Review of biochar for the management of contaminated prospect

Science of the Total Environment 659, 473-490 DOI: 10.1016/j.scitotenv.2018.12.400

Citation Report

#	Article	IF	CITATIONS
1	Chemical Fractions and Availability of Zn in a Calcareous Soil in Response to Biochar Amendments. Journal of Soil Science and Plant Nutrition, 2019, 19, 851-864.	1.7	31
2	Biochar incorporation increased nitrogen and carbon retention in a waste-derived soil. Science of the Total Environment, 2019, 690, 1228-1236.	3.9	35
3	Modification of Biochar Formation during Slow Pyrolysis in the Presence of Alkali Metal Carbonate Additives. Energy & Fuels, 2019, 33, 11235-11245.	2.5	15
4	Wodyetia bifurcata biochar for methylene blue removal from aqueous matrix. Bioresource Technology, 2019, 293, 122093.	4.8	61
5	Effects of biochar application during different periods on soil structures and water retention in seasonally frozen soil areas. Science of the Total Environment, 2019, 694, 133732.	3.9	46
6	Biochar and earthworms working in tandem: Research opportunities for soil bioremediation. Science of the Total Environment, 2019, 688, 574-583.	3.9	47
7	Effects of crop straw and its derived biochar on the mobility and bioavailability in Cd and Zn in two smelter-contaminated alkaline soils. Ecotoxicology and Environmental Safety, 2019, 181, 155-163.	2.9	70
8	Temporal Changes in the Efficiency of Biochar- and Compost-Based Amendments on Copper Immobilization in Vineyard Soils. Soil Systems, 2019, 3, 78.	1.0	1
9	Potentials, Limitations, Co-Benefits, and Trade-Offs of Biochar Applications to Soils for Climate Change Mitigation. Land, 2019, 8, 179.	1.2	79
10	Sustainable agriculture options for production, greenhouse gasses and pollution alleviation, and nutrient recycling in emerging and transitional nations - An overview. Journal of Cleaner Production, 2020, 242, 118319.	4.6	145
11	Understanding structure-performance correlation of biochar materials in environmental remediation and electrochemical devices. Chemical Engineering Journal, 2020, 382, 122977.	6.6	109
12	Chemical and biological immobilization mechanisms of potentially toxic elements in biochar-amended soils. Critical Reviews in Environmental Science and Technology, 2020, 50, 903-978.	6.6	157
13	Biochar for Water and Soil Remediation: Production, Characterization, and Application. , 2020, , 153-196.		13
14	Thermodynamics of hydrothermal carbonization: Assessment of the heat release profile and process enthalpy change. Fuel Processing Technology, 2020, 197, 106206.	3.7	21
15	An efficient multiphase bioprocess for enhancing the renewable energy production from almond shells. Energy Conversion and Management, 2020, 203, 112235.	4.4	24
16	Responses of enzymatic activity and microbial communities to biochar/compost amendment in sulfamethoxazole polluted wetland soil. Journal of Hazardous Materials, 2020, 385, 121533.	6.5	131
17	Manganese-modified biochar for highly efficient sorption of cadmium. Environmental Science and Pollution Research, 2020, 27, 9126-9134.	2.7	36
18	Effects of wet and dry ball milling on the physicochemical properties of sawdust derived-biochar. Instrumentation Science and Technology, 2020, 48, 287-300.	0.9	16

#	Article	IF	CITATIONS
19	Effects of wheat straw derived biochar on cadmium availability in a paddy soil and its accumulation in rice. Environmental Pollution, 2020, 257, 113592.	3.7	66
20	Preparation, environmental application and prospect of biochar-supported metal nanoparticles: A review. Journal of Hazardous Materials, 2020, 388, 122026.	6.5	172
21	Surface and colloid properties of biochar and implications for transport in porous media. Critical Reviews in Environmental Science and Technology, 2020, 50, 2484-2522.	6.6	56
22	Potential of pistachio shell biochar and dicalcium phosphate combination to reduce Pb speciation in spinach, improved soil enzymatic activities, plant nutritional quality, and antioxidant defense system. Chemosphere, 2020, 245, 125611.	4.2	252
24	Soil structure characteristics, functional properties and consistency limits response to corn cob biochar particle size and application rates in a 36-month pot experiment. Soil Research, 2020, 58, 488.	0.6	8
25	Genetics and genomics of moso bamboo (<i>Phyllostachys edulis</i>): Current status, future challenges, and biotechnological opportunities toward a sustainable bamboo industry. Food and Energy Security, 2020, 9, e229.	2.0	80
26	Can biochar reclaim coal mine spoil?. Journal of Environmental Management, 2020, 272, 111097.	3.8	37
27	Addition of recyclable biochar, compost and fibre clay to the growth medium layer for the cover system of mine tailings: a bioassay in a greenhouse. Environmental Earth Sciences, 2020, 79, 1.	1.3	5
28	Biochar-Facilitated Soil Remediation: Mechanisms and Efficacy Variations. Frontiers in Environmental Science, 2020, 8, .	1.5	127
29	The impact of enhanced and non-enhanced biochars on the catabolism of Â14C-phenanthrene in soil. Environmental Technology and Innovation, 2020, 20, 101146.	3.0	5
30	Excellent Adsorption–Desorption of Ammonium by a Poly(acrylic acid)-Grafted Chitosan and Biochar Composite for Sustainable Agricultural Development. ACS Sustainable Chemistry and Engineering, 2020, 8, 16451-16462.	3.2	38
31	The impact of carbonate salts on char formation and gas evolution during the slow pyrolysis of biomass, cellulose, and lignin. Sustainable Energy and Fuels, 2020, 4, 5987-6003.	2.5	18
32	Effects of Manure Waste Biochars in Mining Soils. Applied Sciences (Switzerland), 2020, 10, 3393.	1.3	10
33	Sustainable use of biochar for resource recovery and pharmaceutical removal from human urine: A critical review. Critical Reviews in Environmental Science and Technology, 2021, 51, 3016-3048.	6.6	18
34	Role of biochar in promoting circular economy in the agriculture sector. Part 1: A review of the biochar roles in soil N, P and K cycles. Chemical and Biological Technologies in Agriculture, 2020, 7, .	1.9	41
35	Review on Application of Nanomaterials in Soil Remediation. Journal of Physics: Conference Series, 2020, 1637, 012070.	0.3	1
36	Thermochemical Conversion of Biomass in the Presence of Molten Alkali-Metal Carbonates under Reducing Environments of N2 and CO2. Energies, 2020, 13, 5395.	1.6	8
37	Effect of Biochar on Cadmium Fractions in Some Polluted Saline and Sodic Soils. Environmental Management, 2020, 66, 1133-1141.	1.2	17

