Catalysis with Two-Dimensional Materials Confining Si Applications

Chemical Reviews 119, 1806-1854

DOI: 10.1021/acs.chemrev.8b00501

Citation Report

#	Article	IF	CITATIONS
1	Confinement Catalysis with 2D Materials for Energy Conversion. Advanced Materials, 2019, 31, e1901996.	21.0	257
2	Hydrogenated Borophene Shows Catalytic Activity as Solid Acid. ACS Omega, 2019, 4, 14100-14104.	3.5	42
3	Covalent Organic Frameworkâ€5upported Molecularly Dispersed Nearâ€Infrared Dyes Boost Immunogenic Phototherapy against Tumors. Advanced Functional Materials, 2019, 29, 1902757.	14.9	106
4	Platinum single-atom catalysts: a comparative review towards effective characterization. Catalysis Science and Technology, 2019, 9, 4821-4834.	4.1	122
5	Synergistic catalysis between atomically dispersed Fe and a pyrrolic-N-C framework for CO ₂ electroreduction. Nanoscale Horizons, 2019, 4, 1411-1415.	8.0	21
6	Fabrication of solid strong bases at decreased temperature by doping low-valence Cr3+ into supports. Applied Catalysis A: General, 2019, 584, 117153.	4.3	6
7	Transition Metal Chalcogenide Single Layers as an Active Platform for Single-Atom Catalysis. ACS Energy Letters, 2019, 4, 1947-1953.	17.4	43
8	Atomically Dispersed Semimetallic Selenium on Porous Carbon Membrane as an Electrode for Hydrazine Fuel Cells. Angewandte Chemie - International Edition, 2019, 58, 13466-13471.	13.8	99
9	Atomically Dispersed Semimetallic Selenium on Porous Carbon Membrane as an Electrode for Hydrazine Fuel Cells. Angewandte Chemie, 2019, 131, 13600-13605.	2.0	32
10	Direct Methane Conversion under Mild Condition by Thermo-, Electro-, or Photocatalysis. CheM, 2019, 5, 2296-2325.	11.7	331
11	Supported Nobleâ€Metal Single Atoms for Heterogeneous Catalysis. Advanced Materials, 2019, 31, e1902031.	21.0	207
12	Water Oxidation Catalysts for Artificial Photosynthesis. Advanced Materials, 2019, 31, e1902069.	21.0	215
13	Liberating N NTs Confined Highly Dispersed CoN <i>_x</i> Sites for Selective Hydrogenation of Quinolines. Advanced Materials, 2019, 31, e1906051.	21.0	56
14	Arylene Ethynylene-Functionalized Bithiazole-Based Zinc Polymers for Ultraefficient Photocatalytic Activity. ACS Omega, 2019, 4, 17798-17806.	3.5	6
15	Synthesis of Thiocyameluric Acid C ₆ N ₇ S ₃ H ₃ , Its Reaction to Alkali Metal Thiocyamelurates and Organic Tris(dithio)cyamelurates. Chemistry - A European Journal, 2019, 25, 15555-15564.	3.3	5
16	Prussian blue/ZIF-67-derived carbon layers-encapsulated FeCo nanoparticles for hydrogen and oxygen evolution reaction. Journal of Electroanalytical Chemistry, 2019, 853, 113557.	3.8	11
17	Doping sp-hybridized B atoms in graphyne supported single cobalt atoms for hydrogen evolution electrocatalysis. International Journal of Hydrogen Energy, 2019, 44, 27421-27428.	7.1	23
18	Synergy of a Metallic NiCo Dimer Anchored on a C ₂ N–Graphene Matrix Promotes the Electrochemical CO ₂ Reduction Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 19113-19121.	6.7	91

#	Article	IF	Citations
19	Insight into the Activity and Stability of Transition-Metal Atoms Embedded in MnO for Triiodide Reduction Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 19303-19310.	6.7	10
20	Atomic―and Molecularâ€Level Design of Functional Metal–Organic Frameworks (MOFs) and Derivatives for Energy and Environmental Applications. Advanced Science, 2019, 6, 1901129.	11.2	121
21	Confined Catalysis: Progress and Prospects in Energy Conversion. Advanced Energy Materials, 2019, 9, 1902307.	19.5	79
22	Transforming Energy with Single-Atom Catalysts. Joule, 2019, 3, 2897-2929.	24.0	216
23	Versatile Applications of Metal Singleâ€Atom @ 2D Material Nanoplatforms. Advanced Science, 2019, 6, 1901787.	11.2	128
24	TriQuinoline. Nature Communications, 2019, 10, 3820.	12.8	25
25	Recent progress in two-dimensional nanomaterials: Synthesis, engineering, and applications. FlatChem, 2019, 18, 100133.	5.6	52
26	Theoretical evaluation on single-atom Fe doped divacancy graphene for catalytic CO and NO oxidation by O2 molecules. Molecular Catalysis, 2019, 476, 110524.	2.0	14
27	Metal–organic frameworks: A tunable platform to access single-site heterogeneous catalysts. Applied Catalysis A: General, 2019, 586, 117214.	4.3	96
28	Oxide Passivated CoNi@NC-Supported Ru(OH) <i>_{<i>x</i>}</i> Cl <i>_{<i>y</i>}</i> Cluster as Highly Efficient Catalysts for the Oxygen and Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2019, 7, 17227-17236.	6.7	22
29	Nanozyme-Based Bandage with Single-Atom Catalysis for Brain Trauma. ACS Nano, 2019, 13, 11552-11560.	14.6	193
30	Distinct Catalytic Reactivity of Sn Substituted in Framework Locations and at Defect Grain Boundaries in Sn-Zeolites. ACS Catalysis, 2019, 9, 6146-6168.	11.2	52
31	Modification of C, O, and N Groups for Oxygen Reduction Reaction on an Electrochemically Stabilized Graphene Nanoribbon Surface. Journal of Physical Chemistry C, 2019, 123, 16308-16316.	3.1	24
32	Hydrothermal growth, electronic structure, optical and photocatalytic properties of LiBiO2 nanosheets. Journal of Luminescence, 2019, 214, 116523.	3.1	7
33	Nitrogenâ€Doped Porous Carbon Supported Nonprecious Metal Singleâ€Atom Electrocatalysts: from Synthesis to Application. Small Methods, 2019, 3, 1900159.	8.6	218
34	Design of atomically dispersed catalytic sites for photocatalytic CO ₂ reduction. Nanoscale, 2019, 11, 11064-11070.	5.6	57
35	Visible light driven efficient metal free single atom catalyst supported on nanoporous carbon nitride for nitrogen fixation. Physical Chemistry Chemical Physics, 2019, 21, 12346-12352.	2.8	64
36	Methylene blue-carbon nitride system as a reusable air-sensor. Materials Chemistry and Physics, 2019, 231, 351-356.	4.0	4

#	Article	IF	CITATIONS
37	Single Atoms and Clusters Based Nanomaterials for Hydrogen Evolution, Oxygen Evolution Reactions, and Full Water Splitting. Advanced Energy Materials, 2019, 9, 1900624.	19.5	538
38	Artificial photosynthesis: opportunities and challenges of molecular catalysts. Chemical Society Reviews, 2019, 48, 2216-2264.	38.1	629
39	Multiscale carbon foam confining single iron atoms for efficient electrocatalytic CO2 reduction to CO. Nano Research, 2019, 12, 2313-2317.	10.4	86
40	Cobalt Single Atom Heterogeneous Catalyst: Method of Preparation, Characterization, Catalysis, and Mechanism. , 2019, , .		3
41	Facile synthesis of impurity-free iron single atom catalysts for highly efficient oxygen reduction reaction and active-site identification. Catalysis Science and Technology, 2019, 9, 6556-6560.	4.1	10
42	Fuels and energy carriers from single-site catalysts prepared via surface organometallic chemistry. Nature Energy, 2019, 4, 1018-1024.	39.5	34
43	Single-atom nickel confined nanotube superstructure as support for catalytic wet air oxidation of acetic acid. Communications Chemistry, 2019, 2, .	4.5	15
44	Revealing the Intrinsic Peroxidase-Like Catalytic Mechanism of Heterogeneous Single-Atom Co–MoS2. Nano-Micro Letters, 2019, 11, 102.	27.0	114
45	State of the Art and Prospects in Metal–Organic Framework (MOF)-Based and MOF-Derived Nanocatalysis. Chemical Reviews, 2020, 120, 1438-1511.	47.7	1,505
46	Single cobalt atom anchored on N-doped graphyne for boosting the overall water splitting. Applied Surface Science, 2020, 502, 144155.	6.1	50
47	2D Electrocatalysts for Converting Earthâ€Abundant Simple Molecules into Valueâ€Added Commodity Chemicals: Recent Progress and Perspectives. Advanced Materials, 2020, 32, e1904870.	21.0	76
48	Investigating CO2 storage properties of C2N monolayer functionalized with small metal clusters. Journal of CO2 Utilization, 2020, 35, 1-13.	6.8	20
49	Twoâ€Ðimensional Electrocatalysts for Efficient Reduction of Carbon Dioxide. ChemSusChem, 2020, 13, 59-77.	6.8	31
50	Charge Transfer Modulated Activity of Carbonâ€Based Electrocatalysts. Advanced Energy Materials, 2020, 10, 1901227.	19.5	156
51	Bimetallene advances oxygen electrocatalysis. Science China Chemistry, 2020, 63, 147-148.	8.2	3
52	Graphene-Based Heterogeneous Catalysis: Role of Graphene. Catalysts, 2020, 10, 53.	3.5	83
53	Carbon-Based Single-Atom Catalysts for Advanced Applications. ACS Catalysis, 2020, 10, 2231-2259.	11.2	426
54	Single Atom on the 2D Matrix: An Emerging Electrocatalyst for Energy Applications. ACS Omega, 2020, 5, 1287-1295.	3.5	52

<u> </u>			<u> </u>	
(15	ГАТ	ON	REPC	TDT
			NLFC	ואנ

#	Article	IF	CITATIONS
55	Designing Atomic Active Centers for Hydrogen Evolution Electrocatalysts. Angewandte Chemie - International Edition, 2020, 59, 20794-20812.	13.8	257
56	Mixed Metal Phosphide Chainmail Catalysts Confined in N-Doped Porous Carbon Nanoboxes as Highly Efficient Water-Oxidation Electrocatalysts with Ultralow Overpotentials and Tafel Slopes. ACS Applied Materials & Interfaces, 2020, 12, 7153-7161.	8.0	47
57	Boosting the Loading of Metal Single Atoms via a Bioconcentration Strategy. Small, 2020, 16, e1905920.	10.0	40
58	A review of non-precious metal single atom confined nanomaterials in different structural dimensions (1D–3D) as highly active oxygen redox reaction electrocatalysts. Journal of Materials Chemistry A, 2020, 8, 2222-2245.	10.3	59
59	Engineering Local Coordination Environments of Atomically Dispersed and Heteroatomâ€Coordinated Single Metal Site Electrocatalysts for Clean Energyâ€Conversion. Advanced Energy Materials, 2020, 10, 1902844.	19.5	245
60	Breaking scaling relations for efficient CO ₂ electrochemical reduction through dual-atom catalysts. Chemical Science, 2020, 11, 1807-1813.	7.4	230
61	Honeycomb-like 3D N-, P-codoped porous carbon anchored with ultrasmall Fe2P nanocrystals for efficient Zn-air battery. Carbon, 2020, 158, 885-892.	10.3	41
62	Templateâ€Assisted Synthesis of Metallic 1T′â€Sn _{0.3} W _{0.7} S ₂ Nanosheets for Hydrogen Evolution Reaction. Advanced Functional Materials, 2020, 30, 1906069.	14.9	47
63	Single Fe atoms confined in two-dimensional MoS2 for sulfite activation: A biomimetic approach towards efficient radical generation. Applied Catalysis B: Environmental, 2020, 268, 118459.	20.2	86
64	Substantial potential effects on single-atom catalysts for the oxygen evolution reaction simulated via a fixed-potential method. Journal of Catalysis, 2020, 391, 530-538.	6.2	45
65	Single atom transition metals on MoS2 monolayer and their use as catalysts for CO2 activation. Applied Surface Science, 2020, 534, 147611.	6.1	29
66	Single-Atom Catalysts across the Periodic Table. Chemical Reviews, 2020, 120, 11703-11809.	47.7	690
67	Modification of Graphitic Carbon Nitride with Hydrogen Peroxide. Nanomaterials, 2020, 10, 1747.	4.1	3
68	Engineering the Low Coordinated Pt Single Atom to Achieve the Superior Electrocatalytic Performance toward Oxygen Reduction. Small, 2020, 16, e2003096.	10.0	110
69	BiOCl nanosheets with periodic nanochannels for high-efficiency photooxidation. Nano Energy, 2020, 78, 105340.	16.0	70
70	Can Single Metal Atoms Trapped in Defective h-BN/Cu(111) Improve Electrocatalysis of the H ₂ Evolution Reaction?. Journal of Physical Chemistry C, 2020, 124, 23690-23698.	3.1	6
71	Single-Atom Electrocatalysts for Lithium Sulfur Batteries: Progress, Opportunities, and Challenges. , 2020, 2, 1450-1463.		108
72	Thermodynamic Full Landscape Searching Scheme for Identifying the Mechanism of Electrochemical Reaction: A Case Study of Oxygen Evolution on Fe- and Co-Doped Graphene–Nitrogen Sites. Journal of Physical Chemistry A, 2020, 124, 5444-5455.	2.5	1

#	Article	IF	CITATIONS
73	Two-dimensional Noble Metal Nanomaterials for Electrocatalysis. Chemical Research in Chinese Universities, 2020, 36, 597-610.	2.6	11
74	Direct Synthesis of Atomically Dispersed Palladium Atoms Supported on Graphitic Carbon Nitride for Efficient Selective Hydrogenation Reactions. ACS Applied Materials & Interfaces, 2020, 12, 54146-54154.	8.0	31
75	Theoretical Screening of Single Atoms Supported on Two-Dimensional Nb ₂ CN ₂ for Nitrogen Fixation. ACS Applied Nano Materials, 2020, 3, 11274-11281.	5.0	34
76	Ligand Stabilized Ni 1 Catalyst for Efficient CO Oxidation. ChemPhysChem, 2020, 21, 2417-2425.	2.1	4
77	First-principles study on the type-II g-C6N6/GaS heterojunction: A promising photocatalyst for water splitting. Diamond and Related Materials, 2020, 110, 108157.	3.9	21
78	Two-Dimensional Material-Based Biosensors for Virus Detection. ACS Sensors, 2020, 5, 3739-3769.	7.8	73
79	Boosting oxygen evolution reaction on graphene through engineering electronic structure. Carbon, 2020, 170, 414-420.	10.3	26
80	General synthesis of single atom electrocatalysts <i>via</i> a facile condensation–carbonization process. Journal of Materials Chemistry A, 2020, 8, 25959-25969.	10.3	14
81	Achieving High Activity and Selectivity of Nitrogen Reduction via Fe–N ₃ Coordination on Iron Single-Atom Electrocatalysts at Ambient Conditions. ACS Sustainable Chemistry and Engineering, 2020, 8, 12809-12816.	6.7	41
82	Enhancing Reactivity of SiC-Supported Graphene by Engineering Intercalated Metal Atoms at the Interface. Journal of Physical Chemistry C, 2020, 124, 18126-18131.	3.1	3
83	Synergistic engineering of MoS2 via dual-metal doping strategy towards hydrogen evolution reaction. Applied Surface Science, 2020, 529, 147117.	6.1	22
84	Efficient bi-directional OER/ORR catalysis of metal-free C6H4NO2/g-C3N4: Density functional theory approaches. Applied Surface Science, 2020, 531, 147292.	6.1	18
85	Coordination polymer-derived porous Co3O4 nanosheet as an effective catalyst for activating peroxymonosulfate to degrade sulfosalicylic acid. Applied Surface Science, 2020, 532, 147382.	6.1	29
86	Recycling the Catalyst of Atom Transfer Radical Polymerization to Prepare a Cu, N Codoped Mesoporous Carbon Electrocatalyst for Oxygen Reduction. ACS Sustainable Chemistry and Engineering, 2020, 8, 12768-12774.	6.7	10
87	Porous hexagonal nanoplate cobalt oxide derived from a coordination polymer as an effective catalyst for activating Oxone in water. Chemosphere, 2020, 261, 127552.	8.2	16
88	Recent Advances in MOFâ€Derived Single Atom Catalysts for Electrochemical Applications. Advanced Energy Materials, 2020, 10, 2001561.	19.5	265
89	Single-atom site catalysts for environmental catalysis. Nano Research, 2020, 13, 3165-3182.	10.4	252
90	Descriptors for Hydrogen Evolution on Single Atom Catalysts in Nitrogen-Doped Graphene. Journal of Physical Chemistry C, 2020, 124, 19571-19578.	3.1	75

