Scanâ€specific robust artificialâ€neuralâ€networks for reconstruction: Databaseâ€free deep learning for fast in

Magnetic Resonance in Medicine 81, 439-453 DOI: 10.1002/mrm.27420

Citation Report

#	Article	IF	CITATIONS
1	Accelerated Simultaneous Multi-Slice MRI using Subject-Specific Convolutional Neural Networks. , 2018, 2018, 1636-1640.		6
2	Fast GPU Implementation of a Scan-Specific Deep Learning Reconstruction for Accelerated Magnetic Resonance Imaging. , 2018, 2018, 399-403.		3
3	Accelerated Coronary Mri Using 3D Spirit-Raki With Sparsity Regularization. , 2019, 2019, 1692-1695.		13
4	A Very Deep Densely Connected Network for Compressed Sensing MRI. IEEE Access, 2019, 7, 85430-85439.	2.6	22
6	SANTIS: Samplingâ€Augmented Neural neTwork with Incoherent Structure for MR image reconstruction. Magnetic Resonance in Medicine, 2019, 82, 1890-1904.	1.9	70
7	Deep residual network for offâ€resonance artifact correction with application to pediatric body MRA with 3D cones. Magnetic Resonance in Medicine, 2019, 82, 1398-1411.	1.9	16
8	Scan-Specific Residual Convolutional Neural Networks for Fast MRI Using Residual RAKI. , 2019, , .		6
9	Learning How to Interpolate Fourier Data With Unknown Autoregressive Structure: An Ensemble-Based Approach. , 2019, , .		0
10	Deep Learning in MR Image Processing. Investigative Magnetic Resonance Imaging, 2019, 23, 81.	0.2	36
11	Optimized fast GPU implementation of robust artificial-neural-networks for k-space interpolation (RAKI) reconstruction. PLoS ONE, 2019, 14, e0223315.	1.1	6
12	Comparison of Neural Network Architectures for Physics-Driven Deep Learning MRI Reconstruction. , 2019, , .		3
13	A featureâ€based convolutional neural network for reconstruction of interventional MRI. NMR in Biomedicine, 2022, 35, e4231.	1.6	3
14	Image Reconstruction: From Sparsity to Data-Adaptive Methods and Machine Learning. Proceedings of the IEEE, 2020, 108, 86-109.	16.4	187
15	Low-Rank Tensor Models for Improved Multidimensional MRI: Application to Dynamic Cardiac \$T_1\$ Mapping. IEEE Transactions on Computational Imaging, 2020, 6, 194-207.	2.6	27
16	MoDL-MUSSELS: Model-Based Deep Learning for Multishot Sensitivity-Encoded Diffusion MRI. IEEE Transactions on Medical Imaging, 2020, 39, 1268-1277.	5.4	32
17	{{k} -Space Deep Learning for Accelerated MRI. IEEE Transactions on Medical Imaging, 2020, 39, 377-386.	5.4	193
18	High-resolution 3D MR Fingerprinting using parallel imaging and deep learning. NeuroImage, 2020, 206, 116329.	2.1	49
19	Generalized simultaneous multiâ€orientation 2D imaging. Magnetic Resonance in Medicine, 2020, 84, 847-856.	1.9	1

