Anthropogenic drivers of 2013–2017 trends in summe

Proceedings of the National Academy of Sciences of the Unite 116, 422-427

DOI: 10.1073/pnas.1812168116

Citation Report

#	Article	IF	CITATIONS
5	Fast Photochemistry in Wintertime Haze: Consequences for Pollution Mitigation Strategies. Environmental Science & Technology, 2019, 53, 10676-10684.	4.6	147
6	Ozone will remain a threat for plants independently of nitrogen load. Functional Ecology, 2019, 33, 1854-1870.	1.7	33
7	Measurement and model analyses of the ozone variation during 2006 to 2015 and its response to emission change in megacity Shanghai, China. Atmospheric Chemistry and Physics, 2019, 19, 9017-9035.	1.9	62
8	Measurements of HO2 uptake coefficient on aqueous (NH4)2SO4 aerosol using aerosol flow tube with LIF system. Chinese Chemical Letters, 2019, 30, 2236-2240.	4.8	16
9	Spatiotemporal Associations between PM2.5 and SO2 as well as NO2 in China from 2015 to 2018. International Journal of Environmental Research and Public Health, 2019, 16, 2352.	1.2	12
10	Correlations between PM2.5 and Ozone over China and Associated Underlying Reasons. Atmosphere, 2019, 10, 352.	1.0	75
11	Interannual and Decadal Changes in Tropospheric Ozone in China and the Associated Chemistry-Climate Interactions: A Review. Advances in Atmospheric Sciences, 2019, 36, 975-993.	1.9	51
12	Ozone Tolerance Found in Aegilops Tauschii and Primary Synthetic Hexaploid Wheat. Plants, 2019, 8, 195.	1.6	3
13	Urban VOC profiles, possible sources, and its role in ozone formation for a summer campaign over Xi'an, China. Environmental Science and Pollution Research, 2019, 26, 27769-27782.	2.7	46
14	Persistent growth of anthropogenic non-methane volatile organic compound (NMVOC) emissions in China during 1990–2017: drivers, speciation and ozone formation potential. Atmospheric Chemistry and Physics, 2019, 19, 8897-8913.	1.9	267
15	Cleaner air for China. Nature Geoscience, 2019, 12, 497-497.	5.4	17
16	Exploring 2016–2017 surface ozone pollution over China: source contributions and meteorological influences. Atmospheric Chemistry and Physics, 2019, 19, 8339-8361.	1.9	244
17	Efficient catalytic removal of airborne ozone under ambient conditions over manganese oxides immobilized on carbon nanotubes. Catalysis Science and Technology, 2019, 9, 4036-4046.	2.1	36
18	Relationships between Particulate Matter, Ozone, and Nitrogen Oxides during Urban Smoke Events in the Western US. Environmental Science & Technology, 2019, 53, 12519-12528.	4.6	64
19	Impact of clean air action on PM2.5 pollution in China. Science China Earth Sciences, 2019, 62, 1845-1846.	2.3	55
20	Thermodynamic Modeling Suggests Declines in Water Uptake and Acidity of Inorganic Aerosols in Beijing Winter Haze Events during 2014/2015–2018/2019. Environmental Science and Technology Letters, 2019, 6, 752-760.	3.9	56
21	Radiative Forcing and Health Impact of Aerosols and Ozone in China as the Consequence of Clean Air Actions over 2012–2017. Geophysical Research Letters, 2019, 46, 12511-12519.	1.5	83
22	Substantial ozone enhancement over the North China Plain from increased biogenic emissions due to heat waves and land cover in summer 2017. Atmospheric Chemistry and Physics, 2019, 19, 12195-12207.	1.9	95

#	Article	IF	CITATIONS
23	Assessing the formation and evolution mechanisms of severe haze pollution in the Beijing–Tianjin–Hebei region using process analysis. Atmospheric Chemistry and Physics, 2019, 19, 10845-10864.	1.9	56
24	Wheat yield losses in India due to ozone and aerosol pollution and their alleviation: A critical review. Outlook on Agriculture, 2019, 48, 181-189.	1.8	16
25	Fine particulate matter (PM _{2.5}) trends in China, 2013–2018: separating contributions from anthropogenic emissions and meteorology. Atmospheric Chemistry and Physics, 2019, 19, 11031-11041.	1.9	442
27	Comparative Analysis of Long-Term Variation Characteristics of SO2, NO2, and O3 in the Ecological and Economic Zones of the Western Sichuan Plateau, Southwest China. International Journal of Environmental Research and Public Health, 2019, 16, 3265.	1.2	4
28	Trend analysis of surface ozone at suburban Guangzhou, China. Science of the Total Environment, 2019, 695, 133880.	3.9	55
29	Evolution of anthropogenic air pollutant emissions in Guangdong Province, China, from 2006 to 2015. Atmospheric Chemistry and Physics, 2019, 19, 11701-11719.	1.9	56
30	Impacts of current ozone pollution on wheat yield in China as estimated with observed ozone, meteorology and day of flowering. Atmospheric Environment, 2019, 217, 116945.	1.9	48
31	Responses of PM2.5 and O3 concentrations to changes of meteorology and emissions in China. Science of the Total Environment, 2019, 662, 297-306.	3.9	167
32	Development of a unit-based industrial emission inventory in the Beijing–Tianjin–Hebei region and resulting improvement in air quality modeling. Atmospheric Chemistry and Physics, 2019, 19, 3447-3462.	1.9	60
33	Links of climate variability in Arctic sea ice, Eurasian teleconnection pattern and summer surface ozone pollutionÂinÂNorthÂChina. Atmospheric Chemistry and Physics, 2019, 19, 3857-3871.	1.9	31
34	Intercomparison of O ₃ formation and radical chemistry in the past decade at a suburban site in Hong Kong. Atmospheric Chemistry and Physics, 2019, 19, 5127-5145.	1.9	47
35	An evaluation of the ability of the Ozone Monitoring Instrument (OMI) to observe boundary layer ozone pollution across China: application to 2005–2017 ozone trends. Atmospheric Chemistry and Physics, 2019, 19, 6551-6560.	1.9	65
36	Secondary organic aerosol enhanced by increasing atmospheric oxidizing capacity in Beijing–Tianjin–Hebei (BTH), China. Atmospheric Chemistry and Physics, 2019, 19, 7429-7443.	1.9	50
38	Unveiling tropospheric ozone by the traditional atmospheric model and machine learning, and their comparison:A case study in hangzhou, China. Environmental Pollution, 2019, 252, 366-378.	3.7	37
39	Impact of Extreme Meteorological Events on Ozone in the Pearl River Delta, China. Aerosol and Air Quality Research, 2019, 19, 1307-1324.	0.9	24
40	Vertical characteristics of peroxyacetyl nitrate (PAN) from a 250-m tower in northern China during September 2018. Atmospheric Environment, 2019, 213, 55-63.	1.9	20
41	Mid-21st century ozone air quality and health burden in China under emissions scenarios and climate change. Environmental Research Letters, 2019, 14, 074030.	2.2	22
42	Analysis of PM2.5 pollution episodes in Beijing from 2014 to 2017: Classification, interannual variations and associations with meteorological features. Atmospheric Environment, 2019, 213, 384-394.	1.9	31

#	Article	IF	CITATIONS
43	Recurrent Neural Network and random forest for analysis and accurate forecast of atmospheric pollutants: A case study in Hangzhou, China. Journal of Cleaner Production, 2019, 231, 1005-1015.	4.6	108
44	Sensitivity of Nitrate Aerosol Production to Vehicular Emissions in an Urban Street. Atmosphere, 2019, 10, 212.	1.0	12
45	Evidence for regional heterogeneous atmospheric particulate matter distribution in China: implications for air pollution control. Environmental Chemistry Letters, 2019, 17, 1839-1847.	8.3	15
46	Aggravating O3 pollution due to NOx emission control in eastern China. Science of the Total Environment, 2019, 677, 732-744.	3.9	245
47	Overview on the spatial–temporal characteristics of the ozone formation regime in China. Environmental Sciences: Processes and Impacts, 2019, 21, 916-929.	1.7	91
48	Impact of emission controls on air quality in Beijing during APEC 2014: Implications from water-soluble ions and carbonaceous aerosol in PM2.5 and their precursors. Atmospheric Environment, 2019, 210, 241-252.	1.9	56
49	Daytime atmospheric oxidation capacity in four Chinese megacities during the photochemically polluted season: a case study based on box model simulation. Atmospheric Chemistry and Physics, 2019, 19, 3493-3513.	1.9	145
50	Air quality and health impacts from the updated industrial emission standards in China. Environmental Research Letters, 2019, 14, 124058.	2.2	5
52	Ozone Pollution: A Major Health Hazard Worldwide. Frontiers in Immunology, 2019, 10, 2518.	2.2	357
53	Development and application of observable response indicators for design of an effective ozone and fine-particle pollution control strategy in China. Atmospheric Chemistry and Physics, 2019, 19, 13627-13646.	1.9	33
55	Review of Chinese atmospheric science research over the past 70 years: Atmospheric physics and atmospheric environment. Science China Earth Sciences, 2019, 62, 1903-1945.	2.3	18
56	Quantifying the impact of synoptic circulation patterns on ozone variability in northern China from April to October 2013–2017. Atmospheric Chemistry and Physics, 2019, 19, 14477-14492.	1.9	61
57	Drivers of improved PM _{2.5} air quality in China from 2013 to 2017. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24463-24469.	3.3	1,193
58	Dominant patterns of summer ozone pollution in eastern China and associated atmospheric circulations. Atmospheric Chemistry and Physics, 2019, 19, 13933-13943.	1.9	43
59	A two-pollutant strategy for improving ozone and particulate air quality in China. Nature Geoscience, 2019, 12, 906-910.	5.4	493
60	Air quality and health benefits from fleet electrification in China. Nature Sustainability, 2019, 2, 962-971.	11.5	174
61	Temporal and Spatial Features of the Correlation between PM2.5 and O3 Concentrations in China. International Journal of Environmental Research and Public Health, 2019, 16, 4824.	1.2	34
62	Understanding the causal influence of major meteorological factors on ground ozone concentrations across China. Journal of Cleaner Production, 2020, 242, 118498.	4.6	79

#	Article	IF	Citations
63	Spatio-temporal evolution of ozone pollution and its influencing factors in the Beijing-Tianjin-Hebei Urban Agglomeration. Environmental Pollution, 2020, 256, 113419.	3.7	75
64	Different contributions of Arctic sea ice anomalies from different regions to North China summer ozone pollution. International Journal of Climatology, 2020, 40, 559-571.	1.5	8
65	Evaluation of unmanned aerial system in measuring lower tropospheric ozone and fine aerosol particles using portable monitors. Atmospheric Environment, 2020, 222, 117134.	1.9	26
66	A comprehensive analysis of the spatio-temporal variation of urban air pollution in China during 2014–2018. Atmospheric Environment, 2020, 220, 117066.	1.9	264
67	Observed dependence of surface ozone on increasing temperature in Shanghai, China. Atmospheric Environment, 2020, 221, 117108.	1.9	48
68	Effects of soil nutrient availability and ozone on container-grown Japanese larch seedlings and role of soil microbes. Journal of Forestry Research, 2020, 31, 2295-2311.	1.7	9
69	Local and synoptic meteorological influences on daily variability in summertime surface ozone in eastern China. Atmospheric Chemistry and Physics, 2020, 20, 203-222.	1.9	139
70	Rapid improvement in air quality due to aerosol-pollution control during 2012–2018: An evidence observed in Kunshan in the Yangtze River Delta, China. Atmospheric Pollution Research, 2020, 11, 693-701.	1.8	15
71	Evaluating the effects of surface O3 on three main food crops across China during 2015–2018. Environmental Pollution, 2020, 258, 113794.	3.7	48
72	Hazardous volatile organic compounds in ambient air of China. Chemosphere, 2020, 246, 125731.	4.2	60
73	lsomeric Identification of Particle-Phase Organic Nitrates through Gas Chromatography and Time-of-Flight Mass Spectrometry Coupled with an Electron Capture Negative Ionization Source. Environmental Science & Technology, 2020, 54, 707-713.	4.6	17
74	Assessment of O3-induced yield and economic losses for wheat in the North China Plain from 2014 to 2017, China. Environmental Pollution, 2020, 258, 113828.	3.7	38
75	Characterization and sources of volatile organic compounds (VOCs) and their related changes during ozone pollution days in 2016 in Beijing, China. Environmental Pollution, 2020, 257, 113599.	3.7	146
76	Mapping ozone source-receptor relationship and apportioning the health impact in the Pearl River Delta region using adjoint sensitivity analysis. Atmospheric Environment, 2020, 222, 117026.	1.9	18
77	Impacts of climate anomalies on the interannual and interdecadal variability of autumn and winter haze in North China: A review. International Journal of Climatology, 2020, 40, 4309-4325.	1.5	23
78	An emission inventory for Cl2 and HOCl in Shanghai, 2017. Atmospheric Environment, 2020, 223, 117220.	1.9	7
79	Enhancing Oxygen Vacancies of Ce-OMS-2 via Optimized Hydrothermal Conditions to Improve Catalytic Ozone Decomposition. Industrial & Engineering Chemistry Research, 2020, 59, 118-128.	1.8	32
80	Surface ozone response to satellite-constrained NOx emission adjustments and its implications. Environmental Pollution, 2020, 258, 113469.	3.7	28

#	Article	IF	CITATIONS
81	Spatio-temporal patterns of air pollution in China from 2015 to 2018 and implications for health risks. Environmental Pollution, 2020, 258, 113659.	3.7	125
82	The impact of urban agglomeration on ozone precursor conditions: A systematic investigation across global agglomerations utilizing multi-source geospatial datasets. Science of the Total Environment, 2020, 704, 135458.	3.9	7
83	Understanding sources of fine particulate matter in China. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190325.	1.6	16
84	Health benefits of on-road transportation pollution control programs in China. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25370-25377.	3.3	57
85	Health impacts of long-term ozone exposure in China over 2013–2017. Environment International, 2020, 144, 106030.	4.8	84
86	Evaluation of Stratospheric Intrusions and Biomass Burning Plumes on the Vertical Distribution of Tropospheric Ozone Over the Midwestern United States. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032454.	1.2	13
87	Effects of China's current Air Pollution Prevention and Control Action Plan on air pollution patterns, health risks and mortalities in Beijing 2014–2018. Chemosphere, 2020, 260, 127572.	4.2	79
88	Meteorological variations impeded the benefits of recent NOx mitigation in reducing atmospheric nitrate deposition in the Pearl River Delta region, Southeast China. Environmental Pollution, 2020, 266, 115076.	3.7	7
89	An explicit study of local ozone budget and NOx-VOCs sensitivity in Shenzhen China. Atmospheric Environment, 2020, 224, 117304.	1.9	85
90	Epigrammatic study on the effect of lockdown amid Covid-19 pandemic on air quality of most polluted cities of Rajasthan (India). Air Quality, Atmosphere and Health, 2020, 13, 1157-1165.	1.5	41
91	Meteorological influences on PM2.5 and O3 trends and associated health burden since China's clean air actions. Science of the Total Environment, 2020, 744, 140837.	3.9	98
92	Has air quality improved in Ecuador during the COVID-19 pandemic? A parametric analysis. Air Quality, Atmosphere and Health, 2020, 13, 929-938.	1.5	45
93	Role of export industries on ozone pollution and its precursors in China. Nature Communications, 2020, 11, 5492.	5.8	30
94	Source–Receptor Relationship Revealed by the Halted Traffic and Aggravated Haze in Beijing during the COVID-19 Lockdown. Environmental Science & Technology, 2020, 54, 15660-15670.	4.6	83
95	Estimating Spatiotemporal Variation in Ambient Ozone Exposure during 2013–2017 Using a Data-Fusion Model. Environmental Science & Technology, 2020, 54, 14877-14888.	4.6	118
96	Changes in light absorption by brown carbon in soot particles due to heterogeneous ozone aging in a smog chamber. Environmental Pollution, 2020, 266, 115273.	3.7	8
97	Atmospheric Volatile Organic Compounds (VOCs) in China: a Review. Current Pollution Reports, 2020, 6, 250-263.	3.1	106
98	Air Pollutant Correlations in China: Secondary Air Pollutant Responses to NO _{<i>x</i>} and SO ₂ Control. Environmental Science and Technology Letters, 2020, 7, 695-700.	3.9	113

# 99	ARTICLE Synoptic condition-driven summertime ozone formation regime in Shanghai and the implication for dynamic ozone control strategies. Science of the Total Environment, 2020, 745, 141130.	IF 3.9	CITATIONS
100	The trend of surface ozone in Beijing from 2013 to 2019: Indications of the persisting strong atmospheric oxidation capacity. Atmospheric Environment, 2020, 242, 117801.	1.9	72
101	Understanding the knowledge gaps between air pollution controls and health impacts including pathogen epidemic. Environmental Research, 2020, 189, 109949.	3.7	23
102	Modulations of synoptic and climatic changes on ozone pollution and its health risks in mountain-basin areas. Atmospheric Environment, 2020, 240, 117808.	1.9	22
103	Systematic classification of circulation patterns and integrated analysis of their effects on different ozone pollution levels in the Yangtze River Delta Region, China. Atmospheric Environment, 2020, 242, 117760.	1.9	28
104	Assessment of atmospheric photochemical reactivity in the Yangtze River Delta using a photochemical box model. Atmospheric Research, 2020, 245, 105088.	1.8	9
105	Understanding the formation of high-ozone episodes at Raoyang, a rural site in the north China plain. Atmospheric Environment, 2020, 240, 117797.	1.9	7
106	An Optimization Approach for Hourly Ozone Simulation: A Case Study in Chongqing, China. IEEE Geoscience and Remote Sensing Letters, 2021, 18, 1871-1875.	1.4	6
107	Comparison of Ozone and PM2.5 Concentrations over Urban, Suburban, and Background Sites in China. Advances in Atmospheric Sciences, 2020, 37, 1297-1309.	1.9	27
109	The spatiotemporal characteristics of the air pollutants in China from 2015 to 2019. PLoS ONE, 2020, 15, e0227469.	1.1	25
110	Driving Sustainability in Dairy Farming from a TBL Perspective: Insights from a Case Study in the West Region of Santa Catarina, Brazil. Sustainability, 2020, 12, 6038.	1.6	12
111	The complex chemical effects of COVID-19 shutdowns on air quality. Nature Chemistry, 2020, 12, 777-779.	6.6	154
112	Exploring the relationship between air pollution and meteorological conditions in China under environmental governance. Scientific Reports, 2020, 10, 14518.	1.6	104
113	Improving the catalytic performance of ozone decomposition over Pd-Ce-OMS-2 catalysts under harsh conditions. Catalysis Science and Technology, 2020, 10, 7671-7680.	2.1	19
114	Teleconnection between the Asian Polar Vortex and surface PM2.5 in China. Scientific Reports, 2020, 10, 19431.	1.6	2
115	Aerosol-induced atmospheric heating rate decreases over South and East Asia as a result of changing content and composition. Scientific Reports, 2020, 10, 20091.	1.6	44
116	Efficient Heterogeneous Formation of Ammonium Nitrate on the Saline Mineral Particle Surface in the Atmosphere of East Asia during Dust Storm Periods. Environmental Science & Technology, 2020, 54, 15622-15630.	4.6	46
117	Spatial Distribution, Source Apportionment, Ozone Formation Potential, and Health Risks of Volatile Organic Compounds over a Typical Central Plain City in China. Atmosphere, 2020, 11, 1365.	1.0	5

