Precise Inâ€Xivo Inflammation Imaging Using Inâ€Situ Glutathioneâ€Modified Ultraâ€Small NIRâ€II Lanthani

Angewandte Chemie - International Edition 58, 2050-2054 DOI: 10.1002/anie.201812878

Citation Report

#	Article	IF	CITATIONS
1	Excretable Lanthanide Nanoparticle for Biomedical Imaging and Surgical Navigation in the Second Nearâ€Infrared Window. Advanced Science, 2019, 6, 1902042.	5.6	88
2	Hierarchically Nanostructured Hybrid Platform for Tumor Delineation and Imageâ€Guided Surgery via NIRâ€II Fluorescence and PET Bimodal Imaging. Small, 2019, 15, e1903382.	5.2	31
3	Renalâ€clearable Molecular Semiconductor for Second Nearâ€Infrared Fluorescence Imaging of Kidney Dysfunction. Angewandte Chemie, 2019, 131, 15264-15271.	1.6	32
4	Renalâ€clearable Molecular Semiconductor for Second Nearâ€Infrared Fluorescence Imaging of Kidney Dysfunction. Angewandte Chemie - International Edition, 2019, 58, 15120-15127.	7.2	202
5	Tm ³⁺ â€5ensitized NIRâ€II Fluorescent Nanocrystals for Inâ€Vivo Information Storage and Decoding. Angewandte Chemie - International Edition, 2019, 58, 10153-10157.	7.2	196
6	Tm ³⁺ â€Sensitized NIRâ€II Fluorescent Nanocrystals for Inâ€Vivo Information Storage and Decoding. Angewandte Chemie, 2019, 131, 10259-10263.	1.6	40
7	In Vivo Assembly and Disassembly of Probes to Improve Nearâ€Infrared Optical Bioimaging. Advanced Healthcare Materials, 2019, 8, e1801650.	3.9	26
8	A photochromic upconversion nanoarchitecture: towards activatable bioimaging and dual NIR light-programmed singlet oxygen generation. Chemical Science, 2019, 10, 10231-10239.	3.7	45
9	A Renalâ€Clearable Macromolecular Reporter for Nearâ€Infrared Fluorescence Imaging of Bladder Cancer. Angewandte Chemie - International Edition, 2020, 59, 4415-4420.	7.2	77
10	Strategies To Design and Synthesize Polymerâ€Based Stimuliâ€Responsive Drugâ€Delivery Nanosystems. ChemBioChem, 2020, 21, 1236-1253.	1.3	40
11	Noninvasive <i>In Vivo</i> Imaging in the Second Near-Infrared Window by Inorganic Nanoparticle-Based Fluorescent Probes. Analytical Chemistry, 2020, 92, 535-542.	3.2	48
12	Recent advances of morphology adaptive nanomaterials for anti-cancer drug delivery. Progress in Natural Science: Materials International, 2020, 30, 555-566.	1.8	11
13	Biomolecule-tailored assembly and morphology of gold nanoparticles for LSPR applications. Nano Today, 2020, 35, 101005.	6.2	65
14	2D Nearâ€Infrared Luminescence Ln–Coordinationâ€Polymers as an Assistor for Biomedicine. ChemistrySelect, 2020, 5, 10771-10774.	0.7	5
15	Broadband excitable NIR-II luminescent nano-bioprobes based on CuInSe2 quantum dots for the detection of circulating tumor cells. Nano Today, 2020, 35, 100943.	6.2	57
16	Microenvironment-Triggered Degradable Hydrogel for Imaging Diagnosis and Combined Treatment of Intraocular Choroidal Melanoma. ACS Nano, 2020, 14, 15403-15416.	7.3	38
17	Fluorination Enhances NIRâ€II Fluorescence of Polymer Dots for Quantitative Brain Tumor Imaging. Angewandte Chemie - International Edition, 2020, 59, 21049-21057.	7.2	108
18	Recent Advances of Cell Membrane oated Nanomaterials for Biomedical Applications. Advanced Functional Materials, 2020, 30, 2003559.	7.8	122

	CITATION	Report	
#	Article	IF	CITATIONS
19	Molecular Fluorophores for Deep-Tissue Bioimaging. ACS Central Science, 2020, 6, 1302-1316.	5.3	149
20	Optical temperature sensing based on phonon-assisted population of Dy3+ sensitized by Gd3+ in Gd2Ge2O7 nanophosphors. Journal of Luminescence, 2020, 227, 117567.	1.5	15