ATION REDO

#	Article	IF	CITATIONS
20	Tensor Completion From Regular Sub-Nyquist Samples. IEEE Transactions on Signal Processing, 2020, 68, 1-16.	3.2	37
21	A Transferâ€Learning Approach for Accelerated MRI Using Deep Neural Networks. Magnetic Resonance in Medicine, 2020, 84, 663-685.	1.9	106
22	High-Fidelity Accelerated MRI Reconstruction by Scan-Specific Fine-Tuning of Physics-Based Neural Networks. , 2020, 2020, 1481-1484.		4
23	Rapid MR relaxometry using deep learning: An overview of current techniques and emerging trends. NMR in Biomedicine, 2022, 35, e4416.	1.6	29
24	High-performance rapid MR parameter mapping using model-based deep adversarial learning. Magnetic Resonance Imaging, 2020, 74, 152-160.	1.0	19
25	Making Magnets More Attractive. Topics in Magnetic Resonance Imaging, 2020, 29, 167-174.	0.7	20
26	Neural Architecture Search for compressed sensing Magnetic Resonance image reconstruction. Computerized Medical Imaging and Graphics, 2020, 85, 101784.	3.5	17
27	Dense Recurrent Neural Networks for Accelerated MRI: History-Cognizant Unrolling of Optimization Algorithms. IEEE Journal on Selected Topics in Signal Processing, 2020, 14, 1280-1291.	7.3	51
28	Deep Generalization of Structured Low-Rank Algorithms (Deep-SLR). IEEE Transactions on Medical Imaging, 2020, 39, 4186-4197.	5.4	27
29	Prior-Guided Image Reconstruction for Accelerated Multi-Contrast MRI via Generative Adversarial Networks. IEEE Journal on Selected Topics in Signal Processing, 2020, 14, 1072-1087.	7.3	78
30	Applying Artificial Intelligence to Mitigate Effects of Patient Motion or Other Complicating Factors on Image Quality. Topics in Magnetic Resonance Imaging, 2020, 29, 175-180.	0.7	19
31	Prospective Deployment of Deep Learning in <scp>MRI</scp> : A Framework for Important Considerations, Challenges, and Recommendations for Best Practices. Journal of Magnetic Resonance Imaging, 2021, 54, 357-371.	1.9	44
32	GrappaNet: Combining Parallel Imaging With Deep Learning for Multi-Coil MRI Reconstruction. , 2020, ,		47
33	Scan-Specific Accelerated Mri Reconstruction Using Recurrent Neural Networks In A Regularized Self-Consistent Framework. , 2020, , .		0
34	Unpaired Deep Learning for Accelerated MRI Using Optimal Transport Driven CycleGAN. IEEE Transactions on Computational Imaging, 2020, 6, 1285-1296.	2.6	52
35	Using Deep Learning to Accelerate Knee MRI at 3 T: Results of an Interchangeability Study. American Journal of Roentgenology, 2020, 215, 1421-1429.	1.0	95
36	SARA-GAN: Self-Attention and Relative Average Discriminator Based Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruction. Frontiers in Neuroinformatics, 2020, 14, 611666.	1.3	47
37	Deep learning for tomographic image reconstruction. Nature Machine Intelligence, 2020, 2, 737-748.	8.3	233

