Filmâ€Based Electrode for High Performance Supercapacitors. Advanced Functional Materials, 2020, 30, 2000922.	7.8	188
322	Biomimetic MXeneâ€Polyvinyl Alcohol Composite Hydrogel with Vertically Aligned Channels for Highly Efficient Solar Steam Generation. Advanced Materials Technologies, 2020, 5, 2000065.	3.0	100
323	Mxene/carbon nanohorn/ \hat{l}^2 -cyclodextrin-Metal-organic frameworks as high-performance electrochemical sensing platform for sensitive detection of carbendazim pesticide. Journal of Hazardous Materials, 2020, 396, 122776.	6.5	204
324	Interface Engineering of MXene Composite Separator for Highâ€Performance Li–Se and Na–Se Batteries. Advanced Energy Materials, 2020, 10, 2000446.	10.2	94
325	Effective removal of U(VI) and Eu(III) by carboxyl functionalized MXene nanosheets. Journal of Hazardous Materials, 2020, 396, 122731.	6.5	166

#	Article	IF	CITATIONS
326	Computational Screening of 2D Ordered Double Transition-Metal Carbides (MXenes) as Electrocatalysts for Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2020, 124, 10584-10592.	1.5	62
327	Large-scale two-dimensional titanium carbide MXene as SERS-active substrate for reliable and sensitive detection of organic pollutants. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 236, 118336.	2.0	42
328	MXenes as noble-metal-alternative co-catalysts in photocatalysis. Chinese Journal of Catalysis, 2021, 42, 3-14.	6.9	220
329	MXenes for Nonâ€Lithiumâ€lon (Na, K, Ca, Mg, and Al) Batteries and Supercapacitors. Advanced Energy Materials, 2021, 11, 2000681.	10.2	183
330	Design of efficient electrocatalysts for hydrogen evolution reaction based on 2D MXenes. Journal of Energy Chemistry, 2021, 55, 244-255.	7.1	104
331	Host Materials Anchoring Polysulfides in Li–S Batteries Reviewed. Advanced Energy Materials, 2021, 11, 2001304.	10.2	254
332	MXene/Polymer Nanocomposites: Preparation, Properties, and Applications. Polymer Reviews, 2021, 61, 80-115.	5 . 3	123
333	First-principles study on the electric field manipulation of the magnetic property and the electronic structures for monolayer Fe2C MXene. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 386, 126960.	0.9	5
334	ZnO/Ti3C2Tx monolayer electron transport layers with enhanced conductivity for highly efficient inverted polymer solar cells. Chemical Engineering Journal, 2021, 407, 127192.	6.6	77
335	Liquid-phase exfoliation of layered biochars into multifunctional heteroatom (Fe, N, S) co-doped graphene-like carbon nanosheets. Chemical Engineering Journal, 2021, 420, 127601.	6.6	32
336	Recent progress in copper sulfide based nanomaterials for high energy supercapacitor applications. Journal of Electroanalytical Chemistry, 2021, 880, 114825.	1.9	59
337	Establishing a Theoretical Landscape for Identifying Basal Plane Active 2D Metal Borides (MBenes) toward Nitrogen Electroreduction. Advanced Functional Materials, 2021, 31, 2008056.	7.8	97
338	Synthesis of 2D nanoporous zeolitic imidazolate framework nanosheets for diverse applications. Coordination Chemistry Reviews, 2021, 431, 213677.	9.5	41
339	Rational design of Co nano-dots embedded three-dimensional graphene gel as multifunctional sulfur cathode for fast sulfur conversion kinetics. Journal of Energy Chemistry, 2021, 56, 132-140.	7.1	25
340	Interlayer Space Engineering of MXenes for Electrochemical Energy Storage Applications. Chemistry - A European Journal, 2021, 27, 1921-1940.	1.7	45
341	Booming development and present advances of two dimensional MXenes for photodetectors. Chemical Engineering Journal, 2021, 403, 126336.	6.6	40
342	First-principles calculations of stability of graphene-like BC3 monolayer and its high-performance potassium storage. Chinese Chemical Letters, 2021, 32, 900-905.	4.8	32
343	Large-scale Ni-MOF derived Ni3S2 nanocrystals embedded in N-doped porous carbon nanoparticles for high-rate Na+ storage. Chinese Chemical Letters, 2021, 32, 895-899.	4.8	66

#	Article	IF	CITATIONS
344	Structural, electronic, optical, thermoelectric and photocatalytic properties of SiS/MXenes van der Waals heterostructures. Materials Today Communications, 2021, 26, 101702.	0.9	12
345	2D filler-reinforced polymer nanocomposite dielectrics for high-k dielectric and energy storage applications. Energy Storage Materials, 2021, 34, 260-281.	9.5	93
346	Synthesis and characterization of layered Nb2C MXene/ZnS nanocomposites for highly selective electrochemical sensing of dopamine. Ceramics International, 2021, 47, 2388-2396.	2.3	73
347	Recent advances in MXene-based nanocomposites for electrochemical energy storage applications. Progress in Materials Science, 2021, 117, 100733.	16.0	97
348	Theoretical investigation of Ti2B monolayer as powerful anode material for Li/Na batteries with high storage capacity. Applied Surface Science, 2021, 538, 148048.	3.1	14
349	Simple and robust MXene/carbon nanotubes/cotton fabrics for textile wastewater purification via solar-driven interfacial water evaporation. Separation and Purification Technology, 2021, 254, 117615.	3.9	106
350	2D titanium carbide MXenes as emerging optical biosensing platforms. Biosensors and Bioelectronics, 2021, 171, 112730.	5.3	101
351	Non-thermal radiation heating synthesis of nanomaterials. Science Bulletin, 2021, 66, 386-406.	4.3	29
352	Scalable fabrication of polyaniline nanodots decorated MXene film electrodes enabled by viscous functional inks for high-energy-density asymmetric supercapacitors. Chemical Engineering Journal, 2021, 405, 126664.	6.6	90
353	Interface coupling in FeOOH/MXene heterojunction for highly reversible lithium-ion storage. Materials Today Energy, 2021, 19, 100584.	2.5	9
354	Computational studies on the structural, electronic and optical properties of M2CT2 (M=Y, Sc and) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 50
355	A High-rate, Long Life, and Anti-self-discharge Aqueous N-doped Ti3C2/Zn Hybrid Capacitor. Materials Today Energy, 2021, 19, 100598.	2.5	22
356	Protonâ€Functionalized Graphitic Carbon Nitride for Efficient Metalâ€Free Destruction of Escherichia coli under Lowâ€Power Light Irradiation. Chemistry - A European Journal, 2021, 27, 3085-3090.	1.7	7
357	Nanostructured CeO2/NiV–LDH composite for energy storage in asymmetric supercapacitor and as methanol oxidation electrocatalyst. Chemical Engineering Journal, 2021, 417, 128019.	6.6	72
358	High-yield production of non-layered 2D carbon complexes: Thickness manipulation and carbon nanotube branches for enhanced lithium storage properties. Journal of Energy Chemistry, 2021, 59, 19-29.	7.1	9
359	<scp>N₂</scp> electrochemical reduction on two dimensional transition metal monoborides: A density functional theory study. International Journal of Quantum Chemistry, 2021, 121, e26548.	1.0	4
360	Structure, Preparation, and Applications of 2D Materialâ€Based Metal–Semiconductor Heterostructures. Small Structures, 2021, 2, 2000093.	6.9	71
361	Facile synthesis and electrochemical performances of three dimensional Ni3S2 as bifunctional electrode for overall water splitting. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 263, 114875.	1.7	8

#	Article	IF	CITATIONS
362	Review on Current Progress of MnO ₂ â€Based Ternary Nanocomposites for Supercapacitor Applications. ChemElectroChem, 2021, 8, 291-336.	1.7	62
363	Boosting Transport Kinetics of Ions and Electrons Simultaneously by Ti3C2Tx (MXene) Addition for Enhanced Electrochromic Performance. Nano-Micro Letters, 2021, 13, 20.	14.4	37
364	Low-dimensional nanomaterials enabled autoimmune disease treatments: Recent advances, strategies, and future challenges. Coordination Chemistry Reviews, 2021, 432, 213697.	9.5	5
365	MXenes for Rechargeable Batteries Beyond the Lithiumâ€ion. Advanced Materials, 2021, 33, e2004039.	11.1	224
366	Application of two-dimensional materials as anodes for rechargeable metal-ion batteries: A comprehensive perspective from density functional theory simulations. Energy Storage Materials, 2021, 35, 203-282.	9.5	84
367	Two-dimensional MXene-based and MXene-derived photocatalysts: Recent developments and perspectives. Chemical Engineering Journal, 2021, 409, 128099.	6.6	230
368	Electrochemical capacitors: Materials, technologies and performance. Energy Storage Materials, 2021, 36, 31-55.	9.5	87
369	Synergistic Modulation at Atomically Dispersed Fe/Au Interface for Selective CO ₂ Electroreduction. Nano Letters, 2021, 21, 686-692.	4.5	41
370	Challenges and Opportunities in Utilizing MXenes of Carbides and Nitrides as Electrocatalysts. Advanced Energy Materials, 2021, 11, 2002967.	10.2	94
371	Lamellar flower-like porous MoS ₂ as an efficient cocatalyst to boost photocatalytic hydrogen evolution of CdS. Catalysis Science and Technology, 2021, 11, 1292-1297.	2.1	24
372	The recent progress of MXene-Based microwave absorption materials. Carbon, 2021, 174, 484-499.	5.4	138
373	Hierarchical few-layer fluorine-free $Ti < sub > 3 < / sub > C < sub > 2 < / sub > T < sub > X < / sub > (T = O,) Tj ETQq1 1 0.784314 Chemistry A, 2021, 9, 922-927.$	rgBT /Ove 5.2	erlock 10 Tf
374	Nanocarbon-Enhanced 2D Photoelectrodes: A New Paradigm in Photoelectrochemical Water Splitting. Nano-Micro Letters, 2021, 13, 24.	14.4	62
375	Comparison of Additives in Anode: The Case of Graphene, MXene, CNTs Integration with Silicon Inside Carbon Nanofibers. Acta Metallurgica Sinica (English Letters), 2021, 34, 337-346.	1.5	14
376	Densified MoS2/Ti3C2 films with balanced porosity for ultrahigh volumetric capacity sodium-ion battery. Chemical Engineering Journal, 2021, 413, 127479.	6.6	33
377	Construction of Novel Metal-Free Graphene Oxide/Graphitic Carbon Nitride Nanohybrids: A 2D–2D Amalgamation for the Effective Dedyeing of Waste Water. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 716-730.	1.9	16
378	Stabilization of nonâ€native polymorphs for electrocatalysis and energy storage systems. Wiley Interdisciplinary Reviews: Energy and Environment, 2021, 10, e389.	1.9	5
379	Integrated energy storage system based on triboelectric nanogenerator in electronic devices. Frontiers of Chemical Science and Engineering, 2021, 15, 238-250.	2.3	86

#	Article	IF	CITATIONS
380	Strategies to improve electrocatalytic and photocatalytic performance of two-dimensional materials for hydrogen evolution reaction. Chinese Journal of Catalysis, 2021, 42, 511-556.	6.9	131
381	Nanoengineering of 2D MXeneâ€Based Materials for Energy Storage Applications. Small, 2021, 17, e1902085.	5.2	398
382	Supercapacitors based on MXenes (transition metal carbides and nitrides) and their hybrids. , 2021, , 217-233.		0
383	A substrate surface alloy strategy for integrated sulfide electrodes for sodium ion batteries with superior lifespan. Materials Advances, 2021, 2, 5062-5066.	2.6	1
384	A flexible and conductive MXene-coated fabric integrated with ⟨i⟩in situ⟨/i⟩ sulfur loaded MXene nanosheets for long-life rechargeable Li–S batteries. Nanoscale, 2021, 13, 2963-2971.	2.8	15
385	Interfacialâ€Potentialâ€Gradient Induced a Significant Enhancement of Photoelectric Conversion: Thiophene Polyelectrolyte (PTEâ€BS) and Bipyridine Ruthenium (N3) Cooperative Regulated Biomimetic Nanochannels. Advanced Energy Materials, 2021, 11, 2003340.	10.2	9
386	Fabrication of Mo _{1.33} CT _z (MXene)–cellulose freestanding electrodes for supercapacitor applications. Materials Advances, 2021, 2, 743-753.	2.6	15
387	Bioactive engineered photothermal nanomaterials: from theoretical understanding to cutting-edge application strategies in anti-cancer therapy. Materials Chemistry Frontiers, 2021, 5, 5257-5297.	3.2	18
388	State-of-the-art recent progress in MXene-based photocatalysts: a comprehensive review. Nanoscale, 2021, 13, 9463-9504.	2.8	87
389	The rise of flexible zinc-ion hybrid capacitors: advances, challenges, and outlooks. Journal of Materials Chemistry A, 2021, 9, 19054-19082.	5.2	60
390	Two-dimensional biomaterials: material science, biological effect and biomedical engineering applications. Chemical Society Reviews, 2021, 50, 11381-11485.	18.7	129
391	Facile synthesis of MXene-supported copper oxide nanocomposites for catalyzing the decomposition of ammonium perchlorate. Inorganic Chemistry Frontiers, 2021, 8, 1747-1761.	3.0	27
392	Recent advances in MXene-based force sensors: a mini-review. RSC Advances, 2021, 11, 19169-19184.	1.7	12
393	Application of MXene-based materials in hybrid capacitors. Sustainable Energy and Fuels, 2021, 5, 3278-3291.	2.5	29
394	Practical strategies for enhanced performance of anode materials in Na ⁺ /K ⁺ -ion batteries. Journal of Materials Chemistry A, 2021, 9, 7317-7335.	5.2	41
395	Nanomaterials, nanofillers, and nanocomposites: types and properties., 2021,, 3-37.		9
396	Heterostructures of titanium-based MXenes in energy conversion and storage devices. Journal of Materials Chemistry C, 2021, 9, 8395-8465.	2.7	30
397	Penta-MS $<$ sub $>$ 2 $<$ /sub $>$ (M = Mn, Ni, Cu/Ag and Zn/Cd) monolayers with negative Poisson's ratios and tunable bandgaps as water-splitting photocatalysts. Journal of Materials Chemistry A, 2021, 9, 6993-7004.	5.2	42

#	Article	IF	CITATIONS
398	Designing electrode materials for the electrochemical reduction of carbon dioxide. Materials Horizons, 2021, 8, 2420-2443.	6.4	18
399	2D metal carbides and their hybrid nanostructure: fundamental, synthesis, and applications. , 2021, , 235-251.		О
400	Theoretical study of the mechanism of methanol oxidation on PtNi catalyst. Inorganic Chemistry Communication, 2021, 123, 108362.	1.8	4
401	On interfacial and surface behavior of polymeric MXenes nanoarchitectures and applications. Current Research in Green and Sustainable Chemistry, 2021, 4, 100104.	2.9	43
402	Progress and Perspective: MXene and MXeneâ€Based Nanomaterials for Highâ€Performance Energy Storage Devices. Advanced Electronic Materials, 2021, 7, 2000967.	2.6	122
403	A progressive journey into 2D-chalcogenide/carbide/nitride-based broadband photodetectors: recent developments and future perspectives. Journal of Materials Chemistry C, 2021, 9, 14532-14572.	2.7	19
404	Light-emitting MXene quantum dots. Opto-Electronic Advances, 2021, 4, 200077-200077.	6.4	37
405	Surface plasmon-polariton triggering of Ti ₃ C ₂ T _{<i>x</i>} MXene catalytic activity for hydrogen evolution reaction enhancement. Journal of Materials Chemistry A, 2021, 9, 17770-17779.	5.2	20
406	Two-dimensional Ti ₃ C ₂ MXene-based nanostructures for emerging optoelectronic applications. Materials Horizons, 2021, 8, 2929-2963.	6.4	37
407	Improved synthesis of Ti ₃ C ₂ T _x MXenes resulting in exceptional electrical conductivity, high synthesis yield, and enhanced capacitance. Nanoscale, 2021, 13, 3572-3580.	2.8	228
408	Transition metal dichalcogenide-decorated MXenes: promising hybrid electrodes for energy storage and conversion applications. Materials Chemistry Frontiers, 2021, 5, 3298-3321.	3.2	66
409	Effective ion pathways and 3D conductive carbon networks in bentonite host enable stable and high-rate lithium–sulfur batteries. Nanotechnology Reviews, 2021, 10, 20-33.	2.6	19
410	Relating X-ray photoelectron spectroscopy data to chemical bonding in MXenes. Nanoscale Advances, 2021, 3, 2793-2801.	2.2	11
411	Doping regulation in transition metal compounds for electrocatalysis. Chemical Society Reviews, 2021, 50, 9817-9844.	18.7	245
412	Unoccupied 3d orbitals make Li-unalloyable transition metals usable as anode materials for lithium ion batteries. Journal of Materials Chemistry A, 2021, 9, 17353-17365.	5.2	4
413	Correction: Recent advances in integration of 2D materials with soft matter for multifunctional robotic materials. Materials Horizons, 2021, 8, 284-284.	6.4	2
414	Interaction of First Row Transition Metals with M ₂ C (M = Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and) Tj ETQq0	0 0 rgBT /	Overlock 101
415	First-principles study of a topological phase transition induced by image potential states in MXenes. Physical Review B, 2021, 103, .	1.1	6

#	Article	IF	CITATIONS
416	A surface-alkalinized $Ti < sub > 3 < / sub > C < sub > 2 < / sub > MXene$ as an efficient cocatalyst for enhanced photocatalytic $CO < sub > 2 < / sub > reduction$ over ZnO . Catalysis Science and Technology, 2021, 11, 4953-4961.	2.1	35
417	Enhanced field emission performance of MXene–TiO ₂ composite films. Nanoscale, 2021, 13, 7622-7629.	2.8	21
418	Heteroâ€MXenes: Theory, Synthesis, and Emerging Applications. Advanced Materials, 2021, 33, e2004129.	11.1	150
419	Bioinspired polydopamine supported on oxygen-functionalized carbon cloth as a high-performance 1.2 V aqueous symmetric metal-free supercapacitor. Journal of Materials Chemistry A, 2021, 9, 7712-7725.	5.2	20
420	A review on optoelectronic device applications of 2D transition metal carbides and nitrides. Materials and Design, 2021, 200, 109452.	3.3	43
421	Chiral Graphene Hybrid Materials: Structures, Properties, and Chiral Applications. Advanced Science, 2021, 8, 2003681.	5.6	43
422	Turning Trash into Treasure: MXene with Intrinsic LiF Solid Electrolyte Interfaces Performs Better and Better during Battery Cycling. Advanced Materials Technologies, 2021, 6, 2000882.	3.0	9
423	Recent Advances on Conductive 2D Covalent Organic Frameworks. Small, 2021, 17, e2006043.	5.2	77
424	Recent development of high-performance photocatalysts for N2 fixation: A review. Journal of Environmental Chemical Engineering, 2021, 9, 104997.	3.3	33
425	Multifunctional MOFâ€Based Separator Materials for Advanced Lithium–Sulfur Batteries. Advanced Materials Interfaces, 2021, 8, 2001941.	1.9	27
426	OD/2D heteronanostructure–integrated bimetallic CoCu-ZIF nanosheets and MXene-derived carbon dots for impedimetric cytosensing of melanoma B16-F10 cells. Mikrochimica Acta, 2021, 188, 69.	2.5	20
427	Solvent Co-intercalation into Few-layered Ti ₃ C ₂ T <i>_{<i><x< i=""></x<></i>}</i> Results of Solvent Co-intercalation into Few-layered Ti ₃ C ₂ T <i><i>_{<i><i><x< i=""></x<></i></i>}</i>MXenes in Lithium Ion Batteries Induced by Acidic or Basic Post-treatment. ACS Nano, 2021, 15, 3295-3308.</i>	7.3	35
428	Tuning the Magnetic Properties of Two-Dimensional MXenes by Chemical Etching. Materials, 2021, 14, 694.	1.3	31
429	PbSe Nanocrystals Produced by Facile Liquid Phase Exfoliation for Efficient UV–Vis Photodetectors. Advanced Functional Materials, 2021, 31, 2010401.	7.8	35
430	Niobium and Titanium Carbides (MXenes) as Superior Photothermal Supports for CO ₂ Photocatalysis. ACS Nano, 2021, 15, 5696-5705.	7.3	164
431	MXenes for Solar Cells. Nano-Micro Letters, 2021, 13, 78.	14.4	90
432	Assessment of Mo2N Monolayer as Li-ion battery anodes with high cycling stability. Materials Today Communications, 2021, 26, 102100.	0.9	3
433	Determination of Quantum Capacitance of Niobium Nitrides Nb2N and Nb4N3 for Supercapacitor Applications. Journal of Composites Science, 2021, 5, 85.	1.4	8