#	Article	IF	CITATIONS
118	Projection of weather potential for winter haze episodes in Beijing by 1.5°C and 2.0°C global warming. Advances in Climate Change Research, 2020, 11, 218-226.	2.1	6
119	Surface Ozoneâ€Meteorology Relationships: Spatial Variations and the Role of the Jet Stream. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032735.	1.2	12
120	Developing a statistical model to explain the observed decline of atmospheric mercury. Atmospheric Environment, 2020, 243, 117868.	1.9	12
122	Extending Ozoneâ€Precursor Relationships in China From Peak Concentration to Peak Time. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033670.	1.2	12
123	Substantial Changes in Nitrogen Dioxide and Ozone after Excluding Meteorological Impacts during the COVID-19 Outbreak in Mainland China. Environmental Science and Technology Letters, 2020, 7, 402-408.	3.9	149
124	Magnitude, trends, and impacts of ambient long-term ozone exposure in the United States from 2000 to 2015. Atmospheric Chemistry and Physics, 2020, 20, 1757-1775.	1.9	26
125	The Response in Air Quality to the Reduction of Chinese Economic Activities During the COVIDâ€19 Outbreak. Geophysical Research Letters, 2020, 47, e2020GL088070.	1.5	324
126	O3 Sensitivity and Contributions of Different NMHC Sources in O3 Formation at Urban and Suburban Sites in Shanghai. Atmosphere, 2020, 11, 295.	1.0	22
127	Ozone–vegetation feedback through dry deposition and isoprene emissions in aÂglobal chemistry–carbon–climate model. Atmospheric Chemistry and Physics, 2020, 20, 3841-3857.	1.9	18
128	Environmental effects of stratospheric ozone depletion, UV radiation and interactions with climate change: UNEP Environmental Effects Assessment Panel, update 2019. Photochemical and Photobiological Sciences, 2020, 19, 542-584.	1.6	59
129	Satellite-based separation of climatic and surface influences on global aerosol change. International Journal of Remote Sensing, 2020, 41, 5443-5456.	1.3	15
130	Precursors and potential sources of ground-level ozone in suburban Shanghai. Frontiers of Environmental Science and Engineering, 2020, 14, 1.	3.3	28
131	Modified regional biogenic VOC emissions with actual ozone stress and integrated land cover information: A case study in Yangtze River Delta, China. Science of the Total Environment, 2020, 727, 138703.	3.9	14
132	Impact of volatile organic compounds and photochemical activities on particulate matters during a high ozone episode at urban, suburb and regional background stations in Beijing. Atmospheric Environment, 2020, 236, 117629.	1.9	16
133	WRF-Chem simulations of ozone pollution and control strategy in petrochemical industrialized and heavily polluted Lanzhou City, Northwestern China. Science of the Total Environment, 2020, 737, 139835.	3.9	30
134	Changes in air quality related to the control of coronavirus in China: Implications for traffic and industrial emissions. Science of the Total Environment, 2020, 731, 139133.	3.9	208
135	A study of peroxyacetyl nitrate at a rural site in Beijing based on continuous observations from 2015 to 2019 and the WRF-Chem model. Frontiers of Environmental Science and Engineering, 2020, 14, 1.	3.3	10
136	Ozone pollution over China and India: seasonality and sources. Atmospheric Chemistry and Physics, 2020, 20, 4399-4414.	1.9	79

#	Article	IF	CITATIONS
137	Short-term effects of air pollution on daily single- and co-morbidity cardiorespiratory outpatient visits. Science of the Total Environment, 2020, 729, 138934.	3.9	30
138	Dominance of Heterogeneous Chemistry in Summertime Nitrate Accumulation: Insights from Oxygen Isotope of Nitrate (δ18O–NO3–). ACS Earth and Space Chemistry, 2020, 4, 818-824.	1.2	8
140	The impact of synoptic patterns on summertime ozone pollution in the North China Plain. Science of the Total Environment, 2020, 735, 139559.	3.9	73
141	Spatio-temporal variations and trends of major air pollutants in China during 2015–2018. Environmental Science and Pollution Research, 2020, 27, 33792-33808.	2.7	27
142	Seasonal characterization of aerosol composition and sources in a polluted city in Central China. Chemosphere, 2020, 258, 127310.	4.2	16
143	Progress of Air Pollution Control in China and Its Challenges and Opportunities in the Ecological Civilization Era. Engineering, 2020, 6, 1423-1431.	3.2	222
144	Real-time source contribution analysis of ambient ozone using an enhanced meta-modeling approach over the Pearl River Delta Region of China. Journal of Environmental Management, 2020, 268, 110650.	3.8	19
145	Peroxyacetyl nitrate (PAN) in the border of Beijing, Tianjin and Hebei of China: Concentration, source apportionment and photochemical pollution assessment. Atmospheric Research, 2020, 246, 105106.	1.8	18
146	Worsening urban ozone pollution in China from 2013 to 2017 – PartÂ1: The complex and varying roles of meteorology. Atmospheric Chemistry and Physics, 2020, 20, 6305-6321.	1.9	200
147	Significant changes in the chemical compositions and sources of PM2.5 in Wuhan since the city lockdown as COVID-19. Science of the Total Environment, 2020, 739, 140000.	3.9	173
148	A review of surface ozone source apportionment in China. Atmospheric and Oceanic Science Letters, 2020, 13, 470-484.	0.5	30
149	Ozone pollution in the west China rain zone and its adjacent regions, Southwestern China: Concentrations, ecological risk, and Sources. Chemosphere, 2020, 256, 127008.	4.2	16
150	Quantifying source contributions of volatile organic compounds under hydraulic fracking moratorium. Science of the Total Environment, 2020, 732, 139322.	3.9	4
151	Speciated NMVOCs Emission Inventories from Industrial Sources in China and Spatial Patterns of Ozone Formation Potential in 2016. IOP Conference Series: Earth and Environmental Science, 2020, 489, 012004.	0.2	0
152	Unexpected air pollution with marked emission reductions during the COVID-19 outbreak in China. Science, 2020, 369, 702-706.	6.0	563
153	The influence of meteorology and emissions on the spatio-temporal variability of PM10 in Malaysia. Atmospheric Research, 2020, 246, 105107.	1.8	8
154	Wintertime Particulate Matter Decrease Buffered by Unfavorable Chemical Processes Despite Emissions Reductions in China. Geophysical Research Letters, 2020, 47, e2020GL087721.	1.5	40
155	Worsening urban ozone pollution in China from 2013 to 2017 – PartÂ2: The effects of emission changes and implications for multi-pollutant control. Atmospheric Chemistry and Physics, 2020, 20, 6323-6337.	1.9	173

#	Article	IF	CITATIONS
156	Spatiotemporal distributions of surface ozone levels in China from 2005 to 2017: A machine learning approach. Environment International, 2020, 142, 105823.	4.8	122
157	Implementation of Yale Interactive terrestrial Biosphere model v1.0 into GEOS-Chem v12.0.0: a tool for biosphere–chemistry interactions. Geoscientific Model Development, 2020, 13, 1137-1153.	1.3	16
158	Increasing surface ozone and enhanced secondary organic carbon formation at a city junction site: An epitome of the Yangtze River Delta, China (2014–2017). Environmental Pollution, 2020, 265, 114847.	3.7	16
159	Porous manganese oxides synthesized with natural products at room temperature: a superior humidity-tolerant catalyst for ozone decomposition. Catalysis Science and Technology, 2020, 10, 2254-2267.	2.1	25
160	Effects of meteorological conditions and anthropogenic precursors on ground-level ozone concentrations in Chinese cities. Environmental Pollution, 2020, 262, 114366.	3.7	64
161	Rapid Increases in Warm-Season Surface Ozone and Resulting Health Impact in China Since 2013. Environmental Science and Technology Letters, 2020, 7, 240-247.	3.9	255
162	Contrasting trends of PM2.5 and surface-ozone concentrations in China from 2013 to 2017. National Science Review, 2020, 7, 1331-1339.	4.6	284
163	Effect of changing NO _{<i>x</i>} lifetime on the seasonality and long-term trends of satellite-observed tropospheric NO ₂ columns over China. Atmospheric Chemistry and Physics, 2020, 20, 1483-1495	1.9	135
164	Responses of gaseous sulfuric acid and particulate sulfate to reduced SO2 concentration: A perspective from long-term measurements in Beijing. Science of the Total Environment, 2020, 721, 137700.	3.9	28
165	Yield and economic losses in maize caused by ambient ozone in the North China Plain (2014–2017). Science of the Total Environment, 2020, 722, 137958.	3.9	26
166	Spatial Association Pattern of Air Pollution and Influencing Factors in the Beijing–Tianjin–Hebei Air Pollution Transmission Channel: A Case Study in Henan Province. International Journal of Environmental Research and Public Health, 2020, 17, 1598.	1.2	14
167	Persistent Heavy Winter Nitrate Pollution Driven by Increased Photochemical Oxidants in Northern China. Environmental Science & Technology, 2020, 54, 3881-3889.	4.6	180
168	Increasing ambient surface ozone levels over the UK accompanied by fewer extreme events. Atmospheric Environment, 2020, 237, 117627.	1.9	17
169	Seasonal prediction of surface O3-related meteorological conditions in summer in North China. Atmospheric Research, 2020, 246, 105110.	1.8	12
170	Persistent ozone pollution episodes in North China exacerbated by regional transport. Environmental Pollution, 2020, 265, 115056.	3.7	63
171	Future atmospheric circulations benefit ozone pollution control in Beijing-Tianjin-Hebei with global warming. Science of the Total Environment, 2020, 743, 140645.	3.9	21
172	Kinetic and mechanism studies of the ozonolysis of three unsaturated ketones. Journal of Environmental Sciences, 2020, 95, 23-32.	3.2	3
173	High energy efficient degradation of toluene using a novel double dielectric barrier discharge reactor. Journal of Hazardous Materials, 2020, 400, 123259.	6.5	33

#	Article	IF	CITATIONS
174	Nitrogen oxides and ozone in urban air: A review of 50 plus years of progress. Environmental Progress and Sustainable Energy, 2020, 39, e13484.	1.3	21
175	A chemical cocktail during the COVID-19 outbreak in Beijing, China: Insights from six-year aerosol particle composition measurements during the Chinese New Year holiday. Science of the Total Environment, 2020, 742, 140739.	3.9	138
176	Changes in ozone production and VOC reactivity in the atmosphere of the Mexico City Metropolitan Area. Atmospheric Environment, 2020, 238, 117747.	1.9	39
177	Characteristics of urban air pollution in different regions of China between 2015 and 2019. Building and Environment, 2020, 180, 107048.	3.0	26
178	Significant decreases in the volatile organic compound concentration, atmospheric oxidation capacity and photochemical reactivity during the National Day holiday over a suburban site in the North China Plain. Environmental Pollution, 2020, 263, 114657.	3.7	29
179	Effects of Anthropogenic Chlorine on PM _{2.5} and Ozone Air Quality in China. Environmental Science & Technology, 2020, 54, 9908-9916.	4.6	38
180	Effects of Elevated Temperature and Ozone in Brassica juncea L.: Growth, Physiology, and ROS Accumulation. Forests, 2020, 11, 68.	0.9	18
181	Analysis of wintertime O3 variability using a random forest model and high-frequency observations in Zhangjiakou—an area with background pollution level of the North China Plain. Environmental Pollution, 2020, 262, 114191.	3.7	11
182	A Stratospheric Intrusion-Influenced Ozone Pollution Episode Associated with an Intense Horizontal-Trough Event. Atmosphere, 2020, 11, 164.	1.0	17
183	3, 3′-Diaminobenzidine with dual o-phenylenediamine groups: two in one enables visual colorimetric detection of nitric oxide. Analytical and Bioanalytical Chemistry, 2020, 412, 2545-2550.	1.9	2
184	Reversal of Aerosol Properties in Eastern China with Rapid Decline of Anthropogenic Emissions. Remote Sensing, 2020, 12, 523.	1.8	13
185	Meteorological mechanism for a large-scale persistent severe ozone pollution event over eastern China in 2017. Journal of Environmental Sciences, 2020, 92, 187-199.	3.2	63
186	Temporal variations of six ambient criteria air pollutants from 2015 to 2018, their spatial distributions, health risks and relationships with socioeconomic factors during 2018 in China. Environment International, 2020, 137, 105556.	4.8	122
187	Estimating Ground-Level Ozone Concentrations in Eastern China Using Satellite-Based Precursors. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58, 4754-4763.	2.7	40
188	VOCs evaporative emissions from vehicles in China: Species characteristics of different emission processes. Environmental Science and Ecotechnology, 2020, 1, 100002.	6.7	26
189	Pollution Trends in China from 2000 to 2017: A Multi-Sensor View from Space. Remote Sensing, 2020, 12, 208.	1.8	32
190	Interactive effects of air pollutants and atmospheric moisture stress on aspen growth and photosynthesis along an urban-rural gradient. Environmental Pollution, 2020, 260, 114076.	3.7	12
191	The impact of volatile organic compounds on ozone formation in the suburban area of Shanghai. Atmospheric Environment, 2020, 232, 117511.	1.9	53

#	Article	IF	CITATIONS
192	No Evidence for a Significant Impact of Heterogeneous Chemistry on Radical Concentrations in the North China Plain in Summer 2014. Environmental Science & Technology, 2020, 54, 5973-5979.	4.6	67
193	Ozone pollution characteristics and sensitivity analysis using an observation-based model in Nanjing, Yangtze River Delta Region of China. Journal of Environmental Sciences, 2020, 93, 13-22.	3.2	60
194	Characteristic and Spatiotemporal Variation of Air Pollution in Northern China Based on Correlation Analysis and Clustering Analysis of Five Air Pollutants. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031931.	1.2	33
195	Estimation of Secondary Organic Aerosol Formation During a Photochemical Smog Episode in Shanghai, China. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032033.	1.2	21
197	Future impacts of ozone driven damages on agricultural systems. Atmospheric Environment, 2020, 231, 117538.	1.9	30
198	Relationships of ozone formation sensitivity with precursors emissions, meteorology and land use types, in Guangdong-Hong Kong-Macao Greater Bay Area, China. Journal of Environmental Sciences, 2020, 94, 1-13.	3.2	31
199	Potential Effect of Halogens on Atmospheric Oxidation and Air Quality in China. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032058.	1.2	30
200	Analysis and accurate prediction of ambient PM2.5 in China using Multi-layer Perceptron. Atmospheric Environment, 2020, 232, 117534.	1.9	26
201	Climate anomalies contributed to the rebound of PM2.5 in winter 2018 under intensified regional air pollution preventions. Science of the Total Environment, 2020, 726, 138514.	3.9	28
202	Development of a coupled aerosol lidar data quality assurance and control scheme with Monte Carlo analysis and bilateral filtering. Science of the Total Environment, 2020, 728, 138844.	3.9	6
203	Effect of restricted emissions during COVID-19 on air quality in India. Science of the Total Environment, 2020, 728, 138878.	3.9	798
204	Mitigation of PM _{2.5} and ozone pollution in Delhi: a sensitivity study during the pre-monsoon period. Atmospheric Chemistry and Physics, 2020, 20, 499-514.	1.9	52
205	Enhanced secondary pollution offset reduction of primary emissions during COVID-19 lockdown in China. National Science Review, 2021, 8, nwaa137.	4.6	493
206	Significant concurrent decrease in PM2.5 and NO2 concentrations in China during COVID-19 epidemic. Journal of Environmental Sciences, 2021, 99, 346-353.	3.2	126
207	Transport and boundary layer interaction contribution to extremely high surface ozone levels in eastern China. Environmental Pollution, 2021, 268, 115804.	3.7	16
208	Physiochemistry characteristics and sources of submicron aerosols at the background area of North China Plain: Implication of air pollution control in heating season. Atmospheric Research, 2021, 249, 105291.	1.8	10
209	Avoiding high ozone pollution in Delhi, India. Faraday Discussions, 2021, 226, 502-514.	1.6	42
210	Spatiotemporal variations and reduction of air pollutants during the COVID-19 pandemic in a megacity of Yangtze River Delta in China. Science of the Total Environment, 2021, 751, 141820	3.9	90