#	Article	IF	CITATIONS
38	A Mild Method for Preparation of Highly Selective Magnetic Biochar Microspheres. International Journal of Molecular Sciences, 2020, 21, 3752.	1.8	8
39	Bioelectrochemical remediation of Cr(VI)/Cd(II)-contaminated soil in bipolar membrane microbial fuel cells. Environmental Research, 2020, 186, 109582.	3.7	38
40	Short-Term Effects of Organic Amendments on Soil Properties and Maize (Zea maize L.) Growth. Agriculture (Switzerland), 2020, 10, 158.	1.4	11
41	Life cycle assessment of biochar-to-soil systems: A review. Journal of Cleaner Production, 2020, 259, 120998.	4.6	95
42	Biochar-based composites as electrode active materials in hybrid supercapacitors with particular focus on surface topography and morphology. Journal of Energy Storage, 2020, 29, 101291.	3.9	34
43	Biochar production and applications in agro and forestry systems: A review. Science of the Total Environment, 2020, 723, 137775.	3.9	140
44	Evaluation of biochar combustion reactivity under pyrolysis temperature: Microstructure characterization, kinetics and thermodynamics. Journal of the Energy Institute, 2020, 93, 1914-1923.	2.7	7
45	Effect of Biochar and Compost Amendments on Soil Biochemical Properties and Dry Weight of Canola Plant Grown in Soil Contaminated with Heavy Metals. Communications in Soil Science and Plant Analysis, 2020, 51, 1561-1571.	0.6	19
46	Comparative Adsorptive Removal of Phosphate and Nitrate from Wastewater Using Biochar-MgAl LDH Nanocomposites: Coexisting Anions Effect and Mechanistic Studies. Nanomaterials, 2020, 10, 336.	1.9	80
47	Apply biochar to ameliorate soda saline-alkali land, improve soil function and increase corn nutrient availability in the Songnen Plain. Science of the Total Environment, 2020, 722, 137428.	3.9	115
48	Combined application of biochar and sulfur regulated growth, physiological, antioxidant responses and Cr removal capacity of maize (Zea mays L.) in tannery polluted soils. Journal of Environmental Management, 2020, 259, 110051.	3.8	83
49	Effect of biochar on desiccation cracking characteristics of clayey soils. Geoderma, 2020, 364, 114182.	2.3	54
50	Critical study of crop-derived biochars for soil amendment and pharmaceutical ecotoxicity reduction. Chemosphere, 2020, 248, 125976.	4.2	11
51	Removal of methylene blue from aqueous solutions by biochar prepared from the pyrolysis of mixed municipal discarded material. Science of the Total Environment, 2020, 714, 136832.	3.9	105
52	Physicochemical and Toxicological Assay of Leachate from Malt Spent Rootlets Biochar. Bulletin of Environmental Contamination and Toxicology, 2020, 104, 634-641.	1.3	5
53	Pesticides in aquatic environments and their removal by adsorption methods. Chemosphere, 2020, 253, 126646.	4.2	200
54	Insight into the co-pyrolysis of different blended feedstocks to biochar for the adsorption of organic and inorganic pollutants: A review. Journal of Cleaner Production, 2020, 265, 121762.	4.6	132
55	Developing a solar photothermal method for peroxydisulfate activation for water purification: Taking degradation of sulfamethoxazole as an example. Chemical Engineering Journal, 2021, 403, 126324.	6.6	28