#	ARTICLE	IF	CITATIONS
434	Progress and challenges of ceramics for supercapacitors. Journal of Materiomics, 2021, 7, 1198-1224.	2.8	15
435	Synthesis of mesoporous carbon nitride by molten salt-assisted silica aerogel for Rhodamine B adsorption and photocatalytic degradation. Journal of Materials Science, 2021, 56, 11248-11265.	1.7	18
436	MXenes and their composites for hybrid capacitors and supercapacitors: a critical review. Emergent Materials, 2021, 4, 655-672.	3.2	17
437	Twoâ€dimensional materials and synthesis, energy storage, utilization, and conversion applications of twoâ€dimensional <scp>MXene</scp> materials. International Journal of Energy Research, 2021, 45, 9878-9894.	2.2	10
438	In Situ and Operando Characterizations of 2D Materials in Electrochemical Energy Storage Devices. Small Science, 2021, 1, 2000076.	5.8	50
439	MXene based advanced materials for thermal energy storage: A recent review. Journal of Energy Storage, 2021, 35, 102322.	3.9	64
440	Structure Prototype Outperforming MXenes in Stability and Performance in Metal″on Batteries: A High Throughput Study. Advanced Energy Materials, 2021, 11, 2003633.	10.2	111
441	2D Nanomaterials for Effective Energy Scavenging. Nano-Micro Letters, 2021, 13, 82.	14.4	36
442	Flexible and high-performance electrochromic devices enabled by self-assembled 2D TiO2/MXene heterostructures. Nature Communications, 2021, 12, 1587.	5.8	143
443	MXeneâ€Based Materials for Electrochemical Sodiumâ€Ion Storage. Advanced Science, 2021, 8, e2003185.	5.6	88
444	Significant Constraints of SnO ₂ , SnS ₂ , and SnS ₂ /SnO ₂ Heterostructures on Mitigating Polysulfide Shuttle Effects in Lithiumâ€Sulfur Batteries. ChemElectroChem, 2021, 8, 1558-1570.	1.7	8
445	MXene materials based printed flexible devices for healthcare, biomedical and energy storage applications. Materials Today, 2021, 43, 99-131.	8.3	107
446	Polymer nanocomposites with aligned two-dimensional materials. Progress in Polymer Science, 2021, 114, 101360.	11.8	39
447	The Passive Effect of MXene on Electrocatalysis: A Case of Ti ₃ C ₂ T _x /CoNiâ^'MOF nanosheets for Oxygen Evolution Reaction. ChemNanoMat, 2021, 7, 539-544.	1.5	23
448	MXenes and the progress of Li–S battery development—a perspective. JPhys Energy, 2021, 3, 021002.	2.3	10
449	Twistronics: a turning point in 2D quantum materials. Electronic Structure, 2021, 3, 014004.	1.0	40
450	MXenes for memristive and tactile sensory systems. Applied Physics Reviews, 2021, 8, .	5.5	25
451	A Review on MXene: Synthesis, Properties and Applications on Alkali Metal Ion Batteries. IOP Conference Series: Earth and Environmental Science, 2021, 714, 042030.	0.2	20

#	Article	IF	CITATIONS
452	Status and Prospects of MXeneâ∈Based Lithiumâ∈"Sulfur Batteries. Advanced Functional Materials, 2021, 31, 2100457.	7.8	147
453	Flexible and stable 3D lithium metal anodes based on self-standing MXene/COF frameworks for high-performance lithium-sulfur batteries. Nano Research, 2021, 14, 3576-3584.	5.8	95
454	Electrocatalytic activity of layered MAX phases for the hydrogen evolution reaction. Electrochemistry Communications, 2021, 125, 106977.	2.3	26
455	<scp>Ti₃C₂Tx MXenes</scp> reinforced <scp>PAA</scp> / <scp>CS</scp> hydrogels with selfâ€healing function as flexible supercapacitor electrodes. Polymers for Advanced Technologies, 2021, 32, 3167-3179.	1.6	17
456	Atomically Thin Nanosheets Confined in 2D Heterostructures: Metalâ€lon Batteries Prospective. Advanced Energy Materials, 2021, 11, 2100451.	10.2	35
457	Flexible MXene-coated melamine foam based phase change material composites for integrated solar-thermal energy conversion/storage, shape memory and thermal therapy functions. Composites Part A: Applied Science and Manufacturing, 2021, 143, 106291.	3.8	109
458	Effects of hydrogenation and strain on the electronic properties of armchair PtS2 nanoribbons. Applied Nanoscience (Switzerland), 2021, 11, 1737-1746.	1.6	1
459	Highly Stable Lil/Active Graphene Composite Cathodes for Efficient Lithium-Iodine Batteries. Journal of the Electrochemical Society, 2021, 168, 040522.	1.3	5
460	Synergistic engineering of fluorine doping and oxygen vacancies towards high-energy and long-lifespan flexible solid-state asymmetric supercapacitor. Ionics, 2021, 27, 2649-2658.	1.2	1
461	Synthesis of Waferâ€Scale Graphene with Chemical Vapor Deposition for Electronic Device Applications. Advanced Materials Technologies, 2021, 6, 2000744.	3.0	46
462	Metalâ€Organic Frameworks Nanocomposites with Different Dimensionalities for Energy Conversion and Storage. Advanced Energy Materials, 2022, 12, 2100346.	10.2	86
463	MXene in the lens of biomedical engineering: synthesis, applications and future outlook. BioMedical Engineering OnLine, 2021, 20, 33.	1.3	108
464	First-principle study of Ti2XS2 ($X\hat{A}=\hat{A}C/N$) MXenes as high capacity anodes for rechargeable potassium-ion batteries. Applied Surface Science, 2021, 546, 149096.	3.1	12
465	Nanomaterials: Applications, waste-handling, environmental toxicities, and future challenges – A review. Journal of Environmental Chemical Engineering, 2021, 9, 105028.	3.3	133
466	In Situ and Operando Characterizations of 2D Materials in Electrochemical Energy Storage Devices. Small Science, 2021, 1, 2170010.	5.8	13
467	Thermal Plasma Synthesis of Li2S Nanoparticles for Application in Lithium-Sulfur Batteries. Plasma Chemistry and Plasma Processing, 2021, 41, 1149-1167.	1.1	7
468	Concepts, models, and methods in computational heterogeneous catalysis illustrated through <scp>CO₂</scp> conversion. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2021, 11, e1530.	6.2	24
469	High-sensitivity tactile sensor based on Ti ₂ C-PDMS sponge for wireless human–computer interaction. Nanotechnology, 2021, 32, 295506.	1.3	22

#	Article	IF	CITATIONS
470	Recent Development of Gas Sensing Platforms Based on 2D Atomic Crystals. Research, 2021, 2021, 9863038.	2.8	29
471	In-situ construction of g-C3N4/Mo2CTx hybrid for superior lithium storage with significantly improved Coulombic efficiency and cycling stability. Chemical Engineering Journal, 2021, 410, 128349.	6.6	105
472	Polymer/MXene nanocomposite–a new age for advanced materials. Polymer-Plastics Technology and Materials, 0, , 1-16.	0.6	4
473	MXenes as Superexcellent Support for Confining Single Atom: Properties, Synthesis, and Electrocatalytic Applications. Small, 2021, 17, e2007113.	5.2	52
474	Semiconductor heterojunction photocatalysts with near-infrared light antennas: a review. Journal Physics D: Applied Physics, 2021, 54, 313002.	1.3	12
475	Recent Progress in Two-dimensional Nanomaterials Following Graphene for Improving Fire Safety of Polymer (Nano)composites. Chinese Journal of Polymer Science (English Edition), 2021, 39, 935-956.	2.0	31
476	Exploring MXene-based materials for next-generation rechargeable batteries. JPhys Energy, 2021, 3, 032009.	2.3	22
477	Physiological and biochemical effects of Ti3AlC2 nanosheets on rice (Oryza sativa L.). Science of the Total Environment, 2021, 770, 145340.	3.9	11
478	Functionalized Germanene-Based Nanomaterials for the Detection of Single Nucleotide Polymorphism. ACS Applied Nano Materials, 2021, 4, 5164-5175.	2.4	17
479	A Movable Fe ₂ O ₃ Core in Connected Hierarchical Pores for Ultrafast Intercalation/Deintercalation in Sodium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 5888-5896.	2.5	11
480	Vacancies-Engineered M ₂ CO ₂ MXene as an Efficient Hydrogen Evolution Reaction Electrocatalyst. Journal of Physical Chemistry Letters, 2021, 12, 4805-4813.	2.1	31
481	Nanocomposites of MXene for industrial applications. Journal of Alloys and Compounds, 2021, 862, 158547.	2.8	58
482	Portable wireless intelligent sensing of ultra-trace phytoregulator α-naphthalene acetic acid using self-assembled phosphorene/Ti3C2-MXene nanohybrid with high ambient stability on laser induced porous graphene as nanozyme flexible electrode. Biosensors and Bioelectronics, 2021, 179, 113062.	5.3	68
483	Strategies for Fabricating Highâ€Performance Electrochemical Energyâ€Storage Devices by MXenes. ChemElectroChem, 2021, 8, 1948-1987.	1.7	16
484	2D MXene Materials for Sodium Ion Batteries: A review on Energy Storage. Journal of Energy Storage, 2021, 37, 102478.	3.9	62
485	Antimonene Allotropes î±- and î²-Phases as Promising Anchoring Materials for Lithium–Sulfur Batteries. Energy & Description of the Energy &	2.5	15
486	Lysozyme Adsorption on Different Functionalized MXenes: A Multiscale Simulation Study. Langmuir, 2021, 37, 5932-5942.	1.6	6
487	Syntheses, characterizationsna and water-electrolysis properties of 2D \hat{l} ±- and \hat{l} 2-PdSeO3 bulk and nanosheet semiconductors. Journal of Solid State Chemistry, 2021, 297, 122018.	1.4	1

#	Article	IF	CITATIONS
488	Metal-organic Framework (MOF) Based Materials for Electrochemical Hydrogen Production: A Mini Review. International Journal of Electrochemical Science, 0, , ArticleID:210530.	0.5	2
489	A cost-effective approach to synthesize NiFe2O4/MXene heterostructures for enhanced photodegradation performance and anti-bacterial activity. Advanced Powder Technology, 2021, 32, 2248-2248.	2.0	67
490	Porous Organic Phenanthrolineâ€Based Polymer as an Efficient Transitionâ€Metalâ€Free Heterogeneous Catalyst for Direct Aromatic Câ^'H Activation. Chemistry - A European Journal, 2021, 27, 8684-8688.	1.7	9
491	Performance of Nb2C MXene coated on tapered fiber as saturable absorber for the generation of Mode-Locked Erbium-Doped fiber laser. Infrared Physics and Technology, 2021, 114, 103647.	1.3	19
492	Two-dimensional vanadium carbide for simultaneously tailoring the hydrogen sorption thermodynamics and kinetics of magnesium hydride. Journal of Magnesium and Alloys, 2022, 10, 1051-1065.	5.5	55
493	Exploring the Potentials of Ti ₃ C <i>_i</i> N _{2â€"<i>i</i>} T <i>_X</i> (<i>i</i> = 0, 1,) Tj ETQq1 Interfaces. 2021. 13. 22341-22350.	4.8.7843	14 rgBT /0
494	Scalable Synthesis of MAX Phase Precursors toward Titanium-Based MXenes for Lithium-Ion Batteries. ACS Applied Materials & Diterfaces, 2021, 13, 26074-26083.	4.0	32
495	Recent Advancement for the Synthesis of MXene Derivatives and Their Sensing Protocol. Advanced Materials Technologies, 2021, 6, 2001197.	3.0	16
496	A simple approach to synthesis Cr2CTx MXene for efficient hydrogen evolution reaction. Materials Today Energy, 2021, 20, 100668.	2.5	41
497	Advances in Lithium–Sulfur Batteries: From Academic Research to Commercial Viability. Advanced Materials, 2021, 33, e2003666.	11.1	357
498	Titanium Carbide (Ti ₃ C ₂) MXene as a Promising Co-catalyst for Photocatalytic CO ₂ Conversion to Energy-Efficient Fuels: A Review. Energy & Ene	2.5	80
499	All-Solid High-Performance Asymmetric Supercapacitor Based on Yolk–Shell NiMoO ₄ /V ₂ CT _{<i>x</i>} @Reduced Graphene Oxide and Hierarchical Bamboo-Shaped MoO ₂ @Fe ₂ O ₃ /N-Doped Carbon. Energy & Samp; Fuels, 2021, 35, 10250-10261.	2.5	24
500	MXenes in lithium–sulfur batteries: Scratching the surface of a complex 2D material – A minireview. Materials Today Communications, 2021, 27, 102323.	0.9	20
501	Synthesis and photoelectric properties of SnSe films through selenization of evaporated Sn-metal films. Modern Physics Letters B, 2021, 35, 2150382.	1.0	O
502	Nanosized zinc oxides-based materials for electrochemical energy storage and conversion: Batteries and supercapacitors. Chinese Chemical Letters, 2022, 33, 714-729.	4.8	29
503	Opportunities and Challenges in Precise Synthesis of Transition Metal Singleâ€Atom Supported by 2D Materials as Catalysts toward Oxygen Reduction Reaction. Advanced Functional Materials, 2021, 31, 2103558.	7.8	51
504	A new family of copper-based MXenes. Scientific Reports, 2021, 11, 12393.	1.6	3
505	Application of MXene in Electrochemical Sensors: A Review. Electroanalysis, 2021, 33, 1827-1851.	1.5	86

#	Article	IF	CITATIONS
506	Progress and perspectives of 2D materials as anodes for potassium-ion batteries. Energy Storage Materials, 2021, 38, 354-378.	9.5	41
507	Applications of 2D-Layered Palladium Diselenide and Its van der Waals Heterostructures in Electronics and Optoelectronics. Nano-Micro Letters, 2021, 13, 143.	14.4	61
508	Ti ₃ C ₂ MXene-Based Nanobiosensors for Detection of Cancer Biomarkers. , 0, , .		3
509	Photodynamic and Photoelectrochemical Properties of Few-Layered Bismuthene Film on SnO ₂ Electrode and Its Hybridization with C ₆₀ . Journal of Physical Chemistry C, 2021, 125, 13954-13962.	1.5	4
510	Flexible nanogenerators for wearable electronic applications based on piezoelectric materials. Materials Today Energy, 2021, 20, 100690.	2.5	70
511	A high-performance, thermal and electrical conductive elastomer composite based on Ti3C2 MXene. Composites Part A: Applied Science and Manufacturing, 2021, 145, 106292.	3.8	28
512	Optical and magneto-optical properties of epitaxial Mn2GaC MAX phase thin film. Journal of Magnetism and Magnetic Materials, 2021, 528, 167803.	1.0	6
513	Orthorhombic Cobalt Ditelluride with Te Vacancy Defects Anchoring on Elastic MXene Enables Efficient Potassiumâ€lon Storage. Advanced Materials, 2021, 33, e2100272.	11.1	66
514	Prospects challenges and stability of 2D MXenes for clean energy conversion and storage applications. Npj 2D Materials and Applications, 2021, 5, .	3.9	163
515	Semiconducting M2X (M = Cu, Ag, Au; X = S, Se, Te) monolayers: A broad range of band gaps and high carrier mobilities. Nano Research, 2021, 14, 2826-2830.	5.8	24
516	Micromechanical modeling of nacre-mimetic Ti3C2-MXene nanocomposites with viscoelastic polymer matrix. MRS Advances, 2021, 6, 729-733.	0.5	1
517	A theoretical investigation of quantum spin Hall state in ordered M′2M″2C3 MXenes (M′ = V, Nb, Ta and	M″) Tj∜ 0.7	ETQq1 1 0.7
518	3D Network of Sepia Melanin and N―and, Sâ€Doped Graphitic Carbon Quantum Dots for Sustainable Electrochemical Capacitors. Advanced Sustainable Systems, 2021, 5, 2100152.	2.7	2
519	Designing the MXene/molybdenum diselenide hybrid nanostructures for highâ€performance symmetric supercapacitor and hydrogen evolution applications. International Journal of Energy Research, 2021, 45, 18770-18785.	2.2	23
520	Controllable synthesis of ultrathin monolayer titanate nanosheet via osmotic swelling to exfoliation of layered titanate. Ceramics International, 2021, 47, 19169-19179.	2.3	3
521	Emerging Topochemical Strategies for Designing Two-Dimensional Energy Materials. Micromachines, 2021, 12, 867.	1.4	2
522	Strain effects on monolayer MoSi2N4: Ideal strength and failure mechanism. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 131, 114753.	1.3	33
523	Metal Ionâ€Induced Assembly of MXene Aerogels via Biomimetic Microtextures for Electromagnetic Interference Shielding, Capacitive Deionization, and Microsupercapacitors. Advanced Energy Materials, 2021, 11, 2101494.	10.2	61