#	Article	IF	CITATIONS
91	Atomistic Insights into the Stability of Pt Single-Atom Electrocatalysts. Journal of the American Chemical Society, 2020, 142, 15496-15504.	13.7	75
92	Unveiling the Active Site of Metal-Free Nitrogen-doped Carbon for Electrocatalytic Carbon Dioxide Reduction. Cell Reports Physical Science, 2020, 1, 100145.	5.6	53
93	Understanding activity origin for the oxygen reduction reaction on bi-atom catalysts by DFT studies and machine-learning. Journal of Materials Chemistry A, 2020, 8, 24563-24571.	10.3	71
94	2D Reâ€Based Transition Metal Chalcogenides: Progress, Challenges, and Opportunities. Advanced Science, 2020, 7, 2002320.	11.2	62
95	Theoretical Understandings of Graphene-based Metal Single-Atom Catalysts: Stability and Catalytic Performance. Chemical Reviews, 2020, 120, 12315-12341.	47.7	354
96	Theoretical insights into single-atom catalysts. Chemical Society Reviews, 2020, 49, 8156-8178.	38.1	231
97	Recent advances in ultrathin two-dimensional materials and biomedical applications for reactive oxygen species generation and scavenging. Nanoscale, 2020, 12, 19516-19535.	5.6	65
98	Recent Progress in Nonâ€Precious Metal Single Atomic Catalysts for Solar and Nonâ€Solar Driven Hydrogen Evolution Reaction. Advanced Sustainable Systems, 2020, 4, 2000151.	5.3	14
99	Vertically-Oriented WS2 Nanosheets with a Few Layers and Its Raman Enhancements. Nanomaterials, 2020, 10, 1847.	4.1	8
100	Microenvironment modulation of single-atom catalysts and their roles in electrochemical energy conversion. Science Advances, 2020, 6, .	10.3	214
101	A perspective on oxide-supported single-atom catalysts. Nanoscale Advances, 2020, 2, 3624-3631.	4.6	12
102	Computational screening of efficient graphene-supported transition metal single atom catalysts toward the oxygen reduction reaction. Journal of Materials Chemistry A, 2020, 8, 19319-19327.	10.3	49
103	Ruthenium single-atom catalysis for electrocatalytic nitrogen reduction unveiled by grand canonical density functional theory. Journal of Materials Chemistry A, 2020, 8, 20402-20407.	10.3	34
104	Edge-Functionalized Polyphthalocyanine Networks with High Oxygen Reduction Reaction Activity. Journal of the American Chemical Society, 2020, 142, 17524-17530.	13.7	75
105	Enhanced carbon dioxide conversion at ambient conditions via a pore enrichment effect. Nature Communications, 2020, 11, 4481.	12.8	74
106	Recent advances in two-dimensional nanomaterials for photocatalytic reduction of CO ₂ : insights into performance, theories and perspective. Journal of Materials Chemistry A, 2020, 8, 19156-19195.	10.3	101
107	Site-specific electrodeposition enables self-terminating growth of atomically dispersed metal catalysts. Nature Communications, 2020, 11, 4558.	12.8	131
108	Ultrafast Construction of Oxygen-Containing Scaffold over Graphite for Trapping Ni ²⁺ into Single Atom Catalysts. ACS Nano, 2020, 14, 11662-11669.	14.6	20

#	Article	IF	CITATIONS
109	Synthesis, Catalytic Properties and Application in Biosensorics of Nanozymes and Electronanocatalysts: A Review. Sensors, 2020, 20, 4509.	3.8	61
110	<i>Operando</i> characterization techniques for electrocatalysis. Energy and Environmental Science, 2020, 13, 3748-3779.	30.8	159
111	Modulation of electronic structures in two-dimensional electrocatalysts for the hydrogen evolution reaction. Chemical Communications, 2020, 56, 11910-11930.	4.1	56
112	Carbon-Based Materials for the Development of Highly Dispersed Metal Catalysts: Towards Highly Performant Catalysts for Fine Chemical Synthesis. Catalysts, 2020, 10, 1407.	3.5	24
113	Single-Atom Catalysts for Biotherapy Applications: A Systematic Review. Nanomaterials, 2020, 10, 2518.	4.1	7
114	Intrinsic Activity of Metal Centers in Metal–Nitrogen–Carbon Single-Atom Catalysts for Hydrogen Peroxide Synthesis. Journal of the American Chemical Society, 2020, 142, 21861-21871.	13.7	163
115	State of the Art in the Characterization of Nano- and Atomic-Scale Catalysts. ACS Symposium Series, 2020, , 51-93.	0.5	0
116	Nanocarbon-Based Catalytic Ozonation for Aqueous Oxidation: Engineering Defects for Active Sites and Tunable Reaction Pathways. ACS Catalysis, 2020, 10, 13383-13414.	11.2	141
117	Cobalt-based coordination polymer-derived hexagonal porous cobalt oxide nanoplate as an enhanced catalyst for hydrogen generation from hydrolysis of borohydride. International Journal of Hydrogen Energy, 2020, 45, 31952-31962.	7.1	12
118	Studies of MnO2/g-C3N4 hetrostructure efficient of visible light photocatalyst for pollutants degradation by sol-gel technique. Surfaces and Interfaces, 2020, 20, 100512.	3.0	112
119	Single-atom-Ni-decorated, nitrogen-doped carbon layers for efficient electrocatalytic CO2 reduction reaction. Electrochemistry Communications, 2020, 116, 106758.	4.7	31
120	Recent advances in structural engineering of MXene electrocatalysts. Journal of Materials Chemistry A, 2020, 8, 10604-10624.	10.3	201
121	Reversed configuration of photocatalyst to exhibit improved properties of basic processes compared to conventional one. Science China Chemistry, 2020, 63, 771-776.	8.2	4
122	Amino-metalloporphyrin polymers derived Fe single atom catalysts for highly efficient oxygen reduction reaction. Science China Chemistry, 2020, 63, 810-817.	8.2	25
123	Metal–Organic Frameworks as a Good Platform for the Fabrication of Single-Atom Catalysts. ACS Catalysis, 2020, 10, 6579-6586.	11.2	240
124	Atomically dispersed metal active centers as a chemically tunable platform for energy storage devices. Journal of Materials Chemistry A, 2020, 8, 15358-15372.	10.3	16
125	Synergy of Fe-N4 and non-coordinated boron atoms for highly selective oxidation of amine into nitrile. Nano Research, 2020, 13, 2079-2084.	10.4	23
126	Single-sites Rh-phosphide modified carbon nitride photocatalyst for boosting hydrogen evolution under visible light. Applied Catalysis B: Environmental, 2020, 274, 119117.	20.2	51

#	Article	IF	CITATIONS
127	Solid-state synthesis of ultrathin MoS2 as a cocatalyst on mesoporous g-C3N4 for excellent enhancement of visible light photoactivity. Journal of Alloys and Compounds, 2020, 836, 155401.	5.5	28
128	Design and application of active sites in g-C3N4-based photocatalysts. Journal of Materials Science and Technology, 2020, 56, 69-88.	10.7	211
129	Anchoring Mo single atoms/clusters and N on edge-rich nanoporous holey graphene as bifunctional air electrode in Znâ^'air batteries. Applied Catalysis B: Environmental, 2020, 276, 119172.	20.2	79
130	Triquinoline―versus Fullereneâ€Based Cycloparaphenylene Ionic Complexes: Comparison of Photoinduced Chargeâ€Shift Reactions. Chemistry - A European Journal, 2020, 26, 10896-10902.	3.3	10
131	Machine-learning-accelerated screening of hydrogen evolution catalysts in MBenes materials. Applied Surface Science, 2020, 526, 146522.	6.1	50
132	A new family of two-dimensional ferroelastic semiconductors with negative Poisson's ratios. Nanoscale, 2020, 12, 14150-14159.	5.6	21
133	Modulating the electronic property of Pt nanocatalyst on rGO by iron oxides for aerobic oxidation of glycerol. Catalysis Communications, 2020, 144, 106073.	3.3	5
134	Metalâ€Nitrogenâ€Doped Carbon Materials as Highly Efficient Catalysts: Progress and Rational Design. Advanced Science, 2020, 7, 2001069.	11.2	228
135	Dopamine polymer derived isolated single-atom site metals/N-doped porous carbon for benzene oxidation. Chemical Communications, 2020, 56, 8916-8919.	4.1	18
136	Natural aloe vera derived Pt supported N-doped porous carbon: A highly durable cathode catalyst of PEM fuel cell. International Journal of Hydrogen Energy, 2020, 45, 19267-19279.	7.1	32
137	Emerging 2D pnictogens for catalytic applications: status and challenges. Journal of Materials Chemistry A, 2020, 8, 12887-12927.	10.3	32
138	Atomically dispersed catalysts for hydrogen/oxygen evolution reactions and overall water splitting. Journal of Power Sources, 2020, 471, 228446.	7.8	74
139	Inert basal plane activation of two-dimensional ZnIn ₂ S ₄ <i>via</i> Ni atom doping for enhanced co-catalyst free photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2020, 8, 13376-13384.	10.3	79
140	Strategies of engineering 2D nanomaterial-based electrocatalysts toward hydrogen evolution reaction. Materials for Renewable and Sustainable Energy, 2020, 9, 1.	3.6	14
141	Nanoconfinement-Mediated Water Treatment: From Fundamental to Application. Environmental Science & Technology, 2020, 54, 8509-8526.	10.0	209
142	Heterogeneous Single-Atom Photocatalysts: Fundamentals and Applications. Chemical Reviews, 2020, 120, 12175-12216.	47.7	620
143	Fabricating Pd isolated single atom sites on C3N4/rGO for heterogenization of homogeneous catalysis. Nano Research, 2020, 13, 947-951.	10.4	65
144	Vacancy enriched ultrathin TiMgAl-layered double hydroxide/graphene oxides composites as highly efficient visible-light catalysts for CO2 reduction. Applied Catalysis B: Environmental, 2020, 270, 118878	20.2	53

#	Article	IF	Citations
145	Rhodium/graphitic-carbon-nitride composite electrocatalyst facilitates efficient hydrogen evolution in acidic and alkaline electrolytes. Journal of Colloid and Interface Science, 2020, 571, 30-37.	9.4	14
146	Dynamic changes of single-atom Pt-C3N4 photocatalysts. Science Bulletin, 2020, 65, 1055-1056.	9.0	10
147	Modulating Location of Single Copper Atoms in Polymeric Carbon Nitride for Enhanced Photoredox Catalysis. ACS Catalysis, 2020, 10, 5715-5722.	11.2	80
148	Ultra-low cobalt loading on N-doped carbon nanosheets by polymer pyrolysis strategy for efficient electrocatalytic hydrogen evolution. Applied Surface Science, 2020, 518, 146239.	6.1	10
149	Selective immobilization of single-atom Au on cerium dioxide for low-temperature removal of C1 gaseous contaminants. Journal of Hazardous Materials, 2020, 392, 122511.	12.4	24
150	Distance Synergy of MoS ₂ onfined Rhodium Atoms for Highly Efficient Hydrogen Evolution. Angewandte Chemie - International Edition, 2020, 59, 10502-10507.	13.8	122
151	Distance Synergy of MoS ₂ onfined Rhodium Atoms for Highly Efficient Hydrogen Evolution. Angewandte Chemie, 2020, 132, 10588-10593.	2.0	37
152	Chemical Synthesis of Single Atomic Site Catalysts. Chemical Reviews, 2020, 120, 11900-11955.	47.7	806
153	Impact of electron transfer of atomic metals on adjacent graphyne layers on electrochemical water splitting. Nanoscale, 2020, 12, 7814-7821.	5.6	16
154	Boosting hydrogen evolution on MoS2 via co-confining selenium in surface and cobalt in inner layer. Nature Communications, 2020, 11, 3315.	12.8	229
155	Single transition metal atoms anchored on a C ₂ N monolayer as efficient catalysts for hydrazine electrooxidation. Physical Chemistry Chemical Physics, 2020, 22, 16691-16700.	2.8	12
156	Synthesis of Ruâ€Doped VN by a Softâ€Urea Pathway as an Efficient Catalyst for Hydrogen Evolution. ChemElectroChem, 2020, 7, 1201-1206.	3.4	11
157	Recent Developments on Emerging Properties, Growth Approaches, and Advanced Applications of Metallic 2D Layered Vanadium Dichalcogenides. Advanced Materials Interfaces, 2020, 7, 1901682.	3.7	28
158	Non-noble metal single-atom catalysts prepared by wet chemical method and their applications in electrochemical water splitting. Journal of Energy Chemistry, 2020, 47, 333-345.	12.9	104
159	Tackling the Activity and Selectivity Challenges of Electrocatalysts toward the Nitrogen Reduction Reaction via Atomically Dispersed Biatom Catalysts. Journal of the American Chemical Society, 2020, 142, 5709-5721.	13.7	664
160	Corrugation Matters: Structure Models of Single Layer Heptazine-Based Graphitic Carbon Nitride from First-Principles Studies. Journal of Physical Chemistry C, 2020, 124, 4644-4651.	3.1	19
161	2020 Roadmap on Carbon Materials for Energy Storage and Conversion. Chemistry - an Asian Journal, 2020, 15, 995-1013.	3.3	154
162	Kaolinite: A natural and stable catalyst for depolymerization of cellulose to reducing sugars in water. Applied Clay Science, 2020, 188, 105512.	5.2	14

#	Article	IF	CITATIONS
163	C–C coupling reactions promoted by CNT-supported bimetallic center in Fischer–Tropsch synthesis. Sustainable Energy and Fuels, 2020, 4, 2638-2644.	4.9	2
164	Achieving Efficient Alkaline Hydrogen Evolution Reaction over a Ni ₅ P ₄ Catalyst Incorporating Singleâ€Atomic Ru Sites. Advanced Materials, 2020, 32, e1906972.	21.0	281
165	Persulfate activation by two-dimensional MoS2 confining single Fe atoms: Performance, mechanism and DFT calculations. Journal of Hazardous Materials, 2020, 389, 122137.	12.4	72
166	Efficient hydrogen production from ethanol steam reforming over layer-controlled graphene-encapsulated Ni catalysts. Journal of Cleaner Production, 2020, 252, 119907.	9.3	25
167	Single-atom catalysis for a sustainable and greener future. Current Opinion in Green and Sustainable Chemistry, 2020, 22, 54-64.	5.9	33
168	Single-Atom Pt–N ₃ Sites on the Stable Covalent Triazine Framework Nanosheets for Photocatalytic N ₂ Fixation. ACS Catalysis, 2020, 10, 2431-2442.	11.2	171
169	Solution-Phase Activation and Functionalization of Colloidal WS ₂ Nanosheets with Ni Single Atoms. ACS Nano, 2020, 14, 2238-2247.	14.6	46
170	Synergistic effect between atomically dispersed Fe and Co metal sites for enhanced oxygen reduction reaction. Journal of Materials Chemistry A, 2020, 8, 4369-4375.	10.3	100
171	Open-mouth N-doped carbon nanoboxes embedded with mixed metal phosphide nanoparticles as high-efficiency catalysts for electrolytic water splitting. Nanoscale, 2020, 12, 5848-5856.	5.6	32
172	Design aktiver atomarer Zentren für HERâ€Elektrokatalysatoren. Angewandte Chemie, 2020, 132, 20978-20998.	2.0	18
173	Singleâ€Atom Catalysts in Catalytic Biomedicine. Advanced Materials, 2020, 32, e1905994.	21.0	260
174	A Disquisition on the Active Sites of Heterogeneous Catalysts for Electrochemical Reduction of CO ₂ to Valueâ€Added Chemicals and Fuel. Advanced Energy Materials, 2020, 10, 1902106.	19.5	113
175	Understanding Surface Modulation to Improve the Photo/Electrocatalysts for Water Oxidation/Reduction. Molecules, 2020, 25, 1965.	3.8	8
176	Metal–Organic Framework-Based Catalysts with Single Metal Sites. Chemical Reviews, 2020, 120, 12089-12174.	47.7	692
177	Catalytic nature of iron-nitrogen-graphene heterogeneous catalysts for oxygen evolution reaction and oxygen reduction reaction. Applied Surface Science, 2020, 514, 146073.	6.1	15
178	Atomic rhodium catalysts for hydrogen evolution and oxygen reduction reactions. Carbon, 2020, 164, 121-128.	10.3	48
179	Search for the shortest intermetallic TITI contacts: Synthesis and characterization of Thallium(I) coordination polymers with several mono- and bis-cyanoximes. Inorganica Chimica Acta, 2020, 508, 119597.	2.4	2
180	Immiscible bi-metal single-atoms driven synthesis of electrocatalysts having superb mass-activity and durability. Applied Catalysis B: Environmental, 2020, 270, 118896.	20.2	102