#	Article	IF	CITATIONS
56	Effects of carbonâ€based materials and redmuds on metal(loid) immobilization and growth of Salix dasyclados Wimm. on a former mine Technosol contaminated by arsenic and lead. Land Degradation and Development, 2021, 32, 467-481.	1.8	19
57	Application of biochar for the remediation of polluted sediments. Journal of Hazardous Materials, 2021, 404, 124052.	6.5	67
58	Modification on biochars for applications: A research update. Bioresource Technology, 2021, 319, 124100.	4.8	118
59	Charcoal ecology: Its function as a hub for plant succession and soil nutrient cycling in boreal forests. Ecological Research, 2021, 36, 4-12.	0.7	14
60	Longâ€ŧerm biochar application promotes rice productivity by regulating root dynamic development and reducing nitrogen leaching. GCB Bioenergy, 2021, 13, 257-268.	2.5	46
61	Enriched biogas and biofertilizer production from Eichhornia weed biomass in cow dung biochar-amended anaerobic digestion system. Environmental Technology and Innovation, 2021, 21, 101201.	3.0	25
62	Hydrothermal production of algal biochar for environmental and fertilizer applications: a review. Environmental Chemistry Letters, 2021, 19, 1025-1042.	8.3	27
63	Synthesis, characterization, and lead (II) sorption performance of a new magnetic separable composite: MnFe2O4@wild plants-derived biochar. Journal of Environmental Chemical Engineering, 2021, 9, 104567.	3.3	18
64	High pyrolysis temperature biochar reduced the transport of petroleum degradation bacteria Corynebacterium variabile HRJ4 in porous media. Journal of Environmental Sciences, 2021, 100, 228-239.	3.2	12
65	Contrasted tolerance of Agrostis capillaris metallicolous and non-metallicolous ecotypes in the context of a mining technosol amended by biochar, compost and iron sulfate. Environmental Geochemistry and Health, 2021, 43, 1457-1475.	1.8	21
66	Biochar Role in Soil Carbon Stabilization and Crop Productivity. , 2021, , 1-46.		1
67	Biochar application modifies soil properties of a former mine technosol: SEM/EDS study to investigate Pb and As speciation. Biomass Conversion and Biorefinery, 2024, 14, 5877-5887.	2.9	6
68	Effect of Biochar on Soil and Water Loss on Sloping Farmland in the Black Soil Region of Northeast China during the Spring Thawing Period. Sustainability, 2021, 13, 1460.	1.6	10
69	Effect of bamboo biochar on reducing grain cadmium content in two contrasting wheat genotypes. Environmental Science and Pollution Research, 2021, 28, 17405-17416.	2.7	15
70	Early Effect of Pine Biochar on Peach-Tree Planting on Microbial Community Composition and Enzymatic Activity. Applied Sciences (Switzerland), 2021, 11, 1473.	1.3	3
71	Assessment of Ecological Condition of Haplic Chernozem Calcic Contaminated with Petroleum Hydrocarbons during Application of Bioremediation Agents of Various Natures. Land, 2021, 10, 169.	1.2	14
72	Thermally activated mango peels hydrochar for fixed-bed continuous flow decontamination of Pb(II) ions from aqueous solution. International Journal of Environmental Science and Technology, 2022, 19, 2835-2850.	1.8	9
73	Influence of biochar on trace element uptake, toxicity and detoxification in plants and associated health risks: A critical review. Critical Reviews in Environmental Science and Technology, 2022, 52, 2803-2843	6.6	63

#	Article	IF	CITATIONS
74	Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicology and Environmental Safety, 2021, 211, 111887.	2.9	653
75	A review of China's municipal solid waste (MSW) and comparison with international regions: Management and technologies in treatment and resource utilization. Journal of Cleaner Production, 2021, 293, 126144.	4.6	289
76	Comparison of the effectiveness of biochar vs. magnesite amendments to immobilize metals and restore a polluted soil. Environmental Geochemistry and Health, 2021, 43, 5053-5064.	1.8	5
77	Impact of manure and biochar additions on annual crop growth, nutrient uptake, and fate of 15N-labelled fertilizer in two contrasting temperate prairie soils after four years. Canadian Journal of Soil Science, 0, , 1-22.	0.5	5
78	One-step synthesis of mixed valence FeOX nanoparticles supported on biomass activated carbon for degradation of bisphenol A by activating peroxydisulfate. Journal of Hazardous Materials, 2021, 409, 124990.	6.5	40
79	Co-application of biochar and microorganisms improves soybean performance and remediate cadmium-contaminated soil. Ecotoxicology and Environmental Safety, 2021, 214, 112112.	2.9	50
80	Assessing the diverse environmental effects of biochar systems: An evaluation framework. Journal of Environmental Management, 2021, 286, 112154.	3.8	18
81	A complete review on biochar: Production, property, multifaceted applications, interaction mechanism and computational approach. Fuel, 2021, 292, 120243.	3.4	90
82	Distinctive in-planta acclimation responses to basal growth and acute heat stress were induced inÂArabidopsis by cattle manure biochar. Scientific Reports, 2021, 11, 9875.	1.6	3
83	Utilization of Eichhornia crassipes biomass for production of biochar and its feasibility in agroecosystems: a review. Environmental Sustainability, 2021, 4, 285-297.	1.4	9
84	Sorption of anthracene (C14H10) and 9-anthroic acid (C15H10O2) onto biochar-amended soils as affected by field aging treatments. Chemosphere, 2021, 273, 129670.	4.2	3
85	Preparation and characterization of biochar derived from the fruit seed of Cedrela odorata L and evaluation of its adsorption capacity with methylene blue. Sustainable Chemistry and Pharmacy, 2021, 21, 100421.	1.6	33
86	Performance of wild plants-derived biochar in the remediation of water contaminated with lead: sorption optimization, kinetics, equilibrium, thermodynamics and reusability studies. International Journal of Phytoremediation, 2022, 24, 177-186.	1.7	1
87	Biochar mitigates effects of pesticides on soil biological activities. Environmental Sustainability, 2021, 4, 335-342.	1.4	23
88	Effects of biochar on the growth of Vallisneria natans in surface flow constructed wetland. Environmental Science and Pollution Research, 2021, 28, 66158-66170.	2.7	14
89	The effect of agroecosystem management on the distribution of C functional groups in soil organic matter: A review. Biology and Fertility of Soils, 2021, 57, 881-894.	2.3	26
90	Effects of different biomass materials as a salt-isolation layer on water and salt migration in coastal saline soil. PeerJ, 2021, 9, e11766.	0.9	13
91	Effects of combined soil amendments on Cd accumulation, translocation and food safety in rice: a field study in southern China. Environmental Geochemistry and Health, 2022, 44, 2451-2463.	1.8	5