#	Article	IF	CITATIONS
524	Insight into two-dimensional MXenes for environmental applications: Recent progress, challenges, and prospects. FlatChem, 2021, 28, 100256.	2.8	35
525	Electrochemical synthesis of urea on MBenes. Nature Communications, 2021, 12, 4080.	5.8	147
526	Silicone-Coated MXene/Cellulose Nanofiber Aerogel Films with Photothermal and Joule Heating Performances for Electromagnetic Interference Shielding. ACS Applied Nano Materials, 2021, 4, 7234-7243.	2.4	71
527	2D Hydrogen-Bonded Molecular Crystals Showing Terminal-Group-Triggered Phase Transitions and Dielectric Responses. Crystal Growth and Design, 2021, 21, 5342-5348.	1.4	4
528	Redoxâ∈Mediated Artificial Nonâ∈Enzymatic Antioxidant MXene Nanoplatforms for Acute Kidney Injury Alleviation. Advanced Science, 2021, 8, e2101498.	5.6	54
529	Recent advances in partially and completely derived 2D Ti3C2 MXene based TiO2 nanocomposites towards photocatalytic applications: A review. Solar Energy, 2021, 222, 48-73.	2.9	53
530	High-Performance Ni _{<i>x</i>} C _{3-x} O ₄ /Ti ₃ C ₂ T _{T_{<i>x</i>}/Interfacial Nanohybrid for Electrochemical Overall Water Splitting. ACS Applied Materials & Samp; Interfaces, 2021, 13, 34308-34319.}	-₩ _. ,	24
531	Prospects and Challenges of MXenes as Emerging Sensing Materials for Flexible and Wearable Breathâ€Based Biomarker Diagnosis. Advanced Healthcare Materials, 2021, 10, e2100970.	3.9	41
532	Reassembly of MXene Hydrogels into Flexible Films towards Compact and Ultrafast Supercapacitors. Advanced Functional Materials, 2021, 31, 2102874.	7.8	57
533	Metal–semiconductor interface engineering in layered 2D materials for device applications. Bulletin of Materials Science, 2021, 44, 1.	0.8	4
534	Novel Prostate Cancer Biomarkers: Aetiology, Clinical Performance and Sensing Applications. Chemosensors, 2021, 9, 205.	1.8	10
535	Recent Advances in the Synthesis and Energy Applications of 2D MXenes. ChemElectroChem, 2021, 8, 3804-3826.	1.7	18
536	A theoretical investigation of topological phase modulation in carbide MXenes: Role of image potential states. Carbon, 2021, 181, 370-378.	5.4	6
537	Few-layered Ti3C2 MXene anchoring bimetallic selenide NiCo2Se4 nanoparticles for superior Sodium-ion batteries. Chemical Engineering Journal, 2021, 417, 129161.	6.6	78
538	2D Titanium Carbide (MXene) Based Films: Expanding the Frontier of Functional Film Materials. Advanced Functional Materials, 2021, 31, 2105043.	7.8	50
539	The Confined Interlayer Growth of Ultrathin Two-Dimensional Fe ₃ O ₄ Nanosheets with Enriched Oxygen Vacancies for Peroxymonosulfate Activation. ACS Catalysis, 2021, 11, 11256-11265.	5.5	125
540	Machine learning and symbolic regression investigation on stability of MXene materials. Computational Materials Science, 2021, 196, 110578.	1.4	26
541	UV-assisted safe etching route for the synthesis of Mo2CTx MXene from Mo–In–C non-MAX phase. Ceramics International, 2021, 47, 35384-35387.	2.3	20

#	Article	IF	CITATIONS
542	Covalent Organic Frameworks and Their Derivatives for Better Metal Anodes in Rechargeable Batteries. ACS Nano, 2021, 15, 12741-12767.	7.3	71
543	Non-layered transition metal carbides for energy storage and conversion. New Carbon Materials, 2021, 36, 751-778.	2.9	10
544	Recent advances in transition metal carbides and nitrides (MXenes): Characteristics, environmental remediation and challenges. Chemical Engineering Journal, 2021, 418, 129296.	6.6	70
545	Imidazole metal-organic frameworks embedded in layered Ti3C2Tx Mxene as a high-performance electrochemiluminescence biosensor for sensitive detection of HIV-1 protein. Microchemical Journal, 2021, 167, 106332.	2.3	22
546	Flexible Supercapacitors Based on CNT/MnO2-BP Composite Yarn Synthesized by In Situ Reduction. Journal of the Electrochemical Society, 2021, 168, 080524.	1.3	7
547	Hierarchical <i>n</i>)n)i>MOF-867/MXene Nanocomposite for Chemical Adsorption of Polysulfides in Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2021, 4, 8231-8241.	2.5	20
548	Bottom-up construction of three-dimensional porous MXene/nitrogen-doped graphene architectures as efficient hydrogen evolution electrocatalysts. International Journal of Hydrogen Energy, 2021, 46, 29984-29993.	3.8	39
549	A one-structure-layer PDMS/Mxenes based stretchable triboelectric nanogenerator for simultaneously harvesting mechanical and light energy. Nano Energy, 2021, 86, 106118.	8.2	56
550	Unveiling the Interfacial and Structural Heterogeneity of Ti ₃ C ₂ T _{<i>x</i>lntegrated <i>in Situ</i> Thermal Analysis. ACS Applied Materials & Samp; Interfaces, 2021, 13, 52125-52133.}	4.0	10
551	A facile approach to synthesize ZnO-decorated titanium carbide nanoarchitectures to boost up the photodegradation performance. Ceramics International, 2021, 47, 33454-33462.	2.3	21
552	Intercalation Strategy in 2D Materials for Electronics and Optoelectronics. Small Methods, 2021, 5, e2100567.	4.6	32
553	Environmental applications ofÂtwo-dimensional transition metal carbides and nitrides for water purification: a review. Environmental Chemistry Letters, 2022, 20, 633-660.	8.3	19
554	Recent advances and prospects of MXene-based materials for electrocatalysis and energy storage. Materials Today Physics, 2021, 20, 100469.	2.9	34
555	Recent progress of separators in lithium-sulfur batteries. Energy Storage Materials, 2021, 40, 439-460.	9.5	156
556	An Organic Solvent-Assisted Intercalation and Collection (OAIC) for Ti3C2Tx MXene with Controllable Sizes and Improved Yield. Nano-Micro Letters, 2021, 13, 188.	14.4	36
557	Crumpled MXene Electrodes for Ultrastretchable and High-Area-Capacitance Supercapacitors. Nano Letters, 2021, 21, 7561-7568.	4.5	50
558	Fundamentals and Designâ€Led Synthesis of Emulsionâ€Templated Porous Materials for Environmental Applications. Advanced Science, 2021, 8, e2102540.	5.6	30
559	Hybridization of SnO ₂ and an In-Situ-Oxidized Ti ₃ C ₂ T _{<i>x</i>High-Performance Planar Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2021, 9, 13672-13680.}	3.2	13

#	Article	IF	CITATIONS
560	Facile synthesis of Ti3C2TX–MXene composite with polyhedron Fe3O4/ carbonyl iron toward microwave absorption. Journal of Materials Science: Materials in Electronics, 2021, 32, 23762-23775.	1.1	5
561	Soft X-ray spectroscopy of light elements in energy storage materials. Energy Storage Materials, 2021, 40, 72-95.	9.5	10
562	Density functional theory studies of transition metal doped Ti3N2 MXene monolayer. Computational Materials Science, 2021, 197, 110613.	1.4	15
563	Self-Poled Poly(vinylidene fluoride)/MXene Piezoelectric Energy Harvester with Boosted Power Generation Ability and the Roles of Crystalline Orientation and Polarized Interfaces. ACS Applied Materials & Diterfaces, 2021, 13, 46738-46748.	4.0	23
564	High-performance Pd nanocatalysts based on the novel N-doped Ti3C2 support for ethanol electrooxidation in alkaline media. Electrochimica Acta, 2021, 390, 138902.	2.6	11
565	Nitrogen-Containing Gas Sensing Properties of 2-D Ti2N and Its Derivative Nanosheets: Electronic Structures Insight. Nanomaterials, 2021, 11, 2459.	1.9	5
566	Interfaces and Interfacial Layers in Inorganic Perovskite Solar Cells. Angewandte Chemie, 2021, 133, 26644-26657.	1.6	14
567	State-of-charge estimation for Lithium-lon batteries using Kalman filters based on fractional-order models. Connection Science, 2022, 34, 162-184.	1.8	9
568	MXenes and their derivatives as nitrogen reduction reaction catalysts: recent progress and perspectives. Materials Today Energy, 2021, 22, 100864.	2.5	24
569	Interfaces and Interfacial Layers in Inorganic Perovskite Solar Cells. Angewandte Chemie - International Edition, 2021, 60, 26440-26453.	7.2	69
570	MXene-Derived Quantum Dots for Energy Conversion and Storage Applications. Energy & Samp; Fuels, 2021, 35, 14304-14324.	2.5	41
571	Emerging Photocatalysts for Hydrogen Production. Green Chemistry and Sustainable Technology, 2022, , 647-671.	0.4	1
572	A review on applications of graphene in triboelectric nanogenerators. International Journal of Energy Research, 2022, 46, 544-576.	2.2	39
573	Enhanced kinetics and efficient activation of sulfur by ultrathin MXene coating S-CNTs porous sphere for highly stable and fast charging lithium-sulfur batteries. Chemical Engineering Journal, 2021, 420, 129693.	6.6	35
574	Recent advances on Bi2WO6-based photocatalysts for environmental and energy applications. Chinese Journal of Catalysis, 2021, 42, 1413-1438.	6.9	208
575	Anomalous Electronic and Protonic Conductivity of 2D Titanium Oxide and Lowâ€Temperature Power Generation Using Its Protonic Conduction. Advanced Materials Interfaces, 2021, 8, 2101156.	1.9	2
576	A review of technologies and applications on versatile energy storage systems. Renewable and Sustainable Energy Reviews, 2021, 148, 111263.	8.2	192
577	Enhanced visible-light-induced photocatalytic NOx degradation over (Ti,C)-BiOBr/Ti3C2Tx MXene nanocomposites: Role of Ti and C doping. Separation and Purification Technology, 2021, 270, 118815.	3.9	29

#	Article	IF	CITATIONS
578	Excellent catalytic activity of two-dimensional Ti2C and Ti2CT2 (TÂ=ÂO, F, OH) monolayers on hydrogen storage of MgH2: First-principles calculations. International Journal of Hydrogen Energy, 2021, 46, 33176-33185.	3.8	28
579	Spatial confinement and electron transfer moderating Mo N bond strength for superior ammonia decomposition catalysis. Applied Catalysis B: Environmental, 2021, 294, 120254.	10.8	31
580	Enhanced visible-light-driven photocatalytic activity of bismuth oxide via the decoration of titanium carbide quantum dots. Journal of Colloid and Interface Science, 2021, 600, 161-173.	5.0	51
581	Carbon nanomaterials: Synthesis, properties and applications in electrochemical sensors and energy conversion systems. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 272, 115341.	1.7	40
582	Adsorption of habitat and industry-relevant molecules on the MoSi2N4 monolayer. Applied Surface Science, 2021, 564, 150326.	3.1	50
583	MXene (Ti3C2Tx) supported electrocatalysts for methanol and ethanol electrooxidation: A review. Ceramics International, 2021, 47, 28106-28121.	2.3	33
584	High-performance all-solid-state flexible asymmetric supercapacitors composed of PPy@Ti3C2Tx/CC and Ti3C2Tx/CC electrodes. Surfaces and Interfaces, 2021, 26, 101393.	1.5	8
585	New perspectives 2Ds to 3Ds MXenes and graphene functionalized systems as high performance energy storage materials. Journal of Energy Storage, 2021, 42, 102993.	3.9	10
586	Anti-oxidized electrostatic self-assembly of 3D high-density Polyimide@MXene composite for superior aqueous Mg2+ storage. Composites Part B: Engineering, 2021, 222, 109073.	5.9	18
587	MnCo2S4 – MXene: A novel hybrid electrode material for high performance long-life asymmetric supercapattery. Journal of Colloid and Interface Science, 2021, 600, 264-277.	5.0	57
588	Advances and challenges in 2D MXenes: From structures to energy storage and conversions. Nano Today, 2021, 40, 101273.	6.2	91
589	Two-dimensional IrN2 monolayer: An efficient bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Journal of Colloid and Interface Science, 2021, 600, 711-718.	5.0	27
590	Host–Guest Intercalation Chemistry in MXenes and Its Implications for Practical Applications. ACS Nano, 2021, 15, 15502-15537.	7.3	38
591	Mixed MXenes: Mo1.33CTz and Ti3C2Tz freestanding composite films for energy storage. Nano Energy, 2021, 88, 106271.	8.2	21
592	Ti3C2Tx MXene compounds for electrochemical energy storage. Current Opinion in Electrochemistry, 2021, 29, 100764.	2.5	17
593	Two-dimensional interface engineering of NiS/MoS2/Ti3C2Tx heterostructures for promoting electromagnetic wave absorption capability. Composites Part B: Engineering, 2021, 225, 109306.	5.9	79
594	New insights into carbon-based and MXene anodes for Na and K-ion storage: A review. Journal of Energy Chemistry, 2021, 62, 660-691.	7.1	56
595	Hierarchical ZnO/MXene composites and their photocatalytic performances. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 628, 127230.	2.3	36

#	Article	IF	CITATIONS
596	Rational design of carbon nanotube architectures for lithium–chalcogen batteries: Advances and perspectives. Energy Storage Materials, 2021, 42, 723-752.	9.5	20
597	Two-dimensional materials and their derivatives for high performance phase change materials: emerging trends and challenges. Energy Storage Materials, 2021, 42, 845-870.	9.5	47
598	Review on MXenes-based nanomaterials for sustainable opportunities in energy storage, sensing and electrocatalytic reactions. Journal of Molecular Liquids, 2021, 342, 117524.	2.3	35
599	MXene-based designer nanomaterials and their exploitation to mitigate hazardous pollutants from environmental matrices. Chemosphere, 2021, 283, 131293.	4.2	28
600	Construction of solid solution sulfide embedded in MXene@N-doped carbon dual protection matrix for advanced aluminum ion batteries. Journal of Power Sources, 2021, 511, 230450.	4.0	25
601	Recent progress in solution assembly of 2D materials for wearable energy storage applications. Journal of Energy Chemistry, 2021, 62, 27-42.	7.1	29
602	Research progress on construction and energy storage performance of MXene heterostructures. Journal of Energy Chemistry, 2021, 62, 220-242.	7.1	45
603	CoS nanowires grown on Ti3C2Tx are promising electrodes for supercapacitors: High capacitance and remarkable cycle capability. Journal of Colloid and Interface Science, 2021, 602, 123-130.	5.0	13
604	Atomistic manipulation of interfacial properties in HfN2/MoTe2 van der Waals heterostructure via strain and electric field for next generation multifunctional nanodevice and energy conversion. Applied Surface Science, 2021, 568, 150928.	3.1	15
605	Enhanced catalytic properties of cobaltosic oxide through constructing MXene-supported nanocomposites for ammonium perchlorate thermal decomposition. Applied Surface Science, 2021, 570, 151224.	3.1	21
606	In-situ annealed "M-scheme―MXene-based photocatalyst for enhanced photoelectric performance and highly selective CO2 photoreduction. Nano Energy, 2021, 90, 106532.	8.2	27
607	A temperature-dependent phosphorus doping on Ti3C2Tx MXene for enhanced supercapacitance. Journal of Colloid and Interface Science, 2021, 604, 239-247.	5.0	30
608	The effect of D-spacing on the ion selectivity performance of MXene membrane. Journal of Membrane Science, 2021, 639, 119752.	4.1	38
609	Breaking the linear scaling relations in MXene catalysts for efficient CO2 reduction. Chemical Engineering Journal, 2022, 429, 132171.	6.6	32
610	Ti3C2T /carbon nanotube/porous carbon film for flexible supercapacitor. Chemical Engineering Journal, 2022, 427, 132002.	6.6	95
611	Electronic and thermal transfer actuating memory catalysis for organic removal by a plasmonic photocatalyst. Chemical Engineering Journal, 2022, 427, 132028.	6.6	18
612	lonization-bombardment assisted deposition of MXene/SiC heterostructure for micro-supercapacitor with enhanced sodium storage. Chemical Engineering Journal, 2022, 428, 131114.	6.6	25
613	Multidimensional synergistic architecture of Ti3C2 MXene/CoS2@N-doped carbon for sodium-ion batteries with ultralong cycle lifespan. Chemical Engineering Journal, 2022, 429, 132396.	6.6	60

#	Article	IF	CITATIONS
614	Heterostructure engineering of ultrathin SnS2/Ti3C2T nanosheets for high-performance potassium-ion batteries. Journal of Colloid and Interface Science, 2022, 606, 167-176.	5.0	28
615	display="inline" id="d1e82" altimg="si1.svg"> <mml:mrow><mml:msub><mml:mrow><mml:miow></mml:miow></mml:mrow></mml:msub></mml:mrow> >> <td>ıb><mml:r sub><td>nsyb><mml: l:mrow></mml: </td></mml:r </td>	ıb> <mml:r sub><td>nsyb><mml: l:mrow></mml: </td></mml:r 	nsyb> <mml: l:mrow></mml:
616	altimg="si2.svg"> cmm. Computational Materials Science, 2022, 201, 110868. Realizing high-performance lithium ion hybrid capacitor with a 3D MXene-carbon nanotube composite anode. Chemical Engineering Journal, 2022, 429, 132392.	6.6	28
617	Monolayer MoSi2N4- as promising electrocatalyst for hydrogen evolution reaction: A DFT prediction. Journal of Materials Science and Technology, 2022, 99, 215-222.	5.6	31
618	Phosphorus-modified Fe ₄ N@N,P co-doped graphene as an efficient sulfur host for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2021, 9, 6538-6546.	5.2	37
619	Construction of MXeneâ€Coupled Nitrogenâ€Doped Porous Carbon Hybrid from a Conjugated Microporous Polymer for Highâ€Performance Supercapacitors. Advanced Energy and Sustainability Research, 2021, 2, 2000052.	2.8	12
620	The design of an inner-motile waste-energy-driven piezoelectric catalytic system. New Journal of Chemistry, 2021, 45, 7671-7681.	1.4	2
621	Multiscale numerical simulation of in-plane mechanical properties of two-dimensional monolayers. RSC Advances, 2021, 11, 20232-20247.	1.7	8
622	Reasonable design of an MXene-based enzyme-free amperometric sensing interface for highly sensitive hydrogen peroxide detection. Analytical Methods, 2021, 13, 2512-2518.	1.3	13
623	Understanding the Oxidation Degradation Mechanism to Enable Preparation of Ambient Ultra Stable Ti ₃ C ₂ T _x -MXene. SSRN Electronic Journal, 0, , .	0.4	1
624	Study on contact angles and surface energy of MXene films. RSC Advances, 2021, 11, 5512-5520.	1.7	31
625	Extending photocatalysis to the visible and NIR: the molecular strategy. Nanoscale, 2021, 13, 9147-9159.	2.8	26
626	Enhanced Redox Kinetics and Duration of Aqueous I ₂ /I ^{â^'} Conversion Chemistry by MXene Confinement. Advanced Materials, 2021, 33, e2006897.	11.1	121
627	Adhesion Between MXenes and Other 2D Materials. ACS Applied Materials & Diterfaces, 2021, 13, 4682-4691.	4.0	39
628	Recent advances in g-C ₃ N ₄ -based photocatalysts incorporated by MXenes and their derivatives. Journal of Materials Chemistry A, 2021, 9, 13722-13745.	5.2	60
629	Current trends in MXene research: properties and applications. Materials Chemistry Frontiers, 2021, 5, 7134-7169.	3.2	30
630	Applications of Few-Layer Nb ₂ C MXene: Narrow-Band Photodetectors and Femtosecond Mode-Locked Fiber Lasers. ACS Nano, 2021, 15, 954-965.	7.3	176
631	Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Materials Advances, 2021, 2, 1821-1871.	2.6	1,049