#	Article	IF	CITATIONS
181	Simultaneous catalytic oxidation of nitric oxide and elemental mercury by single-atom Pd/g-C3N4 catalyst: A DFT study. Molecular Catalysis, 2020, 488, 110901.	2.0	16
182	Intrinsic Electrocatalytic Activity Regulation of M–N–C Singleâ€Atom Catalysts for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2021, 60, 4448-4463.	13.8	433
183	Intrinsische elektrokatalytische AktivitÃæsteuerung von Mâ€Nâ€Câ€Einzelatomâ€Katalysatoren für die Sauerstoffreduktionsreaktion. Angewandte Chemie, 2021, 133, 4496-4512.	2.0	40
184	Heterogeneous single-cluster catalysts (Mn3, Fe3, Co3, and Mo3) supported on nitrogen-doped graphene for robust electrochemical nitrogen reduction. Journal of Energy Chemistry, 2021, 54, 612-619.	12.9	57
185	Recent progress on single atom/sub-nano electrocatalysts for energy applications. Progress in Materials Science, 2021, 115, 100711.	32.8	27
186	Recent advances in the improvement of g-C3N4 based photocatalytic materials. Chinese Chemical Letters, 2021, 32, 13-20.	9.0	128
187	Calibration of computational Mössbauer spectroscopy to unravel active sites in FeNC catalysts for the oxygen reduction reaction. International Journal of Quantum Chemistry, 2021, 121, e26394.	2.0	20
188	Tunable synthesis of imines and secondary-amines from tandem hydrogenation-coupling of aromatic nitro and aldehyde over NiCo5 bi-metallic catalyst. Applied Catalysis B: Environmental, 2021, 280, 119448.	20.2	17
189	Highly Selective Twoâ€Electron Electrocatalytic CO ₂ Reduction on Singleâ€Atom Cu Catalysts. Small Structures, 2021, 2, 2000058.	12.0	93
190	Extensive incorporation of carboxyl groups into g-C3N4 by integrated oxygen doping and HNO3 oxidation for enhanced catalytic ozonation of para-chlorobenzoic acid and atrazine. Separation and Purification Technology, 2021, 256, 117806.	7.9	22
191	Hydrogen evolution/spillover effect of single cobalt atom on anatase TiO2 from first-principles calculations. Applied Surface Science, 2021, 536, 147831.	6.1	13
192	Single metal atom decorated photocatalysts: Progress and challenges. Nano Research, 2021, 14, 934-944.	10.4	62
193	Enhancing CO ₂ Electrocatalysis on 2D Porphyrinâ€Based Metal–Organic Framework Nanosheets Coupled with Visibleâ€Light. Small Methods, 2021, 5, e2000991.	8.6	50
194	Design of Local Atomic Environments in Singleâ€Atom Electrocatalysts for Renewable Energy Conversions. Advanced Materials, 2021, 33, e2003075.	21.0	187
195	Recent Advances of Ceriaâ€Based Materials in the Oxidation of Carbon Monoxide. Small Structures, 2021, 2, 2000081.	12.0	26
196	In situ synthesis of a novel Mn3O4/g-C3N4 p-n heterostructure photocatalyst for water splitting. Journal of Colloid and Interface Science, 2021, 586, 778-784.	9.4	52
197	Catalytic cracking of biomass tar using Ni nanoparticles embedded carbon nanofiber/porous carbon catalysts. Energy, 2021, 216, 119285.	8.8	47
198	Single Ru Atoms Stabilized by Hybrid Amorphous/Crystalline FeCoNi Layered Double Hydroxide for Ultraefficient Oxygen Evolution. Advanced Energy Materials, 2021, 11, .	19.5	223

#	Article	IF	CITATIONS
199	Prototype Atomically Dispersed Supported Metal Catalysts: Iridium and Platinum. Small, 2021, 17, e2004665.	10.0	27
200	In situ surface-confined fabrication of single atomic Fe-N4 on N-doped carbon nanoleaves for oxygen reduction reaction. Journal of Energy Chemistry, 2021, 59, 482-491.	12.9	38
201	Two-dimensional matrices confining metal single atoms with enhanced electrochemical reaction kinetics for energy storage applications. Energy and Environmental Science, 2021, 14, 1794-1834.	30.8	45
202	Two-dimensional MXene-based and MXene-derived photocatalysts: Recent developments and perspectives. Chemical Engineering Journal, 2021, 409, 128099.	12.7	230
203	Continuous flow reduction of organic dyes over Pd-Fe alloy based fibrous catalyst in a fixed-bed system. Chemical Engineering Science, 2021, 231, 116303.	3.8	45
204	Separable magnetic MoS2@Fe3O4 nanocomposites with multi-exposed active edge facets toward enhanced adsorption and catalytic activities. Journal of Materials Science, 2021, 56, 5015-5030.	3.7	10
205	Understanding the Activity of Carbon-Based Single-Atom Electrocatalysts from <i>Ab Initio</i> Simulations. , 2021, 3, 110-120.		19
206	Single Atom Catalysts (SAC) trapped in defective and nitrogen-doped graphene supported on metal substrates. Carbon, 2021, 174, 772-788.	10.3	50
207	Coordination tunes the activity and selectivity of the nitrogen reduction reaction on single-atom iron catalysts: a computational study. Journal of Materials Chemistry A, 2021, 9, 1240-1251.	10.3	135
208	Theoretical Study on a Potential Oxygen Reduction Reaction Electrocatalyst: Single Fe Atoms Supported on Graphite Carbonitride. Langmuir, 2021, 37, 428-436.	3.5	9
209	Recent Advances in Graphitic Carbon Nitride Supported Singleâ€Atom Catalysts for Energy Conversion. ChemCatChem, 2021, 13, 1250-1270.	3.7	46
210	Ethanol–ethylene conversion mechanism on hydrogen boride sheets probed by <i>in situ</i> infrared absorption spectroscopy. Physical Chemistry Chemical Physics, 2021, 23, 7724-7734.	2.8	16
211	Graphdiyne-based metal atomic catalysts for synthesizing ammonia. National Science Review, 2021, 8, nwaa213.	9.5	110
212	Twoâ€Dimensional Silicon for (Photo)Catalysis. Solar Rrl, 2021, 5, 2000392.	5.8	11
213	A new type of noncovalent surface–π stacking interaction occurring on peroxide-modified titania nanosheets driven by vertical π-state polarization. Chemical Science, 2021, 12, 4411-4417.	7.4	13
214	Consecutive methane activation mediated by single metal boride cluster anions NbB ₄ ^{â~'} . Physical Chemistry Chemical Physics, 2021, 23, 12592-12599.	2.8	7
215	Metal single-atom catalysts for selective hydrogenation of unsaturated bonds. Journal of Materials Chemistry A, 2021, 9, 5296-5319.	10.3	43
216	Synthesis Strategies, Catalytic Applications, and Performance Regulation of Singleâ€Atom Catalysts. Advanced Functional Materials, 2021, 31, 2008318.	14.9	133

#	Article	IF	CITATIONS
217	Iron-based single-atom electrocatalysts: synthetic strategies and applications. RSC Advances, 2021, 11, 3079-3095.	3.6	27
218	Single-atom catalysis in advanced oxidation processes for environmental remediation. Chemical Society Reviews, 2021, 50, 5281-5322.	38.1	502
219	Functionalisation of MoS ₂ 2D layers with diarylethene molecules. Journal of Materials Chemistry C, 2021, 9, 10975-10984.	5.5	6
220	Isolated single iron atoms anchored on a N, S-codoped hierarchically ordered porous carbon framework for highly efficient oxygen reduction. Journal of Materials Chemistry A, 2021, 9, 10110-10119.	10.3	37
221	A NiN ₃ -embedded MoS ₂ monolayer as a promising electrocatalyst with high activity for the oxygen evolution reaction: a computational study. Sustainable Energy and Fuels, 2021, 5, 3330-3339.	4.9	7
222	A strategy for enhancing the photoactivity of g-C ₃ N ₄ -based single-atom catalysts <i>via</i> sulphur doping: a theoretical study. Physical Chemistry Chemical Physics, 2021, 23, 6632-6640.	2.8	15
223	Nanoarchitectonics: what's coming next after nanotechnology?. Nanoscale Horizons, 2021, 6, 364-378.	8.0	221
224	Self-regulated catalysis for the selective synthesis of primary amines from carbonyl compounds. Green Chemistry, 2021, 23, 7115-7121.	9.0	15
225	Phase junction-confined single-atom TiO ₂ –Pt ₁ –CeO ₂ for multiplying catalytic oxidation efficiency. Catalysis Science and Technology, 2021, 11, 4650-4657.	4.1	3
226	Encapsulation of metal nanoparticles at the surface of a prototypical layered material. Nanoscale, 2021, 13, 1485-1506.	5.6	10
227	Emergent electrochemical functions and future opportunities of hierarchically constructed metal–organic frameworks and covalent organic frameworks. Nanoscale, 2021, 13, 6341-6356.	5.6	28
228	Interaction of First Row Transition Metals with M ₂ C (M = Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and) Tj ETQq1	1	14ggBT /Ove
229	Metal-doped carbon nitrides: synthesis, structure and applications. New Journal of Chemistry, 2021, 45, 11876-11892.	2.8	33
230	Highly exposed discrete Co atoms anchored in ultrathin porous N, P-codoped carbon nanosheets for efficient oxygen electrocatalysis and rechargeable aqueous/solid-state Zn–air batteries. Journal of Materials Chemistry A, 2021, 9, 22643-22652.	10.3	30
231	Materials engineering for adsorption and catalysis in room-temperature Na–S batteries. Energy and Environmental Science, 2021, 14, 3757-3795.	30.8	62
232	A universal screening strategy for the accelerated design of superior oxygen evolution/reduction electrocatalysts. Journal of Materials Chemistry A, 2021, 9, 3511-3519.	10.3	21
233	Peroxidase-Like Metal-Based Nanozymes: Synthesis, Catalytic Properties, and Analytical Application. Applied Sciences (Switzerland), 2021, 11, 777.	2.5	15
234	2D thin sheets composed of Co _{5.47} N–MgO embedded in carbon as a durable catalyst for the reduction of aromatic nitro compounds. Materials Chemistry Frontiers, 2021, 5, 2798-2809.	5.9	7

#	Article	IF	CITATIONS
235	Origin of the Activity of Co–N–C Catalysts for Chemoselective Hydrogenation of Nitroarenes. ACS Catalysis, 2021, 11, 3026-3039.	11.2	105
236	Carbon-Based Materials for Electrochemical Reduction of CO ₂ to C ₂₊ Oxygenates: Recent Progress and Remaining Challenges. ACS Catalysis, 2021, 11, 2076-2097.	11.2	116
237	2D Materials Bridging Experiments and Computations for Electro/Photocatalysis. Advanced Energy Materials, 2022, 12, 2003841.	19.5	116
238	Singleâ€Atom Catalysts Derived from Metal–Organic Frameworks for Electrochemical Applications. Small, 2021, 17, e2004809.	10.0	139
239	Oxygen Evolution and Reduction Reaction Activity Investigations on Fe, Co or Ni embedded Tetragonal Graphene by A Thermodynamical Full‣andscape Searching Scheme. ChemistryOpen, 2021, 10, 672-680.	1.9	0
240	Singleâ€Atom Catalysts: A Sustainable Pathway for the Advanced Catalytic Applications. Small, 2021, 17, e2006473.	10.0	135
241	Computational insights into modulating the performance of MXene based electrode materials for rechargeable batteries. Nanotechnology, 2021, 32, 252001.	2.6	21
242	Structural Evolution and Underlying Mechanism of Single-Atom Centers on Mo2C(100) Support during Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2021, 13, 17075-17084.	8.0	4
243	Single O Atom Doped Ag Cluster Cations for CO Oxidation: An O-Doped Superatom Ag ₁₅ O ⁺ with Remarkable Stability. Journal of Physical Chemistry C, 2021, 125, 7067-7076.	3.1	9
244	Achieving anti-sintering of supported platinum nanoparticles using a thermal management strategy. Science China Materials, 2021, 64, 1930-1938.	6.3	1
245	Engineering the Coordination Environment of Single Cobalt Atoms for Efficient Oxygen Reduction and Hydrogen Evolution Reactions. ACS Catalysis, 2021, 11, 4498-4509.	11.2	94
246	Single Coâ€Atoms as Electrocatalysts for Efficient Hydrazine Oxidation Reaction. Small, 2021, 17, e2006477.	10.0	40
248	Nanoarchitectonics at Interfaces for Regulations of Biorelated Phenomena: Small Structures with Big Effects. Small Structures, 2021, 2, 2100006.	12.0	13
249	Synergistic Effect of Boron Nitride and Carbon Domains in Boron Carbide Nitride Nanotube Supported Singleâ€Atom Catalysts for Efficient Nitrogen Fixation. Chemistry - A European Journal, 2021, 27, 6945-6953.	3.3	17
250	Glucose-Assisted One-Pot Hydrothermal Synthesis of Hierarchical-Structured MoS2/C Quasi-Hollow Microspheres for High-Performance Lithium Ion Battery. Polymers, 2021, 13, 837.	4.5	6
251	Electrocatalyst of Co Metal Atom Dispersed on N and S Co-Doped Tremelliform Carbon with Excellent Properties for Oxygen Reduction Reactions. Journal of the Electrochemical Society, 2021, 168, 034512.	2.9	0
252	Heterogeneous electrocatalytic reduction of carbon dioxide with transition metal complexes. Journal of Catalysis, 2021, 395, 23-35.	6.2	15
253	Interface Confinement in Metal Nanosheet for High-Efficiency Semi-Hydrogenation of Alkynes. ACS Catalysis, 2021, 11, 5231-5239.	11.2	22

#	Article	IF	CITATIONS
254	Unraveling electrochemical CO reduction of the single-atom transition metals supported on N-doped phosphorene. Applied Surface Science, 2021, 545, 148953.	6.1	11
255	Lateral size of graphene oxide determines differential cellular uptake and cell death pathways in Kupffer cells, LSECs, and hepatocytes. Nano Today, 2021, 37, 101061.	11.9	46
256	Folic acid self-assembly synthesis of ultrathin N-doped carbon nanosheets with single-atom metal catalysts. Energy Storage Materials, 2021, 36, 409-416.	18.0	39
257	High-Throughput Screening of a Single-Atom Alloy for Electroreduction of Dinitrogen to Ammonia. ACS Applied Materials & Interfaces, 2021, 13, 16336-16344.	8.0	58
258	MXenes as Superexcellent Support for Confining Single Atom: Properties, Synthesis, and Electrocatalytic Applications. Small, 2021, 17, e2007113.	10.0	52
259	Heteroatom-doped porous carbon-supported single-atom catalysts for electrocatalytic energy conversion. Journal of Energy Chemistry, 2021, 63, 54-73.	12.9	16
260	Recent Advances in Nanoparticles Confined in Twoâ€Dimensional Materials as Highâ€Performance Electrocatalysts for Energyâ€Conversion Technologies. ChemCatChem, 2021, 13, 2541-2558.	3.7	4
261	Folic Acid Self-Assembly Enabling Manganese Single-Atom Electrocatalyst for Selective Nitrogen Reduction to Ammonia. Nano-Micro Letters, 2021, 13, 125.	27.0	39
262	Polyoxometalateâ€5ingle Atom Catalysts (POMâ€5ACs) in Energy Research and Catalysis. Advanced Energy Materials, 2021, 11, 2101120.	19.5	57
263	A Highly Efficient Feâ^Nâ^'C Electrocatalyst with Atomically Dispersed FeN ₄ Sites for the Oxygen Reduction Reaction. ChemCatChem, 2021, 13, 2683-2690.	3.7	9
264	Covalent Bisfunctionalization of Twoâ€Dimensional Molybdenum Disulfide. Angewandte Chemie, 2021, 133, 13596-13604.	2.0	2
265	Inducing Electron Dissipation of Pyridinic N Enabled by Single Ni–N ₄ Sites for the Reduction of Aldehydes/Ketones with Ethanol. ACS Catalysis, 2021, 11, 6398-6405.	11.2	43
266	Single-atom site catalysts supported on two-dimensional materials for energy applications. Chinese Chemical Letters, 2021, 32, 3771-3781.	9.0	38
267	Single Semiâ€Metallic Selenium Atoms on Ti ₃ C ₂ MXene Nanosheets as Excellent Cathode for Lithium–Oxygen Batteries. Advanced Functional Materials, 2021, 31, 2010544.	14.9	63
268	Interlayer engineering of two-dimensional transition-metal disulfides for electrochemical and optical sensing applications. FlatChem, 2021, 27, 100242.	5.6	10
269	Single Pt atom-anchored C3N4: A bridging Pt–N bond boosted electron transfer for highly efficient photocatalytic H2 generation. Chemical Engineering Journal, 2021, 412, 128749.	12.7	69
270	Turning metal-organic frameworks into efficient single-atom catalysts via pyrolysis with a focus on oxygen reduction reaction catalysts. EnergyChem, 2021, 3, 100056.	19.1	51
271	Single Mn Atom Anchored on Nitrogenâ€Doped Graphene as a Highly Efficient Electrocatalyst for Oxygen Reduction Reaction. Chemistry - A European Journal, 2021, 27, 9686-9693.	3.3	15