21	Polyaniline Nanovesicles for Photoacoustic Imagingâ€Guided Photothermalâ€Chemo Synergistic Therapy in the Second Nearâ€Infrared Window. Small, 2020, 16, e2001177.	5.2	25
22	Recent Advances in Intraoperative Nerve Bioimaging: Fluorescenceâ€Guided Surgery for Nerve Preservation. Small Structures, 2020, 1, 2000036.	6.9	26
23	Emerging Lowâ€Ðimensional Nanoagents for Bioâ€Microimaging. Advanced Functional Materials, 2020, 30, 2003147.	7.8	13
24	Opportunities for Persistent Luminescent Nanoparticles in Luminescence Imaging of Biological Systems and Photodynamic Therapy. Nanomaterials, 2020, 10, 2015.	1.9	32
25	Near-infrared-IIb probe affords ultrahigh contrast inflammation imaging. RSC Advances, 2020, 10, 33602-33607.	1.7	3
26	Illuminating Platinum Transportation while Maximizing Therapeutic Efficacy by Gold Nanoclusters <i>via</i> Simultaneous Near-Infrared-I/II Imaging and Glutathione Scavenging. ACS Nano, 2020, 14, 13536-13547.	7.3	181
27	Fluorination Enhances NIRâ€II Fluorescence of Polymer Dots for Quantitative Brain Tumor Imaging. Angewandte Chemie, 2020, 132, 21235-21243.	1.6	15
28	Preparation of SiO2/YPO4:Nd/SiO2 composite microspheres with near-infrared luminescence and surface functionalization. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	3
29	Headâ€Mounted Devices for Noninvasive Cancer Imaging and Intraoperative Imageâ€Guided Surgery. Advanced Functional Materials, 2020, 30, 2000185.	7.8	7
30	Recent development of small-molecule organic fluorophores for multifunctional bioimaging in the second near-infrared window. Journal of Luminescence, 2020, 225, 117338.	1.5	39
31	Near-Infrared Dual-Emission Ratiometric Fluorescence Imaging Nanoprobe for Real-Time Tracing the Generation of Endogenous Peroxynitrite in Single Living Cells and In Vivo. ACS Omega, 2020, 5, 13278-13286.	1.6	1
32	A red-emissive D–A–D type fluorescent probe for lysosomal pH imaging. Analytical Methods, 2020, 12, 2978-2984.	1.3	6
33	Rational Design of Near-Infrared-II Organic Molecular Dyes for Bioimaging and Biosensing. , 2020, 2, 905-917.		123
34	Recent Advances in Rare-Earth-Doped Nanoparticles for NIR-II Imaging and Cancer Theranostics. Frontiers in Chemistry, 2020, 8, 496.	1.8	45
35	Organic NIR-II molecule with long blood half-life for in vivo dynamic vascular imaging. Nature Communications, 2020, 11, 3102.	5.8	226
36	Degradable pH-responsive NIR-II imaging probes based on a polymer-lanthanide composite for chemotherapy. Dalton Transactions, 2020, 49, 9444-9453.	1.6	15

ARTICLE IF CITATIONS # Clearable Shortwave-Infrared-Emitting NaErF₄ Nanoparticles for Noninvasive Dynamic 37 3.2 53 Vascular Imaging. Chemistry of Materials, 2020, 32, 3365-3375. A Universal Strategy to Construct Lanthanide-Doped Nanoparticles-Based Activable NIR-II Luminescence Probe for Bioimaging. IScience, 2020, 23, 100962. Monitoring Neuroinflammation with an HOCl-Activatable and Blood–Brain Barrier Permeable 39 3.2 34 Upconversion Nanoprobe. Analytical Chemistry, 2020, 92, 5569-5576. Single Wavelength Laser Excitation Ratiometric NIR-II Fluorescent Probe for Molecule Imaging in Vivo. Analytical Chemistry, 2020, 92, 6111-6120. Near-IR emissive rare-earth nanoparticles for guided surgery. Theranostics, 2020, 10, 2631-2644. 