#	Article	IF	CITATIONS
632	Transition metal nitrides for electrochemical energy applications. Chemical Society Reviews, 2021, 50, 1354-1390.	18.7	580
633	Horizons for Modern Electrochemistry Related to Energy Storage and Conversion, a Review. Israel Journal of Chemistry, 2021, 61, 11-25.	1.0	6
634	Performance improvement of MXene-based perovskite solar cells upon property transition from metallic to semiconductive by oxidation of Ti ₃ C ₂ T _x in air. Journal of Materials Chemistry A, 2021, 9, 5016-5025.	5.2	77
635	A synergistic photothermal and photocatalytic membrane for efficient solar-driven contaminated water treatment. Sustainable Energy and Fuels, 2021, 5, 5627-5637.	2.5	17
636	Computational screening of pristine and functionalized ordered TiVC MXenes as highly efficient anode materials for lithium-ion batteries. Nanoscale, 2021, 13, 2995-3001.	2.8	22
637	A facile one-pot synthesis of Co ₂ P nanoparticle-encapsulated doped carbon nanotubes as bifunctional electrocatalysts for high-performance rechargeable Zn–air batteries. CrystEngComm, 2021, 23, 1013-1018.	1.3	10
638	Research Progress of Photocatalytic CO2 Reduction Based on Two-dimensional Materials. Acta Chimica Sinica, 2021, 79, 10.	0.5	16
639	Up-scalable emerging energy conversion technologies enabled by 2D materials: from miniature power harvesters towards grid-connected energy systems. Energy and Environmental Science, 2021, 14, 3352-3392.	15.6	26
640	Pillared Mo ₂ TiC ₂ MXene for high-power and long-life lithium and sodium-ion batteries. Nanoscale Advances, 2021, 3, 3145-3158.	2.2	46
641	Synthesis of porous carbon material based on biomass derived from hibiscus sabdariffa fruits as active electrodes for high-performance symmetric supercapacitors. RSC Advances, 2021, 11, 354-363.	1.7	47
642	Recent Advanced on the MXene–Organic Hybrids: Design, Synthesis, and Their Applications. Nanomaterials, 2021, 11, 166.	1.9	38
643	A rationally designed two-dimensional MoSe ₂ /Ti ₂ CO ₂ heterojunction for photocatalytic overall water splitting: simultaneously suppressing electronâ€"hole recombination and photocorrosion. Chemical Science, 2021, 12, 2863-2869.	3.7	82
644	Accordion-like Ti3C2Tx MXene nanosheets as a high-performance solid phase microextraction adsorbent for determination of polycyclic aromatic hydrocarbons using GC-MS. Mikrochimica Acta, 2020, 187, 151.	2.5	25
645	2D MXene-Based Materials for Electrocatalysis. Transactions of Tianjin University, 2020, 26, 149-171.	3.3	65
646	Recent advances and perspectives in stable and dendrite-free potassium metal anodes. Energy Storage Materials, 2020, 30, 206-227.	9.5	95
647	Two-dimensional titanium carbide (MXene) nanosheets as an efficient electrocatalyst for 4-nitroquinoline N-oxide detection. Journal of Molecular Liquids, 2020, 312, 113354.	2.3	31
648	Biocompatible PB/Ti3C2 hybrid nanocomposites for the non-enzymatic electrochemical detection of H2O2 released from living cells. Sensors and Actuators B: Chemical, 2020, 319, 128259.	4.0	35
649	<i>In situ</i> formed VOOH nanosheet arrays anchored on a Ti ₃ C ₂ T _X MXene as a highly efficient and robust synergistic electrocatalyst for boosting water oxidation and reduction. Journal of Materials Chemistry A, 2020, 8, 23637-23644.	5.2	22

#	Article	IF	Citations
650	Structural, electronic and optical properties of two-dimensional $(M < sub > 2/3 < sub > 1/3 < sub >) < sub > 2 < sub > 2 < sub >) (M = Mo,W) iMXene. Nanotechnology, 2021, 32, 015703.$	1.3	7
651	MXene for high energy and power density: a perspective. JPhys Energy, 2020, 2, 041002.	2.3	5
652	MXene and MBene as efficient catalysts for energy conversion: roles of surface, edge and interface. JPhys Energy, 2021, 3, 012002.	2.3	31
653	Harnessing the unique properties of MXenes for advanced rechargeable batteries. JPhys Energy, 2021, 3, 012005.	2.3	14
654	Machine learning enabled discovery of application dependent design principles for two-dimensional materials. Machine Learning: Science and Technology, 2020, 1, 035015.	2.4	9
655	Analysis of Noise-Immune Dopingless Heterojunction Bio-TFET Considering Partial Hybridization Issue. IEEE Nanotechnology Magazine, 2020, 19, 769-777.	1.1	23
656	Evaluation and Optimization of Dielectric Properties of PVDF/BaTiO ₃ Nanocomposites Film for Energy Storage and Sensors. ECS Journal of Solid State Science and Technology, 2020, 9, 115005.	0.9	5
657	2D organic-inorganic hybrid perovskite materials for nonlinear optics. Nanophotonics, 2020, 9, 1787-1810.	2.9	60
658	A retrospective on MXene-based composites for solar fuel production. Pure and Applied Chemistry, 2020, 92, 1953-1969.	0.9	14
659	Silicon nanosheets derived from silicate minerals: controllable synthesis and energy storage application. Nanoscale, 2021, 13, 18410-18420.	2.8	3
660	Simultaneous detection of 4-chlorophenol and 4-nitrophenol using a Ti ₃ C _Z T _{<i>x</i>} MXene based electrochemical sensor. Analyst, The, 2021, 146, 7593-7600.	1.7	13
661	Emerging two-dimensional nanomaterials for electrochemical nitrogen reduction. Chemical Society Reviews, 2021, 50, 12744-12787.	18.7	75
662	Facile Synthesis of Graphene-like Porous Carbon with Densely Populated Co-N _{<i>x</i>} Sites as Efficient Bifunctional Electrocatalysts for Rechargeable Zincâ€"Air Batteries. ACS Applied Energy Materials, 2021, 4, 11545-11554.	2.5	8
663	Intrinsic voltage plateau of a Nb2CTx MXene cathode in an aqueous electrolyte induced by high-voltage scanning. Joule, 2021, 5, 2993-3005.	11.7	74
664	A Brief Review of the Role of 2D Mxene Nanosheets toward Solar Cells Efficiency Improvement. Nanomaterials, 2021, 11, 2732.	1.9	13
665	A General Strategy toward Metal Sulfide Nanoparticles Confined in a Sulfurâ€Doped Ti ₃ C ₂ T _x MXene 3D Porous Aerogel for Efficient Ambient N ₂ Electroreduction. Small, 2021, 17, e2103305.	5.2	42
666	Solvent Coâ€Intercalationâ€Induced Activation and Capacity Fade Mechanism of Fewâ€/Multiâ€Layered MXenes in Lithium Ion Batteries. Small, 2021, 17, e2104130.	5.2	12
667	Photocatalytic Air Purification Using Functional Polymeric Carbon Nitrides. Advanced Science, 2021, 8, e2102376.	5.6	24

#	Article	IF	CITATIONS
668	Titanium Carbideâ€Based Adsorbents for Removal of Heavy Metal Ions and Radionuclides: From Nanomaterials to 3D Architectures. Advanced Materials Interfaces, 2021, 8, 2100703.	1.9	8
669	Review—MXene Based Transducer for Biosensor Applications. Journal of the Electrochemical Society, 2021, 168, 117507.	1.3	9
670	On the role of crystal defects on the lattice thermal conductivity of monolayer WSe2 (P63/mmc) thermoelectric materials by DFT calculation. Superlattices and Microstructures, 2021, 160, 107057.	1.4	4
671	Effect of polyaniline on the performance of zinc phosphate as a battery-grade material for supercapattery. Journal of Energy Storage, 2021, 44, 103329.	3.9	39
672	First Principles Investigations of Ta4AlX3 (X= B, C, N) MAX Phase Ceramics. Journal of Boron, 0, , .	0.0	1
673	Growth Factorâ€Decorated Ti ₃ C ₂ MXene/MoS ₂ 2D Bioâ€Heterojunctions with Quadâ€Channel Photonic Disinfection for Effective Regeneration of Bacteriaâ€Invaded Cutaneous Tissue. Small, 2021, 17, e2103993.	5.2	47
674	Oxygen Coverage Effect on the Magnetic Properties of the Cr ₂ NO _{<i>x</i>} (0 â‰)*Tj E	TOq0 0 0 2.0	rgBT /Overlo
675	3D Cross-linked Ti3C2Tx-Ca-SA films with expanded Ti3C2Tx interlayer spacing as freestanding electrode for all-solid-state flexible pseudocapacitor. Journal of Colloid and Interface Science, 2022, 610, 295-303.	5.0	11
676	Atomically Thin Materials for Next-Generation Rechargeable Batteries. Chemical Reviews, 2022, 122, 957-999.	23.0	87
677	Biodegradable and Excretable 2D W _{1.33} C <i>i>i</i> êMXene with Vacancy Ordering for Theoryâ€Oriented Cancer Nanotheranostics in Nearâ€Infrared Biowindow. Advanced Science, 2021, 8, e2101043.	5.6	36
678	211-MAX borides: The stable boron-substituted 211-MAX compounds by first-principles. Materials Today Communications, 2020, 25, 101689.	0.9	2
679	Meissner to ferromagnetic phase transition in La-decorated functionalized Nb ₂ C MXene: an experimental and computational analysis. Nanotechnology, 2021, 32, 085711.	1.3	5
680	Epoxy-functionalized Ti3C2 nanosheet for epoxy coatings with prominent anticorrosion performance. Progress in Organic Coatings, 2022, 162, 106559.	1.9	7
681	Forming thermodynamics, structure, and electrical conductivity of TiC O compounds fabricated through the carbothermal reduction process. Journal of Alloys and Compounds, 2022, 892, 162201.	2.8	4
682	Rapid one-step scalable microwave synthesis of $Ti \cdot sub \cdot 3 \cdot /sub \cdot C \cdot sub \cdot 2 \cdot /sub \cdot T \cdot sub \cdot (i \cdot x \cdot /i) \cdot (sub \cdot MXene. Chemical Communications, 2021, 57, 12611-12614.$	2.2	14
683	Functional 2D MXene Inks for Wearable Electronics. Materials, 2021, 14, 6603.	1.3	16
684	Heteroatom-doped hollow carbon material as an electrocatalyst for oxygen reduction reaction. Journal of Physics: Conference Series, 2021, 2079, 012007.	0.3	0
685	A review of MXenes as emergent materials for dye removal from wastewater. Separation and Purification Technology, 2022, 282, 120083.	3.9	56

#	Article	IF	CITATIONS
686	Recent Advances on MXeneâ€Based Electrocatalysts toward Oxygen Reduction Reaction: A Focused Review. Advanced Materials Interfaces, 2021, 8, 2100975.	1.9	30
687	Unsaturated iron ion-based coordination polymer for highly efficient photocatalytic hydrogen evolution with simultaneous real wastewater degradation: mechanistic insight into multifunctional Fe–N sites. Journal of Materials Chemistry A, 2021, 9, 27041-27048.	5.2	11
688	Visible-light-enhanced Cr (VI) reduction and bioelectricity generation at MXene photocathode in photoelectrocatalytic microbial fuel cells. Journal of Water Process Engineering, 2022, 45, 102454.	2.6	12
689	4E (energy, exergy, economic and environmental) investigation of LFR using MXene based silicone oil nanofluids. Sustainable Energy Technologies and Assessments, 2022, 49, 101715.	1.7	10
690	Microscale Curling and Alignment of Ti ₃ C ₂ T <i>>_x</i> MXene by Confining Aerosol Droplets for Planar Micro-Supercapacitors. ACS Omega, 2021, 6, 33067-33074.	1.6	5
691	MXenes based nano-heterojunctions and composites for advanced photocatalytic environmental detoxification and energy conversion: A review. Chemosphere, 2022, 291, 132923.	4.2	27
692	Screening for Stable Ternary-Metal MXenes as Promising Anode Materials for Sodium/Potassium-Ion Batteries. Journal of Physical Chemistry C, 2021, 125, 26332-26338.	1.5	4
693	Low-dimensional non-metal catalysts: principles for regulating p-orbital-dominated reactivity. Npj Computational Materials, 2021, 7, .	3.5	41
694	Heterostructures assembled from graphitic carbon nitride and Ti3C2T MXene as high-capacity cathode for aluminum batteries. Journal of Alloys and Compounds, 2022, 896, 162901.	2.8	10
695	2D MXenes: Synthesis, properties, and electrochemical energy storage for supercapacitors – A review. Journal of Electroanalytical Chemistry, 2022, 904, 115920.	1.9	72
696	From structural ceramics to 2D materials with multi-applications: A review on the development from MAX phases to MXenes. Journal of Advanced Ceramics, 2021, 10, 1194-1242.	8.9	122
697	MXenes nanocomposites for energy storage and conversion. Rare Metals, 2022, 41, 1101-1128.	3.6	47
698	Inâ€Situ Synergistic 2D/2D MXene/BCN Heterostructure for Superlative Energy Density Supercapacitor with Superâ€Long Life. Small, 2022, 18, e2106051.	5.2	42
699	Photocatalytic and electrocatalytic reduction of CO2 and N2 by Ti3C2 MXene supported composites for a cleaner environment: A review. Journal of Cleaner Production, 2021, 328, 129647.	4.6	24
700	Potential of MXene-Based Heterostructures for Energy Conversion and Storage. ACS Energy Letters, 2022, 7, 78-96.	8.8	69
701	Single-atom catalytic growth of crystals using graphene as a case study. Npj 2D Materials and Applications, 2021, 5, .	3.9	6
702	Recent advancements in flame retardancy of MXene polymer nanoarchitectures. Safety in Extreme Environments, 2021, 3, 253-273.	1.8	16
703	Adjusting the electronic properties and contact types of graphene/F-diamane-like C ₄ F ₂ van der Waals heterostructure: a first principles study. RSC Advances, 2021, 11, 37981-37987.	1.7	2

#	Article	IF	CITATIONS
704	3D Hierarchical Ti ₃ C ₂ T _X @NiO-Reduced Graphene Oxide Heterostructure Hydrogel as Free-Standing Electrodes for High Performance Supercapacitor. SSRN Electronic Journal, 0, , .	0.4	0
706	Two-dimensional MXenes for electrochemical energy storage applications. Journal of Materials Chemistry A, 2022, 10, 1105-1149.	5.2	63
707	Insight into defect-engineered gallium oxynitride nanoparticle-based electrodes with improved electrochemical performance for supercapacitors. Electrochimica Acta, 2022, 404, 139733.	2.6	6
708	InOOH as an efficient bidirectional catalyst for accelerated polysulfides conversion to enable high-performance lithium–sulfur batteries. Journal of Colloid and Interface Science, 2022, 610, 418-426.	5.0	7
709	Singlet oxygen-dominated activation of peroxymonosulfate by CuO/MXene nanocomposites for efficient decontamination of carbamazepine under high salinity conditions: Performance and singlet oxygen evolution mechanism. Separation and Purification Technology, 2022, 285, 120288.	3.9	44
710	3D hierarchical Ti3C2TX @NiO-reduced graphene oxide heterostructure hydrogel as free-standing electrodes for high performance supercapacitor. Journal of Alloys and Compounds, 2022, 901, 163614.	2.8	20
711	Preparation of ZnO/Ti3C2Tx/Nafion/Au electrode. Microchemical Journal, 2022, 175, 107068.	2.3	8
712	Fabrication of SnO2-TiO2-Ti3C2Tx hybrids with multiple-type heterojunctions for enhanced gas sensing performance at room temperature. Applied Surface Science, 2022, 581, 152364.	3.1	18
713	WO3(H2O)0.333/CdSe-diethylenetriamine nanocomposite as a step-scheme photocatalyst for hydrogen production. Surfaces and Interfaces, 2022, 29, 101702.	1.5	2
714	Stable TiVCTx/poly-o-phenylenediamine composites with three-dimensional tremella-like architecture for supercapacitor and Li-ion battery applications. Chemical Engineering Journal, 2022, 433, 134578.	6.6	21
715	ZnO:Bio-inspired polydopamine functionalized Ti3C2Tx composite electron transport layers for highly efficient polymer solar cells. Journal of Alloys and Compounds, 2022, 900, 163381.	2.8	8
716	Novel synthesis methods and applications of MXene-based nanomaterials (MBNs) for hazardous pollutants degradation: Future perspectives. Chemosphere, 2022, 293, 133542.	4.2	34
718	Introduction to 2D MXenes: fundamental aspects, MAX phases and MXene derivatives, current challenges, and future prospects., 2022, , 1-47.		0
719	Noncovalent functionalization of Ti ₃ C ₂ T _{<i>X</i>} using cationic porphyrins with enhanced stability against oxidation. Materials Chemistry Frontiers, 2022, 6, 561-569.	3.2	9
720	Flexible Ti ₃ C ₂ T _{<i>x</i>} /Nanocellulose Hybrid Film as a Stable Zn-free Anode for Aqueous Hybrid Znâ€"Li Batteries. ACS Applied Materials & Samp; Interfaces, 2022, 14, 6876-6884.	4.0	16
721	Laser processing of graphene and related materials for energy storage: State of the art and future prospects. Progress in Energy and Combustion Science, 2022, 91, 100981.	15.8	124
722	Investigations of <scp> 2D Ti ₃ C ₂ </scp> (<scp>MXene</scp>)― <scp> CoCr ₂ O ₄ </scp> nanocomposite as an efficient electrode material for electrochemical supercapacitors. International Journal of Energy Research, 2022, 46, 6689-6701.	2.2	17
723	On energy storage capacity of conductive MXene hybrid nanoarchitectures. Journal of Energy Storage, 2022, 45, 103686.	3.9	30