#	Article	IF	CITATIONS
272	Distance synergy of single Ag atoms doped MoS2 for hydrogen evolution electrocatalysis. Applied Surface Science, 2021, 547, 149113.	6.1	24
273	High-temperature stability and phase transformations of titanium carbide (Ti ₃ C ₂ T _x) MXene. Journal of Physics Condensed Matter, 2021, 33, 224002.	1.8	26
274	Coupling of Ru and Oâ€Vacancy on 2D Moâ€Based Electrocatalyst Via a Solidâ€Phase Interface Reaction Strategy for Hydrogen Evolution Reaction. Advanced Energy Materials, 2021, 11, 2100141.	19.5	71
275	Pressure-dependent interfacial charge transfer excitons in WSe2-MoSe2 heterostructures in near infrared region. Results in Physics, 2021, 24, 104110.	4.1	22
276	Covalent Bisfunctionalization of Twoâ€Dimensional Molybdenum Disulfide. Angewandte Chemie - International Edition, 2021, 60, 13484-13492.	13.8	28
277	Electronic metal–support interaction modulates single-atom platinum catalysis for hydrogen evolution reaction. Nature Communications, 2021, 12, 3021.	12.8	397
278	Synthesis and functionalization of 2D nanomaterials for application in lithium-based energy storage systems. Energy Storage Materials, 2021, 38, 200-230.	18.0	29
279	Effect of Carbon Doping on CO ₂ â€Reduction Activity of Single Cobalt Sites in Graphitic Carbon Nitride. ChemNanoMat, 2021, 7, 1051-1056.	2.8	15
280	2D transition metal carbides (MXenes) in metal and ceramic matrix composites. Nano Convergence, 2021, 8, 16.	12.1	33
281	Progress and perspectives of 2D materials as anodes for potassium-ion batteries. Energy Storage Materials, 2021, 38, 354-378.	18.0	41
282	Activity–Selectivity Enhancement and Catalytic Trend of CO ₂ Electroreduction on Metallic Dimers Supported by N-Doped Graphene: A Computational Study. Journal of Physical Chemistry C, 2021, 125, 13176-13184.	3.1	12
283	Engineering the Coordination Sphere of Isolated Active Sites to Explore the Intrinsic Activity in Single-Atom Catalysts. Nano-Micro Letters, 2021, 13, 136.	27.0	138
284	Single-Atom Catalysts Designed and Prepared by the Atomic Layer Deposition Technique. ACS Catalysis, 2021, 11, 7018-7059.	11.2	106
285	Density Functional Theory Studies of Heteroatom-Doped Graphene-like GaN Monolayers as Electrocatalysts for Oxygen Evolution and Reduction. ACS Applied Nano Materials, 2021, 4, 7125-7133.	5.0	9
286	Rational Design of Self-Supported CuO <i>_x</i> -Decorated Composite Films as an Efficient and Easy-Recycling Catalyst for Styrene Oxidation. ACS Omega, 2021, 6, 18157-18168.	3.5	0
287	Atomically confined calcium in nitrogen-doped graphene as an efficient heterogeneous catalyst for hydrogen evolution. IScience, 2021, 24, 102728.	4.1	19
288	Future directions of material chemistry and energy chemistry. Pure and Applied Chemistry, 2021, 93, 1435-1451.	1.9	0
290	Borophene and Boronâ€Based Nanosheets: Recent Advances in Synthesis Strategies and Applications in the Field of Environment and Energy. Advanced Materials Interfaces, 2021, 8, 2100045.	3.7	35

# 291	ARTICLE Graphite-supported single copper catalyst for electrochemical CO2 reduction: A first-principles approach. Computational and Theoretical Chemistry, 2021, 1201, 113277.	IF 2.5	CITATIONS 5
292	General Design Concept for Singleâ€Atom Catalysts toward Heterogeneous Catalysis. Advanced Materials, 2021, 33, e2004287.	21.0	170
293	Embedding Fe2P nanocrystals in bayberry-like N, P-enriched carbon nanospheres as excellent oxygen reduction electrocatalyst for zinc-air battery. Journal of Power Sources, 2021, 501, 230006.	7.8	52
294	Visible-light enabled C4-thiocyanation of pyrazoles by graphite-phase carbon nitride (g-C3N4). Tetrahedron Letters, 2021, 77, 153253.	1.4	15
295	Unraveling electrochemical oxygen reduction mechanism on singleâ€ e tom catalysts by a computational investigation. International Journal of Energy Research, 2022, 46, 1032-1042.	4.5	6
296	Design of Aligned Porous Carbon Films with Singleâ€Atom Co–N–C Sites for High urrentâ€Density Hydrogen Generation. Advanced Materials, 2021, 33, e2103533.	21.0	76
297	Deep Learning Accelerates the Discovery of Twoâ€Dimensional Catalysts for Hydrogen Evolution Reaction. Energy and Environmental Materials, 2023, 6, .	12.8	20
298	Recent progress and prospect of carbon-free single-site catalysts for the hydrogen and oxygen evolution reactions. Nano Research, 2022, 15, 818-837.	10.4	90
299	Single-atom nickel anchored on surface of molybdenum disulfide for efficient hydrogen evolution. Journal of Electroanalytical Chemistry, 2021, 894, 115359.	3.8	9
300	Adsorption, sensing and optical properties of molecules on BC3 monolayer: First-principles calculations. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 271, 115266.	3.5	16
301	Recent advances and prospects of MXene-based materials for electrocatalysis and energy storage. Materials Today Physics, 2021, 20, 100469.	6.0	34
302	Effect of point defects on electronic and excitonic properties in Janus-MoSSe monolayer. Physical Review B, 2021, 104, .	3.2	14
303	Design concept for electrocatalysts. Nano Research, 2022, 15, 1730-1752.	10.4	396
304	CO ₂ Capture, Separation and Reduction on Boronâ€Doped MoS ₂ , MoSe ₂ and Heterostructures with Different Doping Densities: A Theoretical Study. ChemPhysChem, 2021, 22, 2392-2400.	2.1	4
305	Anchoring Sites Engineering in Singleâ€Atom Catalysts for Highly Efficient Electrochemical Energy Conversion Reactions. Advanced Materials, 2021, 33, e2102801.	21.0	64
306	Confinement of atomically dispersed Rh catalysts within porous monophosphine polymers for regioselective hydroformylation of alkenes. Journal of Catalysis, 2021, 401, 321-330.	6.2	30
307	Recent advances of MXenes as electrocatalysts for hydrogen evolution reaction. Npj 2D Materials and Applications, 2021, 5, .	7.9	133
308	Effect of coordination surroundings of isolated metal sites on electrocatalytic performances. Journal of Power Sources, 2021, 506, 230143.	7.8	15

		CITATION REPORT		
#	Article		IF	CITATIONS
309	Single-atom Zn for boosting supercapacitor performance. Nano Research, 2022, 15, 17	'15-1724.	10.4	26
310	M-N-C-based single-atom catalysts for H2, O2 & amp; CO2 electrocatalysis: activity des sites identification, challenges and prospects. Fuel, 2021, 304, 121420.	criptors, active	6.4	63
311	Mechanistic insight into the dispersion behavior of single platinum atom on monolayer single-atom catalysts from density functional theory calculations. Applied Surface Scier 150697.		6.1	19
312	Single noble metal atoms doped 2D materials for catalysis. Applied Catalysis B: Environ 297, 120389.	mental, 2021,	20.2	49
313	Molecular approaches to heterogeneous catalysis. Coordination Chemistry Reviews, 20)21, 448, 214179.	18.8	29
314	Understanding reaction mechanism of oxygen evolution reaction using Ru single atom for Li-O2 battery. Journal of Alloys and Compounds, 2021, 886, 161189.	s as catalyst	5.5	13
315	Dual-metallic single Ru and Ni atoms decoration of MoS2 for high-efficiency hydrogen Applied Catalysis B: Environmental, 2021, 298, 120557.	production.	20.2	99
316	High-entropy carbons: From high-entropy aromatic species to single-atom catalysts for electrocatalysis. Chemical Engineering Journal, 2021, 426, 131320.		12.7	14
317	Copper atoms inlaid in titanium zirconium oxide spherical shell confine free radicals for Fenton-like treatment of complex biogas slurry. Applied Catalysis B: Environmental, 202		20.2	8
318	Single-atom platinum or ruthenium on C4N as 2D high-performance electrocatalysts for reduction reaction. Chemical Engineering Journal, 2021, 426, 131347.	r oxygen	12.7	55
319	Single, double, and triple transition metal atoms embedded in defective V3C2O2 for ni reduction reaction: A DFT study. Applied Surface Science, 2021, 569, 151020.	trogen	6.1	22
320	Defective C3N4 frameworks coordinated diatomic copper catalyst: Towards mild oxida to C1 oxygenates. Applied Catalysis B: Environmental, 2021, 299, 120682.	tion of methane	20.2	32
321	Activation of peroxymonosulfate via mediated electron transfer mechanism on single-a for effective organic pollutants removal. Applied Catalysis B: Environmental, 2021, 299	tom Fe catalyst , 120714.	20.2	173
322	Two-dimensional ultrathin perforated Co3O4 nanosheets enhanced PMS-Activated sele of organic micropollutants in environmental remediation. Chemical Engineering Journa 131953.	ective oxidation I, 2022, 427,	12.7	72
323	1 T-MoSe2 monolayer supported single Pd atom as a highly-efficient bifunctional cataly Journal of Colloid and Interface Science, 2022, 605, 155-162.	/st for ORR/OER.	9.4	55
324	Edge-rich MoS2 nanosheets anchored on layered Ti3C2 MXene for highly efficient and reduction of 4-nitrophenol and methylene blue. Journal of Alloys and Compounds, 2023	rapid catalytic 2, 891, 161900.	5.5	16
325	Single-atom catalysts for CO oxidation, CO2 reduction, and O2 electrochemistry. Jourr Chemistry, 2022, 65, 254-279.	al of Energy	12.9	56
326	Single-atom niobium doped BCN nanotubes for highly sensitive electrochemical detect nitrobenzene. RSC Advances, 2021, 11, 28988-28995.	ion of	3.6	19

#	Article	IF	CITATIONS
327	Tuning metal single atoms embedded in N _x C _y moieties toward high-performance electrocatalysis. Energy and Environmental Science, 2021, 14, 3455-3468.	30.8	176
328	Non-carbon-supported single-atom site catalysts for electrocatalysis. Energy and Environmental Science, 2021, 14, 2809-2858.	30.8	198
329	Thermal Laser-Assisted Manufacturing of Two-Dimensional Atomic Layer Heterostructures. Minerals, Metals and Materials Series, 2021, , 25-34.	0.4	0
330	Pyrolyzed M–N _x catalysts for oxygen reduction reaction: progress and prospects. Energy and Environmental Science, 2021, 14, 2158-2185.	30.8	170
331	Noble-metal single-atoms in thermocatalysis, electrocatalysis, and photocatalysis. Energy and Environmental Science, 2021, 14, 2954-3009.	30.8	188
332	Recent Progress of 3d Transition Metal Singleâ€Atom Catalysts for Electrochemical CO ₂ Reduction. Advanced Materials Interfaces, 2021, 8, 2001904.	3.7	40
333	MnN ₄ Oxygen Reduction Electrocatalyst: Operando Investigation of Active Sites and High Performance in Zinc–Air Battery. Advanced Energy Materials, 2021, 11, 2002753.	19.5	83
334	Carbon Nitride as a Ligand: Selective Hydrogenation of Terminal Alkenes Using [(η ⁵ ₅ Me ₅)IrCl(g ₃ N ₄ â€₽ ² Chemistry - A European Journal, 2020, 26, 6862-6868.	<i313,Nâ€1</i	™ ⊈/⊉>)]Cl.
335	Efficient Heteronuclear Diatom Electrocatalyst for Nitrogen Reduction Reaction: Pd–Nb Diatom Supported on Black Phosphorus. ACS Applied Materials & Interfaces, 2020, 12, 56987-56994.	8.0	49
336	Graphene-supported single-atom catalysts and applications in electrocatalysis. Nanotechnology, 2021, 32, 032001.	2.6	33
337	Search for encapsulation of platinum, silver, and gold at the surface of graphite. Physical Review Research, 2020, 2, .	3.6	13
338	Emerging two-dimensional nanomaterials for electrochemical nitrogen reduction. Chemical Society Reviews, 2021, 50, 12744-12787.	38.1	75
339	Single-Atom (Iron-Based) Catalysts: Synthesis and Applications. Chemical Reviews, 2021, 121, 13620-13697.	47.7	136
340	Predicting New MXene-like Two-Dimensional Materials Pb ₂ CO ₂ and Sn ₂ CO ₂ as Potential Hydrogen Evolution Reaction Catalysts. Journal of Physical Chemistry C, 2021, 125, 22562-22569.	3.1	5
341	Grapheneâ€Supported Atomically Dispersed Metals as Bifunctional Catalysts for Nextâ€Generation Batteries Based on Conversion Reactions. Advanced Materials, 2022, 34, e2105812.	21.0	106
342	Toward Multicomponent Single-Atom Catalysis for Efficient Electrochemical Energy Conversion. ACS Materials Au, 2022, 2, 1-20.	6.0	20
343	Atomic Heterointerface Boosts the Catalytic Activity toward Oxygen Reduction/Evolution Reaction. Advanced Energy Materials, 2021, 11, 2102235.	19.5	19
344	Dynamic evolution of nitrogen and oxygen dual-coordinated single atomic copper catalyst during partial oxidation of benzene to phenol. Nano Research, 2022, 15, 3017-3025.	10.4	29

#	Article	IF	CITATIONS
345	Single atoms supported on metal oxides for energy catalysis. Journal of Materials Chemistry A, 2022, 10, 5717-5742.	10.3	29
346	Carbon dioxide and nitrogen reduction reactions using 2D transition metal dichalcogenide (TMDC) and carbide/nitride (MXene) catalysts. Energy and Environmental Science, 2021, 14, 6242-6286.	30.8	69
347	Irradiation regulates the size of Pt nanoparticles on Au@MnO2 nanosheets for electrocatalytic hydrogen evolution. New Journal of Chemistry, 0, , .	2.8	7
348	Different Confined Noble-Metal Nanoparticles Catalysts on Porous g-C ₃ N ₄ and Enhanced Catalytic Activity. Material Sciences, 2020, 10, 495-505.	0.0	0
349	Rare-earth single atom based luminescent composite nanomaterials: Tunable full-color single phosphor and applications in WLEDs. Nano Research, 2022, 15, 3594-3605.	10.4	28
350	Dual optimization approach to Mo single atom dispersed g-C3N4 photocatalyst: Morphology and defect evolution. Applied Catalysis B: Environmental, 2022, 303, 120904.	20.2	203
351	On the evaluation of hydrogen evolution reaction performance of metal-nitrogen-doped carbon electrocatalysts using machine learning technique. Scientific Reports, 2021, 11, 21911.	3.3	13
352	Emerging Singleâ€Atom Catalysts/Nanozymes for Catalytic Biomedical Applications. Advanced Healthcare Materials, 2022, 11, e2101682.	7.6	26
353	CO ₂ reduction to CH ₄ on Cu-doped phosphorene: a first-principles study. Nanoscale, 2021, 13, 20541-20549.	5.6	9
354	Ultralow-Platinum Supported Polyaniline-Mxene Via Facile Electrochemical Strategy for Efficient Hydrogen Evolution. SSRN Electronic Journal, 0, , .	0.4	0
355	Functional role of single-atom catalysts in electrocatalytic hydrogen evolution: Current developments and future challenges. Coordination Chemistry Reviews, 2022, 452, 214289.	18.8	54
356	MXenes based nano-heterojunctions and composites for advanced photocatalytic environmental detoxification and energy conversion: A review. Chemosphere, 2022, 291, 132923.	8.2	27
357	Scalable two-step annealing method for preparing ultra-high-density single-atom catalyst libraries. Nature Nanotechnology, 2022, 17, 174-181.	31.5	279
358	An overview on advances in design and development of materials for electrochemical generation of hydrogen and oxygen. Materials Today Energy, 2022, 23, 100902.	4.7	33
359	Advanced Support Materials and Interactions for Atomically Dispersed Nobleâ€Metal Catalysts: From Support Effects to Design Strategies. Advanced Energy Materials, 2022, 12, 2102556.	19.5	78
360	Accelerating the peroxidase-like activity of Co2+ by quinaldic acid: Mechanism and its analytical applications. Talanta, 2022, 239, 123080.	5.5	2
361	Single-Atom Engineering to Ignite 2D Transition Metal Dichalcogenide Based Catalysis: Fundamentals, Progress, and Beyond. Chemical Reviews, 2022, 122, 1273-1348.	47.7	104
362	Nanoconfinement engineering for enchanced adsorptionÂof carbon materials, metal–organic frameworks, mesoporous silica, MXenes and porous organic polymers: a review. Environmental Chemistry Letters, 2022, 20, 563-595.	16.2	26