41 4.6 42 Activatable Molecular Probes for Second Nearâ€Infrared Fluorescence, Chemiluminescence, and 1.6 Photoacoustic Imaging. Angewandte Chemie, 2020, 132, 11813-11827. Activatable Molecular Probes for Second Nearâ€Infrared Fluorescence, Chemiluminescence, and 43 7.2 353 Photoacoustic Imaging. Angewandte Chemie - International Edition, 2020, 59, 11717-11731. Novel ultrasmall multifunctional nanodots for dual-modal MR/NIR-II imaging-guided photothermal 44 5.7 therapy. Biomaterials, 2020, 256, 120219. Unprecedented Theranostic LaB 6 Nanocubesâ€Mediated NIRâ€IIb Photodynamic Therapy to Conquer 45 7.8 16 Hypoxiaâ€Induced Chemoresistance. Advanced Functional Materials, 2020, 30, 2002940. Extrahepatic cholangiography in near-infrared II window with the clinically approved fluorescence agent indocyanine green: a promising imaging technology for intraoperative diagnosis. Theranostics, 2020, 10, 3636-3651. 4.6 Tumor microenvironment-activated NIR-II reagents for tumor imaging and therapy. Journal of 47 2.9 61 Materials Chemistry B, 2020, 8, 4738-4747. A Renalâ€Clearable Macromolecular Reporter for Nearâ€Infrared Fluorescence Imaging of Bladder 1.6 Cancer. Angewandte Chemie, 2020, 13[']2, 4445-4450. Size-Tunable Strategies for a Tumor Targeted Drug Delivery System. ACS Central Science, 2020, 6, 49 5.3 281 100-116. Recent Progress in NIR-II Contrast Agent for Biological Imaging. Frontiers in Bioengineering and Biotechnology, 2019, 7, 487. Semiconducting Polymer Nanoparticles as Theranostic System for Near-Infrared-II Fluorescence 51 7.3 220 Imaging and Photothermal Therapy under Safe Laser Fluence. ACS Nano, 2020, 14, 2509-2521. Propylenedioxy Thiophene Donor to Achieve NIR-II Molecular Fluorophores with Enhanced Brightness. Chemistry of Materials, 2020, 32, 2061-2069. A smart theranostic platform for photoacoustic and magnetic resonance dual-imaging-guided 53 2.8 60 photothermal-enhanced chemodynamic therapy. Nanoscale, 2020, 12, 5139-5150. Tetramodal Imaging and Synergistic Cancer Radio-Chemotherapy Enabled by Multiple 54 Component-Encapsulated Zeolitic Imidazolate Frameworks. ACS Nano, 2020, 14, 4336-4351.

#	Article	IF	CITATIONS
55	A mini-review on rare-earth down-conversion nanoparticles for NIR-II imaging of biological systems. Nano Research, 2020, 13, 1281-1294.	5.8	105
56	Lanthanideâ€Doped Nearâ€Infrared Nanoparticles for Biophotonics. Advanced Materials, 2021, 33, e2000678.	11.1	113
57	DNA Triplex and Quadruplex Assembled Nanosensors for Correlating K + and pH in Lysosomes. Angewandte Chemie, 2021, 133, 5513-5518.	1.6	43
58	Multifunctional hydrogel microsphere with reflection in near-infrared region for in vivo pH monitoring and drug release in tumor microenvironment. Chemical Engineering Journal, 2021, 421, 127873.	6.6	10
59	Constructing latticeâ€mismatched upconversion luminescence heterojunctions via light welding in seconds. Nano Select, 2021, 2, 398-405.	1.9	4
60	Activatable fluorescence sensors for <i>in vivo</i> bio-detection in the second near-infrared window. Chemical Science, 2021, 12, 3448-3459.	3.7	101
61	DNA Triplex and Quadruplex Assembled Nanosensors for Correlating K ⁺ and pH in Lysosomes. Angewandte Chemie - International Edition, 2021, 60, 5453-5458.	7.2	61
62	Nearâ€Infraredâ€II Semiconducting Polymer Dots for Deepâ€tissue Fluorescence Imaging. Chemistry - an Asian Journal, 2021, 16, 175-184.	1.7	22
63	Multifunctional NaYF ₄ :Nd/NaDyF ₄ nanocrystals as a multimodal platform for NIR-II fluorescence and magnetic resonance imaging. Nanoscale Advances, 2021, 3, 463-470.	2.2	10
64	Asymmetric small organic molecule-based NIR-II fluorophores for high performance tumor phototheranostics. Materials Chemistry Frontiers, 2021, 5, 5689-5697.	3.2	11