#	Article	IF	CITATIONS
724	Functionalized nanomaterial-based medical sensors for point-of-care applications: An overview. , 2022, , 277-308.		5
725	3D Printed Template-Assisted Assembly of Additive-Free Ti ₃ C ₂ T _{<i>x</i>>} MXene Microlattices with Customized Structures toward High Areal Capacitance. ACS Nano, 2022, 16, 2699-2710.	7.3	43
726	Titanium Carbide MXene Nanostructures as Catalysts and Cocatalysts for Photocatalytic Fuel Production: A Review. ACS Applied Nano Materials, 2022, 5, 18-54.	2.4	41
727	MXene-based nanomaterials for electrocatalysis. , 2022, , 23-46.		0
728	MXene-Based Aerogel Anchored with Antimony Single Atoms and Quantum Dots for High-Performance Potassium-Ion Batteries. Nano Letters, 2022, 22, 1225-1232.	4.5	64
729	Optical Properties of Few-Layer Ti ₃ CN MXene: From Experimental Observations to Theoretical Calculations. ACS Nano, 2022, 16, 3059-3069.	7.3	46
730	MXene/Organics Heterostructures Enable Ultrastable and High-Rate Lithium/Sodium Batteries. ACS Applied Materials & Diterfaces, 2022, 14, 2979-2988.	4.0	46
731	Optical and mechanical properties of MXenes. , 2022, , 131-169.		3
732	Optically Transparent and Flexible Radio Frequency Electronics through Printing Technologies. Advanced Materials Technologies, 2022, 7, .	3.0	7
733	Photocatalytic removal of benzene over Ti ₃ C ₂ T _{<i>x</i>} MXene and TiO ₂ –MXene composite materials under solar and NIR irradiation. Journal of Materials Chemistry C, 2022, 10, 626-639.	2.7	13
734	Fast and recoverable NO ₂ detection achieved by assembling ZnO on Ti ₃ C ₂ T _{<i>x</i>b>MXene nanosheets under UV illumination at room temperature. Nanoscale, 2022, 14, 3441-3451.}	2.8	65
735	MXene-based materials for remediation of environmental pollutants., 2022,, 553-594.		1
736	Effect of MXene Loaded on g-C3N4 Photocatalyst for the Photocatalytic Degradation of Methylene Blue. Energies, 2022, 15, 955.	1.6	29
737	Simplified Synthesis of Fluoride-Free Ti ₃ C ₂ T _{<i>x</i>} via Electrochemical Etching toward High-Performance Electrochemical Capacitors. ACS Nano, 2022, 16, 2461-2470.	7.3	99
738	Emerging 2D Materials for Electrocatalytic Applications: Synthesis, Multifaceted Nanostructures, and Catalytic Center Design. Small, 2022, 18, e2105831.	5.2	31
739	MXenes and their composites for energy harvesting applications. , 2022, , 687-723.		1
740	Recent Advances in Growth of Transition Metal Carbides and Nitrides (MXenes) Crystals. Advanced Functional Materials, 2022, 32, .	7.8	43
741	Advanced rare earth-based ceramic nanomaterials at a glance. , 2022, , 1-11.		0

#	Article	IF	CITATIONS
742	<scp>Twoâ€Dimensional</scp> Cathode Materials for Aqueous Rechargeable <scp>Zincâ€Ion</scp> Batteries ^{â€} . Chinese Journal of Chemistry, 2022, 40, 973-988.	2.6	10
743	Recent progress on MXenes and MOFs hybrids: Structure, synthetic strategies and catalytic water splitting. International Journal of Hydrogen Energy, 2023, 48, 6560-6574.	3.8	58
744	New insights on MXene and its advanced hybrid materials for lithium-ion batteries. Sustainable Energy and Fuels, 2022, 6, 971-1013.	2.5	18
745	MXenes for Energy Harvesting. Advanced Materials, 2022, 34, e2108560.	11.1	117
746	Insights into 2D/2D MXene Heterostructures for Improved Synergy in Structure toward Nextâ€Generation Supercapacitors: A Review. Advanced Functional Materials, 2022, 32, .	7.8	152
747	MXenes with applications in supercapacitors and secondary batteries: A comprehensive review. Materials Reports Energy, 2022, 2, 100080.	1.7	19
748	Stable and efficient Ti3C2 MXene/MAPbI3-HI system for visible-light-driven photocatalytic HI splitting. Journal of Power Sources, 2022, 522, 231006.	4.0	13
749	Plasmonic nanostructure integrated two-dimensional materials for optoelectronic devices. Journal Physics D: Applied Physics, 2022, 55, 243001.	1.3	7
750	2D Ti3C2 decorated Z-scheme BiOlO3/g-C3N4 heterojunction for the enhanced photocatalytic CO2 reduction activity under visible light. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 639, 128358.	2.3	32
751	Well-dispersed ultrafine Pt nanoparticles anchored on oxygen-rich surface of V2CT (MXene) for boosting hydrogen evolution reaction. Applied Surface Science, 2022, 582, 152481.	3.1	15
752	Review on MXene/TiO2 nanohybrids for photocatalytic hydrogen production and pollutant degradations. Journal of Environmental Chemical Engineering, 2022, 10, 107211.	3.3	43
7 53	Synthesis of Ti3C2 MXene@PANI composites for excellent anticorrosion performance of waterborne epoxy coating. Progress in Organic Coatings, 2022, 165, 106673.	1.9	20
754	The roles of MXenes in developing advanced lithium metal anodes. Journal of Energy Chemistry, 2022, 69, 132-149.	7.1	24
755	Low-dimensional MXenes as noble metal-free co-catalyst for solar-to-fuel production: Progress and prospects. Journal of Materials Science and Technology, 2022, 114, 143-164.	5.6	28
756	Optical gaps and excitons in semiconducting transition metal carbides (MXenes). Journal of Materials Chemistry C, 2022, 10, 3919-3928.	2.7	13
757	xmins:mmi= http://www.w3.org/1998/Math/MathML display= inline id= d1e704 altimg="si34.svg"> <mml:msub><mml:mrow></mml:mrow><mml:mrow></mml:mrow></mml:msub> NT <mml:math <="" display="inline" id="d1e712" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>1.3</td><td>4</td></mml:math>	1.3	4
758	Review of MXene-based Resistance Pressure Sensors for Vital Signs Monitor. Journal of Electronic Materials, 2022, 51, 1443-1472.	1.0	10
759	NiCoO2 nanosheets interlayer network connected in reduced graphene oxide and MXene for high-performance asymmetric supercapacitors. Journal of Energy Storage, 2022, 49, 104176.	3.9	12

#	Article	IF	CITATIONS
760	Design Strategy for Mxene and Metal Chalcogenides/Oxides Hybrids for Energy Storage and Conversion. SSRN Electronic Journal, 0, , .	0.4	1
761	Fluorine-free synthesis of ambient-stable delaminated Ti ₂ CT _{<i>x</i>} (MXene). Journal of Materials Chemistry A, 2022, 10, 7960-7967.	5.2	17
762	Naproxen release behaviour from graphene oxide/cellulose acetate composite nanofibers. RSC Advances, 2022, 12, 8019-8029.	1.7	8
763	Highly stable and uniformly dispersed 1T-MoS ₂ nanosheets co-induced by chemical pressure and 2D template method with high supercapacitor performance. Journal of Materials Chemistry A, 2022, 10, 7373-7381.	5.2	16
764	Theoretical study of two-dimensional tetragonal transition metal chalcogenides and the potassium derivatives. Sustainable Energy and Fuels, 2022, 6, 1770-1779.	2.5	4
765	From 0D to 3D MXenes: their diverse syntheses, morphologies and applications. Materials Chemistry Frontiers, 2022, 6, 818-842.	3.2	24
766	Two-dimensional transition metal carbide (MXene) for enhanced energy storage., 2022, , 255-283.		0
767	Dispersing Single-Layered Ti3c2tx Nanosheets in Hierarchically-Porous Membrane for High-Efficiency Li+ Transporting and Polysulfide Anchoring in Li-S Batteries. SSRN Electronic Journal, 0, , .	0.4	0
768	Advantage of Larger Interlayer Spacing of a Mo ₂ Ti ₂ C ₃ MXene Free-Standing Film Electrode toward an Excellent Performance Supercapacitor in a Binary Ionic Liquid–Organic Electrolyte. ACS Omega, 2022, 7, 7190-7198.	1.6	27
769	Oxygen-Vacancy-Rich NiMnZn-Layered Double Hydroxide Nanosheets Married with Mo ₂ CT _{<i>x</i>} MXene for High-Efficiency All-Solid-State Hybrid Supercapacitors. ACS Applied Energy Materials, 2022, 5, 3346-3358.	2.5	17
770	MXenes for metal-ion and metal-sulfur batteries: Synthesis, properties, and electrochemistry. Materials Reports Energy, 2022, 2, 100077.	1.7	1
771	基于çƒç"µè½¬æ¢çš"超级电容器性能åŠåº"用ç"究进展. Chinese Science Bulletin, 2022, , .	0.4	O
772	Novel Trends in MXene/Conducting Polymeric Hybrid Nanoclusters. Journal of Cluster Science, 2023, 34, 45-76.	1.7	23
773	MXene-Based Electrodes for Supercapacitor Energy Storage. Energy & amp; Fuels, 2022, 36, 2390-2406.	2.5	67
774	<scp>Twoâ€dimensional MXenes</scp> : New frontier of wearable and flexible electronics. InformaÄnÃ- Materiály, 2022, 4, .	8.5	102
775	A General Strategy for Engineering Single-Metal Sites on 3D Porous N, P Co-Doped Ti ₃ C ₂ T _X MXene. ACS Nano, 2022, 16, 4116-4125.	7.3	63
776	MXeneâ€Supported, Atomicâ€Layered Iridium Catalysts Created by Nanoparticle Reâ€Dispersion for Efficient Alkaline Hydrogen Evolution. Small, 2022, 18, e2105226.	5.2	16
777	Heterostructured Metallic 1T-VSe ₂ /Ti ₃ C ₂ T _{<i>x</i>} MXene Nanosheets for Energy Storage. ACS Applied Nano Materials, 2022, 5, 4423-4436.	2.4	21

#	Article	IF	CITATIONS
778	Coupling of Nâ€Doped Mesoporous Carbon and Nâ€Ti ₃ C ₂ in 2D Sandwiched Heterostructure for Enhanced Oxygen Electroreduction. Small, 2022, 18, e2106581.	5.2	14
779	Review on Ti3C2-Based MXene Nanosheets for Flexible Electrodes. Electronic Materials Letters, 2022, 18, 256-274.	1.0	16
780	Roles of Metal Ions in MXene Synthesis, Processing and Applications: A Perspective. Advanced Science, 2022, 9, e2200296.	5.6	44
781	Oxygen-Terminated Nb ₂ CO ₂ MXene with Interfacial Self-Assembled COF as a Bifunctional Catalyst for Durable Zinc–Air Batteries. ACS Applied Materials & Diterfaces, 2022, 14, 10738-10746.	4.0	22
782	Structures, properties, and challenges of emerging <code><scp>2D</scp></code> materials in bioelectronics and biosensors. Informa \ddot{A} n \tilde{A} -Materi \tilde{A} ily, 2022, 4, .	8.5	40
783	Vertically Oriented MXene Bridging the Frequency Response and Capacity Density Gap for ACâ€Filtering Pseudocapacitors. Advanced Functional Materials, 2022, 32, .	7.8	10
784	Lightâ€Controlled Ionic/Molecular Transport through Solidâ€State Nanopores and Nanochannels. Chemistry - an Asian Journal, 2022, 17, .	1.7	9
785	Custodial Chiral Symmetry in a Su-Schrieffer-Heeger Electrical Circuit with Memory. Physical Review Letters, 2022, 128, 097701.	2.9	13
786	Emerging Advancements in Polypyrrole MXene Hybrid Nanoarchitectonics for Capacitive Energy Storage Applications. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 1521-1540.	1.9	15
787	Efficient synthesis of Ti3AlC2 powders with high purity by microwave-assisted molten salt method. Ceramics International, 2022, 48, 16357-16363.	2.3	9
788	Self-assembled lead-free double perovskite-MXene heterostructure with efficient charge separation for photocatalytic CO2 reduction. Applied Catalysis B: Environmental, 2022, 312, 121358.	10.8	53
789	Transition-metal hydroxide nanosheets with peculiar double-layer structures as efficient electrocatalysts. Chem Catalysis, 2022, 2, 867-882.	2.9	10
790	Advances of Metal Oxide Composite Cathodes for Aqueous Zincâ€lon Batteries. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	4
791	Nonlinear optical properties and passively Q-switched laser application of a layered molybdenum carbide at 639 nm. Optics Letters, 2022, 47, 1830.	1.7	5
792	Graphene based electrodes for hydrogen fuel cells: A comprehensive review. International Journal of Hydrogen Energy, 2022, 47, 41848-41877.	3.8	12
793	Thermoplasmonics in Solar Energy Conversion: Materials, Nanostructured Designs, and Applications. Advanced Materials, 2022, 34, e2107351.	11.1	45
794	Improving Energy Storage Properties of Magnesium Ion Battery: Regulating MnO2/Ti3C2 Crystal Structure. Journal of Electrochemical Energy Conversion and Storage, 2022, 19, .	1.1	0
795	Threeâ€Dimensional MXenes for Supercapacitors: A Review. Small Methods, 2022, 6, e2101537.	4.6	7 5

#	Article	IF	CITATIONS
796	An inclusive perspective on the recent development of tungstenâ€based catalysts for overall <scp>waterâ€splitting</scp> : A review. International Journal of Energy Research, 2022, 46, 10228-10258.	2.2	6
797	Recent advances in <scp>MXene</scp> as electrocatalysts for sustainable energy generation: A review on surface engineering and compositing of <scp>MXene</scp> . International Journal of Energy Research, 2022, 46, 8625-8656.	2.2	26
798	Facet-dependent catalytic activity of two-dimensional Ti3C2Tx MXene on hydrogen storage performance of MgH2. Journal of Magnesium and Alloys, 2023, 11, 3724-3735.	5.5	10
799	MXenes: Synthesis strategies and lithium-sulfur battery applications. EScience, 2022, 2, 164-182.	25.0	80
800	Photoelectrochemical Energy Conversion over 2D Materials. Photochem, 2022, 2, 272-298.	1.3	17
801	One-Pot Synthesis of Pd0.5-Au1.5/MXene Ti3C2Tx Nanocomposite with High Electrocatalytic Activity for Electrooxidation of Alcohols. Journal of Electronic Materials, 0, , 1.	1.0	1
802	MOFâ€derived Multiâ€Shelled NiP ₂ Microspheres as Highâ€Performance Anode Materials for Sodiumâ€IPotassiumâ€Ion Batteries. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	7
803	Selfâ€Assembling Delaminated V ₄ C ₃ T <i>>_x</i> MXene into Highly Stable Pseudocapacitive Flexible Film Electrode for Supercapacitors. Advanced Materials Interfaces, 2022, 9, .	1.9	10
804	Interlayer-Expanded MoS ₂ Nanoflowers Vertically Aligned on MXene@Dual-Phased TiO ₂ as High-Performance Anode for Sodium-Ion Batteries. ACS Applied Materials & Los Applied Materi	4.0	30
805	Coexistence of multiple Weyl fermions and quantum anomalous Hall effect in 2D half-metallic Cr2NT2. Materials Chemistry and Physics, 2022, 282, 125940.	2.0	2
806	Photomodification of benzyl germanane with group 6 metal carbonyls. FlatChem, 2022, 33, 100354.	2.8	2
807	Optical response, lithiation and charge transfer in Sn-based 211 MAX phases with electron localization function. Journal of Materials Research and Technology, 2022, 18, 2470-2479.	2.6	13
808	Improved Li storage capacity of 2D MoS2 upon chlorophyll derivative composition. Materials Today Communications, 2022, 31, 103465.	0.9	0
809	Prospects of MXenes in energy storage applications. Chemosphere, 2022, 297, 134225.	4.2	50
810	Layer structured materials for ambient nitrogen fixation. Coordination Chemistry Reviews, 2022, 460, 214468.	9.5	28
811	Thickness-controlled porous hexagonal NiO nanodiscs electrodes for use in supercapacitors: How nanodiscs thickness influences electrochemical performance. Journal of Energy Storage, 2022, 50, 104329.	3.9	6
812	First-principles study on N2, H2, O2, NO, NO2, CO, CO2, and SO2 gas adsorption properties of the Sc2CF2 monolayer. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 141, 115162.	1.3	7
813	Electrically conductive porous MXene-polymer composites with ultralow percolation threshold via Pickering high internal phase emulsion templating strategy. Journal of Colloid and Interface Science, 2022, 618, 290-299.	5.0	18

#	Article	IF	Citations
814	Design strategy for MXene and metal chalcogenides/oxides hybrids for supercapacitors, secondary batteries and electro/photocatalysis. Coordination Chemistry Reviews, 2022, 464, 214544.	9.5	99
815	Delaminating Ti3C2 MXene by blossom of Znln2S4 microflowers for noble-metal-free photocatalytic hydrogen production. Journal of Materials Science and Technology, 2022, 120, 89-98.	5.6	53
816	Lattice Matching and Halogen Regulation for Synergistically Induced Uniform Zinc Electrodeposition by Halogenated Ti ₃ C ₂ MXenes. ACS Nano, 2022, 16, 813-822.	7.3	90
817	Sulfide with Oxygen-Rich Carbon Network for Good Lithium-Storage Kinetics. ACS Nano, 2022, 16, 2651-2660.	7.3	22
818	Applications of 2D MXenes for Electrochemical Energy Conversion and Storage. Energies, 2021, 14, 8183.	1.6	9
819	Carbon Dots as New Building Blocks for Electrochemical Energy Storage and Electrocatalysis. Advanced Energy Materials, 2022, 12, .	10.2	81
820	A Simple Approach to MXene Micropatterning from Molecularly Driven Assembly. ACS Omega, 2021, 6, 35866-35875.	1.6	1
821	DNA-Functionalized Ti ₃ C ₂ T <i>_x</i> MXenes for Selective and Rapid Detection of SARS-CoV-2 Nucleocapsid Gene. ACS Applied Nano Materials, 2022, 5, 1902-1910.	2.4	26
822	Architecting Nbâ€TiO _{2â^'} <i>_x</i> /(Ti _{0.9} Nb _{0.1}) ₃ C _{2< MXene Nanohybrid Anode for Highâ€Performance Lithiumâ€Ion Batteries. Advanced Materials Interfaces, 2022, 9, .}	/sub>T <i>-</i>	(sub>x
823	Filling Ti3C2Tx nanosheets into melamine foam towards a highly compressible all-in-one supercapacitor. Nano Research, 2022, 15, 3254-3263.	5.8	20
824	Theoretical studies of MXene-supported single-atom catalysts: Os1/Ti2CS2 for low-temperature CO oxidation. Science China Materials, 2022, 65, 1303-1312.	3.5	10
825	2D MOF nanosheets as an artificial light-harvesting system with enhanced photoelectric switching performance. Inorganic Chemistry Frontiers, 2022, 9, 2676-2682.	3.0	10
826	Additive-mediated intercalation and surface modification of MXenes. Chemical Society Reviews, 2022, 51, 2972-2990.	18.7	101
827	Two-Dimensional Nanostructures in the World of Advanced Oxidation Processes. Catalysts, 2022, 12, 358.	1.6	12
828	Influence of Additives on Microstructure and Mechanical Properties of Alumina Ceramics. Materials, 2022, 15, 2956.	1.3	4
829	MXene chemistry, electrochemistry and energy storage applications. Nature Reviews Chemistry, 2022, 6, 389-404.	13.8	429
830	Hierarchical MXene@ZIFâ€67 Film Based High Performance Tactile Sensor with Large Sensing Range from Motion Monitoring to Sound Wave Detection. Advanced Materials Technologies, 2022, 7, .	3.0	14
831	Design of Vertically Aligned Two-Dimensional Heterostructures of Rigid Ti ₃ C ₂ T _X MXene and Pliable Vanadium Pentoxide for Efficient Lithium Ion Storage. ACS Nano, 2022, 16, 5556-5565.	7.3	33

