Textural modification of 3D printed dark chocolate by v

Food Research International 121, 648-657 DOI: 10.1016/j.foodres.2018.12.034

Citation Report

#	Article	IF	CITATIONS
1	Textureâ€modified 3D printed dark chocolate: Sensory evaluation and consumer perception study. Journal of Texture Studies, 2019, 50, 386-399.	1.1	48
2	Model Building and Slicing in Food 3D Printing Processes: A Review. Comprehensive Reviews in Food Science and Food Safety, 2019, 18, 1052-1069.	5.9	100
3	3D food printing: a categorised review of inks and their development. Virtual and Physical Prototyping, 2019, 14, 203-218.	5.3	100
4	Designing Internal Structure of Chocolate and Its Effect on Food Texture. , 2019, , .		5
5	4D printing of mashed potato/purple sweet potato puree with spontaneous color change. Innovative Food Science and Emerging Technologies, 2020, 59, 102250.	2.7	123
6	Effect of Novel Ultrasonic- Microwave Combined Pretreatment on the Quality of 3D Printed Wheat Starch-Papaya System. Food Biophysics, 2020, 15, 249-260.	1.4	27
7	Effects of infill characteristics and strain rate on the deformation and failure properties of additively manufactured polyamide-based composite structures. Results in Physics, 2020, 18, 103346.	2.0	46
8	Techno-Economic Prospects and Desirability of 3D Food Printing: Perspectives of Industrial Experts, Researchers and Consumers. Foods, 2020, 9, 1725.	1.9	25
9	Recent advances in functional 3D printing of foods: a review of functions of ingredients and internal structures. Critical Reviews in Food Science and Nutrition, 2021, 61, 3489-3503.	5.4	61
10	Structural and Textural Characteristics of 3D-Printed Protein- and Dietary Fibre-Rich Snacks Made of Milk Powder and Wholegrain Rye Flour. Foods, 2020, 9, 1527.	1.9	37
11	Comparison of <scp>3D</scp> printed and molded carrots produced with gelatin, guar gum and xanthan gum. Journal of Texture Studies, 2020, 51, 852-860.	1.1	21
12	Use of potato processing by-product: Effects on the 3D printing characteristics of the yam and the texture of air-fried yam snacks. LWT - Food Science and Technology, 2020, 125, 109265.	2.5	54
13	Printability, microstructure, and flow dynamics of phase-separated edible 3D inks. Food Hydrocolloids, 2020, 109, 106120.	5.6	36
14	3D extrusion-based printability evaluation of selected cereal grains by computational fluid dynamic simulation. Journal of Food Engineering, 2020, 286, 110113.	2.7	63
15	Texture Modification of 3D Printed Air-Fried Potato Snack by Varying Its Internal Structure with the Potential to Reduce Oil Content. Food and Bioprocess Technology, 2020, 13, 564-576.	2.6	59
16	How to Formulate for Structure and Texture via Medium of Additive Manufacturing-A Review. Foods, 2020, 9, 497.	1.9	49
17	Synergistic effect of microwave 3D print and transglutaminase on the self-gelation of surimi during printing. Innovative Food Science and Emerging Technologies, 2021, 67, 102546.	2.7	58
18	Food 3D printing: Effect of heat transfer on print stability of chocolate. Journal of Food Engineering, 2021, 294, 110415.	2.7	45

CITATION REPORT

#	Article	IF	CITATIONS
19	A review on customizing edible food materials into 3D printable inks: Approaches and strategies. Trends in Food Science and Technology, 2021, 107, 68-77.	7.8	42
20	Novel evaluation technology for the demand characteristics of 3D food printing materials: a review. Critical Reviews in Food Science and Nutrition, 2022, 62, 4669-4683.	5.4	39
21	Development of a Material Mixing Extrusion Type Chocolate 3D Printer. Journal of the Korean Society for Precision Engineering, 2021, 38, 145-151.	0.1	1
22	Additive Manufacturing in the Food Sector: A Literature Review. Macromolecular Symposia, 2021, 395, .	0.4	2
23	Food Texture Design by 3D Printing: A Review. Foods, 2021, 10, 320.	1.9	70
25	3D food printing: Applications of plant-based materials in extrusion-based food printing. Critical Reviews in Food Science and Nutrition, 2022, 62, 7184-7198.	5.4	28
26	Trends in functional food development with three-dimensional (3D) food printing technology: prospects for value-added traditionally processed food products. Critical Reviews in Food Science and Nutrition, 2022, 62, 7866-7904.	5.4	47
27	Texture properties of microwave post-processed 3D printed potato snack with different ingredients and infill structure. Future Foods, 2021, 3, 100017.	2.4	22
28	Dehydration-triggered shape transformation of 4D printed edible gel structure affected by material property and heating mechanism. Food Hydrocolloids, 2021, 115, 106608.	5.6	46
29	Insight into the correlations among rheological behaviour, protein molecular structure and 3D printability during the processing of surimi from golden pompano (Trachinotus ovatus). Food Chemistry, 2022, 371, 131046.	4.2	33
30	3D food printing of as the new way of preparing food: A review. International Journal of Gastronomy and Food Science, 2020, 22, 100260.	1.3	113
31	Current Status in the Utilization of Biobased Polymers for 3D Printing Process: A Systematic Review of the Materials, Processes, and Challenges. ACS Applied Bio Materials, 2021, 4, 325-369.	2.3	87
32	Recent Progress in Modeling 3D/4D Printing of Foods. Food Engineering Reviews, 2022, 14, 120-133.	3.1	13
33	Formulation and evaluation of thermoreversible sugar-paste for hot-melt 3D printing. Journal of Food Engineering, 2022, 321, 110944.	2.7	4
34	3D food printing: Genesis, trends and prospects. , 2022, , 627-644.		6
35	Three-Dimensional (3D) Printing Technology: 3D Printers, Technologies, and Application Insights in the Food Diligence. , 2022, , 81-100.		1
36	Faba Bean Fractions for 3D Printing of Protein-, Starch- and Fibre-Rich Foods. Processes, 2022, 10, 466.	1.3	13
37	Potentials of <scp>3D</scp> extrusionâ€based printing in resolving food processing challenges: A perspective review. Journal of Food Process Engineering, 2022, 45, .	1.5	19