#	Article	IF	CITATIONS
92	Performances of coffee husk biochar addition in a lab-scale SBR system for treating low carbon/nitrogen ratio wastewater. Biomass Conversion and Biorefinery, 0, , 1.	2.9	5
93	Effects of Biochar Feedstock and Pyrolysis Temperature on Soil Organic Matter Mineralization and Microbial Community Structures of Forest Soils. Frontiers in Environmental Science, 2021, 9, .	1.5	5
94	Salinity-induced changes in cadmium availability affect soil microbial and biochemical functions: Mitigating role of biochar. Chemosphere, 2021, 274, 129924.	4.2	8
95	Application of Rice Husk Biochar for Achieving Sustainable Agriculture and Environment. Rice Science, 2021, 28, 325-343.	1.7	47
96	Hydrothermally-altered feldspar as an environmentally-friendly technology to promote heavy metals immobilization: Batch studies and application in smelting-affected soils. Journal of Environmental Management, 2021, 291, 112711.	3.8	10
97	Cadmium accumulation in rice straws and derived biochars as affected by metal exposure, soil types and rice genotypes. International Journal of Phytoremediation, 2021, , 1-10.	1.7	2
98	Water hyacinth biochar and Aspergillus niger biomass amalgamation potential in removal of pollutants from polluted lake water. Journal of Environmental Chemical Engineering, 2021, 9, 105574.	3.3	23
99	Circular economy-driven ammonium recovery from municipal wastewater: State of the art, challenges and solutions forward. Bioresource Technology, 2021, 334, 125231.	4.8	45
100	Long-term effects of biochar on trace metals accumulation in rice grain: A 7-year field experiment. Agriculture, Ecosystems and Environment, 2021, 315, 107446.	2.5	19
101	Facile fabrication of iron-modified biochar as a renewable adsorbent for efficient siloxane (L2) removal. Journal of Environmental Chemical Engineering, 2021, 9, 105799.	3.3	20
102	Crop-residues derived biochar: Synthesis, properties, characterization and application for the removal of trace elements in soils. Journal of Hazardous Materials, 2021, 416, 126212.	6.5	37
103	Nano-Fe3O4-modified biochar promotes the formation of iron plaque and cadmium immobilization in rice root. Chemosphere, 2021, 276, 130212.	4.2	32
104	Banana peel biochar with nanoflake-assembled structure for cross contamination treatment in water: Interaction behaviors between lead and tetracycline. Chemical Engineering Journal, 2021, 420, 129807.	6.6	35
105	Sustainable Approach and Safe Use of Biochar and Its Possible Consequences. Sustainability, 2021, 13, 10362.	1.6	39
106	Can biochar be an effective and reliable biostimulating agent for the remediation of hydrocarbon-contaminated soils?. Environment International, 2021, 154, 106553.	4.8	40
107	Biochars and Engineered Biochars for Water and Soil Remediation: A Review. Sustainability, 2021, 13, 9932.	1.6	32
108	Waste derived amendments and their efficacy in mitigation of arsenic contamination in soil and soil–plant systems: A review. Environmental Technology and Innovation, 2021, 24, 101976.	3.0	9
109	Novel agrotechnological intervention for soil amendment through areca nut husk biochar in conjunction with vetiver grass. Chemosphere, 2022, 287, 132443.	4.2	3

#	Article	IF	CITATIONS
110	Removal of heavy metals from soil with biochar composite: A critical review of the mechanism. Journal of Environmental Chemical Engineering, 2021, 9, 105830.	3.3	97
111	Treatment of the saline-alkali soil with acidic corn stalk biochar and its effect on the sorghum yield in western Songnen Plain. Science of the Total Environment, 2021, 797, 149190.	3.9	38
112	Lignocellulosic biomass-based engineered biochar composites: A facile strategy for abatement of emerging pollutants and utilization in industrial applications. Renewable and Sustainable Energy Reviews, 2021, 152, 111643.	8.2	41
113	Research progress and prospects for using biochar to mitigate greenhouse gas emissions during composting: A review. Science of the Total Environment, 2021, 798, 149294.	3.9	82
114	Biochar-induced priming effects in soil via modifying the status of soil organic matter and microflora: A review. Science of the Total Environment, 2022, 805, 150304.	3.9	42
115	Recent Advance on Torrefaction Valorization and Application of Biochar from Agricultural Waste for Soil Remediation. Journal of Renewable Materials, 2022, 10, 247-261.	1.1	4
116	Effect of site hydrological conditions and soil aggregate sizes on the stabilization of heavy metals (Cu, Ni, Pb, Zn) by biochar. Science of the Total Environment, 2022, 802, 149949.	3.9	29
117	Biochar assisted phytoremediation for metal(loid) contaminated soils. , 2022, , 101-130.		4
118	Application of Biochar in Agriculture: A Sustainable Approach for Enhanced Plant Growth, Productivity and Soil Health. , 2020, , 107-130.		3
119	Decontamination of xenobiotics in water and soil environment through potential application of composite maize stover/rice husk (MS/RH) biochar—a review. Environmental Science and Pollution Research, 2020, 27, 28679-28694.	2.7	12
120	Biochars for the removal of naphthenic acids from water: A prospective approach towards remediation of petroleum refinery wastewater. Journal of Cleaner Production, 2020, 266, 121986.	4.6	35
121	Role of biochar in promoting circular economy in the agriculture sector. Part 2: A review of the biochar roles in growing media, composting and as soil amendment. Chemical and Biological Technologies in Agriculture, 2020, 7, .	1.9	23
122	Impact of Pyrolysis Temperature on the Properties of Eucalyptus Wood-Derived Biochar. Materials, 2020, 13, 5841.	1.3	42
124	Biochar for Improving Soil Biological Properties and Mitigating Salt Stress in Plants on Salt-affected Soils. Communications in Soil Science and Plant Analysis, 2022, 53, 140-152.	0.6	21
125	The Use of Biochar of High Growth Rate Plants to Agriculturally Remediate Heavy Metal Polluted Acidic Mine Wastes. , 0, , .		0
126	Biochar alleviates metal toxicity and improves microbial community functions in a soil co-contaminated with cadmium and lead. Biochar, 2021, 3, 485-498.	6.2	26
127	Hazardous wastes, adverse impacts, and management strategies: a way forward to environmental sustainability. Environment, Development and Sustainability, 2022, 24, 9731-9756.	2.7	8
128	The Application of Biochar on Intercropping System of Cassava and Maize, and the Effects on Soil Quality and Land-Use Efficiency. , 0, , .		2