#	Article	lF	CITATIONS
832	MXenes: An emergent materials for packaging platforms and looking beyond. Nano Select, 2022, 3, 1123-1147.	1.9	9
833	2D materials modulating layered double hydroxides for electrocatalytic water splitting. Chinese Journal of Catalysis, 2022, 43, 1380-1398.	6.9	33
834	XPS spectra curve fittings of Ti3C2Tx based on first principles thinking. Applied Surface Science, 2022, 593, 153442.	3.1	37
835	Multifunctional TiO2/C nanosheets derived from 3D metal–organic frameworks for mild-temperature-photothermal-sonodynamic-chemodynamic therapy under photoacoustic image guidance. Journal of Colloid and Interface Science, 2022, 621, 360-373.	5.0	10
836	Surfaceâ€Engineered Ti ₃ C ₂ T <i>>_x</i> with Tunable Work Functions for Highly Efficient Polymer Solar Cells. Small, 2022, 18, e2201046.	5.2	20
837	An Assessment of MXenes through Scanning Probe Microscopy. Small Methods, 2022, 6, e2101599.	4.6	3
838	Recent progress and prospective on layered anode materials for potassium-ion batteries. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 1037-1052.	2.4	4
839	Advances in flexible sensors with MXene materials. New Carbon Materials, 2022, 37, 303-320.	2.9	20
840	High-Performance Visible Light Photodetector Based on 1D SnO ₂ Nanofibers with a Ti ₃ C ₂ T <i>>_x</i> (MXene) Electron Transport Layer. ACS Applied Nano Materials, 2022, 5, 6852-6863.	2.4	18
841	A sulfur selfâ€doped multifunctional biochar catalyst for overall water splitting and a supercapacitor from Camellia japonica flowers. , 2022, 4, 491-505.		43
842	Surface Complexation Enhanced Adsorption of Tetracycline by ALK-MXene. Industrial & Engineering Chemistry Research, 2022, 61, 6028-6036.	1.8	30
843	2D/2D Nanoarchitectured Nb ₂ C/Ti ₃ C ₂ MXene Heterointerface for High-Energy Supercapacitors with Sustainable Life Cycle. ACS Applied Materials & Amp; Interfaces, 2022, 14, 21038-21049.	4.0	24
844	Elementâ€Doped Mxenes: Mechanism, Synthesis, and Applications. Small, 2022, 18, e2201740.	5.2	43
845	Research on the electrochromic properties of Mxene intercalated vanadium pentoxide xerogel films. Journal of Solid State Electrochemistry, 2022, 26, 1399-1407.	1.2	4
846	Flexible MXene films for batteries and beyond. , 2022, 4, 598-620.		42
847	Phosphoreneâ€"an emerging two-dimensional material: recent advances in synthesis, functionalization, and applications. 2D Materials, 2022, 9, 032001.	2.0	25
848	Elastic polyaniline nanoarrays/MXene textiles for all-solid-state supercapacitors and anisotropic strain sensors. Composites Part A: Applied Science and Manufacturing, 2022, 158, 106985.	3.8	31
849	Ganoderma Lucidum-derived erythrocyte-like sustainable materials. Carbon, 2022, 196, 70-77.	5 . 4	14

#	Article	IF	CITATIONS
850	Etching-courtesy NH4+ pre-intercalation enables highly-efficient Li+ storage of MXenes via the renaissance of interlayer redox. Journal of Energy Chemistry, 2022, 72, 26-32.	7.1	24
851	Core-shell GaSn@rGO nanoparticles as high-performance cathodes for room-temperature liquid metal batteries. Scripta Materialia, 2022, 217, 114792.	2.6	10
852	Covalent functionalization of Ti3C2T MXene flakes with Gd-DTPA complex for stable and biocompatible MRI contrast agent. Chemical Engineering Journal, 2022, 446, 136939.	6.6	20
853	Two-Dimensional V ₂ N MXene Monolayer as a High-Capacity Anode Material for Lithium-Ion Batteries and Beyond: First-Principles Calculations. ACS Omega, 2022, 7, 17756-17764.	1.6	18
854	Review of room-temperature liquid metals for advanced metal anodes in rechargeable batteries. Energy Storage Materials, 2022, 50, 473-494.	9.5	35
855	Boosting ion adsorption, conductivity and charge storage capacity by sulfur doping. Journal of Energy Storage, 2022, 52, 104872.	3.9	2
856	Three-dimensional high graphitic porous biomass carbon from dandelion flower activated by K2FeO4 for supercapacitor electrode. Journal of Energy Storage, 2022, 52, 104889.	3.9	48
857	MXene nanocomposites for microwave absorption. Journal of Physics: Conference Series, 2022, 2267, 012084.	0.3	0
858	The Emergence of 2D MXenes Based Znâ€lon Batteries: Recent Development and Prospects. Small, 2022, 18,	5.2	76
859	New horizons in surface topography modulation of MXenes for electrochemical sensing toward potential biomarkers of chronic disorders. Critical Reviews in Solid State and Materials Sciences, 2023, 48, 580-622.	6.8	7
860	Self-Standing Ti ₃ C ₂ T _{<i>x</i>} /MoO _{3–<i>x</i>} Composite Films with High Volumetric and Gravimetric Capacitance Performances for Flexible Solid-State Supercapacitors. Energy & Description of the State Supercapacitors of the State Supe	2.5	3
861	Dipole-regulated bandgap and high electron mobility for bilayer Janus MoSiGeN4. Applied Physics Letters, 2022, 120, .	1.5	6
862	Raman Spectroscopy of Janus MoSSe Monolayer Polymorph Modifications Using Density Functional Theory. Materials, 2022, 15, 3988.	1.3	6
863	Fabricating Ti3C2 MXene cocatalyst supported NiAl-LDH/g-C3N4 ternary nanocomposite for stimulating solar photocatalytic H2 production. Journal of Environmental Chemical Engineering, 2022, 10, 108010.	3.3	17
864	Recent Advancements in Selenium-Based Cathode Materials for Lithium Batteries: A Mini-Review. Electrochem, 2022, 3, 285-308.	1.7	9
865	Ion Implantation Enhanced Exfoliation Efficiency of V ₂ AlC Single Crystals: Implications for Large V ₂ CT <i>>_z</i> Nanosheet Production. ACS Applied Nano Materials, 2022, 5, 8029-8037.	2.4	1
866	Enhanced electrochemical performance of vanadium carbide MXene composites for supercapacitors. APL Materials, 2022, 10, .	2.2	32
867	Recent progress in emerging hybrid nanomaterials towards the energy storage and heat transfer applications: A review. Journal of Molecular Liquids, 2022, 360, 119443.	2.3	22

#	Article	IF	CITATIONS
868	Recent progress in Ti3C2Tx-based materials: From fundamentals to emerging applications. Materials Science in Semiconductor Processing, 2022, 148, 106835.	1.9	9
869	Recent advances in Two-dimensional Ti3C2Tx MXene for flame retardant polymer materials. Chemical Engineering Journal, 2022, 446, 137239.	6.6	59
870	Two-dimensional magnetic transition metal halides: molecular beam epitaxy growth and physical property modulation. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 127505.	0.2	0
871	3D MXenes as promising alternatives for potential electrocatalysis applications: opportunities and challenges. Journal of Materials Chemistry C, 2022, 10, 9669-9690.	2.7	8
873	Toward Room-Temperature Electrical Control of Magnetic Order in Multiferroic van der Waals Materials. Nano Letters, 2022, 22, 5191-5197.	4.5	25
874	Novel wide spectrum light absorber heterostructures based on hBN/ln(Ga)Te. Journal of Physics Condensed Matter, 2022, 34, 345301.	0.7	3
875	Two-dimensional polymers made of carbonyl-bridged heterotriangulenes are promising anode materials for Li-ion batteries. 2D Materials, 2022, 9, 034003.	2.0	6
876	Recent progress in MXene layers materials for supercapacitors: Highâ€performance electrodes. SmartMat, 2023, 4, .	6.4	31
877	Enhanced electron transport through two-dimensional Ti3C2 in dye-sensitized solar cells. Rare Metals, 2022, 41, 3078-3085.	3.6	7
878	Transition Metal Nonâ€Oxides as Electrocatalysts: Advantages and Challenges. Small, 2022, 18, .	5.2	47
879	Assessing (Mo _{2/3} Sc _{1/3}) ₂ C and (Mo _{2/3} Sc _{1/3}) ₂ CT ₂ (T = \hat{a} 'O, \hat{a} 'OH, and \hat{a} 'F) i-MXenes as High-Performance Electrode Materials for Lithium and Non-Lithium Ion Batteries. Journal of Physical Chemistry C, 2022, 126, 10273-10286.	1.5	5
880	Ti ₃ C ₂ T _{<i>x</i>} MXenes-based flexible materials for electrochemical energy storage and solar energy conversion. Nanophotonics, 2022, 11, 3215-3245.	2.9	13
881	Remove the –F Terminal Groups on Ti3C2Tx by Reaction with Sodium Metal to Enhance Pseudocapacitance. Energy Storage Materials, 2022, 50, 802-809.	9.5	14
882	Exploring two-dimensional carbides as highly active catalysts for the oxygen reduction reaction: A density functional theory approach. Applied Surface Science, 2022, 599, 153907.	3.1	1
883	Tetra germanium nonaselenide enwrapped with reduced graphene oxide and functionalized carbon nanotubes (Ge ₄ Se ₉ /RGO/FCNTs) hybrids for improved energy storage performances. Dalton Transactions, 0, , .	1.6	4
884	Metalated covalent organic frameworks: from synthetic strategies to diverse applications. Chemical Society Reviews, 2022, 51, 6307-6416.	18.7	109
885	Machine Learning Assisted Screening of Mxenes Pseudocapacitive Materials. SSRN Electronic Journal, 0, , .	0.4	0
886	Microwave-assisted rapid synthesis of titanium phosphate free phosphorus doped Ti ₃ C ₂ MXene with boosted pseudocapacitance. Journal of Materials Chemistry A, 2022, 10, 15794-15810.	5.2	24

#	Article	IF	CITATIONS
887	MXenes for advanced separator in rechargeable batteries. Materials Today, 2022, 57, 146-179.	8.3	38
888	Controllable Synthesis of Ultrathin Defectâ€Rich LDH Nanoarrays Coupled with MOFâ€Derived Coâ€NC Microarrays for Efficient Overall Water Splitting. Small, 2022, 18, .	5 . 2	54
889	Integrating N-Doped Porous Carbon-Encapsulated Ultrafine SnO ₂ with MXene Nanosheets via Electrostatic Self-Assembly as a Superior Anode Material for Lithium Ion Capacitors. ACS Applied Energy Materials, 2022, 5, 8198-8210.	2.5	11
890	Unraveling the Anchoring Effect of MXene-Supported Single Atoms as Cathodes for Aluminum–Sulfur Batteries. , 2022, 4, 1436-1445.		11
891	Ti3C2Tx as a Sensor for SF6/N2 Nitrogen-Containing Fault Decomposition Characteristic Products: A Theoretical Study. Nanomaterials, 2022, 12, 2311.	1.9	8
892	Architecture design of MXene-based materials for sodium-chemistry based batteries. Nano Energy, 2022, 101, 107590.	8.2	13
893	MXene as Emerging Low Dimensional Material in Modern Energy and Bio Application: A Review. Journal of Nano Research, 0, 74, 109-154.	0.8	0
894	Surface-Termination Groups' Tuning to Improve the Lithium-Ion-Storage Performance of Ti3C2Tx MXene. Coatings, 2022, 12, 1005.	1.2	3
895	Recent status and future perspectives of 2D MXene for micro-supercapacitors and micro-batteries. Energy Storage Materials, 2022, 51, 500-526.	9.5	58
896	Ti ₃ C ₂ T _x MXene with tunable properties., 2020,,.		O
897	Patternable Nanocellulose/Ti ₃ C ₂ T <i>>_x</i> Flexible Films with Tunable Photoresponsive and Electromagnetic Interference Shielding Performances. ACS Applied Materials & Samp; Interfaces, 2022, 14, 35040-35052.	4.0	35
898	MXenes: promising 2D memristor materials for neuromorphic computing components. Trends in Chemistry, 2022, 4, 835-849.	4.4	17
899	Recent progress in use of MXene in perovskite solar cells: for interfacial modification, work-function tuning and additive engineering. Nanoscale, 2022, 14, 13018-13039.	2.8	22
900	CHAPTER 7. Two-dimensional Nanomaterials Design and Reactor Engineering of Different Methods for CO2 Electrochemical Conversion Process., 2022,, 211-229.		0
901	Interface interaction-mediated design of tough and conductive MXene-composited polymer hydrogel with high stretchability and low hysteresis for high-performance multiple sensing. Science China Materials, 2023, 66, 272-283.	3. 5	20
902	Vacancy manipulating of molybdenum carbide MXenes to enhance Faraday reaction for high performance lithium-ion batteries., 2022, 1, e9120026.		79
903	A Decade of Germananes: Four Approaches to Their Functionalization. Inorganic Chemistry, 2022, 61, 12425-12432.	1.9	4
904	Recent advances and trends in the applications of MXene nanomaterials for tissue engineering and regeneration. Journal of Biomedical Materials Research - Part A, 2022, 110, 1840-1859.	2.1	21

#	Article	IF	CITATIONS
905	Nanoscale MXene Interlayer and Substrate Adhesion for Lubrication: A Density Functional Theory Study. ACS Applied Nano Materials, 2022, 5, 10516-10527.	2.4	28
906	All-MXene thermoelectric nanogenerator. Materials Today Energy, 2022, 29, 101129.	2.5	13
907	MXenes as Emerging Materials: Synthesis, Properties, and Applications. Molecules, 2022, 27, 4909.	1.7	46
908	Functional MXeneâ€Based Materials for Nextâ€Generation Rechargeable Batteries. Advanced Materials, 2022, 34, .	11.1	42
909	Advancements in the photocatalytic activity of various bismuth-based semiconductor/Ti3C2 MXene interfaces for sustainable environmental management: A review. Journal of Industrial and Engineering Chemistry, 2022, 115, 26-47.	2.9	10
910	A Family of 2D-MXenes: Synthesis, Properties, and Gas Sensing Applications. ACS Sensors, 2022, 7, 2132-2163.	4.0	30
912	Ti3C2 MXene: recent progress in its fundamentals, synthesis, and applications. Rare Metals, 2022, 41, 3268-3300.	3.6	51
913	Fluoride-free synthesis and long-term stabilization of MXenes. Journal of Materials Research, 2022, 37, 3988-3997.	1.2	6
914	Advancements in MXene-Polymer Nanocomposites in Energy Storage and Biomedical Applications. Polymers, 2022, 14, 3433.	2.0	28
915	Recent advances in MXenes and their composites for wearable sensors. Journal of Physics Condensed Matter, 2022, 34, 453001.	0.7	4
917	TiC Nanomaterials with Varying Dimensionalities as Anode Materials for Lithium-Ion Batteries. ACS Applied Nano Materials, 2022, 5, 11787-11796.	2.4	5
918	Noble-Nanoparticle-Decorated Ti ₃ C ₂ T _{<i>x</i>} MXenes for Highly Sensitive Volatile Organic Compound Detection. ACS Omega, 2022, 7, 29195-29203.	1.6	13
919	Tunable Structured MXenes With Modulated Atomic Environments: A Powerful New Platform for Electrocatalytic Energy Conversion. Small, 2022, 18, .	5.2	14
920	Influence of morphology and architecture on properties and applications of MXene polymeric nanocomposites. Journal of Thermoplastic Composite Materials, 2023, 36, 4124-4161.	2.6	17
921	Research Progress on MXene-Based Flexible Supercapacitors: A Review. Crystals, 2022, 12, 1099.	1.0	6
922	Recent Advancements on Photothermal Conversion and Antibacterial Applications over MXenes-Based Materials. Nano-Micro Letters, 2022, 14, .	14.4	74
923	Boosting cation desorption, anion adsorption and surface redox reaction kinetics of Co3O4 by oxygen vacancy. Inorganic Chemistry Communication, 2022, 143, 109821.	1.8	1
924	Surface functionalization effect on physical properties and quantum capacitance of Ca2C MXenes. FlatChem, 2022, 35, 100414.	2.8	9

#	Article	IF	Citations
925	Hierarchical Au nanoarrays functionalized 2D Ti2CTx MXene membranes for the detection of exosomes isolated from human lung carcinoma cells. Biosensors and Bioelectronics, 2022, 216, 114647.	5.3	28
926	Towards better Mg metal anodes in rechargeable Mg batteries: Challenges, strategies, and perspectives. Energy Storage Materials, 2022, 52, 299-319.	9.5	43
927	Graphene-mediated dense integration of Ti3C2Tx MXene monoliths for compact energy storage: Balancing kinetics and packing density. Applied Surface Science, 2022, 604, 154565.	3.1	6
928	Porous 3D carbon-based materials: An emerging platform for efficient hydrogen production. Nano Research, 2023, 16, 127-145.	5.8	20
929	MXenes as Emerging 2D Materials for Anticorrosive Application: Challenges and Opportunities. Advanced Materials Interfaces, 2022, 9, .	1.9	8
930	MXenes and Other Two-Dimensional Materials for Membrane Gas Separation: Progress, Challenges, and Potential of MXene-Based Membranes. Industrial & Engineering Chemistry Research, 2023, 62, 2309-2328.	1.8	15
931	A Ga-Sn liquid alloy-encapsulated self-healing microcapsule as high-performance Li-ion battery anode. Journal of Electroanalytical Chemistry, 2022, 922, 116789.	1.9	7
932	Photocatalytic degradation of COVID-19 related drug arbidol hydrochloride by Ti3C2 MXene/supramolecular g-C3N4 Schottky junction photocatalyst. Chemosphere, 2022, 308, 136461.	4.2	7
933	Recent trends in MXenes hybrids as efficient 2D materials for photo- and electrocatalysis hydrogen production. Materials Today Chemistry, 2022, 26, 101108.	1.7	0
934	Dispersing single-layered Ti3C2TX nanosheets in hierarchically-porous membrane for high-efficiency Li+ transporting and polysulfide anchoring in Li-S batteries. Energy Storage Materials, 2022, 53, 32-41.	9.5	31
935	Robust MXene adding enables the stable interface of silicon anodes for high-performance Li-ion batteries. Chemical Engineering Journal, 2023, 452, 139139.	6.6	33
936	Ni-doped hybrids of TiO2 and two-dimensional Ti3C2 MXene for enhanced photocatalytic performance. Physica E: Low-Dimensional Systems and Nanostructures, 2023, 145, 115476.	1.3	7
937	MXene quantum dots of Ti3C2: Properties, synthesis, and energy-related applications. Chinese Journal of Catalysis, 2022, 43, 2484-2499.	6.9	33
938	<i>In situ</i> fabrication of MXene/CuS hybrids with interfacial covalent bonding <i>via</i> Lewis acidic etching route for efficient sodium storage. Journal of Materials Chemistry A, 2022, 10, 22135-22144.	5.2	22
939	Self-Standing Mxene/Anf Composite Film Electrodes for High-Performance Supercapacitors. SSRN Electronic Journal, 0, , .	0.4	0
940	Emerging two-dimensional nanostructured manganese-based materials for electrochemical energy storage: recent advances, mechanisms, challenges, and prospects. Journal of Materials Chemistry A, 2022, 10, 21197-21250.	5.2	43
941	Two-dimensional MXenes: recent emerging applications. RSC Advances, 2022, 12, 25172-25193.	1.7	9
942	MXenes: promising 2D materials for wound dressing applications – a perspective review. Materials Advances, 2022, 3, 7445-7462.	2.6	4