#	Article	IF	CITATIONS
211	Synoptic weather and surface ozone concentration in South Korea. Atmospheric Environment, 2021, 244, 117985.	1.9	12
212	PM2.5 chemistry, organosulfates, and secondary organic aerosol during the 2017 Lake Michigan Ozone Study. Atmospheric Environment, 2021, 244, 117939.	1.9	31
213	Important contributions of alkenes and aromatics to VOCs emissions, chemistry and secondary pollutants formation at an industrial site of central eastern China. Atmospheric Environment, 2021, 244, 117927.	1.9	27
214	Assessing the immediate impact of COVID-19 lockdown on the air quality of Kolkata and Howrah, West Bengal, India. Environment, Development and Sustainability, 2021, 23, 8613-8642.	2.7	27
215	Quantifying the anthropogenic and meteorological influences on summertime surface ozone in China over 2012–2017. Science of the Total Environment, 2021, 754, 142394.	3.9	104
216	A comprehensive spatial and temporal vehicular emissions for northeast China. Atmospheric Environment, 2021, 244, 117952.	1.9	10
217	Impact of long-range atmospheric transport on volatile organic compounds and ozone photochemistry at a regional background site in central China. Atmospheric Environment, 2021, 246, 118093.	1.9	9
218	Long-term characterization of aerosol chemistry in cold season from 2013 to 2020 in Beijing, China. Environmental Pollution, 2021, 268, 115952.	3.7	56
219	Intensive field campaigns as a means for improving scientific knowledge to address urban air pollution. Atmospheric Environment, 2021, 246, 118094.	1.9	4
220	Synergetic impacts of precursory climate drivers on interannual-decadal variations in haze pollution in North China: A review. Science of the Total Environment, 2021, 755, 143017.	3.9	23
221	A new classification approach to enhance future VOCs emission policies: Taking solvent-consuming industry as an example. Environmental Pollution, 2021, 268, 115868.	3.7	27
222	Ozone pollution in China: Background and transboundary contributions to ozone concentration & related health effects across the country. Science of the Total Environment, 2021, 761, 144131.	3.9	29
223	Assessment of the policy effectiveness of Central Inspections of Environmental Protection on improving air quality in China. Journal of Cleaner Production, 2021, 288, 125100.	4.6	42
224	Enhanced photochemical formation of secondary organic aerosols during the COVID-19 lockdown in Northern China. Science of the Total Environment, 2021, 758, 143709.	3.9	22
225	Co-occurrence of ozone and PM2.5 pollution in the Yangtze River Delta over 2013–2019: Spatiotemporal distribution and meteorological conditions. Atmospheric Research, 2021, 249, 105363.	1.8	59
226	Dynamic model to predict the association between air quality, COVID-19 cases, and level of lockdown. Environmental Pollution, 2021, 268, 115920.	3.7	27
227	Characteristics and sources of volatile organic compounds during high ozone episodes: A case study at a site in the eastern Guanzhong Plain, China. Chemosphere, 2021, 265, 129072.	4.2	35
228	Continuous increases of surface ozone and associated premature mortality growth in China during 2015–2019. Environmental Pollution, 2021, 269, 116183.	3.7	47

#	Article	IF	Citations
229	Combined effects of increased O3 and reduced NO2 concentrations on short-term air pollution health risks in Hong Kong. Environmental Pollution, 2021, 270, 116280.	3.7	35
230	Role of emissions and meteorology in the recent PM2.5 changes in China and South Korea from 2015 to 2018. Environmental Pollution, 2021, 270, 116233.	3.7	33
231	Tropospheric Ozone Variability Over Hong Kong Based on Recent 20Âyears (2000–2019) Ozonesonde Observation. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033054.	1.2	25
232	Rising surface ozone in China from 2013 to 2017: A response to the recent atmospheric warming or pollutant controls?. Atmospheric Environment, 2021, 246, 118130.	1.9	36
233	Enhanced PM 2.5 Decreases and O 3 Increases in China During COVIDâ€19 Lockdown by Aerosolâ€Radiation Feedback. Geophysical Research Letters, 2021, 48, e2020GL090260.	1.5	15
234	Policy-driven changes in the health risk of PM2.5 and O3 exposure in China during 2013–2018. Science of the Total Environment, 2021, 757, 143775.	3.9	55
235	Characteristics of the vertical distribution of tropospheric ozone in late autumn at Yangjiang station in Pearl River Delta (PRD), China. Partâ: Observed event. Atmospheric Environment, 2021, 244, 117898.	1.9	13
236	Climatological intraseasonal oscillation of the summertime haze-fog in eastern China. Atmospheric Environment, 2021, 244, 117951.	1.9	2
237	Impact of SARS-CoV-2 lockdown and de-escalation on air-quality parameters. Chemosphere, 2021, 265, 129027.	4.2	15
238	Recent advances in studies of ozone pollution and impacts in China: A short review. Current Opinion in Environmental Science and Health, 2021, 19, 100225.	2.1	21
239	Characterization of the aerosol chemical composition during the COVID-19 lockdown period in Suzhou in the Yangtze River Delta, China. Journal of Environmental Sciences, 2021, 102, 110-122.	3.2	28
240	COVID-19 lockdown: a boon in boosting the air quality of major Indian Metropolitan Cities. Aerobiologia, 2021, 37, 79-103.	0.7	8
241	Vertical distributions of boundary-layer ozone and fine aerosol particles during the emission control period of the G20 summit in Shanghai, China. Atmospheric Pollution Research, 2021, 12, 352-364.	1.8	15
242	Understanding ozone pollution in the Yangtze River Delta of eastern China from the perspective of diurnal cycles. Science of the Total Environment, 2021, 752, 141928.	3.9	50
243	Changes of air quality and its associated health and economic burden in 31 provincial capital cities in China during COVID-19 pandemic. Atmospheric Research, 2021, 249, 105328.	1.8	60
244	Bypassing the NOx titration trap in ozone pollution control in Beijing. Atmospheric Research, 2021, 249, 105333.	1.8	46
245	On the local anthropogenic source diversities and transboundary transport for urban agglomeration ozone mitigation. Atmospheric Environment, 2021, 245, 118005.	1.9	13
246	Quadrennial variability and trends of surface ozone across China during 2015–2018: A regional approach. Atmospheric Environment, 2021, 245, 117989.	1.9	17

#	Article	IF	CITATIONS
247	Impacts of nationwide lockdown due to COVID-19 outbreak on air quality in Bangladesh: a spatiotemporal analysis. Air Quality, Atmosphere and Health, 2021, 14, 351-363.	1.5	46
248	Model vs. observation discrepancy in aerosol characteristics during a half-year long campaign in Northeast China: The role of biomass burning. Environmental Pollution, 2021, 269, 116167.	3.7	15
249	Investigating the biophysical and socioeconomic determinants of China tropospheric O3 pollution based on a multilevel analysis approach. Environmental Geochemistry and Health, 2021, 43, 2835-2849.	1.8	1
250	Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change: UNEP Environmental Effects Assessment Panel, Update 2020. Photochemical and Photobiological Sciences, 2021, 20, 1-67.	1.6	93
251	Abrupt but smaller than expected changes in surface air quality attributable to COVID-19 lockdowns. Science Advances, 2021, 7, .	4.7	209
252	Contributions of World Regions to the Global Tropospheric Ozone Burden Change From 1980 to 2010. Geophysical Research Letters, 2021, 48, .	1.5	22
253	Introductory lecture: air quality in megacities. Faraday Discussions, 2021, 226, 9-52.	1.6	34
254	Rapid increase in summer surface ozone over the North China Plain during 2013–2019: a side effect of particulate matter reduction control?. Atmospheric Chemistry and Physics, 2021, 21, 1-16.	1.9	56
255	Weakened Aerosolâ€PBL Interaction During COVIDâ€19 Lockdown in Northern China. Geophysical Research Letters, 2021, 48, e2020GL090542.	1.5	16
256	Impact of western Pacific subtropical high on ozone pollution over eastern China. Atmospheric Chemistry and Physics, 2021, 21, 2601-2613.	1.9	30
257	Low-NO atmospheric oxidation pathways in a polluted megacity. Atmospheric Chemistry and Physics, 2021, 21, 1613-1625.	1.9	24
258	Evaluating the sensitivity of radical chemistry and ozone formation to ambient VOCs and NO _{<i>x</i>} in Beijing. Atmospheric Chemistry and Physics, 2021, 21, 2125-2147.	1.9	64
259	Synergetic effect of El Niñoâ€Southern Oscillation and Indian Ocean Dipole on particulate matter in Guangdong, China. International Journal of Climatology, 2021, 41, 3615-3627.	1.5	0
260	Emissions Reduction of Greenhouse Gases, Ozone Precursors, Aerosols and Acidifying Gases from Road Transportation during the COVID-19 Lockdown in Colombia. Applied Sciences (Switzerland), 2021, 11, 1458.	1.3	18
261	Measurement report: Effects of photochemical aging on the formation and evolution of summertime secondary aerosol in Beijing. Atmospheric Chemistry and Physics, 2021, 21, 1341-1356.	1.9	18
262	Impacts of chlorine emissions on secondary pollutants in China. Atmospheric Environment, 2021, 246, 118177.	1.9	7
263	Spatiotemporal impact of major events on air quality based on spatial differences-in-differences model: big data analysis from China. Natural Hazards, 2021, 107, 2583-2604.	1.6	6
264	A 6-year-long (2013–2018) high-resolution air quality reanalysis dataset in China based on the assimilation of surface observations from CNEMC. Earth System Science Data, 2021, 13, 529-570.	3.7	109

#	Article	IF	CITATIONS
265	Unraveling Street-Level Air Pollution upon a Pivotal City of Yangtze River Delta, China. Aerosol Science and Engineering, 2021, 5, 166-192.	1.1	1
266	Temporal variations and spatial distributions of gaseous and particulate air pollutants and their health risks during 2015–2019 in China. Environmental Pollution, 2021, 272, 116031.	3.7	52
267	Ozone pollution in the North China Plain spreading into the late-winter haze season. Proceedings of the United States of America, 2021, 118, .	3.3	138
268	On the Relevancy of Observed Ozone Increase during COVID-19 Lockdown to Summertime Ozone and PM _{2.5} Control Policies in China. Environmental Science and Technology Letters, 2021, 8, 289-294.	3.9	49
269	Mapping Yearly Fine Resolution Global Surface Ozone through the Bayesian Maximum Entropy Data Fusion of Observations and Model Output for 1990–2017. Environmental Science & Technology, 2021, 55, 4389-4398.	4.6	47
270	Surface Ozone in the Yangtze River Delta, China: A Synthesis of Basic Features, Meteorological Driving Factors, and Health Impacts. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033600.	1.2	24
271	The objects, agents, and tools of Chinese co-governance on air pollution: a review. Environmental Science and Pollution Research, 2021, 28, 24972-24991.	2.7	3
272	A high ozone event over Beijing after the May 2017 Belt and Road Forum. Atmospheric Pollution Research, 2021, 12, 334-344.	1.8	10
273	An analysis and review on the global NO ₂ emission during lockdowns in COVID-19 period. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-21.	1.2	18
274	Identification of long-term evolution of ozone sensitivity to precursors based on two-dimensional mutual verification. Science of the Total Environment, 2021, 760, 143401.	3.9	14
275	Drivers-pressures-state-impact-response framework of hazardous waste management in China. Critical Reviews in Environmental Science and Technology, 2022, 52, 2930-2961.	6.6	20
276	Phase-wise analysis of the COVID-19 lockdown impact on aerosol, radiation and trace gases and associated chemistry in a tropical rural environment. Environmental Research, 2021, 194, 110665.	3.7	27
277	Source Apportionment of Regional Ozone Pollution Observed at Mount Tai, North China: Application of Lagrangian Photochemical Trajectory Model and Implications for Control Policy. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033519.	1.2	7
278	Understanding the impact of meteorology on ozone in 334 cities of China. Atmospheric Environment, 2021, 248, 118221.	1.9	45
279	Ozone variability induced by synoptic weather patterns in warm seasons of 2014–2018 over the Yangtze River Delta region, China. Atmospheric Chemistry and Physics, 2021, 21, 5847-5864.	1.9	24
280	Significance of carbonyl compounds to photochemical ozone formation in a coastal city (Shantou) in eastern China. Science of the Total Environment, 2021, 764, 144031.	3.9	33
281	Air quality and synergistic health effects of ozone and nitrogen oxides in response to China's integrated air quality control policies during 2015–2019. Chemosphere, 2021, 268, 129385.	4.2	22
282	Sensitivities of Ozone Air Pollution in the Beijing–Tianjin–Hebei Area to Local and Upwind Precursor Emissions Using Adjoint Modeling. Environmental Science & Technology, 2021, 55, 5752-5762.	4.6	35

#	Article	IF	CITATIONS
283	Chemical characteristics, source apportionment, and regional contribution of PM2.5 in Zhangjiakou, Northern China: A multiple sampling sites observation and modeling perspective. Environmental Advances, 2021, 3, 100034.	2.2	14
284	Substantial decreases of light absorption, concentrations and relative contributions of fossil fuel to light-absorbing carbonaceous aerosols attributed to the COVID-19 lockdown in east China. Environmental Pollution, 2021, 275, 116615.	3.7	15
285	Exploring the spatial heterogeneity and temporal homogeneity of ambient PM10 in nine core cities of China. Scientific Reports, 2021, 11, 8991.	1.6	7
286	Impact of emissions from a single urban source on air quality estimated from mobile observation and WRF-STILT model simulations. Air Quality, Atmosphere and Health, 2021, 14, 1313-1323.	1.5	7
287	Air Quality During COVID-19 Lockdown in the Yangtze River Delta and the Pearl River Delta: Two Different Responsive Mechanisms to Emission Reductions in China. Environmental Science & Technology, 2021, 55, 5721-5730.	4.6	50
288	Air pollution trends measured from Terra: CO and AOD over industrial, fire-prone, and background regions. Remote Sensing of Environment, 2021, 256, 112275.	4.6	41
289	An operational monitoring method for full coverage pollution enterprises based on satellite remote sensing. Atmospheric Pollution Research, 2021, 12, 141-151.	1.8	4
290	More mileage in reducing urban air pollution from road traffic. Environment International, 2021, 149, 106329.	4.8	62
291	Long-term trends of surface ozone in Korea. Journal of Cleaner Production, 2021, 294, 125352.	4.6	20
292	Regional Policies Targeting Residential Solid Fuel and Agricultural Emissions Can Improve Air Quality and Public Health in the Greater Bay Area and Across China. GeoHealth, 2021, 5, e2020GH000341.	1.9	9
293	Spatial and Temporal Distributions and Sources of Anthropogenic NMVOCs in the Atmosphere of China: A Review. Advances in Atmospheric Sciences, 2021, 38, 1085-1100.	1.9	15
294	The relationship between air pollutants and COVID-19 cases and its implications for air quality in Jakarta, Indonesia. Journal of Natural Resources and Environmental Management, 2021, 11, 93-100.	0.0	2
295	Ambient PM _{2.5} and Related Health Impacts of Spontaneous Combustion of Coal and Coal Gangue. Environmental Science & Contended Science, 2021, 55, 5763-5771.	4.6	16
296	The Role of Primary Emission and Transboundary Transport in the Air Quality Changes During and After the COVIDâ€19 Lockdown in China. Geophysical Research Letters, 2021, 48, e2020GL091065.	1.5	42
297	ROx Budgets and O3 Formation during Summertime at Xianghe Suburban Site in the North China Plain. Advances in Atmospheric Sciences, 2021, 38, 1209-1222.	1.9	8
298	An improved decomposition method to differentiate meteorological and anthropogenic effects on air pollution: A national study in China during the COVID-19 lockdown period. Atmospheric Environment, 2021, 250, 118270.	1.9	18
299	Untangling the contributions of meteorological conditions and human mobility to tropospheric NO2 in Chinese mainland during the COVID-19 pandemic in early 2020. National Science Review, 2021, 8, nwab061.	4.6	8
300	Understanding global changes in fine-mode aerosols during 2008–2017 using statistical methods and deep learning approach. Environment International, 2021, 149, 106392.	4.8	17

#	Article	IF	CITATIONS
301	Heterogeneous Nitrate Production Mechanisms in Intense Haze Events in the North China Plain. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034688.	1.2	25
302	Spatiotemporal Changes of Near-Surface Ozone Concentration From 2015 to 2018 in Beijing. Frontiers in Environmental Science, 2021, 9, .	1.5	4
303	Ambient volatile organic compounds in a heavy industrial city: Concentration, ozone formation potential, sources, and health risk assessment. Atmospheric Pollution Research, 2021, 12, 101053.	1.8	30
304	Impact of regional Northern Hemisphere mid-latitude anthropogenic sulfur dioxide emissions on local and remote tropospheric oxidants. Atmospheric Chemistry and Physics, 2021, 21, 6799-6810.	1.9	3
305	The influence of aerosols on the NO2 photolysis rate in a suburban site in North China. Science of the Total Environment, 2021, 767, 144788.	3.9	11
306	Transition in air pollution, disease burden and health cost in China: A comparative study of long-term and short-term exposure. Environmental Pollution, 2021, 277, 116770.	3.7	52
307	Responses of fine particulate matter and ozone to local emission reductions in the Sichuan Basin, southwestern China. Environmental Pollution, 2021, 277, 116793.	3.7	12
308	Impacts of Meteorology and Emissions on O3 Pollution during 2013–2018 and Corresponding Control Strategy for a Typical Industrial City of China. Atmosphere, 2021, 12, 619.	1.0	7
309	Comprehensive Insights Into O ₃ Changes During the COVIDâ€19 From O ₃ Formation Regime and Atmospheric Oxidation Capacity. Geophysical Research Letters, 2021, 48, e2021GL093668.	1.5	32
310	Oxidation and sources of atmospheric NOx during winter in Beijing based on δ18O-δ15N space of particulate nitrate. Environmental Pollution, 2021, 276, 116708.	3.7	16
311	Long-range transport of ozone across the eastern China seas: A case study in coastal cities in southeastern China. Science of the Total Environment, 2021, 768, 144520.	3.9	34
312	Continuous multi-component MAX-DOAS observations for the planetary boundary layer ozone variation analysis at Chiba and Tsukuba, Japan, from 2013 to 2019. Progress in Earth and Planetary Science, 2021, 8, .	1.1	8
313	Temporal trends of atmospheric PAHs: Implications for the influence of the clean air action. Journal of Cleaner Production, 2021, 296, 126494.	4.6	22
314	Current Status, Characteristics and Causes of Particulate Air Pollution in the Fenwei Plain, China: A Review. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034472.	1.2	40
315	Coordinated control of PM2.5 and O3 is urgently needed in China after implementation of the "Air pollution prevention and control action plan― Chemosphere, 2021, 270, 129441.	4.2	121
316	Spatial and temporal changes of the ozone sensitivity in China based on satellite and ground-based observations. Atmospheric Chemistry and Physics, 2021, 21, 7253-7269.	1.9	93
317	Application of smog chambers in atmospheric process studies. National Science Review, 2022, 9, nwab103.	4.6	21
318	Distinct spatiotemporal variation patterns of surface ozone in China due to diverse influential factors. Journal of Environmental Management, 2021, 288, 112368.	3.8	34