65	A diselenide bond-containing ROS-responsive ruthenium nanoplatform delivers nerve growth factor for Alzheimer's disease management by repairing and promoting neuron regeneration. Journal of Materials Chemistry B, 2021, 9, 7835-7847.	2.9	9
66	Near-Infrared II Optical Imaging. , 2021, , 397-420.		0
67	Nanoparticleâ€Based Activatable Probes for Bioimaging. Advanced Biology, 2021, 5, e2000193.	1.4	5
68	A general strategy <i>via</i> charge transfer sensitization to achieve efficient NIR luminescence in lanthanide-doped NaGdS ₂ nanocrystals. Journal of Materials Chemistry C, 2021, 9, 5148-5153.	2.7	8
69	Recent advances in design of lanthanide-containing NIR-II luminescent nanoprobes. IScience, 2021, 24, 102062.	1.9	48
70	Recent progress in development and applications of second nearâ€infrared (NIR-II) nanoprobes. Archives of Pharmacal Research, 2021, 44, 165-181.	2.7	20
71	NIRâ€l Jâ€Aggregates Labelled Mesoporous Implant for Imagingâ€Guided Osteosynthesis with Minimal Invasion. Advanced Functional Materials, 2021, 31, 2100656.	7.8	14
72	Engineering Oxaliplatin Prodrug Nanoparticles for Second Nearâ€Infrared Fluorescence Imagingâ€Guided Immunotherapy of Colorectal Cancer. Small, 2021, 17, e2007882.	5.2	44

#	Article	IF	CITATIONS
73	An Ultra‧table, Oxygen‧upply Nanoprobe Emitting in Nearâ€Infraredâ€II Window to Guide and Enhance Radiotherapy by Promoting Antiâ€Tumor Immunity. Advanced Healthcare Materials, 2021, 10, e2100090.	3.9	27
74	Recent advances in near-infrared II imaging technology for biological detection. Journal of Nanobiotechnology, 2021, 19, 132.	4.2	52
75	In vivo multifunctional fluorescence imaging using liposome-coated lanthanide nanoparticles in near-infrared-II/IIa/IIb windows. Nano Today, 2021, 38, 101120.	6.2	51
76	Highly Controlled Janus Organicâ€Inorganic Nanocomposite as a Versatile Photoacoustic Platform. Angewandte Chemie - International Edition, 2021, 60, 17647-17653.	7.2	22
77	Stimuli-responsive size-changeable strategy for cancer theranostics. Nano Today, 2021, 38, 101208.	6.2	27
78	Highly Controlled Janus Organicâ€Inorganic Nanocomposite as a Versatile Photoacoustic Platform. Angewandte Chemie, 2021, 133, 17788-17794.	1.6	6
79	A Promising NIRâ€II Fluorescent Sensor for Peptideâ€Mediated Longâ€Term Monitoring of Kidney Dysfunction. Angewandte Chemie - International Edition, 2021, 60, 15809-15815.	7.2	66
80	Review—Advances in the Application of Microenvironment-Responsive NIR-II Fluorescent Probes in Organisms. ECS Journal of Solid State Science and Technology, 2021, 10, 076002.	0.9	10
81	Responsive optical probes for deep-tissue imaging: Photoacoustics and second near-infrared fluorescence. Advanced Drug Delivery Reviews, 2021, 173, 141-163.	6.6	49
82	A Promising NIRâ€II Fluorescent Sensor for Peptideâ€Mediated Longâ€Term Monitoring of Kidney Dysfunction. Angewandte Chemie, 2021, 133, 15943-15949.	1.6	6
83	Photoactive Lanthanideâ€Based Upconverting Nanoclusters for Antimicrobial Applications. Advanced Functional Materials, 2021, 31, 2104480.	7.8	31
84	Tumor imaging of a novel Ho3+-based biocompatible NIR fluorescent fluoride nanoparticle. Journal of Luminescence, 2021, 235, 118007.	1.5	3
85	Progress in Lightâ€Responsive Lanthanide Nanoparticles toward Deep Tumor Theranostics. Advanced Functional Materials, 2021, 31, 2104325.	7.8	40
86	In vivo optical molecular imaging of inflammation and immunity. Journal of Molecular Medicine, 2021, 99, 1385-1398.	1.7	17
87	Phototriggered Selfâ€Adaptive Functionalized MOCâ€Based Drug Delivery Platform Promises High Antitumor Efficacy. Advanced Healthcare Materials, 2021, 10, 2100676.	3.9	2