#	Article	IF	CITATIONS
129	Biochar: A New Environmental Paradigm in Management of Agricultural Soils and Mitigation of GHG Emission. , 2020, , 223-258.		1
130	Application of Biotechnology for Restoration of Degraded Environs. , 2020, , 239-258.		0
131	Sustainable applications of rice feedstock in agro-environmental and construction sectors: A global perspective. Renewable and Sustainable Energy Reviews, 2022, 153, 111791.	8.2	78
132	Biochar Amendment in Agricultural Soil for Mitigation of Abiotic Stress. , 2020, , 305-344.		1
133	Properties and heavy metal leaching characteristics of leachate sludgeâ€derived biochar. Water Environment Research, 2021, 93, 3064-3074.	1.3	5
134	A comprehensive study on aquatic chemistry, health risk and remediation techniques of cadmium in groundwater. Science of the Total Environment, 2022, 818, 151784.	3.9	22
136	Enhancement of barrier and corrosion protection performance of epoxy coatings through adding ecoâ€friendly lamellar biochar. Materials and Corrosion - Werkstoffe Und Korrosion, 0, , .	0.8	0
137	An overview on biochar production, its implications, and mechanisms of biochar-induced amelioration of soil and plant characteristics. Pedosphere, 2022, 32, 107-130.	2.1	67
138	Long-term cotton stubble return and subsoiling increases cotton yield through improving root growth and properties of coastal saline soil. Industrial Crops and Products, 2022, 177, 114472.	2.5	12
139	Vinegar residue biochar: A possible conditioner for the safe remediation of alkaline Pb-contaminated soil. Chemosphere, 2022, 293, 133555.	4.2	16
140	Heterogeneous compositions of oxygen-containing functional groups on biochars and their different roles in rhodamine B degradation. Chemosphere, 2022, 292, 133518.	4.2	15
141	Simultaneous stabilization of Pb, Cd, Cu, Zn and Ni in contaminated sediment using modified biochar. Journal of Soils and Sediments, 2022, 22, 392-402.	1.5	6
142	Irrigation and biochar effects on pearl millet and kinetics of ammonia volatilization from saline sandy soils. Journal of Soil Science and Plant Nutrition, 2022, 22, 1546-1558.	1.7	9
143	Biochar application for the remediation of trace metals in contaminated soils: Implications for stress tolerance and crop production. Ecotoxicology and Environmental Safety, 2022, 230, 113165.	2.9	58
144	Effect of Organic Amendments in Soil on Physiological and Biochemical Attributes of Vachellia nilotica and Dalbergia sissoo under Saline Stress. Plants, 2022, 11, 228.	1.6	8
145	Life-cycle assessment to unravel co-benefits and trade-offs of large-scale biochar deployment in Norwegian agriculture. Resources, Conservation and Recycling, 2022, 179, 106030.	5.3	22
146	Biochar application in biofiltration systems to remove nutrients, pathogens, and pharmaceutical and personal care products from wastewater. Journal of Environmental Quality, 2022, 51, 129-151.	1.0	8
147	Biochar affects methylmercury production and bioaccumulation in paddy soils: Insights from soil-derived dissolved organic matter. Journal of Environmental Sciences, 2022, 119, 68-77.	3.2	11