#	Article	IF	CITATIONS
319	Effects of heterogeneous reactions on tropospheric chemistry: a global simulation with the chemistry–climate model CHASER V4.0. Geoscientific Model Development, 2021, 14, 3813-3841.	1.3	5
320	Global tropospheric ozone responses to reduced NO _{<i>x</i>} emissions linked to the COVID-19 worldwide lockdowns. Science Advances, 2021, 7, .	4.7	72
321	Control Models and Spatiotemporal Characteristics of Air Pollution in the Rapidly Developing Urban Agglomerations. International Journal of Environmental Research and Public Health, 2021, 18, 6177.	1.2	6
322	Aircraft-based observation of gaseous pollutants in the lower troposphere over the Beijing-Tianjin-Hebei region. Science of the Total Environment, 2021, 773, 144818.	3.9	7
323	Identifying hotspots based on high-resolution emission inventory of volatile organic compounds: A case study in China. Journal of Environmental Management, 2021, 288, 112419.	3.8	12
324	Analysis of the Effect of Optical Properties of Black Carbon on Ozone in an Urban Environment at the Yangtze River Delta, China. Advances in Atmospheric Sciences, 2021, 38, 1153-1164.	1.9	7
325	Significant contribution of spring northwest transport to volatile organic compounds in Beijing. Journal of Environmental Sciences, 2021, 104, 169-181.	3.2	20
326	Rapid sulfate formation from synergetic oxidation of SO2 by O3 and NO2 under ammonia-rich conditions: Implications for the explosive growth of atmospheric PM2.5 during haze events in China. Science of the Total Environment, 2021, 772, 144897.	3.9	30
327	Role of Heat Waveâ€induced Biogenic VOC Enhancements in Persistent Ozone Episodes Formation in Pearl River Delta. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034317.	1.2	16
328	Patterns and trends of ozone and carbon monoxide at Ushuaia (Argentina) observatory. Atmospheric Research, 2021, 255, 105551.	1.8	0
329	An unusual high ozone event over the North and Northeast China during the record-breaking summer in 2018. Journal of Environmental Sciences, 2021, 104, 264-276.	3.2	6
330	Parameterized atmospheric oxidation capacity and speciated OH reactivity over a suburban site in the North China Plain: A comparative study between summer and winter. Science of the Total Environment, 2021, 773, 145264.	3.9	17
331	Observations and modeling of OH and HO2 radicals in Chengdu, China in summer 2019. Science of the Total Environment, 2021, 772, 144829.	3.9	28
332	Ozone Continues to Increase in East Asia Despite Decreasing NO2: Causes and Abatements. Remote Sensing, 2021, 13, 2177.	1.8	20
333	A Multiâ€Dimensional Decomposition Method of the Meteorologyâ€Driven and Emissionâ€Driven Effects on Yearâ€toâ€Year Air Quality Variations. Earth and Space Science, 2021, 8, e2020EA001424.	1.1	0
334	Impacts of Ozoneâ€Vegetation Interactions on Ozone Pollution Episodes in North China and the Yangtze River Delta. Geophysical Research Letters, 2021, 48, e2021GL093814.	1.5	14
335	Elucidating the quantitative characterization of atmospheric oxidation capacity in Beijing, China. Science of the Total Environment, 2021, 771, 145306.	3.9	27
336	Exploring the Drivers and Photochemical Impact of the Positive Correlation between Single Scattering Albedo and Aerosol Optical Depth in the Troposphere. Environmental Science and Technology Letters, 2021, 8, 504-510.	3.9	7

		CITATION REPORT		
#	Article		IF	CITATIONS
337	Air pollution perception in ten countries during the COVID-19 pandemic. Ambio, 2022,	51, 531-545.	2.8	17
338	Model analysis of meteorology and emission impacts on springtime surface ozone in S Science of the Total Environment, 2021, 771, 144784.	handong.	3.9	7
339	Assessing air quality changes in heavily polluted cities during the COVID-19 pandemic: Xi'an, China. Sustainable Cities and Society, 2021, 70, 102934.	A case study in	5.1	20
340	Drivers of PM2.5 air pollution deaths in China 2002–2017. Nature Geoscience, 2021	, 14, 645-650.	5.4	197
341	Unexpected enhancement of ozone exposure and health risks during National Day in C Atmospheric Chemistry and Physics, 2021, 21, 10347-10356.	hina.	1.9	11
342	Evolution of secondary inorganic aerosols amidst improving PM2.5 air quality in the No plain. Environmental Pollution, 2021, 281, 117027.	orth China	3.7	13
343	Quantitative assessment of changes in surface particulate matter concentrations and emissions over China during the COVID-19 pandemic and their implications for Chinese activity. Atmospheric Chemistry and Physics, 2021, 21, 10065-10080.	precursor e economic	1.9	12
345	Emission source-based ozone isopleth and isosurface diagrams and their significance ir pollution control strategies. Journal of Environmental Sciences, 2021, 105, 138-149.	i ozone	3.2	6
346	Chinese Regulations Are Working—Why Is Surface Ozone Over Industrialized Areas S Applying Lessons From Northeast US Air Quality Evolution. Geophysical Research Lette e2021GL092816.	itill High? rrs, 2021, 48,	1.5	50
347	Development of ozone reactivity scales for volatile organic compounds in a Chinese m Atmospheric Chemistry and Physics, 2021, 21, 11053-11068.	egacity.	1.9	53
348	Enhanced formation of secondary organic aerosol from photochemical oxidation durin COVID-19 lockdown in a background site in Northwest China. Science of the Total Env 778, 144947.	g the ironment, 2021,	3.9	19
349	Effects of air pollutants and their interactive environmental factors on winter wheat yie of Cleaner Production, 2021, 305, 127230.	eld. Journal	4.6	7
350	Uptake of nitrogen forms by diploid and triploid white poplar depends on seasonal carl strategy and elevated summer ozone. Journal of Experimental Botany, 2021, 72, 7180-	oon use 7190.	2.4	4
351	VOC Characteristics and Their Source Apportionment in the Yangtze River Delta Region Summit. Atmosphere, 2021, 12, 928.	n during the G20	1.0	7
352	Impact of Short-Term Emission Control Measures on Air Quality in Nanjing During the J Development Summit. Frontiers in Environmental Science, 2021, 9, .	iangsu	1.5	5
353	Contrasting chemical environments in summertime for atmospheric ozone across majo industrial regions: the effectiveness of emission control strategies. Atmospheric Chemi Physics, 2021, 21, 10689-10706.	r Chinese stry and	1.9	18
354	Photolysis rate in the Beijing-Tianjin-Hebei region: Reconstruction and long-term trend. Research, 2021, 256, 105568.	Atmospheric	1.8	6
355	Decadal changes of connections among late-spring snow cover in West Siberia, summe teleconnection and O ₃ -related meteorolog Atmospheric Chemistry and Physics, 2021, 21, 11519-11530.	er Eurasia y in North China.	1.9	4

#	Article	IF	CITATIONS
356	Ozone and its precursors in a high-elevation and highly forested region in central China: Origins, in-situ photochemistry and implications of regional transport. Atmospheric Environment, 2021, 259, 118540.	1.9	3
357	Strategies to reduce PM2.5 and O3 together during late summer and early fall in San Joaquin Valley, California. Atmospheric Research, 2021, 258, 105633.	1.8	14
358	Ultraviolet Radiation Environment of a Tropical Megacity in Transition: Mexico City 2000–2019. Environmental Science & Technology, 2021, 55, 10946-10956.	4.6	7
359	The underappreciated role of agricultural soil nitrogen oxide emissions in ozone pollution regulation in North China. Nature Communications, 2021, 12, 5021.	5.8	98
360	A comparative study to reveal the influence of typhoons on the transport, production and accumulation of O ₃ in the Pearl River Delta, China. Atmospheric Chemistry and Physics, 2021, 21, 11593-11612.	1.9	17
361	A comparison investigation of atmospheric NMHCs at two sampling sites of Beijing city and a rural area during summertime. Science of the Total Environment, 2021, 783, 146867.	3.9	9
362	Characteristics and source attribution of PM2.5 during 2016 G20 Summit in Hangzhou: Efficacy of radical measures to reduce source emissions. Journal of Environmental Sciences, 2021, 106, 47-65.	3.2	16
363	A comprehensive investigation of surface ozone pollution in China, 2015–2019: Separating the contributions from meteorology and precursor emissions. Atmospheric Research, 2021, 257, 105599.	1.8	83
364	Reductions in crop yields across China from elevated ozone. Environmental Pollution, 2022, 292, 118218.	3.7	16
365	Differential Effects of the COVID-19 Lockdown and Regional Fire on the Air Quality of MedellÃ n , Colombia. Atmosphere, 2021, 12, 1137.	1.0	2
366	Increased ozone pollution alongside reduced nitrogen dioxide concentrations during Vienna's first COVID-19 lockdown: Significance for air quality management. Environmental Pollution, 2021, 284, 117153.	3.7	40
367	Prospects for ozone pollution control in China: An epidemiological perspective. Environmental Pollution, 2021, 285, 117670.	3.7	38
368	Temporal evolution of aerosols and their extreme events in polluted Asian regions during Terra's 20-year observations. Remote Sensing of Environment, 2021, 263, 112541.	4.6	25
369	Approaches to investigate crop responses to ozone pollution: from O ₃ â€FACE to satelliteâ€enabled modeling. Plant Journal, 2022, 109, 432-446.	2.8	32
370	Key Factors Determining Heterogeneous Uptake Kinetics of NO ₂ Onto Alumina: Implication for the Linkage Between Laboratory Work and Modeling Study. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034694.	1.2	6
371	Heavy ozone pollution episodes in urban Beijing during the early summertime from 2014 to 2017: Implications for control strategy. Environmental Pollution, 2021, 285, 117162.	3.7	17
372	Quantifying the role of PM2.5 dropping in variations of ground-level ozone: Inter-comparison between Beijing and Los Angeles. Science of the Total Environment, 2021, 788, 147712.	3.9	54
373	Spatiotemporal variation of surface ozone and its causes in Beijing, China since 2014. Atmospheric Environment, 2021, 260, 118556.	1.9	23

#	Article	IF	CITATIONS
374	Modeling of the health impacts of ambient ozone pollution in China and India. Atmospheric Environment, 2021, 267, 118753.	1.9	7
375	In situ ozone production is highly sensitive to volatile organic compounds in Delhi, India. Atmospheric Chemistry and Physics, 2021, 21, 13609-13630.	1.9	28
376	Highly Resolved Dynamic Emissions of Air Pollutants and Greenhouse Gas CO ₂ during COVID-19 Pandemic in East China. Environmental Science and Technology Letters, 2021, 8, 853-860.	3.9	13
377	Large variability of O3-precursor relationship during severe ozone polluted period in an industry-driven cluster city (Zibo) of North China Plain. Journal of Cleaner Production, 2021, 316, 128252.	4.6	16
378	Simulation of surface ozone over Hebei province, China using Kolmogorov-Zurbenko and artificial neural network (KZ-ANN) combined model. Atmospheric Environment, 2021, 261, 118599.	1.9	10
379	The diurnal cycle of summer tropospheric ozone concentrations across Chinese cities: Spatial patterns and main drivers. Environmental Pollution, 2021, 286, 117547.	3.7	18
380	Evolution, Transport Characteristics, and Potential Source Regions of PM2.5 and O3 Pollution in a Coastal City of China during 2015–2020. Atmosphere, 2021, 12, 1282.	1.0	3
381	Health and related economic benefits associated with reduction in air pollution during COVID-19 outbreak in 367 cities in China. Ecotoxicology and Environmental Safety, 2021, 222, 112481.	2.9	17
382	Research on accounting and detection of volatile organic compounds from a typical petroleum refinery in Hebei, North China. Chemosphere, 2021, 281, 130653.	4.2	17
383	Empirical ozone isopleths at urban and suburban sites through evolutionary procedure-based models. Journal of Hazardous Materials, 2021, 419, 126386.	6.5	9
384	Diverse response of surface ozone to COVID-19 lockdown in China. Science of the Total Environment, 2021, 789, 147739.	3.9	44
385	Sensitivity of PM2.5 and O3 pollution episodes to meteorological factors over the North China Plain. Science of the Total Environment, 2021, 792, 148474.	3.9	40
386	Double high pollution events in the Yangtze River Delta from 2015 to 2019: Characteristics, trends, and meteorological situations. Science of the Total Environment, 2021, 792, 148349.	3.9	39
387	Impacts of the COVID-19 economic slowdown on ozone pollution in the U.S Atmospheric Environment, 2021, 264, 118713.	1.9	20
388	Characterizing nitrate radical budget trends in Beijing during 2013–2019. Science of the Total Environment, 2021, 795, 148869.	3.9	17
389	Opposite impact of emission reduction during the COVID-19 lockdown period on the surface concentrations of PM2.5 and O3 in Wuhan, China. Environmental Pollution, 2021, 289, 117899.	3.7	46
390	A comprehensive review on anthropogenic volatile organic compounds (VOCs) emission estimates in China: Comparison and outlook. Environment International, 2021, 156, 106710.	4.8	47
391	Air quality benefits of achieving carbon neutrality in China. Science of the Total Environment, 2021, 795, 148784.	3.9	175

#	Article	IF	CITATIONS
392	Removing the effects of meteorological factors on changes in nitrogen dioxide and ozone concentrations in China from 2013 to 2020. Science of the Total Environment, 2021, 793, 148575.	3.9	43
393	Source impact and contribution analysis of ambient ozone using multi-modeling approaches over the Pearl River Delta region, China. Environmental Pollution, 2021, 289, 117860.	3.7	19
394	Subseasonal characteristics and meteorological causes of surface O3 in different East Asian summer monsoon periods over the North China Plain during 2014–2019. Atmospheric Environment, 2021, 264, 118704.	1.9	8
395	Spatiotemporal variability and driving factors of ground-level summertime ozone pollution over eastern China. Atmospheric Environment, 2021, 265, 118686.	1.9	14
396	Impact of meteorological condition changes on air quality and particulate chemical composition during the COVID-19 lockdown. Journal of Environmental Sciences, 2021, 109, 45-56.	3.2	20
397	Photochemical ozone pollution in five Chinese megacities in summer 2018. Science of the Total Environment, 2021, 801, 149603.	3.9	35
398	Characteristics and sources of volatile organic compounds during pollution episodes and clean periods in the Beijing-Tianjin-Hebei region. Science of the Total Environment, 2021, 799, 149491.	3.9	24
399	A review on methodology in O3-NOx-VOC sensitivity study. Environmental Pollution, 2021, 291, 118249.	3.7	46
400	Vertical profiling of black carbon and ozone using a multicopter unmanned aerial vehicle (UAV) in urban Shenzhen of South China. Science of the Total Environment, 2021, 801, 149689.	3.9	24
401	The casual effects of COVID-19 lockdown on air quality and short-term health impacts in China. Environmental Pollution, 2021, 290, 117988.	3.7	16
402	Assessment of health benefit of PM2.5 reduction during COVID-19 lockdown in China and separating contributions from anthropogenic emissions and meteorology. Journal of Environmental Sciences, 2022, 115, 422-431.	3.2	19
403	High crop yield losses induced by potential HONO sources — A modelling study in the North China Plain. Science of the Total Environment, 2022, 803, 149929.	3.9	2
404	A data-driven method of traffic emissions mapping with land use random forest models. Applied Energy, 2022, 305, 117916.	5.1	37
405	VOCs characteristics and their ozone and SOA formation potentials in autumn and winter at Weinan, China Environmental Research, 2022, 203, 111821.	3.7	26
406	A comprehensive investigation on volatile organic compounds (VOCs) in 2018 in Beijing, China: Characteristics, sources and behaviours in response to O3 formation. Science of the Total Environment, 2022, 806, 150247.	3.9	16
407	Development of four-dimensional variational assimilation system based on the GRAPES–CUACE adjoint model (GRAPES–CUACE-4D-Var V1.0) and its application in emission inversion. Geoscientific Model Development, 2021, 14, 337-350.	1.3	6
408	Air pollution and health risk assessment in Northeastern China: A case study of Jilin Province. Indoor and Built Environment, 2021, 30, 1857-1874.	1.5	23
409	Ozone Depletion Identification in Stratosphere Through Faster Region-Based Convolutional Neural Network. Computers, Materials and Continua, 2021, 68, 2159-2178.	1.5	5