#	Article	IF	CITATIONS
363	Rational modulation of emerging MXene materials for zincâ€ion storage. , 2022, 4, 60-76.		46
364	Single-Atom Fe-N ₄ on a Carbon Substrate for Nitrogen Reduction Reaction. ACS Applied Nano Materials, 2021, 4, 13001-13009.	5.0	19
365	Ultrafine VN nanodots induced generation of abundant cobalt single-atom active sites on nitrogen-doped carbon nanotube for efficient hydrogen evolution. Journal of Energy Chemistry, 2022, 68, 646-657.	12.9	15
366	Spatially Resolved and Quantitatively Revealed Charge Transfer between Single Atoms and Catalyst Supports. Journal of Materials Chemistry A, 0, , .	10.3	2
367	Recent advances in composite and heterostructured photoactive materials for the photochemical conversion of solar energy. Current Opinion in Green and Sustainable Chemistry, 2022, 34, 100588.	5.9	7
368	Atomic‣evel Metal Electrodeposition: Synthetic Strategies, Applications, and Catalytic Mechanism in Electrochemical Energy Conversion. Small Structures, 2022, 3, 2100185.	12.0	29
369	Single-atom Cu anchored catalysts for photocatalytic renewable H2 production with a quantum efficiency of 56%. Nature Communications, 2022, 13, 58.	12.8	175
370	Boosting the efficiency of Fe-MoS2/peroxymonosulfate catalytic systems for organic powllutants remediation: Insights into edge-site atomic coordination. Chemical Engineering Journal, 2022, 433, 134511.	12.7	21
371	Graphene supported single metal atom catalysts for the efficient hydrogen oxidation reaction in alkaline media. Catalysis Science and Technology, 2022, 12, 530-541.	4.1	11
372	Identification of active sites available for hydrogen evolution of Single-Atom Ni1/TiO2 catalysts. Applied Surface Science, 2022, 579, 152139.	6.1	11
373	Black phosphorus quantum dots as photocatalyst for dye degradation with a high efficiency and rate constant. Journal of Molecular Structure, 2022, 1252, 132163.	3.6	9
374	Self-assembly of nano/microstructured 2D Ti3CNTx MXene-based composites for electromagnetic pollution elimination and Joule energy conversion application. Carbon, 2022, 189, 305-318.	10.3	55
375	Ru-substituted Co nanoalloys encapsulated within graphene as efficient electrocatalysts for accelerating water dissociation in alkaline solution. Applied Surface Science, 2022, 580, 152294.	6.1	4
376	Tuning the magnetic anisotropy of transition-metal atoms on two-dimensional In2Se3 substrate via ferroelectric polarization switching. Applied Surface Science, 2022, 580, 152311.	6.1	4
377	Theoretical Study Oxygen Reduction Activity of Phosphorus-doped Graphene Nanoribbons. Journal of Material Science and Technology Research, 0, 7, .	0.3	0
378	Tuning Mixed Electronic/Ionic Conductivity of 2D CdPS ₃ Nanosheets as an Anode Material by Synergistic Intercalation and Vacancy Engineering. Advanced Functional Materials, 2022, 32, .	14.9	19
379	Europium single atom based heterojunction photocatalysts with enhanced visible-light catalytic activity. Journal of Materials Chemistry A, 2022, 10, 5990-5997.	10.3	24
380	Synthesis of cuprous oxide nanoparticles on graphitic carbon nitride and reduced graphene oxide and their catalytic performance toward the reduction of 4-nitrophenol. Journal of Materials Science, 2022, 57, 2424-2435.	3.7	5

#	Article	IF	Citations
381	Insight into enhanced hydrogen evolution of single-atom Cu1/TiO2 catalysts from first principles. International Journal of Hydrogen Energy, 2022, 47, 4653-4661.	7.1	15
382	Single-Atom Pt Boosting Electrochemical Nonenzymatic Glucose Sensing on Ni(OH) ₂ /N-Doped Graphene. Analytical Chemistry, 2022, 94, 1919-1924.	6.5	51
383	Noble-metal based single-atom catalysts for the water-gas shift reaction. Chemical Communications, 2021, 58, 208-222.	4.1	13
385	Modulating the Local Coordination Environment of Singleâ€Atom Catalysts for Enhanced Catalytic Performance in Hydrogen/Oxygen Evolution Reaction. Small, 2022, 18, e2105680.	10.0	56
386	A brief review of s-triazine graphitic carbon nitride. Carbon Letters, 2022, 32, 703-712.	5.9	15
387	Boosting nitrogen reduction to ammonia on Fe–N3S sites by introduction S into defect graphene. Materials Today Energy, 2022, 25, 100954.	4.7	4
388	Data-Driven Quest for Two-Dimensional Non-van der Waals Materials. Nano Letters, 2022, 22, 989-997.	9.1	35
389	From fundamental to CO ₂ and COCl ₂ gas sensing properties of pristine and defective Si ₂ BN monolayers. Physical Chemistry Chemical Physics, 2022, 24, 4394-4406.	2.8	10
390	Surfactant-assisted preparation of Mo-Co-K sulfide catalysts for the synthesis of low-carbon alcohols via CO2 hydrogenation. Chemical Engineering Journal Advances, 2022, 10, 100256.	5.2	0
391	Atomic ruthenium stabilized on vacancy-rich boron nitride for selective hydrogenation of esters. Journal of Catalysis, 2022, 406, 115-125.	6.2	16
392	Recent progress on two-dimensional materials confining single atoms for CO2 photoreduction. Chinese Chemical Letters, 2022, 33, 5023-5029.	9.0	28
393	Engineering of Co3O4@Ni2P heterostructure as trifunctional electrocatalysts for rechargeable zinc-air battery and self-powered overall water splitting. Journal of Materials Science and Technology, 2022, 115, 19-28.	10.7	35
394	Construction of single-atom catalysts for electro-, photo- and photoelectro-catalytic applications: State-of-the-art, opportunities, and challenges. Materials Today, 2022, 53, 217-237.	14.2	34
395	Singleâ€Atom Nanozymes for Biomedical Applications: Recent Advances and Challenges. Chemistry - an Asian Journal, 2022, 17, .	3.3	19
396	Observation of robust infrared plasmons in twisted titanium carbide (Ti3C2) MXene. Journal of Physics and Chemistry of Solids, 2022, 164, 110612.	4.0	6
397	Coordination environments tune the activity of oxygen catalysis on single atom catalysts: A computational study. Nano Research, 2022, 15, 3073-3081.	10.4	58
398	Computational screening of single-atom catalysts supported by VS ₂ monolayers for electrocatalytic oxygen reduction/evolution reactions. Nanoscale, 2022, 14, 6902-6911.	5.6	30
399	A "Trojan horse―strategy towards robust Co–N ₄ active sites accommodated in micropore defect-rich carbon nanosheets for boosting selective hydrogenation of nitroarenes. Journal of Materials Chemistry A, 2022, 10, 9435-9444.	10.3	12

#	Article	IF	Citations
11	Single-atom catalysts for the upgrading of biomass-derived molecules: an overview of their		CHATIONS
400	preparation, properties and applications. Green Chemistry, 2022, 24, 2722-2751.	9.0	17
401	Efficient Electrocatalytic N2fixation Over Bc3n2monolayer: A Computational Screening of Single-Atom Catalysts. SSRN Electronic Journal, 0, , .	0.4	Ο
402	Single-atom catalysts for high-efficiency photocatalytic and photoelectrochemical water splitting: distinctive roles, unique fabrication methods and specific design strategies. Journal of Materials Chemistry A, 2022, 10, 6835-6871.	10.3	63
403	Engineering Multienzymeâ€Mimicking Covalent Organic Frameworks as Pyroptosis Inducers for Boosting Antitumor Immunity. Advanced Materials, 2022, 34, e2108174.	21.0	91
405	Graphene oxide-derived single-atom catalysts for electrochemical energy conversion. Rare Metals, 2022, 41, 1703-1726.	7.1	37
406	Al ³⁺ Dopants Induced Mg ²⁺ Vacancies Stabilizing Single-Atom Cu Catalyst for Efficient Free-Radical Hydrophosphinylation of Alkenes. Journal of the American Chemical Society, 2022, 144, 4321-4326.	13.7	32
407	Towards singleâ€atom photocatalysts for future carbonâ€neutral application. SmartMat, 2022, 3, 417-446.	10.7	35
408	Ultralow-Platinum Supported Polyaniline-MXene via Facile Electrochemical Strategy for Efficient Hydrogen Evolution. Journal of the Electrochemical Society, 2022, 169, 036507.	2.9	2
409	Constructing atomic Co1–N4 sites in 2D polymeric carbon nitride for boosting photocatalytic hydrogen harvesting under visible light. International Journal of Hydrogen Energy, 2022, 47, 12592-12604.	7.1	8
410	Designing Sites in Heterogeneous Catalysis: Are We Reaching Selectivities Competitive With Those of Homogeneous Catalysts?. Chemical Reviews, 2022, 122, 8594-8757.	47.7	118
411	Preparation of twoâ€dimensional boron nitrideâ€layered double hydroxide hybrid to reinforce the corrosion protection of the epoxy coating. Materials and Corrosion - Werkstoffe Und Korrosion, 2022, 73, 1444-1458.	1.5	5
412	Protruding Pt single-sites on hexagonal ZnIn2S4 to accelerate photocatalytic hydrogen evolution. Nature Communications, 2022, 13, 1287.	12.8	198
413	Functionalization of the MoS2 basal plane for activation of molecular hydrogen by Pd deposition. Applied Surface Science, 2022, 593, 153313.	6.1	5
414	Highly efficient isomerization of glucose to fructose over a novel aluminum doped graphitic carbon nitride bifunctional catalyst. Journal of Cleaner Production, 2022, 346, 131144.	9.3	10
415	Considering single-atom catalysts as photocatalysts from synthesis to application. IScience, 2022, 25, 104232.	4.1	4
416	Efficient photocatalysis improves the self-cleaning property of the superwetting nanofibrous membrane toward emulsified oily wastewater. Journal of Membrane Science, 2022, 650, 120440.	8.2	25
417	Single (Ni, Fe) atoms and ultrasmall Core@shell Ni@Fe nanostructures Dual-implanted CNTs-Graphene nanonetworks for robust Zn- and Al-Air batteries. Chemical Engineering Journal, 2022, 440, 135781.	12.7	24
418	Transition metal-based single-atom catalysts (TM-SACs); rising materials for electrochemical CO2 reduction. Journal of Energy Chemistry, 2022, 70, 444-471.	12.9	44

#	Article	IF	CITATIONS
419	Screening of Transition-Metal Single-Atom Catalysts Anchored on Covalent–Organic Frameworks for Efficient Nitrogen Fixation. ACS Applied Materials & Interfaces, 2022, 14, 1024-1033.	8.0	32
420	A General Strategy to Immobilize Singleâ€Atom Catalysts in Metal–Organic Frameworks for Enhanced Photocatalysis. Advanced Materials, 2022, 34, e2109203.	21.0	80
421	Theoretical studies of MXene-supported single-atom catalysts: Os1/Ti2CS2 for low-temperature CO oxidation. Science China Materials, 2022, 65, 1303-1312.	6.3	10
422	Enriched <i>d</i> â€Band Holes Enabling Fast Oxygen Evolution Kinetics on Atomic‣ayered Defectâ€Rich Lithium Cobalt Oxide Nanosheets. Advanced Functional Materials, 2022, 32, .	14.9	24
423	Single-atom catalysts for photocatalytic hydrogen evolution: A review. International Journal of Hydrogen Energy, 2022, 47, 17583-17599.	7.1	37
424	Supported Subâ€Nanometer Clusters for Electrocatalysis Applications. Advanced Functional Materials, 2022, 32, .	14.9	25
425	Surface and Interface Engineering Strategies for MoS ₂ Towards Electrochemical Hydrogen Evolution. Chemistry - an Asian Journal, 2022, 17, .	3.3	6
426	Rational design of highly efficient electrocatalytic single-atom catalysts for nitrogen reduction on nitrogen-doped graphene and g-C2N supports. Journal of Power Sources, 2022, 535, 231449.	7.8	12
427	Highly enhanced photocatalytic hydrogen evolution activity by modifying the surface of TiO ₂ nanoparticles with a high proportion of single Cu atoms. Catalysis Science and Technology, 2022, 12, 3856-3862.	4.1	7
428	Interfacing single-atom catalysis with continuous-flow organic electrosynthesis. Chemical Society Reviews, 2022, 51, 3898-3925.	38.1	50
429	Single Atom Supported on Mos2 as Efficient Electrocatalysts for the Co2 Reduction Reaction: A Dft Study. SSRN Electronic Journal, 0, , .	0.4	0
430	Dual transition metal atoms embedded in N-doped graphene for electrochemical nitrogen fixation under ambient conditions. Journal of Materials Chemistry A, 2022, 10, 13527-13543.	10.3	30
431	Experimental and Theoretical Advances on Single Atom and Atomic Clusterâ€Decorated Lowâ€Dimensional Platforms towards Superior Electrocatalysts. Advanced Energy Materials, 2022, 12, .	19.5	25
432	Intercalationâ€Ðriven Defectâ€Engineering of MoS ₂ for Catalytic Transfer Hydrogenation. Advanced Materials Interfaces, 2022, 9, .	3.7	7
433	Electrocatalytic hydrogen evolution performance of modified Ti3C2O2 doped with non-metal elements: A DFT study. ChemPhysMater, 2022, 1, 321-329.	2.8	3
434	Enhanced Dualâ€Directional Sulfur Redox via a Biotemplated Singleâ€Atomic Fe–N ₂ Mediator Promises Durable Li–S Batteries. Advanced Materials, 2022, 34, e2202256.	21.0	60
435	Transition Metal Atoms Anchored on CuPS3 Monolayer for Enhancing Catalytic Performance of Hydrogen Evolution Reactions. Electrocatalysis, 2022, 13, 494-501.	3.0	4
436	Insights into the effect of substrate adsorption behavior over heme-like Fe1/AC single-atom catalyst. Nano Research, 2022, 15, 5970-5976.	10.4	10

ARTICLE IF CITATIONS Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution 437 10.4 242 reaction. Nano Research, 2022, 15, 5792-5815. Revisiting the mechanism of highly efficient CO oxidation by single iron atom catalysis on Pt(100). Materials Today Communications, 2022, 31, 103609. Revealing the Structure of Single Cobalt Sites in Carbon Nitride for Photocatalytic CO₂ 439 3.111 Reduction. Journal of Physical Chemistry C, 2022, 126, 8596-8604. Localized surface plasmon resonances in a hybrid structure consisting of a mono-layered Al sheet and 440 Ti₃C₂F MXene. Physical Chemistry Chemical Physics, 2022, 24, 12389-12396. Isolating Single and Few Atoms for Enhanced Catalysis. Advanced Materials, 2022, 34, e2201796. 441 21.0 84 Non-noble metal single-atom catalyst with MXene support: Fe1/Ti2CO2 for CO oxidation. Chinese Journal of Catalysis, 2022, 43, 1830-1841. 14.0 16 Charge transfer and orbital reconstruction of non-noble transition metal single-atoms anchored on 443 Ti2CT -MXenes for highly selective CO2 electrochemical reduction. Chinese Journal of Catalysis, 2022, 14.0 29 43, 1906-1917. Prospects of non-noble metal single atoms embedded in two-dimensional (2D) carbon and non-carbon-based structures in electrocatalytic applications. Coordination Chemistry Reviews, 2022, 444 18.8 467, 214613. Synergistic Promotion of Single-Atom Co Surrounding a PtCo Alloy Based On a g-C₃N₄ Nanosheet for Overall Water Splitting. ACS Catalysis, 2022, 12, 445 11.2 59 6958-6967. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient 446 10.4 heterogeneous catalysis. Nano Research, 2022, 15, 7806-7839. Atomized Copper-Decorated Nitrogen-Doped Porous Carbon Fibers as a Self-Standing Air Cathode for 447 6.7 9 Flexible Zincâ€"Air Batteries. ACS Šustainable Chemistry and Engineering, 2022, 10, 7664-7676. Graphitic carbon nitride-based photocatalysts in the applications of environmental catalysis. Journal 448 6.1 34 of Environmental Sciences, 2023, 124, 570-590. Recent status and challenges in multifunctional electrocatalysis based on 2D MXenes. Catalysis 449 4.1 16 Science and Technology, 2022, 12, 4413-4441. Single-atom site catalysts based on high specific surface area supports. Physical Chemistry Chemical Physics, 2022, 24, 17417-17438. 2.8 Interface structure and strain controlled Pt nanocrystals grown at side facet of MoS2 with critical 451 10.4 7 size. Nano Research, 2022, 15, 8493-8501. Dual-metal atoms embedded into two-dimensional covalent organic framework as efficient electrocatalysts for oxygen evolution reaction: A DFT study. Nano Research, 2022, 15, 7994-8000. Using Coordination Chemistry Concepts to Unravel Electronic Properties of SACs in Bidimensional 453 3.15 Materials. Journal of Physical Chemistry C, 2022, 126, 9615-9622. Recent Advances in Application of Graphitic Carbon Nitrideâ€Based Catalysts for Photocatalytic 454 Nitrogen Fixation. Small, 2022, 18, .

ARTICLE IF CITATIONS Molybdenum disulfide (MoS2)-based electrocatalysts for hydrogen evolution reaction: From 455 12.9 35 mechanism to manipulation. Journal of Energy Chemistry, 2022, 74, 45-71. Solid-State Reaction Synthesis of Nanoscale Materials: Strategies and Applications. Chemical Reviews, 47.7 2022, 122, 127<u>48-12863.</u> Spatial confinement of copper single atoms into covalent triazine-based frameworks for highly 457 10.4 20 efficient and selective photocatalytic CO2 reduction. Nano Research, 2022, 15, 8001-8009. High-throughput screening of dual-atom doped PC6 electrocatalysts for efficient CO2 electrochemical reduction to CH4 by breaking scaling relations. Électrochimica Acta, 2022, 426, 140764. Study of electron impact elastic scattering from Kr@C60 and Xe@C60 using a fully relativistic 459 1.5 0 approach. Journal of Physics B: Atomic, Molecular and Optical Physics, 0, , . Spatially confined iron single-atom and potassium ion in carbon nitride toward efficient CO2 reduction. Applied Catalysis B: Environmental, 2022, 316, 121643. 460 20.2 Single atoms meet metal–organic frameworks: collaborative efforts for efficient photocatalysis. 461 30.8 107 Energy and Environmental Science, 2022, 15, 3722-3749. Emerging ruthenium single-atom catalysts for the electrocatalytic hydrogen evolution reaction. 10.3 19 Journal of Materials Chemistry A, 2022, 10, 15370-15389. Two-dimensional carbide/nitride (MXene) materials in thermal catalysis. Journal of Materials 463 10.3 25 Chemistry A, 2022, 10, 19444-19465. 464 Rareâ€Earth Singleâ€Atom Catalysts: A New Frontier in Photo/Electrocatalysis. Small Methods, 2022, 6, . 8.6 Graphene-based electrocatalysts for advanced energy conversion. Green Energy and Environment, 465 9 8.7 2023, 8, 1265-1278. Atomicâ€Level Design of Active Site on Twoâ€Dimensional MoS₂ toward Efficient Hydrogen Evolution: Experiment, Theory, and Artificial Intelligence Modelling. Advanced Functional Materials, 14.9 466 2022, 32, . Highly dispersed platinum deposited on nitrogen-doped vertical graphene array for efficient 467 4.4 5 electrochemical hydrogen evolution. 2D Materials, 2022, 9, 045011. Progress of Experimental and Computational Catalyst Design for Electrochemical Nitrogen Fixation. 11.2 ACŠ Catalysis, 2022, 12, 8936-8975. Cascaded electron transition proved by femto-second transient absorption spectroscopy for 469 9.0 18 enhanced photocatalysis hydrogen generation. Chinese Chemical Letters, 2023, 34, 107683. Regulating the spin state of single-atom doped covalent triazine frameworks for efficient nitrogen 9.4 fixation. Journal of Colloid and Interface Science, 2022, 627, 931-941. Co-axial hierarchical structures composed of Mo-S-Ni nanosheets on carbon nanotube backbone for 471 6.1 4 accelerating electrocatalytic hydrogen evolution. Applied Surface Science, 2022, 600, 154066. Two-dimensional V-shaped PdI2: Auxetic semiconductor with ultralow lattice thermal conductivity 6.1 and ultrafast alkali ion mobility. Applied Surface Science, 2022, 601, 154176.