88	Hemicyanineâ€Based Nearâ€Infrared Activatable Probes for Imaging and Diagnosis of Diseases. Angewandte Chemie, 2021, 133, 26658-26679.	1.6	30
89	NIRâ€II Organic Nanotheranostics for Precision Oncotherapy. Small, 2021, 17, e2102646.	5.2	63
90	Hemicyanineâ€Based Nearâ€Infrared Activatable Probes for Imaging and Diagnosis of Diseases. Angewandte Chemie - International Edition, 2021, 60, 26454-26475.	7.2	179

#	Article	IF	CITATIONS
91	Second near-infrared (NIR-II) imaging: a novel diagnostic technique for brain diseases. Reviews in the Neurosciences, 2022, 33, 467-490.	1.4	7
92	Diketopyrrolopyrrole derivatives-based NIR-II fluorophores for theranostics. Dyes and Pigments, 2021, 193, 109480.	2.0	18
93	A novel lanthanide-based NIR-II nanoprobe for lung squamous cell carcinoma identification. Biomaterials Science, 2021, 9, 6568-6573.	2.6	1
94	Rational Synthesis of Imine-Linked Fluorescent Covalent Organic Frameworks with Different p <i>K</i> _a for pH Sensing In Vitro and In Vivo. ACS Applied Materials & Interfaces, 2021, 13, 51351-51361.	4.0	30
95	Highâ€ s pecificity In Vivo Tumor Imaging Using Bioorthogonal NIRâ€ I Ib Nanoparticles. Advanced Materials, 2021, 33, e2102950.	11.1	46
96	Recent Advances in Fluorescence Imaging of Pulmonary Fibrosis in Animal Models. Frontiers in Molecular Biosciences, 2021, 8, 773162.	1.6	3
97	Flexible double narrowband near-infrared photodetector based on PMMA/core–shell upconversion nanoparticle composites. Journal of Rare Earths, 2022, 40, 211-217.	2.5	7
98	Near-infrared probes for luminescence lifetime imaging. Nanotheranostics, 2022, 6, 91-102.	2.7	10
99	Biomedical Applications of Lanthanide Nanomaterials, for Imaging, Sensing and Therapy. Nanotheranostics, 2022, 6, 184-194.	2.7	27
100	Rapidly liver-clearable rare-earth core–shell nanoprobe for dual-modal breast cancer imaging in the second near-infrared window. Journal of Nanobiotechnology, 2021, 19, 369.	4.2	8
101	Carbon dots as nanocatalytic medicine for anti-inflammation therapy. Journal of Colloid and Interface Science, 2022, 611, 545-553.	5.0	49
102	Rare-Earth Doping in Nanostructured Inorganic Materials. Chemical Reviews, 2022, 122, 5519-5603.	23.0	338
103	A "Selfâ€Checking―pH/Viscosityâ€Activatable NIRâ€I Molecule for Realâ€Time Evaluation of Photothermal Therapy Efficacy. Angewandte Chemie - International Edition, 2022, 61, .	7.2	42
104	A "Selfâ€Checking―pH/Viscosityâ€Activatable NIRâ€II Molecule for Realâ€Time Evaluation of Photothermal Therapy Efficacy. Angewandte Chemie, 2022, 134, .	1.6	2
105	Tumor microenvironment-responsive size-switchable drug delivery nanosystems. Expert Opinion on Drug Delivery, 2022, 19, 221-234.	2.4	11
106	Engineered lanthanide-doped upconversion nanoparticles for biosensing and bioimaging application. Mikrochimica Acta, 2022, 189, 109.	2.5	26
107	NIRâ€II Fluorescent Probe for Detecting Trimethylamine Based on Intermolecular Charge Transfer. Chemistry - A European Journal, 2022, 28, e202200113.	1.7	5
108	When imaging meets size-transformable nanosystems. Advanced Drug Delivery Reviews, 2022, 183, 114176.	6.6	11

#	Article	IF	CITATIONS
109	Assembly Transformation Jointly Driven by the LAP Enzyme and GSH Boosting Theranostic Capability for Effective Tumor Therapy. ACS Applied Materials & amp; Interfaces, 2021, 13, 59787-59802.	4.0	12
110	Chiral NIR-II fluorescent Ag2S quantum dots with stereospecific biological interactions and tumor accumulation behaviors. Science Bulletin, 2022, 67, 1274-1283.	4.3	21