#	Article	IF	CITATIONS
410	Enhancement of secondary aerosol formation by reduced anthropogenic emissions during Spring FestivalÂ2019 and enlightenment for regional PM _{2.5} control in Beijing. Atmospheric Chemistry and Physics, 2021, 21, 915-926.	1.9	23
411	Air quality in five major cities of India induced by the COVID-19 pandemic lockdown. Toxicological and Environmental Chemistry, 2021, 103, 50-55.	0.6	0
412	Impacts of COVID-19 on Air Pollution. Disaster Resilience and Green Growth, 2020, , 217-229.	0.2	1
413	Impacts of electricity generation on air pollution: evidence from data on air quality index and six criteria pollutants. SN Applied Sciences, 2021, 3, 1.	1.5	6
414	A remarkable review of the effect of lockdowns during COVID-19 pandemic on global PM emissions. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-16.	1.2	36
415	Meteorological conditions contributed to changes in dominant patterns of summer ozone pollution in Eastern China. Environmental Research Letters, 2020, 15, 124062.	2.2	20
416	Tropospheric Ozone Assessment Report. Elementa, 2020, 8, .	1.1	52
417	Evaluation of simulated O3 production efficiency during the KORUS-AQ campaign: Implications for anthropogenic NOx emissions in Korea. Elementa, 2019, 7, .	1.1	38
418	Long-term changes of regional ozone in China: implications for human health and ecosystem impacts. Elementa, 2020, 8, .	1.1	48
419	Characterizing sources of high surface ozone events in the southwestern US with intensive field measurements and two global models. Atmospheric Chemistry and Physics, 2020, 20, 10379-10400.	1.9	15
420	Attribution of ground-level ozone to anthropogenic and natural sources of nitrogen oxides and reactive carbon in a global chemical transport model. Atmospheric Chemistry and Physics, 2020, 20, 10707-10731.	1.9	27
421	What have we missed when studying the impact of aerosols on surface ozone via changing photolysis rates?. Atmospheric Chemistry and Physics, 2020, 20, 10831-10844.	1.9	38
422	Increases in surface ozone pollution in China from 2013 to 2019: anthropogenic and meteorological influences. Atmospheric Chemistry and Physics, 2020, 20, 11423-11433.	1.9	294
423	Pollutant emission reductions deliver decreased PM _{2.5} -caused mortality across China during 2015–2017. Atmospheric Chemistry and Physics, 2020, 20, 11683-11695.	1.9	19
424	Long-term variations in ozone levels in the troposphere and lower stratosphere over Beijing: observations and model simulations. Atmospheric Chemistry and Physics, 2020, 20, 13343-13354.	1.9	11
425	Tropospheric aerosol hygroscopicity in China. Atmospheric Chemistry and Physics, 2020, 20, 13877-13903.	1.9	14
426	A measurement and model study on ozone characteristics in marine air at a remote island station and its interaction with urban ozone air quality in Shanghai, China. Atmospheric Chemistry and Physics, 2020, 20, 14361-14375.	1.9	7
427	Historical and future changes in air pollutants from CMIP6 models. Atmospheric Chemistry and Physics, 2020, 20, 14547-14579.	1.9	105

#	Article	IF	CITATIONS
428	Correcting model biases of CO in East Asia: impact on oxidant distributions during KORUS-AQ. Atmospheric Chemistry and Physics, 2020, 20, 14617-14647.	1.9	34
429	Elevated levels of OH observed in haze events during wintertime in central Beijing. Atmospheric Chemistry and Physics, 2020, 20, 14847-14871.	1.9	62
430	Exploring the drivers of the increased ozone production in Beijing in summertime during 2005–2016. Atmospheric Chemistry and Physics, 2020, 20, 15617-15633.	1.9	48
431	UK surface NO ₂ levels dropped by 42 % during the COVID-19 lockdown: impact on surface O ₃ . Atmospheric Chemistry and Physics, 2020, 20, 15743-15759.	1.9	59
432	Influence of aerosol copper on HO ₂ uptake: a novel parameterized equation. Atmospheric Chemistry and Physics, 2020, 20, 15835-15850.	1.9	14
433	Improving the prediction of an atmospheric chemistry transport model using gradient-boosted regression trees. Atmospheric Chemistry and Physics, 2020, 20, 8063-8082.	1.9	41
434	An inversion of NO _{<i>x</i>} and non-methane volatile organic compound (NMVOC) emissions using satellite observations during the KORUS-AQ campaign and implications for surface ozone over East Asia. Atmospheric Chemistry and Physics, 2020, 20, 9837-9854.	1.9	30
435	The contribution of transport and chemical processes on coastal ozone and emission control strategies to reduce ozone. Heliyon, 2021, 7, e08210.	1.4	7
436	Modelling of temporal exposure to the ambient environment and eczema severity. JID Innovations, 2021, 2, 100062.	1.2	1
437	Identifying the spatiotemporal variations in ozone formation regimes across China from 2005 to 2019 based on polynomial simulation and causality analysis. Atmospheric Chemistry and Physics, 2021, 21, 15631-15646.	1.9	29
438	Tropospheric Ozone in Tehran, Iran, during the last 20 years. Environmental Geochemistry and Health, 2022, 44, 3615-3637.	1.8	10
439	Impact of COVID-19 on Extremely Polluted Air Quality and Trend Forecast in Seven Provinces and Three Cities of China. Frontiers in Environmental Science, 2021, 9, .	1.5	3
440	Insight into the environmental monitoring and source apportionment of volatile organic compounds (VOCs) in various functional areas. Air Quality, Atmosphere and Health, 2022, 15, 1121-1131.	1.5	5
441	Ambient Ozone, PM1 and Female Lung Cancer Incidence in 436 Chinese Counties. International Journal of Environmental Research and Public Health, 2021, 18, 10386.	1.2	12
442	Formation and evolution of secondary organic aerosols derived from urban-lifestyle sources: vehicle exhaust and cooking emissions. Atmospheric Chemistry and Physics, 2021, 21, 15221-15237.	1.9	9
443	Nonlinear responses of particulate nitrate to NO _x emission controls in the megalopolises of China. Atmospheric Chemistry and Physics, 2021, 21, 15135-15152.	1.9	24
444	Trend reversal from source region to remote tropospheric NO2 columns. Environmental Science and Pollution Research, 2021, 29, 15763.	2.7	0
445	Evaluating the Impacts of Ground-Level O3 on Crops in China. Current Pollution Reports, 2021, 7, 565-578.	3.1	6

#	Article	IF	CITATIONS
446	Trends in physical, optical and chemical columnar aerosol characteristics and radiative effects over South and East Asia: Satellite and ground-based observations. Condwana Research, 2022, 105, 366-387.	3.0	10
447	OMI-observed HCHO in Shanghai, China, during 2010–2019 and ozone sensitivity inferred by an improved HCHO â^• NO ₂ ratio. Atmospheric Chemistry and I 2021, 21, 15447-15460.	⊃h ysi cs,	24
448	Characteristics of air quality in different climatic zones of China during the COVID-19 lockdown. Atmospheric Pollution Research, 2021, 12, 101247.	1.8	18
449	Chemical Production of Oxygenated Volatile Organic Compounds Strongly Enhances Boundary-Layer Oxidation Chemistry and Ozone Production. Environmental Science & Technology, 2021, 55, 13718-13727.	4.6	31
450	Photochemistry of Volatile Organic Compounds in the Yellow River Delta, China: Formation of O ₃ and Peroxyacyl Nitrates. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035296.	1.2	11
451	Analysis of the Influence of Weather Conditions on Persistent Ozone Pollution in Chengdu in Summer. Climate Change Research Letters, 2019, 08, 792-801.	0.0	0
453	Environmental, Social and Governance Challenges in China Today. , 2020, , 11-27.		0
455	A Study on the Seasonal Correlation between O3 and PM2.5 in Seoul in 2017. Journal of Korean Society for Atmospheric Environment, 2020, 36, 533-542.	0.2	7
456	Current Status and Future Directions of Tropospheric Photochemical Ozone Studies in Korea. Journal of Korean Society for Atmospheric Environment, 2020, 36, 419-441.	0.2	10
457	Impacts of emission changes in China from 2010 to 2017 on domestic and intercontinental air quality and health effect. Atmospheric Chemistry and Physics, 2021, 21, 16051-16065.	1.9	9
458	Recent ozone trends in the Chinese free troposphere: role of the local emission reductions and meteorology. Atmospheric Chemistry and Physics, 2021, 21, 16001-16025.	1.9	10
459	Ethylenediurea offers moderate protection against ozone-induced rice yield loss under high ozone pollution. Science of the Total Environment, 2022, 806, 151341.	3.9	23
460	Tower-based measurements of NMHCs and OVOCs in the Pearl River Delta: Vertical distribution, source analysis and chemical reactivity. Environmental Pollution, 2022, 292, 118454.	3.7	15
461	Quantifying the interactive effects of meteorological, socioeconomic, and pollutant factors on summertime ozone pollution in China during the implementation of two important policies. Atmospheric Pollution Research, 2021, 12, 101248.	1.8	10
462	Joint effect of multiple air pollutants on lipid profiles in obese and normal-weight young adults: The key role of ozone. Environmental Pollution, 2022, 292, 118247.	3.7	12
463	Detection of stratospheric intrusion events and their role in ozone enhancement at a mountain background site in sub-tropical East Asia. Atmospheric Environment, 2022, 268, 118779.	1.9	5
464	Driving factors to air pollutant reductions during the implementation of intensive controlling policies in 2020 in Ulsan, South Korea. Environmental Pollution, 2022, 292, 118380.	3.7	4
465	Multi-factor reconciliation of discrepancies in ozone-precursor sensitivity retrieved from observation- and emission-based models. Environment International, 2022, 158, 106952.	4.8	8

#	Article	IF	CITATIONS
466	Short-term ozone exposure and metabolic status in metabolically healthy obese and normal-weight young adults: A viewpoint of inflammatory pathways. Journal of Hazardous Materials, 2022, 424, 127462.	6.5	11
467	Responses of surface O3 and PM2.5 trends to changes of anthropogenic emissions in summer over Beijing during 2014–2019: A study based on multiple linear regression and WRF-Chem. Science of the Total Environment, 2022, 807, 150792.	3.9	31
469	Mitigation potential of global ammonia emissions and related health impacts in the trade network. Nature Communications, 2021, 12, 6308.	5.8	32
470	Spatial and temporal distribution characteristics of ground-level nitrogen dioxide and ozone across China during 2015–2020. Environmental Research Letters, 2021, 16, 124031.	2.2	9
471	Interannual variation of reactive nitrogen emissions and their impacts on PM _{2.5} air pollution in China during 2005–2015. Environmental Research Letters, 2021, 16, 125004.	2.2	16
472	Zero-impact emission limits of enterprise-scale air pollutants—a case study of a typical petrochemical enterprise in Shanghai Chemical Industry Park. Journal of the Air and Waste Management Association, 2022, 72, 98-115.	0.9	2
473	Citizen participation and urban air pollution abatement: Evidence from environmental whistle-blowing platform policy in Sichuan China. Science of the Total Environment, 2022, 816, 151521.	3.9	15
474	Effect of lockdown amid COVID-19 pandemic on air quality of most polluted cities of Punjab (India). Journal of Earth System Science, 2021, 130, 1.	0.6	2
475	Global COVID-19 pandemic trends and their relationship with meteorological variables, air pollutants and socioeconomic aspects. Environmental Research, 2022, 204, 112249.	3.7	16
476	Effectiveness of emission control in sensitive emission regions associated with local atmospheric circulation in O3 pollution reduction: A case study in the Beijing-Tianjin-Hebei region. Atmospheric Environment, 2022, 269, 118840.	1.9	10
477	The temporal and spatial distribution of the correlation between PM _{2.5} and O ₃ contractions in the urban atmosphere of China. Chinese Science Bulletin, 2022, 67, 2008-2017.	0.4	4
478	Roadmap of coordinated control of PM _{2.5} and ozonein Yangtze River Delta. Chinese Science Bulletin, 2022, 67, 2100-2112.	0.4	2
479	Novel Method for Ozone Isopleth Construction and Diagnosis for the Ozone Control Strategy of Chinese Cities. Environmental Science & amp; Technology, 2021, 55, 15625-15636.	4.6	39
480	High impact of vehicle and solvent emission on the ambient volatile organic compounds in a major city of northwest China. Chinese Chemical Letters, 2022, 33, 2753-2756.	4.8	5
481	Positive and negative influences of typhoons on tropospheric ozone over southern China. Atmospheric Chemistry and Physics, 2021, 21, 16911-16923.	1.9	8
482	Regional Air Pollutant Characteristics and Health Risk Assessment of Large Cities in Northeast China. Atmosphere, 2021, 12, 1519.	1.0	2
483	Spatial and Temporal Distribution Characteristics and Source Apportionment of VOCs in Lianyungang City in 2018. Atmosphere, 2021, 12, 1598.	1.0	5
484	Evaluation of a highly condensed SAPRC chemical mechanism and two emission inventories for ozone source apportionment and emission control strategy assessments in China. Science of the Total Environment, 2022, 813, 151922.	3.9	5

#	Article	IF	CITATIONS
485	Exploring the Change in PM2.5 and Ozone Concentrations Caused by Aerosol–Radiation Interactions and Aerosol–Cloud Interactions and the Relationship with Meteorological Factors. Atmosphere, 2021, 12, 1585.	1.0	2
486	A study of cross-correlations between PM <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e657" altimg="si122.svg"><mml:msub><mml:mrow></mml:mrow> <mml:mrow> <mml:mi mathvariant="normal">2.5</mml:mi </mml:mrow> </mml:msub> and O3 based on Copula</mml:math 	1.2	5
487	Unprecedented decline in summertime surface ozone over eastern China in 2020 comparably attributable to anthropogenic emission reductions and meteorology. Environmental Research Letters, 2021, 16, 124069.	2.2	35
488	Full-coverage mapping and spatiotemporal variations of ground-level ozone (O3) pollution from 2013 to 2020 across China. Remote Sensing of Environment, 2022, 270, 112775.	4.6	174
489	Unveiling the dipole synergic effect of biogenic and anthropogenic emissions on ozone concentrations. Science of the Total Environment, 2022, 818, 151722.	3.9	20
490	Spatial Resolved Surface Ozone with Urban and Rural Differentiation during 1990–2019: A Space–Time Bayesian Neural Network Downscaler. Environmental Science & Technology, 2022, 56, 7337-7349.	4.6	25
491	Evaporation process dominates vehicular NMVOC emissions in China with enlarged contribution from 1990 to 2016. Environmental Research Letters, 2021, 16, 124036.	2.2	4
492	Trends and Variability of Ozone Pollution over the Mountain-Basin Areas in Sichuan Province during 2013–2020: Synoptic Impacts and Formation Regimes. Atmosphere, 2021, 12, 1557.	1.0	8
493	Spatiotemporal trends and impact factors of PM _{2.5} and O ₃ pollution in major cities in China during 2015–2020. Chinese Science Bulletin, 2022, 67, 2029-2042.	0.4	6
494	Influence of transboundary air pollution and meteorology on air quality in three major cities of Anhui Province, China. Journal of Cleaner Production, 2021, 329, 129641.	4.6	15
495	Remarkable Spring Increase Overwhelmed Hard-Earned Autumn Decrease in Ozone Pollution from 2005 to 2017 in Hong Kong, South China. SSRN Electronic Journal, 0, , .	0.4	0
496	Remarkable Spring Increase Overwhelmed Hard-Earned Autumn Decrease in Ozone Pollution from 2005 to 2017 in Hong Kong, South China. SSRN Electronic Journal, 0, , .	0.4	0
497	Historically Understanding the Spatial Distributions of Particle Surface Area Concentrations Over China Estimated Using a Non-Parametric Machine Learning Method. SSRN Electronic Journal, 0, , .	0.4	0
498	Observational Study of Ground-Level Ozone in the Desert Atmosphere. Bulletin of Environmental Contamination and Toxicology, 2022, 108, 219-224.	1.3	2
499	The Seesaw Pattern of PM _{2.5} Interannual Anomalies Between Beijingâ€Tianjinâ€Hebei and Yangtze River Delta Across Eastern China in Winter. Geophysical Research Letters, 2022, 49, .	1.5	7
500	How will window opening change under global warming: A study for China residence. Building and Environment, 2022, 209, 108672.	3.0	7
501	Aerosol optical properties and their impacts on the co–occurrence of surface ozone and particulate matter in Kunming City, on the Yunnan–Guizhou Plateau of China. Atmospheric Research, 2022, 266, 105963.	1.8	14
502	Observation and simulation of HOx radicals in an urban area in Shanghai, China. Science of the Total Environment, 2022, 810, 152275.	3.9	9

#	Article	IF	CITATIONS
503	Attenuated sensitivity of ozone to precursors in Beijing–Tianjin–Hebei region with the continuous NOx reduction within 2014–2018. Science of the Total Environment, 2022, 813, 152589.	3.9	14
504	Combining bi-functional Pt/USY and electromagnetic induction for rapid in-situ adsorption-combustion cycling of gaseous organic pollutant. Journal of Hazardous Materials, 2022, 426, 128097.	6.5	6
505	Impacts of biogenic emissions from urban landscapes on summer ozone and secondary organic aerosol formation in megacities. Science of the Total Environment, 2022, 814, 152654.	3.9	32
506	Upward trend and formation of surface ozone in the Guanzhong Basin, Northwest China. Journal of Hazardous Materials, 2022, 427, 128175.	6.5	9
507	Influence of COVID-19 lockdown on the variation of organic aerosols: Insight into its molecular composition and oxidative potential. Environmental Research, 2022, 206, 112597.	3.7	10
508	Evaluating the Spatiotemporal Ozone Characteristics with High-Resolution Predictions in Mainland China, 2013–2019. SSRN Electronic Journal, 0, , .	0.4	0
509	A Bibliometric Analysis on the Ozone Pollution from 1996 to 2021 Based on Web of Science and CiteSpace. , 2021, , .		0
510	Effects of ozone–vegetation interactions on meteorology and air quality in China using a two-way coupled land–atmosphere model. Atmospheric Chemistry and Physics, 2022, 22, 765-782.	1.9	7
511	Vertical characteristics of NO2 and HCHO, and the ozone formation regimes in Hefei, China. Science of the Total Environment, 2022, 823, 153425.	3.9	12
512	Ozone pollution threatens the production of major staple crops in East Asia. Nature Food, 2022, 3, 47-56.	6.2	93
513	Decomposing PM2.5 air pollution rebounds in Northern China before COVID-19. Environmental Science and Pollution Research, 2022, 29, 28688-28699.	2.7	5
514	Causal discovery of drivers of surface ozone variability in Antarctica using a deep learning algorithm. Environmental Sciences: Processes and Impacts, 2022, 24, 447-459.	1.7	3
515	Long-term trend of ozone in southern China reveals future mitigation strategy for air pollution. Atmospheric Environment, 2022, 269, 118869.	1.9	34
516	Rural vehicle emission as an important driver for the variations of summertime tropospheric ozone in the Beijing-Tianjin-Hebei region during 2014–2019. Journal of Environmental Sciences, 2022, 114, 126-135.	3.2	6
518	Amplified Upward Trend of the Joint Occurrences of Heat and Ozone Extremes in China over 2013–20. Bulletin of the American Meteorological Society, 2022, 103, E1330-E1342.	1.7	10
519	Typhoon-boosted biogenic emission aggravates cross-regional ozone pollution in China. Science Advances, 2022, 8, eabl6166.	4.7	22
520	Emission Trends of Industrial Vocs in China Since the Clean Air Action and Future Reduction Perspectives. SSRN Electronic Journal, 0, , .	0.4	0
521	Worsening summertime ozone pollution in the Guanzhong Basin, China from 2014 to 2018: Impacts of synoptic conditions and anthropogenic emissions. Atmospheric Environment, 2022, 274, 118974.	1.9	6