#	Article	IF	CITATIONS
148	Cadmium Phytotoxicity, Tolerance, and Advanced Remediation Approaches in Agricultural Soils; A Comprehensive Review. Frontiers in Plant Science, 2022, 13, 773815.	1.7	77
149	Bioavailability and contamination levels of Zn, Pb, and Cd in sandy-loam soils, Botswana. Environmental Earth Sciences, 2022, 81, 1.	1.3	3
150	Some Results of Poultry Litter Processing into a Fertilizer by the Wet Torrefaction Method in a Fluidized Bed. Energies, 2022, 15, 2414.	1.6	3
151	Biochar for the removal of contaminants from soil and water: a review. Biochar, 2022, 4, 1.	6.2	257
152	The origin of potential precursors of secondary organic aerosols during combustion of biochar and softwood in residential heating. Chemical Engineering Research and Design, 2022, 161, 147-161.	2.7	4
153	Biochar-based composites for remediation of polluted wastewater and soil environments: Challenges and prospects. Chemosphere, 2022, 297, 134163.	4.2	57
154	Functional carbon nanodots improve soil quality and tomato tolerance in saline-alkali soils. Science of the Total Environment, 2022, 830, 154817.	3.9	17
155	A Modified Lysimeter Study for Phyto-Treatment of Moderately Saline Wastewater Using Plant-Derived Filter Bedding Materials. Frontiers in Microbiology, 2021, 12, 767132.	1.5	3
156	Al2(So4)3 Incorporation Improved the Adsorption of Fluorine on Three Typical Saline-Sodic Soils by Increasing Functional Groups as Effective Adsorbents. SSRN Electronic Journal, 0, , .	0.4	1
157	The Role of Biochar Systems in the Circular Economy: Biomass Waste Valorization and Soil Remediation. , 0, , .		1
158	Effects of Biochar, Poultry Manure and Their Mixture on Essential Nutrients of Sweet Potato Leaves and Storage Roots in Degraded Tropical Alfisols of Southwest Nigeria. Communications in Soil Science and Plant Analysis, 0, , 1-14.	0.6	2
159	Utilization of biochar prepared by invasive plant species Alternanthera philoxeroides to remove phenanthrene co-contaminated with PCE from aqueous solutions. Biomass Conversion and Biorefinery, 0, , 1.	2.9	0
160	Septage effluent treatment using floating constructed wetland with Spirodela polyrhiza: Response of biochar addition in the support matrix. Nature-based Solutions, 2022, 2, 100020.	1.6	3
161	Synergistic interactions, kinetic and thermodynamic analysis of co-pyrolysis of municipal paper and polypropylene waste. Waste Management, 2022, 146, 86-93.	3.7	14
162	Biochar soil application: soil improvement and pollution remediation. , 2022, , 97-102.		1
163	Biochars' potential role in the remediation, revegetation, and restoration of contaminated soils. , 2022, , 381-399.		0
164	Effect of biochar on the emission of greenhouse gas in farmland. , 2022, , 251-262.		1
165	Biochar assisted anaerobic digestion for biomethane production: Microbial symbiosis and electron transfer. Journal of Environmental Chemical Engineering, 2022, 10, 107960.	3.3	22

#	Article	IF	CITATIONS
166	Circular economy-based environmental management using biochar: Driving towards sustainability. Chemical Engineering Research and Design, 2022, 163, 585-600.	2.7	33
167	Synergistic Effects of Microorganisms and Passivation Materials on the Growth and Cd Uptake of Coriander (Coriandrum Sativum L.) in Cd-Contaminated Soils. SSRN Electronic Journal, 0, , .	0.4	0
169	Application of biochar for attenuating heavy metals in contaminated soil: potential implications and research gaps. , 2022, , 77-110.		0
170	Biorenewable Nanocomposite Materials for Wastewater Treatment. ACS Symposium Series, 0, , 281-311.	0.5	0
171	Engineered biochar for environmental decontamination in aquatic and soil systems: a review. , 2022, 1,		93
172	Interactive effects of biochar and N-fixing companion plants on growth and physiology of Acer saccharinum. Urban Forestry and Urban Greening, 2022, 74, 127652.	2.3	9
173	Effect of Six Different Feedstocks on Biochar's Properties and Expected Stability. Agronomy, 2022, 12, 1525.	1.3	8
174	Application of biochar and organic fertilizer to salineâ€ e lkali soil in the Yellow River Delta: Effects on soil water, salinity, nutrients, and maize yield. Soil Use and Management, 2022, 38, 1679-1692.	2.6	18
175	Influences of Biochar on Bioremediation/Phytoremediation Potential of Metal-Contaminated Soils. Frontiers in Microbiology, 0, 13, .	1.5	31
176	Reducing cadmium bioaccumulation in Theobroma cacao using biochar: basis for scaling-up to field. Heliyon, 2022, 8, e09790.	1.4	15
177	Insight into modified biochars and their immobilizing effects on heavy metal(loid)s in contaminated soils: Mechanisms and influencing factors. Pedosphere, 2023, 33, 23-33.	2.1	6
178	Functionalized biochars: Synthesis, characterization, and applications for removing trace elements from water. Journal of Hazardous Materials, 2022, 437, 129337.	6.5	28
179	Insight into biomass feedstock on formation of biochar-bound environmentally persistent free radicals under different pyrolysis temperatures. RSC Advances, 2022, 12, 19318-19326.	1.7	6
180	Response of Microbial Compositions and Interactions to Biochar Amendment in the Peanut-Planted Soil of the Yellow River Delta, China. Frontiers in Environmental Science, 0, 10, .	1.5	1
181	Progress and Applications of Plant Growth-Promoting Bacteria in Salt Tolerance of Crops. International Journal of Molecular Sciences, 2022, 23, 7036.	1.8	19
182	Biochar Development as a Catalyst and Its Application. , 0, , .		4
183	Impact of Amendment with Hog, Cattle Manure, and Biochar on N2O, CO2, and CH4 Fluxes of Two Contrasting Temperate Prairie Agricultural Soils. Bioenergy Research, 0, , .	2.2	0
184	Effect of remediation techniques on petroleum removal from and on biological activity of a drought-stressed Kastanozem soil. Environmental Science and Pollution Research, 2022, 29, 84702-84713.	2.7	1