#	Article	IF	CITATIONS
473	Single atom supported on MoS2 as efficient electrocatalysts for the CO2 reduction reaction: A DFT study. Applied Surface Science, 2022, 602, 154211.	6.1	21
474	Alloy electrocatalysts. EnergyChem, 2023, 5, 100083.	19.1	24
475	Rational coordination regulation in carbon-based single-metal-atom catalysts for electrocatalytic oxygen reduction reaction. Nano Convergence, 2022, 9, .	12.1	14
476	Twoâ~'dimensional nanomaterials confined single atoms: New opportunities for environmental remediation. Nano Materials Science, 2023, 5, 15-38.	8.8	10
477	Boxlike Assemblages of Few-Layer MoS ₂ Nanosheets with Edge Blockage for High-Efficiency Hydrogenation of CO ₂ to Methanol. ACS Catalysis, 2022, 12, 9872-9886.	11.2	18
478	Constructing atomically-dispersed Mn on ZIF-derived nitrogen-doped carbon for boosting oxygen reduction. Frontiers in Chemistry, 0, 10, .	3.6	1
479	Recent advances on carbon-based nanomaterials supported single-atom photo-catalysts for waste water remediation. Journal of Nanostructure in Chemistry, 2024, 14, 21-52.	9.1	14
480	Dehydrogenation of Ammonia Borane by Platinumâ€Nickel Dimers: Regulation of Heteroatom Interspace Boosts Bifunctional Synergetic Catalysis. Angewandte Chemie - International Edition, 2022, 61, .	13.8	29
481	Insight into the Nanotribological Mechanism of Two-Dimensional Covalent Organic Frameworks. ACS Applied Materials & Interfaces, 2022, 14, 40173-40181.	8.0	7
482	Dehydrogenation of Ammonia Borane by Platinumâ€Nickel Dimers: Regulation of Heteroatom Interspace Boosts Bifunctional Synergetic Catalysis. Angewandte Chemie, 2022, 134, .	2.0	6
483	Ti ₃ C ₂ T _x MXene anchoring semi-metallic selenium atoms: self-powered photoelectrochemical-type photodetector, hydrogen evolution, and gas-sensing applications. 2D Materials, 2022, 9, 045019.	4.4	8
485	Tunable Structured MXenes With Modulated Atomic Environments: A Powerful New Platform for Electrocatalytic Energy Conversion. Small, 2022, 18, .	10.0	14
486	Synthesis of vacant graphitic carbon nitride in argon atmosphere and its utilization for photocatalytic hydrogen generation. Scientific Reports, 2022, 12, .	3.3	8
487	The role of material defects in the photocatalytic CO2 reduction: Interfacial properties, thermodynamics, kinetics and mechanism. Journal of CO2 Utilization, 2022, 64, 102175.	6.8	11
488	Coordinating single-atom catalysts on two-dimensional nanomaterials: A paradigm towards bolstered photocatalytic energy conversion. Coordination Chemistry Reviews, 2022, 471, 214743.	18.8	25
489	Interlayer interactions in transition metal dichalcogenides heterostructures. Reviews in Physics, 2022, 9, 100077.	8.9	13
490	Boosting peroxymonosulfate activation by porous single-atom catalysts with FeN4O1 configuration for efficient organic pollutants degradation. Chemical Engineering Journal, 2022, 450, 138469.	12.7	25
491	Nanotubes-nanosheets (1D/2D) heterostructured bifunctional electrocatalysts for overall water splitting. Electrochimica Acta, 2022, 430, 141095.	5.2	9

ARTICLE IF CITATIONS # Transition metal atom anchored by defective WSSe monolayer as bifunctional single atom catalyst for 492 3.8 5 ORR and OER. Journal of Electroanalytical Chemistry, 2022, 922, 116731. Mineralize complex organic contaminants using only oxygen on dense copper atoms embedded in the walls of carbon nanotubes. Applied Surface Science, 2022, 605, 154760. 6.1 Supercritical CO2-induced anti-nanoconfinement effect to obtain novel 2D structures. Physical 494 2.8 2 Chemistry Chemical Physics, 0, , . Heterogeneous N-coordinated single-atom photocatalysts and electrocatalysts. Chinese Journal of 14.0 Catalysis, 2022, 43, 2453-2483. Emerging single-atom iron catalysts for advanced catalytic systems. Nanoscale Horizons, 2022, 7, 496 8.0 12 1340-1387. <i>In silico</i> design of single transition metal atom anchored defective boron carbide monolayers as high-performance electrocatalysts for the nitrogen reduction reaction. Nanoscale, 2022, 14, 5.6 12823-12829. Supramolecular assembly-derived carbon-nitrogen-based functional materials for 499 4 photo/electrochemical applications: progress and challenges., 2023, 2, 20220032. Regioselective Friedel–Crafts Acylation Reaction Using Single Crystalline and Ultrathin Nanosheet Assembly of Scrutinyite-SnO₂. ACS Omega, 2022, 7, 32225-32237. 500 3.5 The Progress and Outlook of Metal Single-Atom-Site Catalysis. Journal of the American Chemical 501 13.7 151 Society, 2022, 144, 18155-18174. Development of Crystalline Covalent Triazine Frameworks to Enable <i>In Situ</i> Single-Atom Niâ€"N₃â€"C for Efficient Electrochemical CO₂ Reduction. , 2022, 4, 2143-2150. Persulfate activation by single-atom catalysts for the removal of organic pollutants: A review. , 2023, 503 0 2,63-79. Environment Molecules Boost the Chemoselective Hydrogenation of Nitroarenes on Cobalt 11.2 Single-Atom Catalysts. ACS Catalysis, 2022, 12, 11960-11973. Review on recent advances in twoâ€dimensional nanomaterialsâ€based cathodes for lithiumâ€sulfur 505 11.9 15 batteries. EcoMat, 2023, 5, . Vacancy Defects in 2D Transition Metal Dichalcogenide Electrocatalysts: From Aggregated to Atomic 21.0 Configuration. Advanced Materials, 2023, 35, . Emerging carbon-supported single-atom catalysts for biomedical applications. Matter, 2022, 5, 507 10.0 32 3341-3374. Probing the Synergistic Effects of Mg²⁺ on CO₂ Reduction Reaction on CoPc by <i>In Situ</i> Electrochemical Scanning Tunneling Microscopy. Journal of the American Chemical 508 14 Society, 2022, 144, 20126-20133. Thermal Analysis of Graphene-Based Nanofluids for Energy System and Economic Feasibility. Journal of 509 2.7 0 Nanomaterials, 2022, 2022, 1-17. Spinâ€Control in Electrocatalysis for Clean Energy. Israel Journal of Chemistry, 2022, 62, . 2.3

#	Article	IF	CITATIONS
511	Catalytically Active Advanced Two-Dimensional Ultrathin Nanomaterials for Sustainable Energy. Catalysts, 2022, 12, 1167.	3.5	0
512	Single-Atomic Ir and Mo Co-Confined in a Co Layered Hydroxide Nanobox Mutually Boost Oxygen Evolution. ACS Catalysis, 2022, 12, 13513-13522.	11.2	7
514	Metal single atom doped 2D materials for photocatalysis: current status and future perspectives. Progress in Energy, 2023, 5, 012001.	10.9	9
515	Perspective of p-block single-atom catalysts for electrocatalysis. Trends in Chemistry, 2022, 4, 1135-1148.	8.5	12
516	Single-atom Mn anchored on N-doped graphene oxide for efficient adsorption-photocatalytic degradation of sulfanilamide in water: Electronic interaction and mineralization pathway. Chemical Engineering Journal, 2023, 454, 140120.	12.7	12
517	Rational design of noble metal-based multimetallic nanomaterials: A review. Nano Energy, 2022, 104, 107959.	16.0	8
518	Post-synthetic modification of graphitic carbon nitride with PCl3 and POCl3 for enhanced photocatalytic degradation of organic compounds. Diamond and Related Materials, 2022, 130, 109439.	3.9	5
519	A comprehensive review of hydrogen generation by water splitting using 2D nanomaterials: Photo vs electro-catalysis. Fuel, 2023, 332, 125905.	6.4	38
520	Cu-doped MoSi2N4 monolayer as a highly efficient catalyst for CO reduction toward C2+ products. Applied Surface Science, 2023, 609, 155332.	6.1	6
521	Anion-exchange membrane water electrolyzers and fuel cells. Chemical Society Reviews, 2022, 51, 9620-9693.	38.1	93
522	Coordination engineering of single-atom copper embedded graphene-like borocarbonitrides for hydrogen production. Applied Surface Science, 2023, 610, 155506.	6.1	5
523	Reversible Switching Cu ^{II} /Cu ^I Single Sites Catalyze Highâ€rate and Selective CO ₂ Photoreduction. Angewandte Chemie - International Edition, 2023, 62, .	13.8	14
524	Reversible Switching Cu ^{II} /Cu ^I Single Sites Catalyze Highâ€rate and Selective CO ₂ Photoreduction. Angewandte Chemie, 2023, 135, .	2.0	3
526	Design of the Synergistic Rectifying Interfaces in Mott–Schottky Catalysts. Chemical Reviews, 2023, 123, 1-30.	47.7	69
527	Au Nanorods on Carbon-Based Nanomaterials as Nanohybrid Substrates for High-Efficiency Dynamic Surface-Enhanced Raman Scattering. ACS Omega, 2022, 7, 41815-41826.	3.5	9
528	First-principles study of TM supported SnSe2 monolayer as an efficient electrocatalyst for NOER. Molecular Catalysis, 2022, 533, 112789.	2.0	0
529	Confined Fe single atomic sites on (100) plane of anatase TiO2 nanofibers boost white LED driven Fenton-like norfloxacin degradation. Journal of Cleaner Production, 2023, 382, 135161.	9.3	11
530	Computational screening of single-atom catalysts for direct electrochemical NH3 synthesis from NO on defective boron phosphide monolayer. Applied Surface Science, 2023, 611, 155764.	6.1	10

#	Article	IF	CITATIONS
531	Framework structure engineering of polymeric carbon nitrides and its recent applications. Progress in Materials Science, 2023, 133, 101056.	32.8	23
532	Doping induced asymmetry adjacent structure in h-VN nanoribbon for the promotion of N2 fixation. Applied Surface Science, 2023, 612, 155839.	6.1	3
533	Atomic catalyst supported on oxygen defective MXenes for synergetic electrocatalytic nitrate reduction to ammonia: A first principles study. Applied Surface Science, 2023, 614, 156077.	6.1	8
534	2D Nanomaterial Supported Singleâ€Metal Atoms for Heterogeneous Photo/Electrocatalysis. Advanced Functional Materials, 2023, 33, .	14.9	12
535	Ni Single Atoms on MoS ₂ Nanosheets Enabling Enhanced Kinetics of Liâ€& Batteries. Small, 2023, 19, .	10.0	34
536	Design of Single-Atom Catalysts and Tracking Their Fate Using <i>Operando</i> and Advanced X-ray Spectroscopic Tools. Chemical Reviews, 2023, 123, 379-444.	47.7	50
537	Matching Bidentate Ligand Anchoring: an Accurate Control Strategy for Stable Singleâ€Atom/ZIF Nanocatalysts. Advanced Materials, 2023, 35, .	21.0	13
539	Single transition metal atom anchored on g-C3N4 as an electrocatalyst for nitrogen fixation: A computational study. International Journal of Hydrogen Energy, 2023, 48, 7621-7631.	7.1	7
540	TM ₂ â^'B ₂ Quadruple Active Sites Supported on a Defective C ₃ N Monolayer as Catalyst for the Electrochemical CO ₂ Reduction: A Theoretical Perspective. ChemSusChem, 2023, 16, .	6.8	3
541	Inorganic Ultrathin 2D Photocatalysts: Modulation Strategies and Environmental/Energy Applications. Accounts of Materials Research, 2023, 4, 4-15.	11.7	5
542	Preparation and characterization of M1-Nx-Cy based single atom catalysts for environmental applications. Chinese Chemical Letters, 2023, 34, 108050.	9.0	3
543	Atomic Replacement of PtNi Nanoalloys within Zn-ZIF-8 for the Fabrication of a Multisite CO ₂ Reduction Electrocatalyst. Journal of the American Chemical Society, 2022, 144, 23223-23229.	13.7	42
544	Strong synergy between single atoms and single-atom alloys enables active and selective H2O2 synthesis. Chem Catalysis, 2022, 2, 3607-3620.	6.1	8
545	Ethane dehydrogenation over the g-C3N4 supported metal single-atom catalysts to enhance reactivity and coking-resistance ability. Nano Research, 2023, 16, 6142-6152.	10.4	4
546	Manifesting Epoxide and Hydroxyl Groups in XPS Spectra and Valence Band of Graphene Derivatives. Nanomaterials, 2023, 13, 23.	4.1	3
547	Fe-doped SnSe monolayer: A promising 2D material for reusable SO2 gas sensor with high sensitivity. Journal of Alloys and Compounds, 2023, 940, 168919.	5.5	14
548	Role of the Support Effects in Singleâ€Atom Catalysts. Chemistry - an Asian Journal, 2023, 18, .	3.3	5
549	Efficient Electrochemical Reduction of CO ₂ on gâ€C ₃ N ₄ Monolayerâ€supported Metal Trimer Catalysts: A DFT Study. Chemistry - an Asian Journal, 2023, 18, .	3.3	3