#	Article	IF	CITATIONS
522	Exposure Risk of Global Surface O3 During the Boreal Spring Season. Exposure and Health, 2022, 14, 431-446.	2.8	9
523	Suppression of Ozone Formation at High Temperature in China: From Historical Observations to Future Projections. Geophysical Research Letters, 2022, 49, .	1.5	5
524	Atmospheric measurements at Mt. Tai – Part II: HONO budget and radical (RO _{<i>x</i>} + NO <sub chemistry in the lower boundary layer. Atmospheric Chemistry and Physics, 2022, 22, 1035-1057.</sub 	o& an np;gt;	3&æmp;lt;/su
525	A New Index Developed for Fast Diagnosis of Meteorological Roles in Ground-Level Ozone Variations. Advances in Atmospheric Sciences, 2022, 39, 403-414.	1.9	4
526	Contribution Isolation of LUCC Impact on Regional PM2.5 Air Pollution: Implications for Sustainable Land and Environment Management. Frontiers in Environmental Science, 2022, 10, .	1.5	4
527	Opportunistic experiments to constrain aerosol effective radiative forcing. Atmospheric Chemistry and Physics, 2022, 22, 641-674.	1.9	44
528	Spatiotemporal characteristics of PM2.5 and ozone concentrations in Chinese urban clusters. Chemosphere, 2022, 295, 133813.	4.2	29
529	Understanding the Influence of Meteorology and Emission Sources on PM _{2.5} Mass Concentrations Across India: First Results From the COALESCE Network. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	9
530	Double dielectric barrier discharge incorporated with CeO2-Co3O4/γ-Al2O3 catalyst for toluene abatement by a sequential adsorption–discharge plasma catalytic process. Journal of Cleaner Production, 2022, 340, 130774.	4.6	24
531	Observation-based sources evolution of non-methane hydrocarbons (NMHCs) in a megacity of China. Journal of Environmental Sciences, 2023, 124, 794-805.	3.2	6
532	Evolution and variations of atmospheric VOCs and O3 photochemistry during a summer O3 event in a county-level city, Southern China. Atmospheric Environment, 2022, 272, 118942.	1.9	21
533	Quantifying ecological and health risks of ground-level O3 across China during the implementation of the "Three-year Action Plan for Cleaner Air― Science of the Total Environment, 2022, 817, 153011.	3.9	18
534	Evaluating the spatiotemporal ozone characteristics with high-resolution predictions in mainland China, 2013–2019. Environmental Pollution, 2022, 299, 118865.	3.7	33
535	Response of Ginkgo biloba growth and physiological traits to ozone stress. Global Ecology and Conservation, 2022, 34, e02020.	1.0	5
536	Long-term measurements of ground-level ozone in Windsor, Canada and surrounding areas. Chemosphere, 2022, 294, 133636.	4.2	8
537	The transition from a nitrogen oxides-limited regime to a volatile organic compounds-limited regime in the petrochemical industrialized Lanzhou City, China. Atmospheric Research, 2022, 269, 106035.	1.8	7
538	Identifying the dominant driver of elevated surface ozone concentration in North China plain during summertime 2012–2017. Environmental Pollution, 2022, 300, 118912.	3.7	13
539	Surface ozone trends over a 21-year period at El Arenosillo observatory (Southwestern Europe). Atmospheric Research, 2022, 269, 106048.	1.8	9

#	Article	IF	CITATIONS
540	The impact of the aerosol reduction on the worsening ozone pollution over the Beijing-Tianjin-Hebei region via influencing photolysis rates. Science of the Total Environment, 2022, 821, 153197.	3.9	12
541	A novel approach for VOC source apportionment combining characteristic factor and pattern recognition technology in a Chinese industrial area. Journal of Environmental Sciences, 2022, 121, 25-37.	3.2	7
542	Satellite-Based Long-Term Spatiotemporal Patterns of Surface Ozone Concentrations in China: 2005–2019. Environmental Health Perspectives, 2022, 130, 27004.	2.8	12
543	The number fraction of iron-containing particles affects OH, HO ₂ and H ₂ O ₂ budgets in the atmospheric aqueous phase. Atmospheric Chemistry and Physics. 2022. 22. 1989-2009.	1.9	6
544	Revealing the driving effect of emissions and meteorology on PM2.5 and O3 trends through a new algorithmic model. Chemosphere, 2022, 295, 133756.	4.2	0
545	Smog chamber simulation on heterogeneous reaction of O3 and NO2 on black carbon under various relative humidity conditions. Science of the Total Environment, 2022, 823, 153649.	3.9	1
546	Development and Assessment of a High-Resolution Biogenic Emission Inventory from Urban Green Spaces in China. Environmental Science & Technology, 2022, 56, 175-184.	4.6	35
547	The drivers and health risks of unexpected surface ozone enhancements over the Sichuan Basin, China, in 2020. Atmospheric Chemistry and Physics, 2021, 21, 18589-18608.	1.9	12
548	Aerosol Optical Properties in Summer in Typical Urban Area of Beijing: Variations, Potential Sources, and Influence on Ground-Level-Ozone Formation Mechanism. SSRN Electronic Journal, 0, , .	0.4	0
549	Sources and Seasonal Variance of Ambient Volatile Organic Compounds in the Typical Industrial City of Changzhi, Northern China. Atmosphere, 2022, 13, 393.	1.0	6
550	ENSO modulation of summertime tropospheric ozone over China. Environmental Research Letters, 2022, 17, 034020.	2.2	20
551	Individual and Interactive Effects of Elevated Ozone and Temperature on Plant Responses. Horticulturae, 2022, 8, 211.	1.2	5
552	Optimizing the Gas–Solid Photocatalytic Reactions for Air Purification. ACS ES&T Engineering, 2022, 2, 1103-1115.	3.7	18
553	Increasing but Variable Trend of Surface Ozone in the Yangtze River Delta Region of China. Frontiers in Environmental Science, 2022, 10, .	1.5	5
554	Regional Transport of PM _{2.5} and O ₃ Based on Complex Network Method and Chemical Transport Model in the Yangtze River Delta, China. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	5
555	Enhanced summertime ozone and SOA from biogenic volatile organic compound (BVOC) emissions due to vegetation biomass variability during 1981–2018 in China. Atmospheric Chemistry and Physics, 2022, 22, 2351-2364.	1.9	41
556	Clustering Analysis on Drivers of O3 Diurnal Pattern and Interactions with Nighttime NO3 and HONO. Atmosphere, 2022, 13, 351.	1.0	3
557	Surface ozone impacts on major crop production in China from 2010 to 2017. Atmospheric Chemistry and Physics, 2022, 22, 2625-2638.	1.9	17

#	Article	IF	CITATIONS
558	Surface Ozone Pollution: Trends, Meteorological Influences, and Chemical Precursors in Portugal. Sustainability, 2022, 14, 2383.	1.6	3
559	Impacts of strong El Niño on summertime near-surface ozone over China. Atmospheric and Oceanic Science Letters, 2022, , 100193.	0.5	4
560	A Health Impact and Economic Loss Assessment of O ₃ and PM _{2.5} Exposure in China From 2015 to 2020. GeoHealth, 2022, 6, e2021GH000531.	1.9	11
561	Global and Regional Patterns of Soil Nitrous Acid Emissions and Their Acceleration of Rural Photochemical Reactions. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	7
562	The impact of chlorine chemistry combined with heterogeneous N ₂ O ₅ reactions on air quality in China. Atmospheric Chemistry and Physics, 2022, 22, 3743-3762.	1.9	2
563	Spaceborne tropospheric nitrogen dioxide (NO ₂) observations from 2005–2020 over the Yangtze River Delta (YRD), China: variabilities, implications, and drivers. Atmospheric Chemistry and Physics, 2022, 22, 4167-4185.	1.9	7
564	Implications of Mitigating Ozone and Fine Particulate Matter Pollution in the Guangdongâ€Hong Kongâ€Macau Greater Bay Area of China Using a Regionalâ€To‣ocal Coupling Model. GeoHealth, 2022, 6, .	1.9	0
565	Productivity loss amid invisible pollution. Journal of Environmental Economics and Management, 2022, 112, 102638.	2.1	26
566	Decade-long trends in chemical component properties of PM2.5 in Beijing, China (2011â^2020). Science of the Total Environment, 2022, 832, 154664.	3.9	18
567	Biotechnological production of specialty aromatic and aromatic-derivative compounds. World Journal of Microbiology and Biotechnology, 2022, 38, 80.	1.7	7
568	New Insights for Tracking Global and Local Trends in Exposure to Air Pollutants. Environmental Science & Technology, 2022, 56, 3984-3996.	4.6	13
569	The Independent Impacts of PM2.5 Dropping on the Physical and Chemical Properties of Atmosphere over North China Plain in Summer during 2015–2019. Sustainability, 2022, 14, 3930.	1.6	0
570	Exploring the causes for co-pollution of O3 and PM2.5 in summer over North China. Environmental Monitoring and Assessment, 2022, 194, 289.	1.3	8
571	Rethinking of the adverse effects of NOx-control on the reduction of methane and tropospheric ozone $\hat{a} \in \mathcal{C}$ Challenges toward a denitrified society. Atmospheric Environment, 2022, 277, 119033.	1.9	25
572	Meteorological influences on daily variation and trend of summertime surface ozone over years of 2015–2020: Quantification for cities in the Yangtze River Delta. Science of the Total Environment, 2022, 834, 155107.	3.9	23
573	Response of Summer Ozone to Precursor Emission Controls in the Yangtze River Delta Region. Frontiers in Environmental Science, 2022, 10, .	1.5	4
574	Assessment of background ozone concentrations in China and implications for using region-specific volatile organic compounds emission abatement to mitigate air pollution. Environmental Pollution, 2022, 305, 119254.	3.7	6
575	Primary Emissions and Secondary Aerosol Processing During Wintertime in Rural Area of North China Plain. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	3

Article	IF	Citations
Dramatic decrease of secondary organic aerosol formation potential in Beijing: Important contribution from reduction of coal combustion emission. Science of the Total Environment, 2022, 832, 155045.	3.9	7
Temporal variation analysis, impact of COVID-19 on air pollutant concentrations, and forecasting of air pollutants over the cities of Bangalore and Delhi in India. Arabian Journal of Geosciences, 2022, 15, 1.	0.6	6
Local production, downward and regional transport aggravated surface ozone pollution during the historical orange-alert large-scale ozone episode in eastern China. Environmental Chemistry Letters, 2022, 20, 1577-1588.	8.3	19
Effects of secondary formation of inorganic ions and low molecular weight organic acids and biomass burning in regional pollution of PM2.5 in Central China. Atmospheric Pollution Research, 2022, 13, 101412.	1.8	3
Decisive role of ozone formation control in winter PM2.5 mitigation in Shenzhen, China. Environmental Pollution, 2022, 301, 119027.	3.7	13
Impacts of applying ethanol blended gasoline and evaporation emission control to motor vehicles in a megacity in southwest China. Atmospheric Pollution Research, 2022, 13, 101378.	1.8	7
Emission trends of industrial VOCs in China since the clean air action and future reduction perspectives. Science of the Total Environment, 2022, 826, 153994.	3.9	50
Inferring vertical variability and diurnal evolution of O3 formation sensitivity based on the vertical distribution of summertime HCHO and NO2 in Guangzhou, China. Science of the Total Environment, 2022, 827, 154045.	3.9	26
Historically understanding the spatial distributions of particle surface area concentrations over China estimated using a non-parametric machine learning method. Science of the Total Environment, 2022, 824, 153849.	3.9	2
Identification of the atmospheric boundary layer structure through vertical distribution of PM2.5 obtained by unmanned aerial vehicle measurements. Atmospheric Environment, 2022, 278, 119084.	1.9	7
Effects of hydroperoxy radical heterogeneous loss on the summertime ozone formation in the North China Plain. Science of the Total Environment, 2022, 825, 153993.	3.9	2
Evaporative emission characteristics of high-mileage gasoline vehicles. Environmental Pollution, 2022, 303, 119127.	3.7	4
Multi-scale analysis of the impacts of meteorology and emissions on PM2.5 and O3 trends at various regions in China from 2013 to 2020 2. Key weather elements and emissions. Science of the Total Environment, 2022, 824, 153847.	3.9	42
Remarkable spring increase overwhelmed hard-earned autumn decrease in ozone pollution from 2005 to 2017 at a suburban site in Hong Kong, South China. Science of the Total Environment, 2022, 831, 154788.	3.9	7
Synergistic effects of biogenic volatile organic compounds and soil nitric oxide emissions on summertime ozone formation in China. Science of the Total Environment, 2022, 828, 154218.	3.9	8
Significant contribution of lightning NO to summertime surface O3 on the Tibetan Plateau. Science of the Total Environment, 2022, 829, 154639.	3.9	10
Rapid narrowing of the urban–suburban gap in air pollutant concentrations in Beijing from 2014 to 2019. Environmental Pollution, 2022, 304, 119146.	3.7	8

593	Spatial characteristics of VOCs and their ozone and secondary organic aerosol formation potentials in autumn and winter in the Guanzhong Plain, China. Environmental Research, 2022, 211, 113036.	3.7	20
-----	---	-----	----

#

#	Article	IF	CITATIONS
594	Analysis of coordinated relationship between PM _{2.5} and ozone and its affecting factors on different timescales. Chinese Science Bulletin, 2022, 67, 2018-2028.	0.4	3
595	Review on Atmospheric Ozone Pollution in China: Formation, Spatiotemporal Distribution, Precursors and Affecting Factors. Atmosphere, 2021, 12, 1675.	1.0	25
596	Reduced Aerosol Uptake of Hydroperoxyl Radical May Increase the Sensitivity of Ozone Production to Volatile Organic Compounds. Environmental Science and Technology Letters, 2022, 9, 22-29.	3.9	16
597	The Modeling Study about Impacts of Emission Control Policies for Chinese 14th Five-Year Plan on PM2.5 and O3 in Yangtze River Delta, China. Atmosphere, 2022, 13, 26.	1.0	9
598	Determinants of Pulmonary Emphysema Severity in Taiwanese Patients with Chronic Obstructive Pulmonary Disease: An Integrated Epigenomic and Air Pollutant Analysis. Biomedicines, 2021, 9, 1833.	1.4	3
599	Annual Variation of Global Air Pollution: Initial Aerosol Effect or Climate Interaction?. Frontiers in Environmental Science, 2021, 9, .	1.5	0
600	Radiative Effects of Particular Matters on Ozone Pollution in Six North China Cities. Journal of Geophysical Research D: Atmospheres, 2021, 126, .	1.2	3
601	Observation-Based Estimations of Relative Ozone Impacts by Using Volatile Organic Compounds Reactivities. Environmental Science and Technology Letters, 2022, 9, 10-15.	3.9	10
602	Optimization of a NO <i>_x</i> and VOC Cooperative Control Strategy Based on Clean Air Benefits. Environmental Science & Technology, 2022, 56, 739-749.	4.6	52
603	Exploring Different Assumptions about Outcome-Related Risk Perceptions in Discrete Choice Experiments. Environmental and Resource Economics, 2022, 81, 531-572.	1.5	1
604	Mercury pollution in China: implications on the implementation of the Minamata Convention. Environmental Sciences: Processes and Impacts, 2022, 24, 634-648.	1.7	21
605	Impacts of aerosol–photolysis interaction and aerosol–radiation feedback on surface-layer ozone in North China during multi-pollutant air pollution episodes. Atmospheric Chemistry and Physics, 2022, 22, 4101-4116.	1.9	12
606	North China Plain as a hot spot of ozone pollution exacerbated by extreme high temperatures. Atmospheric Chemistry and Physics, 2022, 22, 4705-4719.	1.9	29
607	Synergetic PM2.5 and O3 control strategy for the Yangtze River Delta, China. Journal of Environmental Sciences, 2023, 123, 281-291.	3.2	24
608	Estimation of the Near-Surface Ozone Concentration with Full Spatiotemporal Coverage across the Beijing-Tianjin-Hebei Region Based on Extreme Gradient Boosting Combined with a WRF-Chem Model. Atmosphere, 2022, 13, 632.	1.0	6
609	Elevated Formation of Particulate Nitrate From N ₂ O ₅ Hydrolysis in the Yangtze River Delta Region From 2011 to 2019. Geophysical Research Letters, 2022, 49, .	1.5	20
610	Long time series ozone prediction in China: A novel dynamic spatiotemporal deep learning approach. Building and Environment, 2022, 218, 109087.	3.0	7
611	Decadal changes in PM2.5-related health impacts in China from 1990 to 2019 and implications for current and future emission controls. Science of the Total Environment, 2022, 834, 155334.	3.9	9