#	Article	IF	CITATIONS
185	Sustainable and Eco-Friendly Biomass Derived Biochars for the Removal of Contaminants from Wastewater: Current Status and Perspectives. , 0, , .		0
186	Application of biochar-based materials for remediation of arsenic contaminated soil and water: Preparation, modification, and mechanisms. Journal of Environmental Chemical Engineering, 2022, 10, 108292.	3.3	31
187	Application of dry olive residue-based biochar in combination with arbuscular mycorrhizal fungi enhances the microbial status of metal contaminated soils. Scientific Reports, 2022, 12, .	1.6	3
189	Mitigation of the Adverse Impact of Copper, Nickel, and Zinc on Soil Microorganisms and Enzymes by Mineral Sorbents. Materials, 2022, 15, 5198.	1.3	7
190	Perspectives of Engineered Biochar for Environmental Applications: A Review. Energy & Fuels, 2022, 36, 7940-7986.	2.5	31
191	Effects of Biochar on Soil Properties and Tomato Growth. Agronomy, 2022, 12, 1824.	1.3	12
192	Organic Amendments: Direct Application and Residual Effects on Vegetative and Reproductive Growth of Hot Pepper. Scientific World Journal, The, 2022, 2022, 1-16.	0.8	1
193	Biochar research advancement in Bangladesh: challenges and opportunities of biochar in improving soil health. Sains Tanah, 2022, 19, 145.	0.2	1
194	Efficient Remediation of Cadmium Contamination in Soil by Functionalized Biochar: Recent Advances, Challenges, and Future Prospects. Processes, 2022, 10, 1627.	1.3	9
195	Assessment of Ecological State of Soils Contaminated by Petroleum Hydrocarbons after Bioremediation. Environmental Processes, 2022, 9, .	1.7	6
196	Direct and indirect interactions between biochar properties, plant belowground traits, and plant performance. GCB Bioenergy, 2022, 14, 1254-1265.	2.5	4
197	Effect of Biochar, Mycorrhiza, and Foliar Application of Boron on Growth and Yield of Peanuts. Gesunde Pflanzen, 2022, 74, 863-877.	1.7	3
198	Coupling of Advanced Oxidation Technologies and Biochar for the Removal of Dyes in Water. Water (Switzerland), 2022, 14, 2531.	1.2	10
199	Biochar amendment of aerobic composting for the effective biodegradation of heavy oil and succession of bacterial community. Bioresource Technology, 2022, 362, 127820.	4.8	12
200	Effect of biochar amendment on metal mobility, phytotoxicity, soil enzymes, and metal-uptakes by wheat (Triticum aestivum) in contaminated soils. Chemosphere, 2022, 307, 135889.	4.2	29
201	Activated peroxymonosulfate with ferric chloride-modified biochar to degrade bisphenol A: Characteristics, influencing factors, reaction mechanism and reuse performance. Separation and Purification Technology, 2022, 300, 121857.	3.9	16
202	The co-application of biochar with bioremediation for the removal of petroleum hydrocarbons from contaminated soil. Science of the Total Environment, 2022, 849, 157753.	3.9	13
203	The potential of biochar-based catalysts in advanced treatment technologies for efficacious removal of persistent organic pollutants from wastewater: A review. Chemical Engineering Research and	2.7	18

#	Article	IF	CITATIONS
204	Immobilization of lead (Pb) using ladle furnace slag and carbon dioxide. Chemosphere, 2022, 308, 136387.	4.2	5
205	Cadmium-induced oxidative stress and remediation in plants. , 2022, , 247-261.		0
206	Biochar: A promising soil amendment to mitigate heavy metals toxicity in plants. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2022, 50, 12778.	0.5	6
207	Evaluation of the Impact of Activated Biochar-Manure Compost Pellet Fertilizer on Volatile Organic Compound Emissions and Heavy Metal Saturation. International Journal of Environmental Research and Public Health, 2022, 19, 12405.	1.2	2
208	Influence of biochar and microorganism co-application on stabilization of cadmium (Cd) and improved maize growth in Cd-contaminated soil. Frontiers in Plant Science, 0, 13, .	1.7	16
209	EFFECT OF COMPOSTED POULTRY MANURE AND BIOCHAR ON BIOACCUMULATION OF LEAD/ZINC IN OKRA (ABELMOSCHUS ESCULENTUS. L.) IN AMAGU MINING SOILS. , 2022, 8, 38-48.		0
210	Effects of Carbonaceous Materials with Different Structures on Cadmium Fractions and Microecology in Cadmium-Contaminated Soils. International Journal of Environmental Research and Public Health, 2022, 19, 12381.	1.2	1
211	Synergistic effects of microorganisms and passivation materials on the growth and Cd uptake of coriander (Coriandrum sativum L.) in Cd-contaminated soils. Rhizosphere, 2022, 24, 100604.	1.4	4
213	Physical-Chemical Characterization of Different Carbon-Based Sorbents for Environmental Applications. Materials, 2022, 15, 7162.	1.3	12
214	Development of a new hydrophobic magnetic biochar for removing oil spills on the water surface. Biochar, 2022, 4, .	6.2	13
215	Vine Pruning-Derived Biochar for Agronomic Benefits. Agronomy, 2022, 12, 2730.	1.3	7
216	Improved understanding on biochar effect in electron supplied anaerobic soil as evidenced by dechlorination and methanogenesis processes. Science of the Total Environment, 2023, 857, 159346.	3.9	0
217	Biochar aerogel enhanced remediation performances for heavy oil-contaminated soil through biostimulation strategy. Journal of Hazardous Materials, 2023, 443, 130209.	6.5	19
218	Optimizing Cd2+ adsorption performance of KOH modified biochar adopting response surface methodology. Journal of Analytical and Applied Pyrolysis, 2023, 169, 105788.	2.6	7
219	Modified Biochar as a More Promising Amendment Agent for Remediation of Pesticide-Contaminated Soils: Modification Methods, Mechanisms, Applications, and Future Perspectives. Applied Sciences (Switzerland), 2022, 12, 11544.	1.3	5
220	Effects of landscape restoration on migration of lead and cadmium at an abandoned mine site. Frontiers in Environmental Science, 0, 10, .	1.5	3
221	Advances in the Study of Heavy Metal Adsorption from Water and Soil by Modified Biochar. Water (Switzerland), 2022, 14, 3894.	1.2	11
222	Electron exchange capacities of colloidal biochar: Affected by spatial structure distribution instead of particle size. Chemical Engineering Journal, 2023, 455, 140567.	6.6	1