111	Lanthanide-based NIR-II Fluorescent Nanoprobes and Their Biomedical Applications [※] . Acta Chimica Sinica, 2022, 80, 542.	0.5	3
112	siRNA-functionalized lanthanide nanoparticle enables efficient endosomal escape and cancer treatment. Nano Research, 2022, 15, 9160-9168.	5.8	10
113	Management of fluorescent organic/inorganic nanohybrids for biomedical applications in the NIR-II region. Chemical Society Reviews, 2022, 51, 7692-7714.	18.7	41
114	Versatile synthesis of dendritic mesoporous rare earth–based nanoparticles. Science Advances, 2022, 8, .	4.7	11
115	Ligand-Based Surface Engineering of Lanthanide Nanoparticles for Bioapplications. , 2022, 4, 1815-1830.		12
116	Emerging NIR-II luminescent bioprobes based on lanthanide-doped nanoparticles: From design towards diverse bioapplications. Coordination Chemistry Reviews, 2022, 471, 214745.	9.5	12
117	Lanthanide nanoparticles for near-infrared II theranostics. Coordination Chemistry Reviews, 2022, 471, 214724.	9.5	24
118	A biodegradable nanocapsule for through-skull NIR-II fluorescence imaging/magnetic resonance imaging and selectively enhanced radio-chemotherapy for orthotopic glioma. Nano Today, 2022, 46, 101619.	6.2	13
119	Enantiomeric NIRâ€II Emitting Rareâ€Earthâ€Doped Ag ₂ Se Nanoparticles with Differentiated In Vivo Imaging Efficiencies. Angewandte Chemie, 2022, 134, .	1.6	1
120	Enantiomeric NIRâ€II Emitting Rareâ€Earthâ€Doped Ag ₂ Se Nanoparticles with Differentiated In Vivo Imaging Efficiencies. Angewandte Chemie - International Edition, 2022, 61, .	7.2	12
121	Responsive Accumulation of Nanohybrids to Boost NIRâ€Phototheranostics for Specific Tumor Imaging and Glutathione Depletionâ€Enhanced Synergistic Therapy. Advanced Science, 2023, 10, .	5.6	8
122	Tailored NIRâ€II Lanthanide Luminescent Nanocrystals for Improved Biomedical Application. Advanced Optical Materials, 2023, 11, .	3.6	17
123	Clearance pathways of near-infrared-II contrast agents. Theranostics, 2022, 12, 7853-7883.	4.6	6
124	Enlarging the Stokes Shift by Weakening the <i>ï€</i> â€Conjugation of Cyanines for High Signalâ€ŧoâ€Noise Ratiometric Imaging. Advanced Science, 2023, 10, .	5.6	18
125	Single-Particle Optical Imaging for Ultrasensitive Bioanalysis. Biosensors, 2022, 12, 1105.	2.3	1
126	Manganese(II)â€Guided Separation in the Subâ€Nanometer Regime for Precise Identification of In Vivo Size Dependence. Angewandte Chemie, 0, , .	1.6	0

#	Article	IF	CITATIONS
127	Manganese(II)â€Guided Separation in the Subâ€Nanometer Regime for Precise Identification of In Vivo Size Dependence. Angewandte Chemie - International Edition, 2023, 62, .	7.2	8
128	Lowâ€Dose NIRâ€II Preclinical Bioimaging Using Liposomeâ€Encapsulated Cyanine Dyes. Small, 2023, 19, .	5.2	8
129	Emerging ultrasmall luminescent nanoprobes for <i>in vivo</i> bioimaging. Chemical Society Reviews, 2023, 52, 1672-1696.	18.7	27
130	Fluorescent nanoswitch based on redox-controlled reversible sulfhydryl functionalized carbon dots for highly sensitive detection of ochratoxin A. Sensors and Actuators B: Chemical, 2023, 385, 133693.	4.0	5
131	Activatable Lanthanide Nanoprobes with Dye-Sensitized Second Near-Infrared Luminescence for <i>in Vivo</i> Inflammation Imaging. Analytical Chemistry, 2023, 95, 3761-3768.	3.2	9
132	In Situ Transformable Nanoplatforms with Supramolecular Crossâ€Linking Triggered Complementary Function for Enhanced Cancer Photodynamic Therapy. Advanced Materials, 2023, 35, .	11.1	13
133	Optical and Photoacoustic Imaging <i>In Vivo</i> : Opportunities and Challenges. , 2023, 1, 99-109.		10