#	Article	IF	CITATIONS
612	Volatile organic compounds constituents of a typical integrated iron and steel plant and influence on O3 pollution. International Journal of Environmental Science and Technology, 2023, 20, 3323-3334.	1.8	4
613	Impact of the Levels of COVID-19 Pandemic Prevention and Control Measures on Air Quality: A Case Study of Jiangsu Province, China. Atmosphere, 2022, 13, 640.	1.0	1
614	Variation characteristics of air combined pollution in Beijing City. Atmospheric Research, 2022, 274, 106197.	1.8	13
615	Impact of synoptic climate system interaction on surface ozone in China during 1950–2014. Atmospheric Environment, 2022, 279, 119126.	1.9	3
616	The Heavy Particulate Matter Pollution During the COVIDâ€19 Lockdown Period in the Guanzhong Basin, China. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	3
617	Synergistic degradation of NO and C7H8 for inhibition of O3 generation. Applied Catalysis B: Environmental, 2022, 312, 121423.	10.8	14
618	Evaluating the real changes of air quality due to clean air actions using a machine learning technique: Results from 12 Chinese mega-cities during 2013–2020. Chemosphere, 2022, 300, 134608.	4.2	14
619	Estimation of secondary PM _{2.5} in China and the United States using a multi-tracer approach. Atmospheric Chemistry and Physics, 2022, 22, 5495-5514.	1.9	11
620	Ground-level ozone pollution in China: a synthesis of recent findings on influencing factors and impacts. Environmental Research Letters, 2022, 17, 063003.	2.2	62
621	Diverse spillover effects of COVID-19 control measures on air quality improvement: evidence from typical Chinese cities. Environment, Development and Sustainability, 2023, 25, 7075-7099.	2.7	5
622	A potential controlling approach on surface ozone pollution based upon power big data. SN Applied Sciences, 2022, 4, 164.	1.5	2
623	Air quality change and public perception during the COVID-19 lockdown in India. Gondwana Research, 2023, 114, 15-29.	3.0	10
624	The trend of natural ventilation potential in 74 Chinese cities from 2014 to 2019: Impact of air pollution and climate change. Building and Environment, 2022, 218, 109146.	3.0	12
625	Modification of manganese oxides for enhancing ozone catalytic decomposition under moist conditions. Applied Catalysis A: General, 2022, 640, 118659.	2.2	7
626	Interannual variations, sources, and health impacts of the springtime ozone in Shanghai. Environmental Pollution, 2022, 306, 119458.	3.7	6
627	Effects of regional transport from different potential pollution areas on volatile organic compounds (VOCs) in Northern Beijing during non-heating and heating periods. Science of the Total Environment, 2022, 836, 155465.	3.9	12
628	Regional demarcation of synergistic control for PM2.5 and ozone pollution in China based on long-term and massive data mining. Science of the Total Environment, 2022, , 155975.	3.9	3
629	Integrated process analysis retrieval of changes in ground-level ozone and fine particulate matter during the COVID-19 outbreak in the coastal city of Kannur, India. Environmental Pollution, 2022, 307, 119468.	3.7	6

#	Article	IF	CITATIONS
630	Mitigating China's Ozone Pollution with More Balanced Health Benefits. Environmental Science & Technology, 2022, 56, 7647-7656.	4.6	7
631	Longâ€Term Evolution of Particulate Nitrate Pollution in North China: Isotopic Evidence From 10 Offshore Cruises in the Bohai Sea From 2014 to 2019. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	9
632	Comparison of the Impact of Ship Emissions in Northern Europe and Eastern China. Atmosphere, 2022, 13, 894.	1.0	8
633	Seasonal changes in the recent decline of combined high PM2.5 and O3 pollution and associated chemical and meteorological drivers in the Beijing–Tianjin–Hebei region, China. Science of the Total Environment, 2022, 838, 156312.	3.9	14
634	OH and HO ₂ radical chemistry at a suburban site during the EXPLORE-YRD campaign in 2018. Atmospheric Chemistry and Physics, 2022, 22, 7005-7028.	1.9	19
635	The Impact of Meteorology and Emissions on Surface Ozone in Shandong Province, China, during Summer 2014–2019. International Journal of Environmental Research and Public Health, 2022, 19, 6758.	1.2	3
636	Fast climate responses to emission reductions in aerosol and ozone precursors in China during 2013–2017. Atmospheric Chemistry and Physics, 2022, 22, 7131-7142.	1.9	13
637	A comparative analysis for a deep learning model (hyDL-CO v1.0) and Kalman filter to predict CO concentrations in China. Geoscientific Model Development, 2022, 15, 4225-4237.	1.3	9
638	Future Coâ€Occurrences of Hot Days and Ozoneâ€Polluted Days Over China Under Scenarios of Shared Socioeconomic Pathways Predicted Through a Machineâ€Learning Approach. Earth's Future, 2022, 10, .	2.4	6
639	Coordinated effects of energy transition on air pollution mitigation and CO2 emission control in China. Science of the Total Environment, 2022, 841, 156482.	3.9	18
640	A systematic assessment of city-level climate change mitigation and air quality improvement in China. Science of the Total Environment, 2022, 839, 156274.	3.9	12
641	Variability of PM2.5 and O3 concentrations and their driving forces over Chinese megacities during 2018-2020. Journal of Environmental Sciences, 2023, 124, 1-10.	3.2	36
642	Atmospheric oxidizing capacity in autumn Beijing: Analysis of the O3 and PM2.5 episodes based on observation-based model. Journal of Environmental Sciences, 2023, 124, 557-569.	3.2	17
643	Emission Sector Impacts on Air Quality and Public Health in China From 2010 to 2020. GeoHealth, 2022, 6, .	1.9	5
644	Sensitivity of Air Pollution Exposure and Disease Burden to Emission Changes in China Using Machine Learning Emulation. GeoHealth, 2022, 6, .	1.9	13
645	ls atmospheric oxidation capacity better in indicating tropospheric O3 formation?. Frontiers of Environmental Science and Engineering, 2022, 16, .	3.3	12
646	Interaction Patterns between Climate Action and Air Cleaning in China: A Two-Way Evaluation Based on an Ensemble Learning Approach. Environmental Science & amp; Technology, 2022, 56, 9291-9301.	4.6	8
647	Transport of substantial stratospheric ozone to the surface by a dying typhoon and shallow convection. Atmospheric Chemistry and Physics, 2022, 22, 8221-8240.	1.9	4

#	Article	IF	CITATIONS
648	Spatiotemporal Variations in Summertime Ground-Level Ozone around Gasoline Stations in Shenzhen between 2014 and 2020. Sustainability, 2022, 14, 7289.	1.6	0
649	Exploring drivers of the aggravated surface O3 over North China Plain in summer of 2015–2019: Aerosols, precursors, and meteorology. Journal of Environmental Sciences, 2023, 127, 453-464.	3.2	10
650	NO _x and O ₃ Trends at U.S. Nonâ€Attainment Areas for 1995–2020: Influence of COVIDâ€19 Reductions and Wildland Fires on Policyâ€Relevant Concentrations. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	13
651	Impact of the â€~Coal-to-Natural Gas' Policy on Criteria Air Pollutants in Northern China. Atmosphere, 2022, 13, 945.	1.0	2
652	Emission characteristics and ozone formation potentials of VOCs from ultra-low-emission waterborne automotive painting. Chemosphere, 2022, 305, 135469.	4.2	10
653	Long-Term Variations of Meteorological and Precursor Influences on Ground Ozone Concentrations in Jinan, North China Plain, from 2010 to 2020. Atmosphere, 2022, 13, 994.	1.0	2
654	Long-term trends and affecting factors in the concentrations of criteria air pollutants in South Korea. Journal of Environmental Management, 2022, 317, 115458.	3.8	7
655	Critical assessment of restrictive socioeconomic measures taken during the SARS-CoV-2 pandemic and their impact on air quality worldwide. Brazilian Journal of Environmental Sciences (Online), 2022, 57, 179-193.	0.1	0
656	The Impact of the Numbers of Monitoring Stations on the National and Regional Air Quality Assessment in China During 2013–18. Advances in Atmospheric Sciences, 2022, 39, 1709-1720.	1.9	7
657	Elevated ozone inhibits isoprene emission of a diploid and a triploid genotype of <i>Populus tomentosa</i> by different mechanisms. Journal of Experimental Botany, 2022, 73, 6449-6462.	2.4	2
658	A machine learning approach to quantify meteorological drivers of ozone pollution in China from 2015 to 2019. Atmospheric Chemistry and Physics, 2022, 22, 8385-8402.	1.9	24
659	Does Technological Innovation Curb O3 Pollution? Evidence from Three Major Regions in China. International Journal of Environmental Research and Public Health, 2022, 19, 7743.	1.2	1
660	Ground-Level NO ₂ Surveillance from Space Across China for High Resolution Using Interpretable Spatiotemporally Weighted Artificial Intelligence. Environmental Science & Technology, 2022, 56, 9988-9998.	4.6	90
662	Influence of circulation types on temporal and spatial variations of ozone in Beijing. Journal of Environmental Sciences, 2023, 130, 37-51.	3.2	4
663	Experimental and computational investigation on the organic acid modification of porous carbon for toluene adsorption under humid conditions. Chemical Engineering Journal, 2022, 450, 138070.	6.6	3
664	The regional impact of the COVID-19 lockdown on the air quality in Ji'nan, China. Scientific Reports, 2022, 12, .	1.6	7
665	A step forward to mitigate ozone. Nature Geoscience, 2022, 15, 513-514.	5.4	6
666	Hourly Seamless Surface O3 Estimates by Integrating the Chemical Transport and Machine Learning Models in the Beijing-Tianjin-Hebei Region. International Journal of Environmental Research and Public Health 2022, 19, 8511	1.2	3

#	Article	IF	CITATIONS
667	Long-term trend of ozone pollution in China during 2014–2020: distinct seasonal and spatial characteristics and ozone sensitivity. Atmospheric Chemistry and Physics, 2022, 22, 8935-8949.	1.9	43
668	Coâ€Occurrence of Surface O ₃ , PM _{2.5} Pollution, and Tropical Cyclones in China. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	7
669	Stringent Emission Controls Are Needed to Reach Clean Air Targets for Cities in China under a Warming Climate. Environmental Science & Technology, 2022, 56, 11199-11211.	4.6	0
670	The Application of In Situ Methods to Monitor VOC Concentrations in Urban Areas—A Bibliometric Analysis and Measuring Solution Review. Sustainability, 2022, 14, 8815.	1.6	2
671	Study on Transpiration Water Consumption and Photosynthetic Characteristics of Landscape Tree Species under Ozone Stress. Atmosphere, 2022, 13, 1139.	1.0	2
672	Quantifying changes in ambient NOx, O3 and PM10 concentrations in Austria during the COVID-19 related lockdown in spring 2020. Air Quality, Atmosphere and Health, 2022, 15, 1993-2007.	1.5	3
673	Impact of a subtropical high and a typhoon on a severe ozone pollution episode in the Pearl River Delta, China. Atmospheric Chemistry and Physics, 2022, 22, 10751-10767.	1.9	20
674	Characteristics of VOCs and their contribution to O3 and SOA formation across seasons over a metropolitan region in India. Atmospheric Pollution Research, 2022, 13, 101515.	1.8	7
675	Changes in temporal pattern and spatial distribution of environmental pollutants in 8 Asian countries owing to COVID-19 pandemic. Chemosphere, 2022, 308, 136075.	4.2	2
676	Drivers of PM2.5-O3 co-pollution: from the perspective of reactive nitrogen conversion pathways in atmospheric nitrogen cycling. Science Bulletin, 2022, 67, 1833-1836.	4.3	17
677	Statistical and machine learning methods for evaluating trends in air quality under changing meteorological conditions. Atmospheric Chemistry and Physics, 2022, 22, 10551-10566.	1.9	11
678	Spatiotemporal variations of ozone exposure and its risks to vegetation and human health in Cyprus: an analysis across a gradient of altitudes. Journal of Forestry Research, 2023, 34, 579-594.	1.7	13
679	Observational Evidence of Aerosol Radiation Modifying Photochemical Ozone Profiles in the Lower Troposphere. Geophysical Research Letters, 2022, 49, .	1.5	5
680	Urban air quality changes resulting from the lockdown period due to the COVID-19 pandemic. International Journal of Environmental Science and Technology, 0, , .	1.8	1
681	Influences of El Niño–Southern Oscillation on summertime ozone pollution over central-eastern China during 1950–2014. Environmental Science and Pollution Research, 0, , .	2.7	0
682	Mechanisms and Pathways for Coordinated Control of Fine Particulate Matter and Ozone. Current Pollution Reports, 2022, 8, 594-604.	3.1	4
683	Analysis of the meteorological factors affecting the short-term increase in O3 concentrations in nine global cities during COVID-19. Atmospheric Pollution Research, 2022, 13, 101523.	1.8	7
684	Plants and related carbon cycling under elevated ground-level ozone: A mini review. Applied Geochemistry, 2022, 144, 105400.	1.4	8

#	Article	IF	CITATIONS
685	Ensemble source apportionment of air pollutants and carbon dioxide based on online measurements. Journal of Cleaner Production, 2022, 370, 133468.	4.6	8
686	Observed sensitivities of PM2.5 and O3 extremes to meteorological conditions in China and implications for the future. Environment International, 2022, 168, 107428.	4.8	16
687	Dramatic changes in aerosol composition during the 2016–2020 heating seasons in Beijing–Tianjin–Hebei region and its surrounding areas: The role of primary pollutants and secondary aerosol formation. Science of the Total Environment, 2022, 849, 157621.	3.9	10
688	Short-term health impacts related to ozone in China before and after implementation of policy measures: A systematic review and meta-analysis. Science of the Total Environment, 2022, 847, 157588.	3.9	6
689	Summer ozone pollution in China affected by the intensity of Asian monsoon systems. Science of the Total Environment, 2022, 849, 157785.	3.9	9
690	Embedding of spatial equity in a rapidly urbanising area: Walkability and air pollution exposure. Cities, 2022, 131, 103942.	2.7	16
691	Temporal and spatial evolution of short-term exposure to ozone pollution: Its health impacts in China based on a meta-analysis. Journal of Cleaner Production, 2022, 373, 133938.	4.6	7
692	Estimates of PM2.5 concentrations spatiotemporal evolution across China considering aerosol components in the context of the Reform and Opening-up. Journal of Environmental Management, 2022, 322, 115983.	3.8	0
693	The relationship between the intensified heat waves and deteriorated summertime ozone pollution in the Beijing–Tianjin–Hebei region, China, during 2013–2017. Environmental Pollution, 2022, 314, 120256.	3.7	11
694	Regional VOC characterization, source profile and impact by a new technology of quick mass spectrometry navigation. Atmospheric Environment, 2022, 290, 119351.	1.9	1
695	Explainable and spatial dependence deep learning model for satellite-based O3 monitoring in China. Atmospheric Environment, 2022, 290, 119370.	1.9	10
696	Molecular characteristics, sources and influencing factors of isoprene and monoterpenes secondary organic aerosol tracers in the marine atmosphere over the Arctic Ocean. Science of the Total Environment, 2022, 853, 158645.	3.9	3
697	Which aerosol type dominate the impact of aerosols on ozone via changing photolysis rates?. Science of the Total Environment, 2023, 854, 158580.	3.9	3
698	Sustainable catalytic oxidation of 1,3-butadiene over dispersedly assembled Ce _{0.027} W _{0.02} Mn _{0.054} TiO _{<i>x</i>} featuring synergistic redox cycles. Environmental Science: Nano, 2022, 9, 4104-4118.	2.2	1
699	Discrepancies in ozone levels and temporal variations between urban and rural North China Plain. Elementa, 2022, 10, .	1.1	3
700	Research Trends, Hotspots and Frontiers of Ozone Pollution from 1996 to 2021: A Review Based on a Bibliometric Visualization Analysis. Sustainability, 2022, 14, 10898.	1.6	1
701	Radical chemistry in the Pearl River Delta: observations and modeling of OH and HO ₂ radicals in Shenzhen in 2018. Atmospheric Chemistry and Physics, 2022, 22, 12525-12542.	1.9	13
702	Measurement report: Atmospheric mercury in a coastal city of Southeast China – inter-annual variations and influencing factors. Atmospheric Chemistry and Physics, 2022, 22, 11187-11202.	1.9	5

#	Article	IF	CITATIONS
703	Spatiotemporal characterization of aerosols and trace gases over the Yangtze River Delta region, China: impact of trans-boundary pollution and meteorology. Environmental Sciences Europe, 2022, 34, ·	2.6	7
704	VOC emission caps constrained by air quality targets based on response surface model: A case study in the Pearl River Delta Region, China. Journal of Environmental Sciences, 2023, 123, 430-445.	3.2	3
705	Does Ozone Pollution Share the Same Formation Mechanisms in the Bay Areas of China?. Environmental Science & Technology, 2022, 56, 14326-14337.	4.6	9
706	Break point identification and spatiotemporal dynamic evolution of air pollutants: An empirical study from Anhui province, east China. Frontiers in Environmental Science, 0, 10, .	1.5	0
707	Elucidating Contributions of Anthropogenic Volatile Organic Compounds and Particulate Matter to Ozone Trends over China. Environmental Science & Technology, 2022, 56, 12906-12916.	4.6	30
708	Potential Factors Contributing to Ozone Production in AQUAS–Kyoto Campaign in Summer 2020: Natural Source-Related Missing OH Reactivity and Heterogeneous HO ₂ /RO ₂ Loss. Environmental Science & Technology, 2022, 56, 12926-12936.	4.6	2
709	MAX-DOAS and in-situ measurements of aerosols and trace gases over Dongying, China: Insight into ozone formation sensitivity based on secondary HCHO. Journal of Environmental Sciences, 2024, 135, 656-668.	3.2	4
710	Species profile and reactivity of volatile organic compounds emission in solvent uses, industry activities and from vehicular tunnels. Journal of Environmental Sciences, 2024, 135, 546-559.	3.2	9
711	Measurement report: Ambient volatile organic compound (VOC) pollution in urban Beijing: characteristics, sources, and implications for pollution control. Atmospheric Chemistry and Physics, 2022, 22, 11931-11944.	1.9	21
712	Study on Transmission Channel and Pollution Sources Region of O3 in Qingyuan City. Journal of Environmental and Public Health, 2022, 2022, 1-12.	0.4	2
713	Comparison of tailpipe carbonyls and volatile organic compounds emissions from in-use gasoline/CNG bi-fuel vehicles. Journal of Environmental Sciences, 2024, 135, 619-629.	3.2	0
714	Peculiar COVID-19 effects in the Greater Tokyo Area revealed by spatiotemporal variabilities of tropospheric gases and light-absorbing aerosols. Atmospheric Chemistry and Physics, 2022, 22, 12705-12726.	1.9	5
715	The use of generalized synthetic control method to evaluate air pollution control measures of G20 Hangzhou Summit. Frontiers in Public Health, 0, 10, .	1.3	0
716	Worsening ozone air pollution with reduced NO and VOCs in the Pearl River Delta region in autumn 2019: Implications for national control policy in China. Journal of Environmental Management, 2022, 324, 116327.	3.8	19
717	Research on Biomarkers of Ozone Exposure. Hans Journal of Biomedicine, 2022, 12, 266-270.	0.0	0
718	Vigor and Health of Urban Green Resources under Elevated O ₃ in Far East Asia. , 0, , .		3
719	Characteristics of Atmospheric Compounds based on Regional Multicorrelation Analysis in Honam Area. Journal of Environmental Analysis Health and Toxicology, 2022, 25, 85-98.	0.1	0
720	Comprehensive evaluation method of urban air quality statistics based on environmental monitoring data and its application. Journal of Environmental Sciences, 2023, 123, 500-509.	3.2	2