#	Article	IF	CITATIONS
550	Single Cobalt Atoms Immobilized on Palladiumâ€Based Nanosheets as 2D Singleâ€Atom Alloy for Efficient Hydrogen Evolution Reaction. Small, 2023, 19, .	10.0	10
551	Morphological and heterojunctional engineering of two-dimensional porous Mo-Ni based catalysts for highly effective catalytic reduction of aromatic nitro compounds. Chinese Chemical Letters, 2023, 34, 108128.	9.0	3
552	Screening out the Transition Metal Single Atom Supported on Onion-like Carbon (OLC) for the Hydrogen Evolution Reaction. Inorganic Chemistry, 2023, 62, 1001-1006.	4.0	4
553	A general approach to 3D-printed single-atom catalysts. , 2023, 2, 129-139.		39
554	Enhanced activation of peroxymonosulfate by a floating Cu0-MoS2/C3N4 photocatalyst under visible-light assistance for tetracyclines degradation and Escherichia coli inactivation. Chemical Engineering Journal, 2023, 457, 141220.	12.7	15
555	Review of photo- and electro-catalytic multi-metallic layered double hydroxides. Coordination Chemistry Reviews, 2023, 480, 215008.	18.8	21
556	Surface and Interface Coordination Chemistry Learned from Model Heterogeneous Metal Nanocatalysts: From Atomically Dispersed Catalysts to Atomically Precise Clusters. Chemical Reviews, 2023, 123, 5948-6002.	47.7	50
557	H ₂ + H ₂ O → H ₄ O: Synthesizing Hyperhydrogenated Water in Small-Sized Fullerenes?. Journal of Physical Chemistry A, 2023, 127, 1190-1195.	2.5	2
558	p-Block Antimony Single-Atom Catalysts for Nitric Oxide Electroreduction to Ammonia. ACS Energy Letters, 2023, 8, 1281-1288.	17.4	60
559	Graphene Catalysis Made Easy. , 2024, , 580-593.		0
559 560		10.4	0
	Graphene Catalysis Made Easy. , 2024, , 580-593.	10.4 2.0	
560	Graphene Catalysis Made Easy. , 2024, , 580-593. Single atom Pd1/ZIF-8 catalyst via partial ligand exchange. Nano Research, 2023, 16, 8003-8011. Graphdiyneâ€Based Singleâ€Atom Catalysts with Different Coordination Environments. Angewandte		4
560 561	Graphene Catalysis Made Easy., 2024, , 580-593. Single atom Pd1/ZIF-8 catalyst via partial ligand exchange. Nano Research, 2023, 16, 8003-8011. Graphdiyneâ€Based Singleâ€Atom Catalysts with Different Coordination Environments. Angewandte Chemie, 2023, 135, . Narrowing the optical gap of CdPS3 single crystal via chemical intercalation using liquid ammonia	2.0	4
560 561 562	Graphene Catalysis Made Easy., 2024,, 580-593. Single atom Pd1/ZIF-8 catalyst via partial ligand exchange. Nano Research, 2023, 16, 8003-8011. Graphdiyneâ€Based Singleâ€Atom Catalysts with Different Coordination Environments. Angewandte Chemie, 2023, 135, . Narrowing the optical gap of CdPS3 single crystal via chemical intercalation using liquid ammonia method. Solid State Communications, 2023, 363, 115116. Syntheses and applications of single-atom catalysts for electrochemical energy conversion reactions.	2.0 1.9	4 1 1
560 561 562 563	Graphene Catalysis Made Easy. , 2024, , 580-593. Single atom Pd1/ZIF-8 catalyst via partial ligand exchange. Nano Research, 2023, 16, 8003-8011. Graphdiyneâ&Based Singleâ&Atom Catalysts with Different Coordination Environments. Angewandte Chemie, 2023, 135, . Narrowing the optical gap of CdPS3 single crystal via chemical intercalation using liquid ammonia method. Solid State Communications, 2023, 363, 115116. Syntheses and applications of single-atom catalysts for electrochemical energy conversion reactions. Chinese Journal of Catalysis, 2023, 47, 32-66. MXene/carbon composites for electrochemical energy storage and conversion. Materials Today	2.0 1.9 14.0	4 1 1 9
560 561 562 563	Graphene Catalysis Made Easy., 2024, , 580-593. Single atom Pd1/ZIF-8 catalyst via partial ligand exchange. Nano Research, 2023, 16, 8003-8011. Graphdiyneâ€Based Singleâ€Atom Catalysts with Different Coordination Environments. Angewandte Chemie, 2023, 135, . Narrowing the optical gap of CdPS3 single crystal via chemical intercalation using liquid ammonia method. Solid State Communications, 2023, 363, 115116. Syntheses and applications of single-atom catalysts for electrochemical energy conversion reactions. Chinese Journal of Catalysis, 2023, 47, 32-66. MXene/carbon composites for electrochemical energy storage and conversion. Materials Today Sustainability, 2023, 22, 100350. Through the Self-Optimization process to achieve high OER activity of SAC catalysts within the framework of TMO3@G and TMO4@G: A High-Throughput theoretical study. Journal of Colloid and	2.0 1.9 14.0 4.1	4 1 1 9 12

	CHATION R	LPORT	1
# 568	ARTICLE Catalytic C(sp)-H carboxylation with CO2. Coordination Chemistry Reviews, 2023, 486, 215138.	IF 18.8	Citations
569	NaNO3 assisted gelatin-derived multi-level porous carbon aerogel loaded Fe single-atom for high efficient oxygen reduction reaction. Applied Catalysis B: Environmental, 2023, 331, 122685.	20.2	4
570	Graphdiyneâ€Based Singleâ€Atom Catalysts with Different Coordination Environments. Angewandte Chemie - International Edition, 2023, 62, .	13.8	25
571	Two-Dimensional SnO ₂ -ZnO Nanohybrid Electrode Fabricated via Atomic Layer Deposition for Electrochemical Supercapacitors. Energy & amp; Fuels, 2023, 37, 3142-3151.	5.1	7
572	Unveiling Spin Stateâ€Dependent Micropollutant Removal using Singleâ€Atom Covalent Triazine Framework. Advanced Functional Materials, 2023, 33, .	14.9	9
573	Scalable Synthesis of 2D Mo ₂ C and Thicknessâ€Dependent Hydrogen Evolution on Its Basal Plane and Edges. Advanced Materials, 2023, 35, .	21.0	24
574	Scalable Edge-Oriented Metallic Two-Dimensional Layered Cu ₂ Te Arrays for Electrocatalytic CO ₂ Methanation. ACS Nano, 2023, 17, 4790-4799.	14.6	14
575	A New Group of 2D Nonâ€van der Waals Materials with Ultra Low Exfoliation Energies. Advanced Electronic Materials, 2023, 9, .	5.1	5
576	Single-atom catalysts for hydroformylation of olefins. IScience, 2023, 26, 106183.	4.1	8
577	Room-temperature photosynthesis of propane from CO2 with Cu single atoms on vacancy-rich TiO2. Nature Communications, 2023, 14, .	12.8	68
578	Lithium-ion battery performance improvement using two-dimensional materials. Materials Today: Proceedings, 2023, , .	1.8	2
579	2D Nanomaterials-based Heterostructures for H2O Splitting and CO2 Reduction. , 2023, , 193-230.		0
580	Unraveling the Unique Promotion Effects of a Triple Interface in Ni Catalysts for Methane Dry Reforming. Industrial & Engineering Chemistry Research, 2023, 62, 4965-4975.	3.7	10
581	Atomically Dispersed Fe/N ₄ and Ni/N ₄ Sites on Separateâ€Sides of Porous Carbon Nanosheets with Janus Structure for Selective Oxygen Electrocatalysis. Small, 2023, 19, .	10.0	9
582	Extending MoS ₂ -based materials into the catalysis of non-acidic hydrogen evolution: challenges, progress, and perspectives. Materials Futures, 2023, 2, 022103.	8.4	12
583	Graphitic carbon nitride (g-C ₃ N ₄) based heterogeneous single atom catalysts: synthesis, characterisation and catalytic applications. Journal of Materials Chemistry A, 2023, 11, 8599-8646.	10.3	18
584	Membrane Electrode Assembly for Electrocatalytic CO ₂ Reduction: Principle and Application. Angewandte Chemie - International Edition, 2023, 62, .	13.8	30
585	Membrane Electrode Assembly for Electrocatalytic CO ₂ Reduction: Principle and Application. Angewandte Chemie, 2023, 135, .	2.0	3

#	Article	IF	Citations
586	Moiré Superlattice Structure in Twoâ€Đimensional Catalysts: Synthesis, Property and Activity. Small, 2023, 19, .	10.0	2
587	Atomic-thick metastable phase RhMo nanosheets for hydrogen oxidation catalysis. Nature Communications, 2023, 14, .	12.8	18
588	DFTç"ç©¶ä,‰å•原åå,¬åŒ–å‰,用于ä,€æ¥N–C–Nå¶è"å•̂æ^•å°¿ç´. Science China Materials, 2023, 66, 2346	5- 23 53.	3
589	Electrochemical Oxidation Encapsulated Ru Clusters Enable Robust Durability for Efficient Oxygen Evolution. Small, 2023, 19, .	10.0	4
590	Metal-free hybrid nanocomposites of graphitic carbon nitride and char: Synthesis, characterisation and photocatalysis under visible irradiation. Journal of the Taiwan Institute of Chemical Engineers, 2024, 158, 104864.	5.3	2
591	Breaking BEP Relationship with Strong CO Binding and Low C–C Coupling Barriers for Ethanol Synthesis on Boron-Doped Graphyne: Bond Order Conservation and Flexible Orbital Hybridization. Journal of Physical Chemistry C, 2023, 127, 7683-7694.	3.1	5
592	Dinuclear metal synergistic catalysis for energy conversion. Chemical Society Reviews, 2023, 52, 3170-3214.	38.1	21
593	Review of Carbon Support Coordination Environments for Single Metal Atom Electrocatalysts (SACS). Advanced Materials, 2024, 36, .	21.0	13
594	Molecular design and coordination regulation of atomically dispersed bi-functional catalysts for oxygen electrocatalysis. Journal of Materials Chemistry A, 2023, 11, 11089-11118.	10.3	3
595	Constructing crystalline homophase carbon nitride S-scheme heterojunctions for efficient photocatalytic hydrogen evolution. Journal of Materials Science and Technology, 2023, 161, 220-232.	10.7	16
596	Interlayerâ€Confined NiFe Dual Atoms within MoS ₂ Electrocatalyst for Ultraâ€Efficient Acidic Overall Water Splitting. Advanced Materials, 2023, 35, .	21.0	24
597	Designing a promising electrocatalysts based on iron single-atom doped in graphyne-like BN-yne for water splitting application. Journal of Physics and Chemistry of Solids, 2023, 180, 111454.	4.0	1
598	Optimization and analysis of biomass carbon loaded metal catalyst for catalytic cracking of toluene. Diamond and Related Materials, 2023, 136, 109987.	3.9	0
599	Molybdenum Carbide MXenes as Efficient Nanosensors toward Selected Chemical Warfare Agents. ACS Applied Nano Materials, 2023, 6, 8404-8415.	5.0	3
600	Highly Efficient CuPd _{0.1} /l³-Al ₂ O ₃ Catalyst with Isolated Pd Species for CO ₂ Hydrogenation to Methanol. ACS Sustainable Chemistry and Engineering, 2023, 11, 7489-7499.	6.7	3
601	Carbon vacancy-assisted stabilization of individual Cu ₅ clusters on graphene. Insights from <i>ab initio</i> molecular dynamics. Physical Chemistry Chemical Physics, 2023, 25, 15729-15743.	2.8	3
603	State-of-the-art single-atom catalysts in electrocatalysis: From fundamentals to applications. Nano Energy, 2023, 113, 108570.	16.0	10
604	Dynamically confined single-atom catalytic sites within a porous heterobilayer for CO oxidation via electronic antenna effects. Physical Review B, 2023, 107, .	3.2	3

#	Article	IF	CITATIONS
605	Recent progress on defect-rich electrocatalysts for hydrogen and oxygen evolution reactions. Nano Today, 2023, 50, 101883.	11.9	4
606	Tunable Structured Metal Oxides for Biocatalytic Therapeutics. Advanced Functional Materials, 2023, 33, .	14.9	4
607	Diatomiteâ€Templated Synthesis of Singleâ€Atom Cobaltâ€Doped MoS ₂ /Carbon Composites to Boost Sodium Storage. Advanced Materials, 2023, 35, .	21.0	12
608	Electronic Structure Manipulation <i>via</i> Site-Selective Atomically Dispersed Ni for Efficient Photocatalytic CO ₂ Reduction. ACS Catalysis, 2023, 13, 8362-8371.	11.2	10
609	Locally-Strained Hexagonal-Boron Nitride Nanosheets Quantified by Nanoscale Infrared Spectroscopy. Nanoscale, 0, , .	5.6	0
610	Tuning the Coordination Environment of Singleâ€Atom Iron Catalysts Towards Effective Nitrogen Reduction. ChemCatChem, 2023, 15, .	3.7	3
611	Interâ€Metal Interaction of Dualâ€Atom Catalysts in Heterogeneous Catalysis. Angewandte Chemie, 2023, 135, .	2.0	2
612	Interâ€Metal Interaction of Dualâ€Atom Catalysts in Heterogeneous Catalysis. Angewandte Chemie - International Edition, 2023, 62, .	13.8	6
613	Emerging Xeneâ€Based Singleâ€Atom Catalysts: Theory, Synthesis, and Catalytic Applications. Advanced Materials, 2024, 36, .	21.0	12
614	CeO ₂ /Cu ₂ O/Cu Tandem Interfaces for Efficient Water–Gas Shift Reaction Catalysis. ACS Applied Materials & Interfaces, 2023, 15, 31584-31594.	8.0	1
615	Two-dimensional MN ₄ materials as effective multifunctional electrocatalysts for the hydrogen-evolution, oxygen-evolution, and oxygen-reduction reactions. Nanoscale, 2023, 15, 11255-11267.	5.6	2
616	Confinement effect induced efficient electro-catalytic reduction of dinitrogen in transition metal atom endohedral ultra-thin C4N3 nanotubes. Applied Surface Science, 2023, 637, 157888.	6.1	1
617	Research progress in graphene based single atom catalysts in recent years. Fuel Processing Technology, 2023, 250, 107879.	7.2	4
618	Facile Synthesis of Highly Defective MoS _{<i>x</i>} O _{<i>y</i>} Catalysts by Oxygen Etching-Reduction for Efficient <i>m</i> -Cresol Hydrodeoxygenation. Industrial & Engineering Chemistry Research, 0, , .	3.7	0
619	Double transition metal atoms supported on defective borophene as efficient electrocatalysts for nitrogen reduction: a theoretical study. Molecular Catalysis, 2023, 544, 113187.	2.0	1
620	Radical Polymerization of Polydivinylbenzene inside the Pores of Activated Carbon and Structural Characterization. , 2023, , .		0
621	Selective Photocatalytic Reduction of CO ₂ to CO Mediated by Silver Single Atoms Anchored on Tubular Carbon Nitride. Angewandte Chemie, 2023, 135, .	2.0	2
622	Selective Photocatalytic Reduction of CO ₂ to CO Mediated by Silver Single Atoms Anchored on Tubular Carbon Nitride. Angewandte Chemie - International Edition, 2023, 62, .	13.8	21

#	Article	IF	CITATIONS
623	SACs on Nonâ€Carbon Substrates: Can They Outperform for Water Splitting?. Advanced Functional Materials, 2023, 33, .	14.9	5
624	The journey of iron-based electrocatalytic materials for nitrogen reduction reaction: from current status to future prospects. Journal of Materials Chemistry A, 2023, 11, 11048-11077.	10.3	3
625	Construction of TiO _{2–<i>x</i>} Confined by Layered Iron Silicate toward Efficient Visible-Light-Driven Photocatalysis–Fenton Synergistic Removal of Organic Pollutants. ACS Applied Materials & Interfaces, 2023, 15, 23124-23135.	8.0	5
626	Electrostatic polarization in single-atom catalysis. Cell Reports Physical Science, 2023, 4, 101417.	5.6	0
627	Atomic-level reactive sites for electrocatalytic nitrogen reduction to ammonia under ambient conditions. Coordination Chemistry Reviews, 2023, 489, 215196.	18.8	12
628	Adaptable graphitic C6N6-based copper single-atom catalyst for intelligent biosensing. Nature Communications, 2023, 14, .	12.8	21
629	Thermodynamically Driven Tilt Grain Boundaries of Monolayer Crystals Using Catalytic Liquid Alloys. Nano Letters, 2023, 23, 4516-4523.	9.1	2
630	Single Ni atom-anchored BN-yne for enhanced water splitting. Materials Chemistry and Physics, 2023, 305, 127892.	4.0	0
631	Precise Synthesis at the Atomic Scale. , 2023, 1, 199-225.		2
632	Structural and electronic properties of substitutionally doped SnS2/WSe2 hetero-bilayer. Solid State Communications, 2023, 370, 115230.	1.9	0
633	Synthetic two-dimensional electronics for transistor scaling. Frontiers of Physics, 2023, 18, .	5.0	0
634	Boosting Biâ€Directional Redox of Sulfur with Dual Metal Single Atom Pairs in Carbon Spheres Toward Highâ€Rate and Longâ€Cycling Lithium–Sulfur Battery. Advanced Energy Materials, 2023, 13, .	19.5	21
635	Catalytic applications of phosphorene: Computational design and experimental performance assessment. Critical Reviews in Environmental Science and Technology, 2024, 54, 185-209.	12.8	2
636	Intrinsic and external active sites of single-atom catalysts. IScience, 2023, 26, 107275.	4.1	0
637	Well-defined surface catalytic sites for solar CO ₂ reduction: heterogenized molecular catalysts and single atom catalysts. Chemical Communications, 2023, 59, 9301-9319.	4.1	1
638	Atomically Dispersed W ₁ –O ₃ Bonded on Pd Metallene for Cascade NO Electroreduction to NH ₃ . ACS Catalysis, 2023, 13, 9550-9557.	11.2	18
639	Carbon nitride based materials: more than just a support for single-atom catalysis. Chemical Society Reviews, 2023, 52, 4878-4932.	38.1	31
640	Mechanism of interfacial effects in sodium-ion storage devices. Nano Research, 2024, 17, 1313-1326.	10.4	Ο