#	Article	IF	CITATIONS
39	Direct Ink Writing: A 3D Printing Technology for Diverse Materials. Advanced Materials, 2022, 34, e2108855.	11.1	361
42	Internal structure design for improved shape fidelity and crispness of 3D printed pumpkin-based snacks after freeze-drying. Food Research International, 2022, 157, 111220.	2.9	15
43	3D food printing curing technology based on gellan gum. Journal of Food Engineering, 2022, 327, 111036.	2.7	16
44	Investigation of flow field, die swelling, and residual stress in 3D printing of surimi paste using the finite element method. Innovative Food Science and Emerging Technologies, 2022, 78, 103008.	2.7	19
45	Texture Modification of 3D-Printed Maltitol Candy by Changing Internal Design. Applied Sciences (Switzerland), 2022, 12, 4189.	1.3	3
46	Overcoming barriers to consumer acceptance of 3D-printed foods in the food service sector. Food Quality and Preference, 2022, 100, 104615.	2.3	3
47	Additive manufacturing of functional devices for environmental applications: A review. Journal of Environmental Chemical Engineering, 2022, 10, 108049.	3.3	11
48	Features of food design on a 3D printer. A review. Food Systems, 2022, 5, 100-106.	0.2	1
49	Quality control evaluation of paediatric chocolate-based dosage forms: 3D printing vs mold-casting method. International Journal of Pharmaceutics, 2022, 624, 121991.	2.6	13
50	Development of fat-reduced 3D printed chocolate by substituting cocoa butter with water-in-oil emulsions. Food Hydrocolloids, 2023, 135, 108114.	5.6	17
51	Impact of internal structural design on quality and nutritional properties of 3D printed food products during post-printing: a critical review. Critical Reviews in Food Science and Nutrition, 0, , 1-12.	5.4	1
52	3D printing of plant-based foods. , 2023, , 301-314.		1
53	Extrusion-based 3D printing of food biopolymers: A highlight on the important rheological parameters to reach printability. Journal of Food Engineering, 2023, 342, 111371.	2.7	15
54	Extrusion-Based 3D Food Printing: Printability AssessmentÂand Improvement Techniques. Food and Bioprocess Technology, 2023, 16, 987-1008.	2.6	14
55	Influence of filament fabrication parameter on tensile strength and filament size of 3D printing PLA-3D850. Materials Today: Proceedings, 2023, 74, 457-461.	0.9	10
56	Effect of <scp>3D</scp> printing conditions and <scp>postâ€printing</scp> fermentation on pearl millet fortified <i>idli</i> . Journal of the Science of Food and Agriculture, 2023, 103, 2401-2412.	1.7	6
57	Transfer rates of Salmonella Typhimurium, Listeria monocytogenes, and a human norovirus surrogate impacted by macronutrient composition of food inks in 3D food printing systems. Food Microbiology, 2023, 113, 104268.	2.1	1
58	3D printing to modulate the texture of starch-based food. Journal of Food Engineering, 2023, 350, 111499.	2.7	3

#	Article	IF	CITATIONS
59	3D printing surimi enhanced by surface crosslinking based on dry-spraying transglutaminase, and its application in dysphagia diets. Food Hydrocolloids, 2023, 140, 108600.	5.6	14
60	Three-Dimensional Printing Applications in Food Industry. Nanomanufacturing, 2023, 3, 91-112.	1.8	7
61	A brief review on <scp>3D</scp> printing of chocolate. International Journal of Food Science and Technology, 2023, 58, 2811-2828.	1.3	0
62	Plant-Based Food Printing at a Glance. , 2023, , 87-117.		1

CITATION REPORT