#	Article	IF	CITATIONS
721	Disentangling the complex impacts of urban digital transformation and environmental pollution: Evidence from smart city pilots in China. Sustainable Cities and Society, 2023, 88, 104266.	5.1	49
722	Evidence for Reducing Volatile Organic Compounds to Improve Air Quality from Concurrent Observations and In Situ Simulations at 10 Stations in Eastern China. Environmental Science & Technology, 2022, 56, 15356-15364.	4.6	9
723	Meteorological factor contributions to the seesaw concentration pattern between PM2.5 and O3 in Shanghai. Frontiers in Environmental Science, 0, 10, .	1.5	0
724	The Influence of Synoptic Weather Patterns on Spatiotemporal Characteristics of Ozone Pollution Across Pearl River Delta of Southern China. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	8
725	The Lack of HONO Measurement May Affect the Accurate Diagnosis of Ozone Production Sensitivity. ACS Environmental Au, 2023, 3, 18-23.	3.3	5
726	Ground-level ozone in the Mekong Delta region: precursors, meteorological factors, and regional transport. Environmental Science and Pollution Research, 2023, 30, 23691-23713.	2.7	6
727	The impact of three related emission industries on regional atmospheric chlorinated paraffins pollution. Environmental Pollution, 2022, , 120564.	3.7	1
728	Composite effects of ENSO and EASM on summer Ozone pollution at two regions in China. Journal of Geophysical Research D: Atmospheres, 0, , .	1.2	2
729	Performance and application of air quality models on ozone simulation in China $\hat{a} \in A$ review. Atmospheric Environment, 2023, 293, 119446.	1.9	15
730	Multi-scale analysis of the impacts of meteorology and emissions on PM2.5 and O3 trends at various regions in China from 2013 to 2020 3. Mechanism assessment of O3 trends by a model. Science of the Total Environment, 2023, 857, 159592.	3.9	5
731	Formation mechanisms and atmospheric implications of summertime nitrous acid (HONO) during clean, ozone pollution and double high-level PM2.5 and O3 pollution periods in Beijing. Science of the Total Environment, 2023, 857, 159538.	3.9	9
732	Secondary organic aerosol formation in China from urban-lifestyle sources: Vehicle exhaust and cooking emission. Science of the Total Environment, 2023, 857, 159340.	3.9	5
733	Urgency of controlling agricultural nitrogen sources to alleviate summertime air pollution in the North China Plain. Chemosphere, 2023, 311, 137124.	4.2	3
734	Trends in urban air pollution over the last two decades: A global perspective. Science of the Total Environment, 2023, 858, 160064.	3.9	74
735	Increased diurnal difference of NO2 concentrations and its impact on recent ozone pollution in eastern China in summer. Science of the Total Environment, 2023, 858, 159767.	3.9	9
736	Ambient fine particulate matter and ozone pollution in China: synergy in anthropogenic emissions and atmospheric processes. Environmental Research Letters, 2022, 17, 123001.	2.2	12
737	The Long-Term Trends and Interannual Variability in Surface Ozone Levels in Beijing from 1995 to 2020. Remote Sensing, 2022, 14, 5726.	1.8	4
738	Quantifying the drivers of surface ozone anomalies in the urban areas over the Qinghai-Tibet Plateau. Atmospheric Chemistry and Physics, 2022, 22, 14401-14419.	1.9	6

#	Article	IF	CITATIONS
739	Insights from ozone and particulate matter pollution control in New York City applied to Beijing. Npj Climate and Atmospheric Science, 2022, 5, .	2.6	4
740	Fractal analysis of impact of PM2.5 on surface O3 sensitivity regime based on field observations. Science of the Total Environment, 2023, 858, 160136.	3.9	13
741	An acid rain–friendly NH3 control strategy to maximize benefits toward human health and nitrogen deposition. Science of the Total Environment, 2023, 859, 160116.	3.9	1
742	Correlation between surface PM2.5 and O3 in eastern China during 2015–2019: Spatiotemporal variations and meteorological impacts. Atmospheric Environment, 2023, 294, 119520.	1.9	12
743	Spatial characteristics of change trends of air pollutants in Chinese urban areas during 2016–2020: The impact of air pollution controls and the COVID-19 pandemic. Atmospheric Research, 2023, 283, 106539.	1.8	12
744	Effects of Seasonal Variation on Spatial and Temporal Distributions of Ozone in Northeast China. International Journal of Environmental Research and Public Health, 2022, 19, 15862.	1.2	3
745	Diagnosing ozone–NO _{<i>x</i>} –VOC sensitivity and revealing causes of ozone increases in China based on 2013–2021 satellite retrievals. Atmospheric Chemistry and Physics, 2022, 22, 15035-15047.	1.9	37
746	The Dynamic Impacts of COVID-19 Pandemic Lockdown on the Multifractal Cross-Correlations between PM2.5 and O3 Concentrations in and around Shanghai, China. Atmosphere, 2022, 13, 1964.	1.0	0
747	Potential deterioration of ozone pollution in coastal areas caused by marine-emitted halogens: A case study in the Guangdong-Hong Kong-Macao Greater Bay Area. Science of the Total Environment, 2023, 860, 160456.	3.9	2
748	First long-term surface ozone variations at an agricultural site in the North China Plain: Evolution under changing meteorology and emissions. Science of the Total Environment, 2023, 860, 160520.	3.9	8
749	Characteristics of VOCs Emissions from Circulating Water of Typical Petrochemical Enterprises and Their Impact on Surroundings. Atmosphere, 2022, 13, 1985.	1.0	0
750	Decoupling impacts of weather conditions on interannual variations in concentrations of criteria air pollutants in South China – constraining analysis uncertainties by using multiple analysis tools. Atmospheric Chemistry and Physics, 2022, 22, 16073-16090.	1.9	6
751	Meteorological mechanisms of regional PM2.5 and O3 transport in the North China Plain driven by the East Asian monsoon. Atmospheric Pollution Research, 2023, 14, 101638.	1.8	5
752	Meteorological and chemical controls on surface ozone diurnal variability in Beijing: A clustering-based perspective. Atmospheric Environment, 2023, 295, 119566.	1.9	6
753	Spatio-temporal distribution, transport characteristics and synoptic patterns of ozone pollution near surface in Jiangsu province, China. Atmospheric Pollution Research, 2022, 13, 101616.	1.8	1
754	Multiple Impacts of Aerosols on O ₃ Production Are Largely Compensated: A Case Study Shenzhen, China. Environmental Science & Technology, 2022, 56, 17569-17580.	4.6	11
755	Ozone exposure and health risks of different age structures in major urban agglomerations in People's Republic of China from 2013 to 2018. Environmental Science and Pollution Research, 2023, 30, 42152-42164.	2.7	2
756	Monitoring the impact of the COVID-19 lockdown on air quality in Lanzhou: Implications for future control strategies. Frontiers in Earth Science, 0, 10, .	0.8	0

#	Article	IF	CITATIONS
757	High downward surface solar radiation conducive to ozone pollution more frequent under global warming. Science Bulletin, 2023, 68, 388-392.	4.3	12
758	Surface, satellite ozone variations in Northern South America during low anthropogenic emission conditions: a machine learning approach. Air Quality, Atmosphere and Health, 2023, 16, 745-764.	1.5	3
759	Simulation of the Ozone Concentration in Three Regions of Xinjiang, China, Using a Genetic Algorithm-Optimized BP Neural Network Model. Atmosphere, 2023, 14, 160.	1.0	2
760	Stratospheric intrusion may aggravate widespread ozone pollution through both vertical and horizontal advections in eastern China during summer. Frontiers in Environmental Science, 0, 10, .	1.5	Ο
761	Assessment of photosynthesis and yield loss of winter wheat under ground-level ozone exposure. Environmental Technology and Innovation, 2023, 29, 103013.	3.0	3
762	Transmission paths and source areas of near-surface ozone pollution in the Yangtze River delta region, China from 2015 to 2021. Journal of Environmental Management, 2023, 330, 117105.	3.8	7
763	Improving VOC control strategies in industrial parks based on emission behavior, environmental effects, and health risks: A case study through atmospheric measurement and emission inventory. Science of the Total Environment, 2023, 865, 161235.	3.9	10
764	Vast ecosystem disturbance in a warming climate may jeopardize our climate goal of reducing CO2: a case study for megafires in the Australian â€`black summer'. Science of the Total Environment, 2023, 866, 161387.	3.9	5
765	Evolution of Ozone Pollution in China: What Track Will It Follow?. Environmental Science & Technology, 2023, 57, 109-117.	4.6	17
766	Climate-driven deterioration of future ozone pollution in Asia predicted by machine learning with multi-source data. Atmospheric Chemistry and Physics, 2023, 23, 1131-1145.	1.9	8
767	Associations between Different Ozone Indicators and Cardiovascular Hospital Admission: A Time-Stratified Case-Crossover Analysis in Guangzhou, China. International Journal of Environmental Research and Public Health, 2023, 20, 2056.	1.2	2
768	Measurement report: Changes in light absorption and molecular composition of water-soluble humic-like substances during a winter haze bloom-decay process in Guangzhou, China. Atmospheric Chemistry and Physics, 2023, 23, 963-979.	1.9	5
769	Summertime ozone pollution in China affected by stratospheric quasi-biennial oscillation. Atmospheric Chemistry and Physics, 2023, 23, 1533-1544.	1.9	4
770	Spatio-temporal characteristics of PM2.5 and O3 synergic pollutions and influence factors in the Yangtze River Delta. Frontiers in Environmental Science, 0, 10, .	1.5	3
771	Strong Wildfires in the Russian Federation in 2021 Detected Using Satellite Data. Izvestiya - Atmospheric and Oceanic Physics, 2022, 58, 1065-1076.	0.2	2
772	Identification of key anthropogenic VOC species and sources controlling summer ozone formation in China. Atmospheric Environment, 2023, 298, 119623.	1.9	5
773	Enhanced ozone pollution in the summer of 2022 in China: The roles of meteorology and emission variations. Atmospheric Environment, 2023, 301, 119701.	1.9	16
774	Chemical drivers of ozone change in extreme temperatures in eastern China. Science of the Total Environment, 2023, 874, 162424.	3.9	12

#	Article	IF	CITATIONS
775	Distinct seasonality in vertical variations of tropospheric ozone over coastal regions of southern China. Science of the Total Environment, 2023, 874, 162423.	3.9	3
776	Weekend-weekday variations, sources, and secondary transformation potential of volatile organic compounds in urban Zhengzhou, China. Atmospheric Environment, 2023, 300, 119679.	1.9	2
777	The contributions of non-methane hydrocarbon emissions by different fuel type on-road vehicles based on tests in a heavily trafficked urban tunnel. Science of the Total Environment, 2023, 873, 162432.	3.9	3
778	Cooperative simultaneous inversion of satellite-based real-time PM2.5 and ozone levels using an improved deep learning model with attention mechanism. Environmental Pollution, 2023, 327, 121509.	3.7	10
779	Distribution of polycyclic aromatic hydrocarbons in indoor/outdoor window films and the indoor film/air partition of northeastern Chinese college dormitories. Chemosphere, 2023, 322, 138136.	4.2	2
780	Observational evidence for the dual roles of BC in the megacity of eastern China: Enhanced O3 and decreased PM2.5 pollution. Chemosphere, 2023, 327, 138548.	4.2	12
781	Assessing uncertainty and heterogeneity in machine learning-based spatiotemporal ozone prediction in Beijing-Tianjin- Hebei region in China. Science of the Total Environment, 2023, 881, 163146.	3.9	4
782	Impact of primary emission variations on secondary inorganic aerosol formation: Prospective from COVID-19 lockdown in a typical northern China city. Environmental Pollution, 2023, 323, 121355.	3.7	1
783	A multifaceted approach to explain short- and long-term PM2.5 concentration changes in Northeast Asia in the month of January during 2016–2021. Science of the Total Environment, 2023, 880, 163309.	3.9	4
784	Characterizing sources and ozone formations of summertime volatile organic compounds observed in a medium-sized city in Yangtze River Delta region. Chemosphere, 2023, 328, 138609.	4.2	5
785	Emission factors and source profiles of volatile organic compounds from typical industrial sources in Guangzhou, China. Science of the Total Environment, 2023, 869, 161758.	3.9	4
786	A wider spectrum of avoidance and tolerance mechanisms explained ozone sensitivity of two white poplar ploidy levels. Annals of Botany, 2023, 131, 655-666.	1.4	4
787	Impacts of Meteorological Conditions on Autumn Surface Ozone During 2014–2020 in the Pearl River Delta, China. Earth and Space Science, 2023, 10, .	1.1	1
788	Impacts of Agricultural Soil NO _x Emissions on O ₃ Over Mainland China. Journal of Geophysical Research D: Atmospheres, 2023, 128, .	1.2	1
789	How much urban air quality is affected by local emissions: A unique case study from a megacity in the Pearl River Delta, China. Atmospheric Environment, 2023, 299, 119666.	1.9	2
790	Urban Surface Ozone Concentration in Mainland China during 2015–2020: Spatial Clustering and Temporal Dynamics. International Journal of Environmental Research and Public Health, 2023, 20, 3810.	1.2	5
791	Quantifying the weekly cycle effect of air pollution in cities of China. Stochastic Environmental Research and Risk Assessment, 0, , .	1.9	0
792	Assessment of long tubing in measuring atmospheric trace gases: applications on tall towers. Environmental Science Atmospheres, 2023, 3, 506-520.	0.9	1

#	Article	lF	CITATIONS
793	Fast spreading of surface ozone in both temporal and spatial scale in Pearl River Delta. Journal of Environmental Sciences, 2024, 137, 540-552.	3.2	7
794	O ₃ –precursor relationship over multiple patterns of timescale: a case study in Zibo, Shandong Province, China. Atmospheric Chemistry and Physics, 2023, 23, 2649-2665.	1.9	7
796	Research on ozone formation sensitivity based on observational methods: Development history, methodology, and application and prospects in China. Journal of Environmental Sciences, 2024, 138, 543-560.	3.2	4
797	Air pollution in heavy industrial cities along the northern slope of the Tianshan Mountains, Xinjiang: characteristics, meteorological influence, and sources. Environmental Science and Pollution Research, 2023, 30, 55092-55111.	2.7	3
798	Surface ozone pollution in China: Trends, exposure risks, and drivers. Frontiers in Public Health, 0, 11,	1.3	1
799	Biogenic emissions-related ozone enhancement in two major city clusters during a typical typhoon process. Applied Geochemistry, 2023, 152, 105634.	1.4	1
800	Ozone Formation at a Suburban Site in the Pearl River Delta Region, China: Role of Biogenic Volatile Organic Compounds. Atmosphere, 2023, 14, 609.	1.0	1
801	Analysis of China's PM2.5 and ozone coordinated control strategy based on the observation data from 2015 to 2020. Journal of Environmental Sciences, 2024, 138, 385-394.	3.2	4
802	Why is ozone in South Korea and the Seoul metropolitan area so high and increasing?. Atmospheric Chemistry and Physics, 2023, 23, 4031-4044.	1.9	9
803	High-resolution regional emission inventory contributes to the evaluation of policy effectiveness: a case study in Jiangsu Province, China. Atmospheric Chemistry and Physics, 2023, 23, 4247-4269.	1.9	3
804	Health impacts under different ozone mitigation pathways in Beijing-Tianjin-Hebei and its surroundings. Science of the Total Environment, 2023, 882, 163436.	3.9	3
805	Narrowing Differences in Urban and Nonurban Surface Ozone in the Northern Hemisphere Over 1990–2020. Environmental Science and Technology Letters, 2023, 10, 410-417.	3.9	4
806	Investigation of Summertime Ozone Formation and Sources of Volatile Organic Compounds in the Suburb Area of Hefei: A Case Study of 2020. Atmosphere, 2023, 14, 740.	1.0	0
807	Deep Learningâ€Based Ensemble Forecasts and Predictability Assessments for Surface Ozone Pollution. Geophysical Research Letters, 2023, 50, .	1.5	4
808	New Particle Formation Occurrence in the Urban Atmosphere of Beijing During 2013–2020. Journal of Geophysical Research D: Atmospheres, 2023, 128, .	1.2	2
834	Air Quality in Mexico City after Mayor Public Policy Intervention. , 0, , .		0
889	Global climate change and enzyme activities. , 2023, , 65-93.		0