#	Article	IF	CITATIONS
641	Electronic structure regulation in the design of low-cost efficient electrocatalysts: From theory to applications. Nano Energy, 2023, 115, 108718.	16.0	9
642	Recent advancements on designing transition metal-based carbon-supported single atom catalysts for oxygen electrocatalysis: Miles to go for sustainable Zn-air batteries. Energy Storage Materials, 2023, 61, 102890.	18.0	4
643	Performance Regulation of Single-Atom Catalyst by Modulating the Microenvironment of Metal Sites. Topics in Current Chemistry, 2023, 381, .	5.8	1
644	Metalâ€organic frameworkâ€based singleâ€atom electroâ€∤photocatalysts: Synthesis, energy applications, and opportunities. , 2024, 6, .		7
645	Two Dimensional Irâ \in Based Catalysts for Acidic OER. Small, 2023, 19, .	10.0	6
646	Incorporating Catalytic Units into Nanomaterials: Rational Design of Multipurpose Catalysts for CO ₂ Valorization. Accounts of Chemical Research, 2023, 56, 2225-2240.	15.6	18
647	Relationship between Structure and Performance of Atomicâ€Scale Electrocatalysts for Water Splitting. Small, 0, , .	10.0	3
648	Evolution of Ni coordination configuration during one-pot pyrolysis synthesis of Ni-g-C3N4 single atom catalyst. Carbon, 2023, 214, 118348.	10.3	0
649	Two dimensional borophene nanomaterials: Recent developments for novel renewable energy storage applications. Progress in Solid State Chemistry, 2023, 71, 100416.	7.2	4
650	Computation-aided design of oxygen-ligand-steered single-atom catalysts: Sewing unzipped carbon nanotubes. CheM, 2023, 9, 3304-3318.	11.7	4
651	Toward Edge Engineering of Two-Dimensional Layered Transition-Metal Dichalcogenides by Chemical Vapor Deposition. ACS Nano, 2023, 17, 16348-16368.	14.6	1
652	Tuning dual-atom mediator toward high-rate bidirectional polysulfide conversion in Li-S batteries. Journal of Energy Chemistry, 2023, 87, 462-472.	12.9	4
653	Atomically imaging single atom catalysts and their behaviors by scanning tunneling microscopy. , 0, , .		0
654	Low-coordination single Ni atoms on graphitic C ₃ N ₄ for nitrite electroreduction to ammonia. Inorganic Chemistry Frontiers, 2023, 10, 5950-5957.	6.0	4
655	Advances and Regulation Strategies of the Active Moiety in Dualâ€Atom Site Catalysts for Efficient Electrocatalysis. Advanced Energy Materials, 2023, 13, .	19.5	3
656	The metal–support interaction effect in the carbon-free PEMFC cathode catalysts. Journal of Materials Chemistry A, 2023, 11, 23106-23132.	10.3	1
657	Theoretical study of Mo ₂ N supported transition metal single-atom catalyst for OER/ORR bifunctional electrocatalysis. Physical Chemistry Chemical Physics, 2023, 25, 24721-24732.	2.8	2
658	Atomically Dispersed Pt on CdS Nanosheets for Photocatalytic Evolution of H ₂ and 1,1-Diethoxyethane from Ethanol. ACS Applied Nano Materials, 2023, 6, 17161-17170.	5.0	1

#	Article	IF	CITATIONS
659	Progress on Singleâ€Atom Photocatalysts for H ₂ Generation: Material Design, Catalytic Mechanism, and Perspectives. Small Methods, 2023, 7, .	8.6	2
660	Photocatalytic splitting of water on g-C ₃ N ₄ -based single-atom Pt catalysts with stable "sandwich―structure: a combined first principles and semi-empirical investigation. Canadian Journal of Chemistry, 0, , .	1.1	0
661	Recent Advances on Singleâ€Atom Catalysts for Photocatalytic CO ₂ Reduction. Small, 2023, 19, .	10.0	4
662	Constructing zinc single-atom catalysts for the direct electron-transfer mechanism in peroxymonosulfate activation to degrade sulfamethoxazole efficiently. Chemical Engineering Journal, 2023, 474, 145973.	12.7	3
663	Insight on Atomically Dispersed Cu Catalysts for Electrochemical CO ₂ Reduction. ACS Nano, 2023, 17, 18688-18705.	14.6	5
664	Synthesis of MXene-based single-atom catalysts for energy conversion applications. Chemical Engineering Journal, 2023, 474, 145700.	12.7	13
665	Identifying the active sites in unequal iron-nitrogen single-atom catalysts. Nature Communications, 2023, 14, .	12.8	1
666	Exploring spin states by hybrid functional methods to define correct trends in electrocatalytic activity of SACs embedded in N-doped graphene. Materials Today Chemistry, 2023, 33, 101728.	3.5	1
667	Defective SiC nanotube based single-atom catalysts for electrocatalytic nitrogen fixation with curvature effect. Molecular Catalysis, 2023, 549, 113519.	2.0	0
668	Biomassâ€Đerived Electrocatalysts: Lowâ€Cost, Robust Materials for Sustainable Electrochemical Energy Conversion. Advanced Energy and Sustainability Research, 2024, 5, .	5.8	0
669	Design and synthesis of thermally stable single atom catalysts for thermochemical CO2 reduction. Journal of Energy Chemistry, 2023, 86, 246-262.	12.9	10
670	Theoretical screening of single-atom electrocatalysts of MXene-supported 3d-metals for efficient nitrogen reduction. Chinese Journal of Catalysis, 2023, 52, 252-262.	14.0	1
671	Theoretical progress of MXenes as electrocatalysts for the hydrogen evolution reaction. Materials Chemistry Frontiers, 2024, 8, 507-527.	5.9	1
672	Next Generation Noble Metalâ€Engineered Catalysts: From Structure Evolution to Structureâ€Reactivity Correlation in Water Splitting. Advanced Functional Materials, 0, , .	14.9	0
673	Recent progress in modification and composite strategies of graphitic carbon nitride as catalysts for heterogeneous photo-Fenton reaction. Materials Science in Semiconductor Processing, 2023, 167, 107807.	4.0	14
674	Combining First-Principles Modeling and Symbolic Regression for Designing Efficient Single-Atom Catalysts in the Oxygen Evolution Reaction on Mo ₂ CO ₂ MXenes. ACS Applied Materials & Interfaces, 2023, 15, 43702-43711.	8.0	1
675	Ferroelectricity and Large Rashba Splitting in Two-Dimensional Tellurium. Chinese Physics Letters, 0, , .	3.3	0
677	Application of single-atom Ti-doped g-C ₃ N ₄ in photocatalytic H ₂ O ₂ production. Materials Advances, 0, , .	5.4	0

#	Article	IF	CITATIONS
678	A single transition metal atom anchored on Nb ₂ C as an electrocatalyst for the nitrogen reduction reaction. Nanoscale, 2023, 15, 17508-17515.	5.6	1
679	Graphitic C3N4 and Ti3C2 nanocomposites for the enhanced photocatalytic degradation of organic compounds and the evolution of hydrogen under visible irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2024, 447, 115260.	3.9	0
680	In-situ engineering of 3D porous Co nanoparticles incorporated in B/N Co-doped carbon nanotube/nanofiber networks as integrated cathode materials for Zn-air batteries. Materials Characterization, 2023, 206, 113407.	4.4	0
681	Leveraging efferocytosis blockade for improved cancer chemo-immunotherapy through synchronized release of doxorubicin and BMS777607 confined within tailored mesoporous silica nanoparticles. Nano Today, 2023, 53, 102039.	11.9	1
682	SiFeN6-graphene: A promising dual-atom catalyst for enhanced CO2-to-CH4 conversion. Applied Surface Science, 2024, 643, 158724.	6.1	1
683	Dual-atoms iron sites boost the kinetics of reversible conversion of polysulfide for high-performance lithium-sulfur batteries. Energy Storage Materials, 2023, 63, 103026.	18.0	3
684	Advanced 3D ordered electrodes for PEMFC applications: From structural features and fabrication methods to the controllable design of catalyst layers. Green Energy and Environment, 2023, , .	8.7	3
685	Layered Double Hydroxide Nanosheets: Synthesis Strategies and Applications in the Field of Energy Conversion. Chemistry - A European Journal, 0, , .	3.3	0
686	Single-atom nanozymes with peroxidase-like activity: A review. Chemosphere, 2024, 346, 140557.	8.2	4
687	Confined iron-based nanomaterials for water decontamination: fundamentals, applications, and challenges. Fundamental Research, 2023, , .	3.3	0
688	A Comprehensive Review on Electrocatalytic Applications of 2D Metallenes. Nanomaterials, 2023, 13, 2966.	4.1	1
689	Investigation of dual atom doped single-layer MoS ₂ for electrochemical reduction of carbon dioxide by first-principle calculations and machine-learning. , 0, 3, .		0
690	2D/2D composites based on graphitic carbon nitride and MXenes for photocatalytic reactions: a critical review. Carbon Letters, 2024, 34, 227-245.	5.9	1
691	Local structural environment of single-atom catalysts. Inorganic Chemistry Frontiers, 0, , .	6.0	1
692	Oxygen reduction electrocatalysis: From conventional to single-atomic platinum-based catalysts for proton exchange membrane fuel cells. Frontiers in Energy, 0, , .	2.3	1
693	Low-Temperature Propane Activation and Mineralization over a Co ₃ O ₄ Sub-nanometer Porous Sheet: Atomic-Level Insights. Jacs Au, 2023, 3, 3076-3088.	7.9	1
694	Piezoâ€Flexocatalysis of Singleâ€Atom Pt‣oaded Graphitic Carbon Nitride. Small Methods, 0, , .	8.6	1
695	2D metallic vanadium dichalcogenides and related heterostructures. Materials Today Advances, 2024, 21, 100451.	5.2	0

#	Article	IF	CITATIONS
696	Anchoring single-atom Cu on tubular g-C3N4 with defect engineering for enhanced Fenton-like reactions to efficiently degrade carbamazepine: Performance and mechanism. Chemical Engineering Journal, 2024, 479, 147841.	12.7	0
697	Highly sensitive detection of circulating tumour cells based on an ASV/CV dual-signal electrochemical strategy. RSC Advances, 2023, 13, 33038-33046.	3.6	0
698	Imparting selective polysulfide conversion via geminal-atom moieties in lithium-sulfur batteries. Applied Catalysis B: Environmental, 2024, 343, 123553.	20.2	0
700	Single-Atom Pd Supported on TiO ₂ for the Photocatalytic Production of Hydrogen. ACS Applied Nano Materials, 0, , .	5.0	0
701	Contemporary advances in photocatalytic CO2 reduction using single-atom catalysts supported on carbon-based materials. Advances in Colloid and Interface Science, 2024, 323, 103068.	14.7	1
702	Effective Photocatalytic Ethanol Reforming into Highâ€Valueâ€Added Multicarbon Compound Coupled with H ₂ Production Over Ptâ€S ₃ Sites at Pt _{SA} –ZnIn ₂ S ₄ Interface. Small, 0, , .	10.0	1
703	Atomically Confined Ru Sites in Octahedral Co ₃ O ₄ for Highâ€Efficiency Hydrazine Oxidation. Advanced Functional Materials, 0, , .	14.9	0
704	Single transition metal anchored on defective boron carbide monolayer for efficient and selective CO2 electrochemical reduction: A theoretical study. Molecular Catalysis, 2024, 553, 113771.	2.0	1
705	Advances of Singleâ€Atomic Cobalt Catalysts in Liquidâ€Phase Selective Oxidative Reactions. Small Science, 2023, 3, .	9.9	0
706	<i>p</i> -Block doped semi-metallic xenes as highly selective and efficient transition metal-free single atom catalysts for electrochemical CO reduction. Journal of Materials Chemistry A, 0, , .	10.3	0
707	C3N-supported â¢A group metal single-atom catalysts with different coordination microenvironments: Electrocatalytic NO reduction to ammonia. Applied Surface Science, 2024, 649, 159130.	6.1	0
708	Controllable synthesis of sodium-calcium silicate nanoplates and the enhancement of cement-based materials. Case Studies in Construction Materials, 2024, 20, e02829.	1.7	0
709	Single-atom catalysts for electrocatalytic applications: Synthetic strategies, in-situ characterization, and future challenges. Applied Materials Today, 2024, 36, 102037.	4.3	0
710	MXene- and MOF-based single-atom catalysts for next-generation batteries chemistry: A synergy of experimental and theoretical insights. Energy Storage Materials, 2024, 65, 103159.	18.0	0
711	Singleâ€Atom Nanozymes for Catalytic Therapy: Recent Advances and Challenges. Advanced Functional Materials, 2024, 34, .	14.9	0
712	Research on the environmental stability performance of chromite ore processing residue solidified products. RSC Advances, 2024, 14, 1377-1385.	3.6	0
713	Design of MoS ₂ edge-anchored single-atom catalysts for propane dehydrogenation driven by DFT and microkinetic modeling. Physical Chemistry Chemical Physics, 2024, 26, 5303-5310.	2.8	0
715	Surface Engineered Singleâ€atom Systems for Energy Conversion. Advanced Materials, 2024, 36, .	21.0	2

#	ARTICLE The Effect of Nâ€Defect and Axial Halogen Atom on Electrocatalytic Oxygen Reduction Reaction Activity	IF	CITATIONS
716	of FeN ₄ Singleâ€Atom Catalysts: A Density Functional Theory Study. ChemistrySelect, 2024, 9, .	1.5	0
717	Renaissance of Strong Metal–Support Interactions. Journal of the American Chemical Society, 2024, 146, 2290-2307.	13.7	0
718	Recent progress of 3d transition metal as single-atom catalysts for electrochemical CO2 reduction to CO. Journal of CO2 Utilization, 2024, 80, 102690.	6.8	0
719	Rational design of single transition-metal atoms anchored on a PtSe ₂ monolayer as bifunctional OER/ORR electrocatalysts: a defect chemistry and machine learning study. Journal of Materials Chemistry A, 2024, 12, 5451-5463.	10.3	0
720	Characterization techniques for single-atom catalysts. , 2024, , 69-90.		0
721	Asymmetric O ₂ –Ru–N ₂ Active Sites via Coordination Engineering for Tuning Hydrogen Evolution across the Full pH Value. Chemistry of Materials, 2024, 36, 1831-1840.	6.7	0
722	Direct Machine Learning Predictions of C ₃ Pathways. Advanced Energy Materials, 2024, 14,	19.5	0
723	Tempospatially Confined Catalytic Membranes for Advanced Water Remediation. Advanced Materials, 0, , .	21.0	0
724	Surface Electronic Properties-Driven Electrocatalytic Nitrogen Reduction on Metal-Conjugated Porphyrin 2D-MOFs. ACS Applied Materials & Interfaces, 2024, 16, 8707-8716.	8.0	0
725	2D Boron Nanosheets for Photo―and Electrocatalytic Applications. ChemCatChem, 0, , .	3.7	0
726	Bifunctional metal–acid sites on nickel boride catalysts: Phenol hydrodeoxygenation and water-promoted CÂ=ÂC hydrogenation. Journal of Catalysis, 2024, 431, 115384.	6.2	0
727	Recent Progress of Ru Singleâ€Atom Catalyst: Synthesis, Modification, and Energetic Applications. Advanced Functional Materials, 0, , .	14.9	0
728	Emerging Two-Dimensional Carbonaceous Materials for Electrocatalytic Energy Conversions: Rational Design of Active Structures through High-Temperature Chemistry. ACS Nano, 2024, 18, 6111-6129.	14.6	0
729	Theoretical Insights into the Selective Electrocatalytic Reduction of NO to NH ₃ on a Two-Dimensional Cu-Benzylthiol Metal–Organic Framework Nanostructure. ACS Applied Nano Materials, 2024, 7, 5180-5191.	5.0	0
730	Crystallographically vacancyâ€induced MOF nanosheet as rational singleâ€atom support for accelerating CO ₂ electroreduction to CO. , 0, , .		0
731	A review on electrocatalytic CO ₂ conversion via C–C and C–N coupling. , 2024, 6, .		0
732	Establishing theoretical landscapes of identifying electrocatalysts for urea synthesis via dispersed dual-metals anchored on Ti2CO2 MXene. Fuel, 2024, 366, 131280.	6.4	0
733	Ru Regulated Electronic Structure of Pd _x Cu _y Nanosheets for Efficient Hydrogen Evolution Reaction in Wide pH Range. Small, 0, , .	10.0	0

#	Article	IF	CITATIONS
734	Emerging non-d-block single-atom catalysis: A way stepping out of the transition metals. Materials Today Sustainability, 2024, 26, 100731.	4.1	0
735	Band Structure Tuning via Pt Single Atom Induced Rapid Hydroxyl Radical Generation toward Efficient Photocatalytic Reforming of Lignocellulose into H ₂ . Small, 0, , .	10.0	0
736	Benefits of Using Rapid Microwave Heating in the Synthesis of Metal-Free Carbon Electrocatalysts. Industrial & Engineering Chemistry Research, 2024, 63, 4825-4837.	3.7	0
737	Recent progress in two-dimensional metallenes and their potential application as electrocatalyst. Journal of Energy Chemistry, 2024, 94, 577-598.	12.9	0
738	Single-atom anchored on curved boron nitride fullerene surface as efficient electrocatalyst for carbon dioxide reduction. Molecular Catalysis, 2024, 559, 114040.	2.0	0
739	Transition metal-based layered double hydroxides and their derivatives for efficient oxygen evolution reaction. International Journal of Hydrogen Energy, 2024, 63, 918-936.	7.1	0
740	Modulating Electronic Structure of Iridium Singleâ€Atom Anchored on 3D Feâ€Doped <i>β</i> â€Ni(OH) ₂ Catalyst with Nanopyramid Array Structure for Enhanced Oxygen Evolution Reaction. Small, 0, , .	10.0	0
741	Immobilizing Ultralow Loading Platinum Nanoparticles onto MXene through Defect Engineering to Enhance the Activity of the Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2024, 7, 2460-2468.	5.1	0
742	Structured Catalysts and Catalytic Processes: Transport and Reaction Perspectives. Chemical Reviews, 2024, 124, 2955-3012.	47.7	0
743	Electrocatalytic synthesis of C–N coupling compounds from CO ₂ and nitrogenous species. SusMat, 2024, 4, .	14.9	0
744	Heterogeneous Iridium-Catalyzed Carbene N–H Bond Insertion with α-Alkyl Diazo Esters. ACS Catalysis, 2024, 14, 4690-4698.	11.2	0
745	Tetrametallic mastery: Cluster-doped graphdiyne as a superior electrocatalyst for hydrogen evolution. International Journal of Hydrogen Energy, 2024, 62, 610-616.	7.1	0