#	Article	IF	CITATIONS
223	Interaction of Arsenic with Biochar in Water and Soil: Principles, Applications, and Prospects. Environmental Science and Engineering, 2023, , 129-158.	0.1	0
224	Three dimensional BC/rGA aerogel: preparation, characterization, and adsorption of Cr(VI). Biochar, 2022, 4, .	6.2	6
225	Biochar application for remediation of organic toxic pollutants in contaminated soils; An update. Ecotoxicology and Environmental Safety, 2022, 248, 114322.	2.9	30
226	Exploration and Optimisation of High-Salt Wastewater Defluorination Process. Water (Switzerland), 2022, 14, 3974.	1.2	1
227	Strawberry Biostimulation: From Mechanisms of Action to Plant Growth and Fruit Quality. Plants, 2022, 11, 3463.	1.6	9
228	Efficient Decontamination of Cationic Dyes from Synthetic Textile Wastewater Using Poly(acrylic) Tj ETQq1 1 0.7 Journal of Polymers and the Environment, 2023, 31, 2486-2503.	'84314 rgl 2.4	BT /Overlock 7
229	Prospective of Waste Lignocellulosic Biomass as Precursors for the Production of Biochar: Application, Performance, and Mechanism—A Review. Bioenergy Research, 2023, 16, 1335-1360.	2.2	6
230	Pollution and health-risk assessments of Cr-contaminated soils from a tannery waste lagoon, Hebei, north China: With emphasis on Cr speciation. Chemosphere, 2023, 317, 137908.	4.2	3
231	Applications of agricultural residue biochars to removal of toxic gases emitted from chemical plants: A review. Science of the Total Environment, 2023, 868, 161655.	3.9	15
232	Combination of Biochar and Functional Bacteria Drives the Ecological Improvement of Saline–Alkali Soil. Plants, 2023, 12, 284.	1.6	8
233	Recycling utilization of Chinese medicine herbal residues resources: systematic evaluation on industrializable treatment modes. Environmental Science and Pollution Research, 2023, 30, 32153-32167.	2.7	5
234	Production and application of biochar. Advances in Bioenergy, 2023, , .	0.5	0
235	More effective application of biochar-based immobilization technology in the environment: Understanding the role of biochar. Science of the Total Environment, 2023, 872, 162021.	3.9	7
236	A review of Best Management Practices for potato crop using Precision Agricultural Technologies. Smart Agricultural Technology, 2023, 4, 100220.	3.1	11
237	Nanoâ€biochar: Properties and prospects for sustainable agriculture. Land Degradation and Development, 2023, 34, 2445-2463.	1.8	10
238	Advances and prospects of biochar in improving soil fertility, biochemical quality, and environmental applications. Frontiers in Environmental Science, 0, 11, .	1.5	17
239	Data-Independent Acquisition Proteomics Reveals the Effects of Red and Blue Light on the Growth and Development of Moso Bamboo (Phyllostachys edulis) Seedlings. International Journal of Molecular Sciences, 2023, 24, 5103.	1.8	2
240	Thermochemical conversions of municipal solid waste into fuels and chemicals. Advances in Bioenergy, 2023, , 239-305.	0.5	1

#	Article	IF	CITATIONS
241	Preparation and performance of coal-based activated carbon based on an orthogonal experimental study. Energy, 2023, 274, 127353.	4.5	5
242	Material Design Strategies for Recovery of Critical Resources from Water. Advanced Materials, 2023, 35, .	11.1	8
243	Biochar for Improvement of Soil Properties. Environmental Contamination Remediation and Management, 2023, , 403-444.	0.5	1
251	Application of Farmyard Manure in Sustainable Utilization of Animal Wastes to Reclaim Salt Degraded Lands. , 2023, , 333-353.		0
254	Exploring the Potential of Biochar and Mulched Drip Irrigation with Plastic Film on Crop Yields in Water-Stressed Regions: a Global Meta-Analysis. Journal of Soil Science and Plant Nutrition, 2023, 23, 2970-2980.	1.7	4
265	Microbial responses towards biochar application in potentially toxic element (PTE) contaminated soil: a critical review on effects and potential mechanisms. Biochar, 2023, 5, .	6.2	2
275	The management of Cd in rice with biochar and selenium: effects, efficiency, and practices. , 2023, 2, .		1
278	Biochar for Plant Stress Tolerance for Climate-Resilient Agriculture. , 2023, , 245-258.		0
279	Biochar-Assisted Remediation of Contaminated Land: Prospects and Challenges. , 2023, , 231-252.		0
286	Agrochemicals and Climate Change. Impact of Meat Consumption on Health and Environmental Sustainability, 2023, , 49-77.	0.4	1
292	Organic Amendments as Strategies in Traditional and Conventional Agriculture in Developing Countries. , 2024, , 1-22.		0
296	Biological Interventions in Bioremediation of Cadmium Poisoning. , 2024, , 121-145.		0
297	In Situ Immobilization of Potentially Toxic Elements in Arable Soil by Adding Soil Amendments and the Best Ways to Maximize Their Use Efficiency. Journal of Soil Science and Plant Nutrition, 2024, 24, 115-134.	1.7	0
298	Perspective Chapter: The Role of Biochar in Soil Amelioration. , 0, , .		0

Role of biochar in removal of contaminants from organic wastes. , 2024, , 135-153.