#	Article	IF	CITATIONS
943	A high-performance supercapacitor based on free-standing V ₄ C ₃ T _{<i>X</i>} @NiO-reduced graphene oxide core–shell hierarchical heterostructured hydrogel electrodes. Sustainable Energy and Fuels, 2022, 6, 4938-4947.	2.5	3
944	2D MXene nanocomposites: electrochemical and biomedical applications. Environmental Science: Nano, 2022, 9, 4038-4068.	2.2	26
945	Single atom functionalization in vanadium dichalcogenide monolayers: towards enhanced electrocatalytic activity. Sustainable Energy and Fuels, 2022, 6, 5337-5344.	2.5	3
946	Properties of nanoadsorbents and adsorption mechanisms. Interface Science and Technology, 2022, , 233-263.	1.6	1
947	Inspired by philosophizing of "point to area― Ion pre-intercalation induces the reconstitution of interlayer environment of MXene for lithium storage. Chemical Engineering Journal, 2023, 451, 139015.	6.6	7
948	Recent Advances in 2Dâ€MXene Based Nanocomposites for Optoelectronics. Advanced Materials Interfaces, 2022, 9, .	1.9	20
949	Effect of hydrochloric acid and hydrofluoric acid treatment on the morphology, structure and gamma permeability of 2D MXene Ti ₃ C ₂ T _x electrodes. Canadian Metallurgical Quarterly, 0, , 1-22.	0.4	0
950	MXenes in polymer electrolyte membrane hydrogen fuel and electrolyzer cells. Ceramics International, 2022, 48, 34190-34198.	2.3	9
951	Directed Stabilization by Air-Milling and Catalyzed Decomposition by Layered Titanium Carbide Toward Low-Temperature and High-Capacity Hydrogen Storage of Aluminum Hydride. ACS Applied Materials & Low-Temperature and High-Capacity Hydrogen Storage of Aluminum Hydride. ACS Applied Materials & Low-Temperature and High-Capacity Hydrogen Storage of Aluminum Hydride. ACS Applied Materials & Low-Temperature and High-Capacity Hydrogen Storage of Aluminum Hydride. ACS Applied Materials & Low-Temperature and High-Capacity Hydrogen Storage of Aluminum Hydride. ACS Applied Materials & Low-Temperature and High-Capacity Hydrogen Storage of Aluminum Hydride. ACS Applied Materials & Low-Temperature and High-Capacity Hydrogen Storage of Aluminum Hydride. ACS Applied Materials & Low-Temperature and High-Capacity Hydrogen Storage of Aluminum Hydride. ACS Applied Materials & Low-Temperature and High-Capacity Hydrogen Storage of Aluminum Hydride.	4.0	9
952	Ordered Double Transition Metal MXenes. ChemNanoMat, 2022, 8, .	1.5	7
953	<scp>MXene</scp> incorporated nanofluids for energy conversion performance augmentation of a concentrated photovoltaic/thermal solar collector. International Journal of Energy Research, 2022, 46, 24301-24321.	2.2	3
954	Ultrahigh Energy and Power Densities of d-MXene-Based Symmetric Supercapacitors. Nanomaterials, 2022, 12, 3294.	1.9	4
955	Architecturally robust <scp>MoWS₂</scp> and <scp>Ti₃C₂T_x MXene</scp> nanosheets hybrid for highâ€performance energy storage and conversion applications. Energy Storage, 2023, 5, .	2.3	6
956	Review on recent advances in twoâ€dimensional nanomaterialsâ€based cathodes for lithiumâ€sulfur batteries. EcoMat, 2023, 5, .	6.8	15
957	Large Area and Highâ€Efficiency MXene–Silicon Solar Cells by Organic Enhanced Dispersity and Work Function. Solar Rrl, 0, , 2200743.	3.1	1
958	Synthesis of MXene and design the high-performance energy harvesting devices with multifunctional applications. Ceramics International, 2023, 49, 1710-1719.	2.3	12
959	Ti ₂ CT ₂ MXene as Anodes for Metal Ion Batteries: From Monolayer to Bilayer to Pillar Structure. Langmuir, 2022, 38, 11732-11742.	1.6	9
960	Critical Analysis of MXene Production with Inâ€Situ HF Forming Agents for Sustainable Manufacturing. ChemElectroChem, 2022, 9, .	1.7	6

#	ARTICLE	IF	CITATIONS
961	Non-Negligible Role of Multifunctional MXene Hosts for Li–S Batteries: Anchoring and Electrocatalysis. Journal of Physical Chemistry C, 2022, 126, 17066-17075.	1.5	5
962	High-energy Q switched Yb-doped fiber laser based on a ternary layered structured Ti ₂ AlC saturable absorber. Optics Letters, 2022, 47, 5525.	1.7	5
963	Anionic Activity in Fast-Charging Batteries: Recent Advances, Prospects, and Challenges., 2022, 4, 2195-2209.		8
964	State-of-the-art progresses for Ti3C2Tx MXene reinforced polymer composites in corrosion and tribology aspects. Advances in Colloid and Interface Science, 2022, 309, 102790.	7.0	29
965	Multifunctional, superhydrophobic and highly elastic MXene/bacterial cellulose hybrid aerogels enabled <i>via</i> silylation. Journal of Materials Chemistry A, 2022, 10, 24772-24782.	5.2	16
966	CrSe ₂ /Ti ₃ C ₂ MXene 2D/2D hybrids as promising candidates for energy storage applications. Sustainable Energy and Fuels, 2022, 6, 5187-5198.	2.5	9
967	Headway towards contemporary 2D MXene-based hybrid electrodes for alkali-ion batteries. Energy Advances, 2022, 1, 950-979.	1.4	3
968	A first-principles study of the ultra-high spin rectification effect based on nitride MXenes (Sc ₂ NO ₂ , Ti ₂ NO ₂). Physical Chemistry Chemical Physics, 2022, 24, 26156-26163.	1.3	3
969	Essential data for industrially relevant development of bifunctional cathodes and biopolymer electrolytes in solid-state zinc–air secondary batteries. Energy and Environmental Science, 2022, 15, 5039-5058.	15.6	12
970	High-Capacity and Long-Lived Silicon Anodes Enabled by Three-Dimensional Porous Conductive Network Design and Surface Reconstruction. ACS Applied Energy Materials, 2022, 5, 13877-13886.	2.5	9
971	Synthesis and Chemoresistive Properties of Single-Layer MXene Ti2CTx. Russian Journal of Inorganic Chemistry, 2022, 67, 1838-1847.	0.3	3
972	Applications of MXene-Containing Polypyrrole Nanocomposites in Electrochemical Energy Storage and Conversion. ACS Omega, 2022, 7, 39498-39519.	1.6	16
973	Mechanically Ultraâ€Robust, Elastic, Conductive, and Multifunctional Hybrid Hydrogel for a Triboelectric Nanogenerator and Flexible/Wearable Sensor. Small, 2022, 18, .	5.2	33
974	Transition metal atom adsorption on the titanium carbide MXene: Trends across the periodic table for the bare and O-terminated surfaces. Physical Review Materials, 2022, 6, .	0.9	2
975	MXene Based Nanocomposites for Recent Solar Energy Technologies. Nanomaterials, 2022, 12, 3666.	1.9	3
976	Insights into the synergistic promotion of spin polarization over C3N5.4 for enhancing cooperative hydrogen evolution and benzylamine oxidation coupling. Nano Research, 2023, 16, 4225-4232.	5.8	10
977	Surface Terminations of MXene: Synthesis, Characterization, and Properties. Symmetry, 2022, 14, 2232.	1.1	23
978	Catalytic effect of carbon-based electrode materials in energy storage devices. Science China Materials, 2022, 65, 3229-3242.	3.5	5

#	Article	IF	CITATIONS
979	Conductive Iodineâ€Doped Red Phosphorus Enabled Dendriteâ€Free Lithium Deposition on MXene Matrix. Small, 2022, 18, .	5.2	5
980	Boron Nitride Thin Films with Anisotropic Optical Properties from Microscale Particle Density Distributions. Coatings, 2022, 12, 1571.	1.2	0
981	Heterostructure Engineering of 2D Superlattice Materials for Electrocatalysis. Advanced Science, 2022, 9, .	5.6	29
982	Highly Stretchable and Sensitive Ti ₃ C ₂ T _{<i>x</i>} MXene/Sodium Alginate/Acrylamide Hydrogel for Flexible Electronic Sensors. ACS Applied Polymer Materials, 2022, 4, 8216-8226.	2.0	3
983	Tunable Interstitial Anionic Electrons in Layered MXenes. Journal of Physics Condensed Matter, 0, , .	0.7	0
984	High-performance dual carbon Li-ion hybrid capacitor constructed from N, S - co-doped candle soot derived carbon nanoparticles anode and porous carbon cathode. Journal of Energy Storage, 2022, 55, 105788.	3.9	9
985	Shape-stable MXene/sodium alginate/carbon nanotubes hybrid phase change material composites for efficient solar energy conversion and storage. Composites Science and Technology, 2022, 230, 109794.	3.8	17
986	Poly(p-phenylene vinylene) incorporated into carbon nanostructures. Journal of Nanoparticle Research, 2022, 24, .	0.8	3
987	Rationally designed 1D CdS/TiO2@Ti3C2 multi-components nanocomposites for enhanced visible light photocatalytic hydrogen production. Chemical Physics Letters, 2022, 809, 140150.	1.2	6
988	MXenes: An exotic material for hybrid supercapacitors and rechargeable batteries. Journal of Energy Storage, 2022, 56, 105914.	3.9	10
989	Construction of porous and free-standing film electrodes composed of MXene, carbon nanocoils and PEDOT:PSS for high-performance flexible supercapacitors. Electrochimica Acta, 2022, 435, 141369.	2.6	10
990	Selective and moisture-sensitive degradation of bromocresol green for isostructural MOFs assembled with D-camphorate and bipyridine. Inorganic Chemistry Communication, 2022, 146, 110044.	1.8	0
991	lodine conversion chemistry in aqueous batteries: Challenges, strategies, and perspectives. Energy Storage Materials, 2023, 54, 339-365.	9.5	41
992	Interfacial properties of polyethylene/Ti3C2Tx mxene nanocomposites investigated by first-principles calculations. Applied Surface Science, 2023, 609, 155344.	3.1	7
993	Anion-exchange membrane water electrolyzers and fuel cells. Chemical Society Reviews, 2022, 51, 9620-9693.	18.7	93
994	Development of nanotechnology-mediated precision radiotherapy for anti-metastasis and radioprotection. Chemical Society Reviews, 2022, 51, 9759-9830.	18.7	17
995	Recent Advances in the MXenes for Photocatalytic and Hydrogen Production Applications. , 2022, , 2219-2260.		0
996	Selectivity for intercalated ions in MXene toward a high-performance capacitive electrode. Science China Materials, 2023, 66, 974-981.	3.5	6

#	ARTICLE	IF	Citations
997	Recent progress in flexible Znâ€ion hybrid supercapacitors: Fundamentals, fabrication designs, and applications. , 2023, 5, .		26
998	Co(OH)2 Nanoflowers Decorated α-NiMoO4 Nanowires as a Bifunctional Electrocatalyst for Efficient Overall Water Splitting. Catalysts, 2022, 12, 1417.	1.6	9
999	Three-Dimensional Macroporous TiO ₂ -MXene Nanostructure-Based Films for Flexible Freestanding Sulfur Cathodes. ACS Applied Nano Materials, 2022, 5, 16853-16861.	2.4	3
1000	3D conductive material strategies for modulating and monitoring cells. Progress in Materials Science, 2023, 133, 101041.	16.0	3
1001	One-step electrochemical synthesis and optimization of Sb-Co-P alloy anode for sodium ion battery. Electrochimica Acta, 2023, 438, 141529.	2.6	7
1002	Emerging applications of MXenes for photodetection: Recent advances and future challenges. Materials Today, 2022, 61, 169-190.	8.3	8
1003	Insights into electronic and magnetic properties of MXenes: From a fundamental perspective. Sustainable Materials and Technologies, 2022, 34, e00516.	1.7	4
1004	xmins:mml="http://www.w3.org/1998/Math/MathML" altimg="si90.svg" display="inline" id="d1e1048"> <mml:msub><mml:mrow></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub> CO <mml:math <="" altimg="si90.svg" display="inline" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>1.5</td><td>2</td></mml:math>	1.5	2
1005	Heteroatom preintercalated Cl-terminated Ti ₃ C ₂ T _{<i>x</i>} MXene wrapped with mesoporous Fe ₂ O ₃ nanospheres for improved sodium ion storage. New Journal of Chemistry, 0, , .	1.4	2
1006	Exploring a novel class of Janus MXenes by first principles calculations: structural, electronic and magnetic properties of $S<$ sub> $2<$ /sub>CXT, $S=$ 0, $S=$ 0, $S=$ 0. Physical Chemistry Chemical Physics, 2023, 25, 1881-1888.	1.3	5
1007	Graphene oxide coated polyaminoanthraquinone@MXene based flexible film electrode for high-performance supercapacitor. Journal of Energy Storage, 2023, 57, 106180.	3.9	17
1008	Influences of protein-corona on stability and aggregation kinetics of Ti3C2Tx nanosheets in aquatic environment. Environmental Research, 2023, 219, 115131.	3.7	4
1009	Fabrication of MXene (Ti2C3Tx) based conducting polymer materials and their applications as anticancer and metal ions removal from wastewater. Surfaces and Interfaces, 2023, 36, 102493.	1.5	6
1010	Materials design and preparation for high energy density and high power density electrochemical supercapacitors. Materials Science and Engineering Reports, 2023, 152, 100713.	14.8	54
1011	A review of recent progress in 2D MXenes: Synthesis, properties, and applications. Diamond and Related Materials, 2023, 132, 109634.	1.8	8
1012	Monolithic MXene composites with multi-responsive actuating and energy-storage multi-functions. Chemical Engineering Journal, 2023, 454, 140513.	6.6	8
1013	A portable smartphone-compatible ratiometric electrochemical sensor with ultrahigh sensitivity for anticancer drug mitoxantrone sensing. Sensors and Actuators B: Chemical, 2023, 378, 133103.	4.0	17
1014	Biomass-derived nano-laminated Ti ₃ SiC ₂ MAX phase. RSC Advances, 2022, 12, 32552-32556.	1.7	O

#	Article	IF	Citations
1015	2D Materials for Photovoltaics. , 2022, , 1-51.		0
1016	Emerging trends in niobium, vanadium, and molybdenum based MXenes applications. Critical Reviews in Solid State and Materials Sciences, 2024, 49, 141-162.	6.8	3
1017	Ultrastable and ultrafast 3D charge–discharge network of robust chemically coupled 1ÂT-MoS2/Ti3C2 MXene heterostructure for aqueous Zn-ion batteries. Chemical Engineering Journal, 2023, 455, 140539.	6.6	17
1018	Applications of MXenes in human-like sensors and actuators. Nano Research, 2023, 16, 5767-5795.	5.8	15
1019	Maximizing ion dynamics and electrochemical performance of ionic liquid-acetonitrile electrolyte in Ti ₃ C ₂ T _x MXene. 2D Materials, 2023, 10, 014014.	2.0	1
1020	Nanoparticles of Fe ₃ O ₄ Anchored on Ti ₃ C ₂ T _{<i>x</i>>} MXene/rGO Aerogels as Hybrid Negative Electrodes for Advanced Supercapacitors. ACS Applied Nano Materials, 2023, 6, 482-491.	2.4	8
1021	Toward Smart Sensing by MXene. Small, 2023, 19, .	5.2	29
1022	Facile self-assembly of sandwich-like MXene layered multiscale structure nanocomposite. 2D Materials, 2023, 10, 015014.	2.0	1
1023	Stretchable and Compliant Sensing of Strain, Pressure and Vibration of Soft Deformable Structures. Robotics, 2022, 11, 146.	2.1	1
1024	Electronic configuration regulation by Nâ€doped MXenes boosting electrocatalytic performance of Cobalt Phthalocyanine. European Journal of Inorganic Chemistry, 0, , .	1.0	0
1025	Thicknessâ€Independent Capacitive Performance of Holey Ti ₃ C ₂ T <i>_x</i> Film Prepared through a Mild Oxidation Strategy. Small, 2023, 19, .	5.2	9
1026	Universal Capacitance Boostâ€"Smart Surface Nanoengineering by Zwitterionic Molecules for 2D MXene Supercapacitor. Small Methods, 2023, 7, .	4.6	5
1027	Microwave-absorbing materials for stealth application: a holistic overview. Oxford Open Materials Science, 2023, 3, .	0.5	10
1028	High efficient electrochemical biosensor based on exonuclease-â¢-assisted dual-recycling amplification for ultrasensitive detection of kanamycin. Analytical Biochemistry, 2023, 663, 115028.	1.1	7
1029	A flexible hard carbon microsphere/MXene film as a high-performance anode for sodium-ion storage. New Carbon Materials, 2022, 37, 1154-1160.	2.9	2
1030	Twoâ€Dimensional MXenes for Energy Storage: Computational and Experimental Approaches. ChemistrySelect, 2022, 7, .	0.7	4
1031	Applications of advanced MXene-based composite membranes for sustainable water desalination. Chemosphere, 2023, 314, 137643.	4.2	17
1032	Metal oxide semiconductors for gas sensing. Engineering Reports, 2023, 5, .	0.9	33

#	Article	IF	CITATIONS
1033	Recent Progress of MXene-Based Materials as Anodes in Sodium-Ion Batteries. Journal of Electronic Materials, 2023, 52, 847-863.	1.0	4
1034	Tailoring 2D carbides and nitrides based photo-catalytic nanomaterials for energy production and storage: a review. Zeitschrift Fur Physikalische Chemie, 2022, .	1.4	0
1035	Controllable Synthesis of 2D Materials by Electrochemical ExfoliationÂfor Energy Storage and Conversion Application. Small, 2023, 19, .	5.2	13
1036	Electrochemical Micro-Immunosensor of Cubic AuPt Dendritic Nanocrystals/Ti3C2-MXenes for Exosomes Detection. Micromachines, 2023, 14, 138.	1.4	2
1037	Mechanism Exploration and Catalyst Design for Hydrogen Evolution Reaction Accelerated by Density Functional Theory Simulations. ACS Sustainable Chemistry and Engineering, 2023, 11, 467-481.	3.2	8
1038	Terminal Groupâ€Oriented Selfâ€Assembly to Controllably Synthesize a Layerâ€byâ€Layer SnSe ₂ and MXene Heterostructure for Ultrastable Lithium Storage. Small, 2023, 19, .	5.2	33
1039	Recent Escalations in MXenes: From Fundamental to Applications. , 2023, , 205-239.		0
1040	Bifunctional electrocatalytic activity of two-dimensional multilayered vanadium carbide (MXene) for ORR and OER. Materials Chemistry and Physics, 2023, 296, 127272.	2.0	11
1041	A triboelectric nanogenerator based on commercial ITO-PET sheets for mechanical energy harvesting and self-powered indicator display applications. Materials Letters, 2023, 336, 133866.	1.3	1
1043	Palladium Hydroxide (Pearlman's Catalyst) Doped MXene (Ti3C2Tx) Composite Modified Electrode for Selective Detection of Nicotine in Human Sweat. Biosensors, 2023, 13, 54.	2.3	17
1044	Excellent CoO _{<i>x</i>} H _{<i>y</i>} /C Oxygen Evolution Catalysts Evolved from the Rapid In Situ Electrochemical Reconstruction of Cobalt Transition Metals Doped into the V ₂ SnC MAX Phase at A Layers. ACS Applied Energy Materials, 2023, 6, 1116-1125.	2.5	1
1045	Recently emerging advancements in thermal conductivity and flame retardancy of MXene polymeric nanoarchitectures. Polymer-Plastics Technology and Materials, 2023, 62, 510-546.	0.6	16
1046	MoWS2 Nanosheet Composite with MXene as Lithium-Sulfur Battery Cathode Material. Advances in Materials Science and Engineering, 2023, 2023, 1-10.	1.0	3
1047	Applications of Graphene in Five Senses, Nervous System, and Artificial Muscles. ACS Sensors, 2023, 8, 482-514.	4.0	24
1048	2D Metal–Organic Frameworks as Competent Electrocatalysts for Water Splitting. Small, 2023, 19, .	5.2	31
1049	The tail of imidazole regulated the assembly of two robust sandwich-type polyoxotungstate-based open frameworks with efficient visible-white-light-driven catalytic oxidation of sulfides. Inorganic Chemistry Frontiers, 2023, 10, 1465-1474.	3.0	9
1050	Recent Progress in Metal Phosphorous Chalcogenides: Potential Highâ€Performance Electrocatalysts. Small, 2023, 19, .	5.2	39
1051	Halogenated Ti ₃ C ₂ MXenes Prepared by Microwave Molten Salt for Hg ⁰ Photoâ€Oxidation. Advanced Functional Materials, 2023, 33, .	7.8	7

#	ARTICLE	IF	Citations
1052	Anion Storage of MXenes. Small Methods, 2023, 7, .	4.6	9
1053	MXenes for energy applications. , 2023, , 475-502.		1
1054	Advances in the understanding of the structure–performance relationships of 2D material catalysts based on electron microscopy. Materials Chemistry Frontiers, 2023, 7, 2764-2778.	3.2	6
1055	MXene Derivatives for Energy Storage and Conversions. Small Methods, 2023, 7, .	4.6	12
1056	Rational design of flower-like MnO ₂ /Ti ₃ C ₂ T _x composite electrode for high performance supercapacitors. Nanotechnology, 2023, 34, 255602.	1.3	1
1057	Recent progress of MXene-based membranes for high-performance and efficient gas separation. Diamond and Related Materials, 2023, 135, 109883.	1.8	6
1058	A novel bimetallic MXene derivative QD-based ECL sensor for miRNA-27a-3p detection. Biosensors and Bioelectronics, 2023, 228, 115225.	5.3	8
1059	A holistic review of MXenes for solar device applications: Synthesis, characterization, properties and stability. FlatChem, 2023, 39, 100493.	2.8	6
1060	TiC nanoparticles supported on free-standing carbon nanofibers enabled high-performance Lithium–Sulfur batteries. Composites Part B: Engineering, 2023, 257, 110679.	5.9	4
1061	A theoretical exploration of different π-π stacking dimers of coronenes and its substituted analogues. Journal of Molecular Structure, 2023, 1282, 135198.	1.8	2
1062	Constructing a stable 2D Ti3AlC2 MnAXm cocatalyst-modified gC3N4/CoAl-LDH/Ti3AlC2 heterojunction for efficient dry and bireforming of methane for photocatalytic syngas production. Journal of Alloys and Compounds, 2023, 947, 169457.	2.8	10
1063	Recent catalytic applications of MXene-based layered nanomaterials. Chemosphere, 2023, 325, 138323.	4.2	15
1064	MOF-based composites as photoluminescence sensing platforms for pesticides: Applications and mechanisms. Environmental Research, 2023, 226, 115664.	3.7	11
1065	Lattice-matched Cu3P/Cu2Se heterojunction catalysts for efficient hydrogen evolution reactions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 667, 131360.	2.3	5
1066	Advances in the synthesis and applications of 2D MXene-metal nanomaterials. Surfaces and Interfaces, 2023, 38, 102873.	1.5	3
1067	Insights into the impact of interlayer spacing on MXene-based electrodes for supercapacitors: A review. Journal of Energy Storage, 2023, 65, 107341.	3.9	11
1068	3D Ti3C2TX@PANI-reduced graphene oxide hydrogel and defective reduced graphene oxide hydrogel as anode and cathode for high-energy asymmetric supercapacitor. Journal of Alloys and Compounds, 2023, 948, 169593.	2.8	3
1069	Theoretical study of M2CO2 MXenes stability and adsorption properties for heavy metals ions removal from water. Computational Materials Science, 2023, 220, 112042.	1.4	2

#	ARTICLE	IF	CITATIONS
1070	Multiferroic and ferroelectric phases revealed in 2D Ti3C2Tx MXene film for high performance resistive data storage devices. Npj 2D Materials and Applications, 2023, 7, .	3.9	14
1071	Reasonable Design of MXene-Supported Dual-Atom Catalysts with High Catalytic Activity for Hydrogen Evolution and Oxygen Evolution Reaction: A First-Principles Investigation. Materials, 2023, 16, 1457.	1.3	9
1072	Cytocompatibility of Ti ₃ C ₂ T <i>>_x</i> MXene with Red Blood Cells and Human Umbilical Vein Endothelial Cells and the Underlying Mechanisms. Chemical Research in Toxicology, 2023, 36, 347-359.	1.7	2
1073	First-principles study for discovery of novel synthesizable 2D high-entropy transition metal carbides (MXenes). Journal of Materials Chemistry A, 2023, 11, 5681-5695.	5.2	6
1074	Assessing recent progress in MXene-based nanomaterials for oxygen evolution reactions. International Journal of Hydrogen Energy, 2024, 52, 293-301.	3.8	3
1075	Etching Exfoliated Ti2CTx Nanosheets for Photoelectrochemical Photodetectors with Enhanced Performance and Alkaline Stability. Journal of Electronic Materials, 2023, 52, 3029-3037.	1.0	5
1076	Investigation of Contact Electrification between 2D MXenes and MoS ₂ through Density Functional Theory and Triboelectric Probes. Advanced Functional Materials, 2023, 33, .	7.8	35
1077	Fluorine-free mechanochemical synthesis of MXene. Materials Science and Technology, 2023, 39, 1645-1649.	0.8	3
1078	Ultrastretchable MXene Microsupercapacitors. Small, 2023, 19, .	5.2	14
1079	Machine learning assisted screening of MXenes pseudocapacitive materials. Journal of Power Sources, 2023, 564, 232834.	4.0	5
1080	Application of Titanium Carbide MXenes in Chemiresistive Gas Sensors. Nanomaterials, 2023, 13, 850.	1.9	14
1081	Progress in 3D-MXene Electrodes for Lithium/Sodium/Potassium/Magnesium/Zinc/Aluminum-Ion Batteries. Electrochemical Energy Reviews, 2023, 6, .	13.1	32
1082	Review of the role of ionic liquids in two-dimensional materials. Frontiers of Physics, 2023, 18, .	2.4	1
1083	Study on the electromagnetic wave absorption performance of Ti3C2 MXene with different etching states. Journal of Materials Science, 2023, 58, 4824-4839.	1.7	3
1084	Theoretical investigations of Ti4C3 and Ti4C3T2 ($T\hat{A}=\hat{A}F$, O and OH) monolayers as anode materials for Li-ion batteries. FlatChem, 2023, 38, 100491.	2.8	1
1085	Ambipolar Electrochemistry of Preâ€Intercalated Ti ₃ C ₂ T _{<i>x</i>} MXene in Ionic Liquid Electrolyte. Batteries and Supercaps, 2023, 6, .	2.4	2
1086	Effect of the surface termination on the adsorption of flue gas by the titanium carbide MXene. Materials Today Chemistry, 2023, 29, 101441.	1.7	5
1087	Hierarchical V ₄ C ₃ T _{<i>X</i>} @NiO-reduced graphene oxide heterostructure hydrogels and defective reduced graphene oxide hydrogels as free-standing anodes and cathodes for high-performance asymmetric supercapacitors. Physical Chemistry Chemical Physics, 2023. 25. 9140-9151.	1.3	5

#	Article	IF	CITATIONS
1088	Retrospective on Exploring MXene-Based Nanomaterials: Photocatalytic Applications. Molecules, 2023, 28, 2495.	1.7	2
1089	Interactions of Ti ₃ C ₂ MXene with Aqueous Zwitterionic Biological Buffers: Implications for Applications in Biological Systems. ACS Applied Nano Materials, 2023, 6, 4898-4909.	2.4	3
1090	MOF-derived heterostructure CoNi/CoNiP anchored on MXene framework as a superior bifunctional electrocatalyst for zinc-air batteries. Chinese Chemical Letters, 2023, 34, 108318.	4.8	3
1091	Applications of MXene and its modified materials in skin wound repair. Frontiers in Bioengineering and Biotechnology, 0, 11 , .	2.0	4
1092	An electrical microenvironment constructed based on electromagnetic induction stimulates neural differentiation. Materials Chemistry Frontiers, 2023, 7, 1671-1683.	3.2	18
1093	Understanding and Controlling Photothermal Responses in MXenes. Nano Letters, 2023, 23, 2677-2686.	4.5	7
1094	Gamma irradiated structural modification of Ti ₃ C ₂ T _{<i>x</i>} for high performance supercapacitors and the hydrogen evolution reaction. New Journal of Chemistry, 2023, 47, 7205-7210.	1.4	1
1095	Stability and electronic properties of hydrogenated <scp>C₃B</scp> structure. International Journal of Quantum Chemistry, 2023, 123, .	1.0	0
1096	Recent Advances and Perspectives of Lewis Acidic Etching Route: An Emerging Preparation Strategy for MXenes. Nano-Micro Letters, 2023, 15, .	14.4	24
1097	First-principles study of ferroelectricity, antiferroelectricity, and ferroelasticity in two-dimensional <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>\hat{l}^3</mml:mi></mml:math> -AlOOH. Physical Review B, 2023, 107, .	1.1	6
1098	Enhancement of the photocatalytic hydrogen production with the exfoliation degree of Nb2C cocatalyst. International Journal of Hydrogen Energy, 2023, 48, 20314-20323.	3.8	8
1099	Nonâ€van der Waals 2D Materials for Electrochemical Energy Storage. Advanced Functional Materials, 2023, 33, .	7.8	9
1100	Interfacial Designs of MXenes for Mild Aqueous Zincâ€lon Storage. Small Methods, 2023, 7, .	4.6	5
1101	Recent advances in two-dimensional MXenes for zinc-ion batteries. Materials Chemistry Frontiers, 2023, 7, 2373-2404.	3.2	5
1102	Two-Dimensional CrP $<$ sub $>$ 2 $<$ /sub $>$ with high specific capacity and fast charge rate for lithium-ion battery. Chinese Physics B, 0, , .	0.7	0
1103	Fabrication and characterization of MXene/CuCr2O4 nanocomposite for diverse energy applications. Journal of Materials Research and Technology, 2023, 24, 2668-2677.	2.6	9
1104	A simple strategy to simultaneously improve the lifetime and activity of classical iridium complex for photocatalytic waterâ€splitting. Aggregate, 2023, 4, .	5.2	0
1105	Influence of MXene, graphene nanoplatelet and multi-walled carbon nanotube on mechanical properties, swelling and flammability behaviour of hybrid sisal/glass fibre reinforced epoxy laminate composites. Materials Research Express, 2023, 10, 045002.	0.8	1

#	Article	IF	CITATIONS
1106	Effect of vacancies and edges in promoting water chemisorption on titanium-based MXenes. Nano Convergence, 2023, 10, .	6.3	4
1107	Interfacial covalent bonding of the MXene-stabilized Sb ₂ Se ₃ nanotube hybrid with fast ion transport for enhanced sodium-ion half/full batteries. Chemical Communications, 2023, 59, 5094-5097.	2.2	12
1108	Pt nanoparticles anchored on Ti ₃ C ₂ MXeneâ€derived TiO ₂ nanosheets for enhanced hydrogen evolution reaction. ChemistrySelect, 2023, 8, .	0.7	0
1109	High-Capacitance Î ³ -rGO/MXene Cathode and Rapid Na ⁺ -Transfer Dynamics Sodium Titanate Anode for a Quasi-Solid-State Sodium-Ion Capacitor. ACS Applied Energy Materials, 2023, 6, 4179-4190.	2.5	1
1110	Status and Prospects of MXeneâ∈Based Lithiumâ∈"Oxygen Batteries: Theoretical Prediction and Experimental Modulation. Advanced Energy Materials, 2023, 13, .	10.2	11
1111	Hydroiodicâ€Acidâ€Initiated Dense yet Porous Ti ₃ C ₂ T <i>_x</i> MXene Monoliths toward Superhigh Areal Energy Storage. Advanced Materials, 2023, 35, .	11.1	11
1112	Ultrasound-controlled MXene-based Schottky heterojunction improves anti-infection and osteogenesis properties. Theranostics, 2023, 13, 1669-1683.	4.6	5
1113	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:msub><mml:mi>Ti</mml:mi><mml:mn mathvariant="normal">C<mml:mi>></mml:mi></mml:mn></mml:msub><mml:msub><mml:mi mathvariant="normal">T</mml:mi><mml:mi>x</mml:mi></mml:msub></mml:mrow> MXene surfaces and interfaces using (metal-)organic donor/acceptor molecules. Physical Review Materials.	>30.9	mn>
1114	2023, 7 Photothermal regulated ion transport in nanofluidics: From fundamental principles to practical applications. Nano Research, 2023, 16, 10061-10071.	5.8	5
1115	Recent advances in the development of MXenes/cellulose based composites: A review. International Journal of Biological Macromolecules, 2023, 240, 124477.	3.6	6
1116	Nb2CTx-Based MXenes Most Recent Developments: From Principles to New Applications. Energies, 2023, 16, 3520.	1.6	9
1117	Engineering strategies and active site identification of MXene-based catalysts for electrochemical conversion reactions. Chemical Society Reviews, 2023, 52, 3215-3264.	18.7	36
1137	Nacre-Inspired Strong MXene/Cellulose Fiber with Superior Supercapacitive Performance via Synergizing the Interfacial Bonding and Interlayer Spacing. Nano Letters, 2023, 23, 5663-5672.	4.5	9
1150	Boosting Lean Electrolyte Lithium–Sulfur Battery Performance with Transition Metals: A Comprehensive Review. Nano-Micro Letters, 2023, 15, .	14.4	15
1152	MXenes: An Emerging Class of Materials for Environmental Remediation. Springer Series in Materials Science, 2023, , 1-15.	0.4	0
1156	Photothermal Nanomaterials: A Powerful Light-to-Heat Converter. Chemical Reviews, 2023, 123, 6891-6952.	23.0	137
1160	Fluorine- and Acid-Free Strategy toward Scalable Fabrication of Two-Dimensional MXenes for Sodium-Ion Batteries. Nano Letters, 2023, 23, 5217-5226.	4.5	29
1164	Synergistic MXene/LDH heterostructures with extensive interfacing as emerging energy conversion and storage materials. Journal of Materials Chemistry A, 2023, 11, 14469-14488.	5.2	8

#	Article	IF	CITATIONS
1167	Photocatalytic applications and modification methods of two-dimensional nanomaterials: a review. Tungsten, 2024, 6, 77-113.	2.0	8
1169	Functionalized Mxene Conjugates in Removal of Pharmaceuticals and Other Pollutants. , 2023, , 267-282.		0
1181	Renaissance of elemental phosphorus materials: properties, synthesis, and applications in sustainable energy and environment. Chemical Society Reviews, 2023, 52, 5388-5484.	18.7	9
1191	Heavy metals adsorption performance of Ti-MXenes synthesized via fluorinated etchants and their regeneration. Chemical Papers, 2023, 77, 5601-5621.	1.0	2
1202	Two-dimensional MXenes for flexible energy storage devices. Energy and Environmental Science, 2023, 16, 4191-4250.	15.6	12
1204	Two-Dimensional Nanomaterials as Technology Marvels. , 2023, , 279-291.		0
1217	MXenes: Synthetic Approaches and Sensing Advances. ACS Symposium Series, 0, , 185-212.	0.5	0
1221	Emerging Nanoengineered 2D MXene-Based Architectures for Supercapacitor Application. ACS Symposium Series, 0, , 97-139.	0.5	0
1224	2D-Transition Metal Carbides and Nitrides: Materials for the Next Generation. ACS Symposium Series, 0, $1\text{-}25$.	0.5	0
1239	Metal Carbides and Metal Nitrides Composites for Supercapacitor Applications. ACS Symposium Series, 0, , 81-96.	0.5	0
1243	Recent advances in semiconductor heterojunctions: a detailed review of the fundamentals of photocatalysis, charge transfer mechanism and materials., 2024, 1, 43-69.		3
1250	Mordernistic Aspects of MXenes and Its Applications. Lecture Notes in Mechanical Engineering, 2024, , 231-246.	0.3	0
1251	Modular design of solar-powered photocathodic metal protection device. , 2023, 2, .		0
1258	MXenes <i>vs.</i> clays: emerging and traditional 2D layered nanoarchitectonics. Nanoscale, 2023, 15, 18959-18979.	2.8	1
1259	Engineering Strategies for Suppressing the Shuttle Effect in Lithium–Sulfur Batteries. Nano-Micro Letters, 2024, 16, .	14.4	7
1269	Recent trends in synthesis of 2D MXene-based materials for sustainable environmental applications. Emergent Materials, 2024, 7, 35-62.	3.2	1
1277	Recent progress in bimetallic carbide-based electrocatalysts for water splitting. Materials Chemistry Frontiers, 2024, 8, 627-651.	3.2	3
1314	MXenes for Pseudocapacitors. Engineering Materials, 2024, , 177-193.	0.3	O

#	Article	IF	CITATIONS
1323	Humidity sensors based on solid-state metal-oxide hybrids. , 2024, , 347-392.		0
1324	2D Metal Carbides and Nitrides (MXenes) in Water Treatment. Engineering Materials, 2024, , 141-168.	0.3	0
1327	Mxenes-based hybrid electrochemical sensors. , 2024, , 417-450.		0
1328	MXene-based hybrid nanoarchitectures: an introduction. , 2024, , 3-12.		0
1330	A Novel Solid-Solution MXene with High Gravimetric Capacitance. Minerals, Metals and Materials Series, 2024, , 3-11.	0.3	0
1334	Stacking engineering in layered homostructures: transitioning from 2D to 3D architectures. Physical Chemistry Chemical Physics, 2024, 26, 7988-8012.	1.3	0
1340	MXene-based aerogels for electromagnetic interference shielding. , 2024, , 427-456.		0