#	Article	IF	Citations
38	Self-Supervised Physics-Based Deep Learning MRI Reconstruction Without Fully-Sampled Data. , 2020, , .		39
39	Deep Learning Fast MRI Using Channel Attention in Magnitude Domain. , 2020, , .		7
40	Dynamic MRI using deep manifold self-learning. , 2020, 2020, 1052-1055.		6
41	Dual-domain cascade of U-nets for multi-channel magnetic resonance image reconstruction. Magnetic Resonance Imaging, 2020, 71, 140-153.	1.0	28
42	From Compressed-Sensing to Artificial Intelligence-Based Cardiac MRI Reconstruction. Frontiers in Cardiovascular Medicine, 2020, 7, 17.	1.1	85
43	Joint multiâ€contrast variational network reconstruction (jVN) with application to rapid 2D and 3D imaging. Magnetic Resonance in Medicine, 2020, 84, 1456-1469.	1.9	28
44	Selfâ€supervised learning of physicsâ€guided reconstruction neural networks without fully sampled reference data. Magnetic Resonance in Medicine, 2020, 84, 3172-3191.	1.9	133
45	Calibrationless Parallel MRI Using Model Based Deep Learning (C-MODL). , 2020, 2020, 1428-1431.		1
46	Exploring linearity of deep neural network trained QSM: QSMnet+. NeuroImage, 2020, 211, 116619.	2.1	49
47	Accelerated coronary MRI with sRAKI: A database-free self-consistent neural network k-space reconstruction for arbitrary undersampling. PLoS ONE, 2020, 15, e0229418.	1.1	25
48	Improving the Speed of MRI with Artificial Intelligence. Seminars in Musculoskeletal Radiology, 2020, 24, 012-020.	0.4	45
49	Reconstruction of spectra from truncated free induction decays by deep learning in proton magnetic resonance spectroscopy. Magnetic Resonance in Medicine, 2020, 84, 559-568.	1.9	14
50	Deep Magnetic Resonance Image Reconstruction: Inverse Problems Meet Neural Networks. IEEE Signal Processing Magazine, 2020, 37, 141-151.	4.6	218
51	Deep-Learning Methods for Parallel Magnetic Resonance Imaging Reconstruction: A Survey of the Current Approaches, Trends, and Issues. IEEE Signal Processing Magazine, 2020, 37, 128-140.	4.6	213
52	Plug-and-Play Methods for Magnetic Resonance Imaging: Using Denoisers for Image Recovery. IEEE Signal Processing Magazine, 2020, 37, 105-116.	4.6	144
53	A multi-scale variational neural network for accelerating motion-compensated whole-heart 3D coronary MR angiography. Magnetic Resonance Imaging, 2020, 70, 155-167.	1.0	32
54	Deep complex convolutional network for fast reconstruction of 3D late gadolinium enhancement cardiac MRI. NMR in Biomedicine, 2020, 33, e4312.	1.6	30
55	Geometric Approaches to Increase the Expressivity of Deep Neural Networks for MR Reconstruction. IEEE Journal on Selected Topics in Signal Processing, 2020, 14, 1292-1305.	7.3	10

#	Article	IF	CITATIONS
56	Accelerating Cartesian MRI by domain-transform manifold learning in phase-encoding direction. Medical Image Analysis, 2020, 63, 101689.	7.0	21
57	Diffusion Imaging in the Post HCP Era. Journal of Magnetic Resonance Imaging, 2021, 54, 36-57.	1.9	22
58	Accelerating cardiac cine MRI using a deep learningâ€based ESPIRiT reconstruction. Magnetic Resonance in Medicine, 2021, 85, 152-167.	1.9	80
59	Myocardial arterial spin labeling in systole and diastole using flowâ€sensitive alternating inversion recovery with parallel imaging and compressed sensing. NMR in Biomedicine, 2021, 34, e4436.	1.6	6
60	Triple-D network for efficient undersampled magnetic resonance images reconstruction. Magnetic Resonance Imaging, 2021, 77, 44-56.	1.0	3
61	Deep learning for brain disorders: from data processing to disease treatment. Briefings in Bioinformatics, 2021, 22, 1560-1576.	3.2	14
62	A kâ€spaceâ€toâ€image reconstruction network for MRI using recurrent neural network. Medical Physics, 2021, 48, 193-203.	1.6	14
63	Multiâ€domain convolutional neural network (MDâ€CNN) for radial reconstruction of dynamic cardiac MRI. Magnetic Resonance in Medicine, 2021, 85, 1195-1208.	1.9	26
64	Reference-Driven Undersampled MR Image Reconstruction Using Wavelet Sparsity-Constrained Deep Image Prior. Computational and Mathematical Methods in Medicine, 2021, 2021, 1-12.	0.7	3
65	Over-and-Under Complete Convolutional RNN for MRI Reconstruction. Lecture Notes in Computer Science, 2021, 12906, 13-23.	1.0	19
66	Learning Data Consistency and its Application to Dynamic MR Imaging. IEEE Transactions on Medical Imaging, 2021, 40, 3140-3153.	5.4	20
67	Deep Learning and Its Application to Function Approximation for MR in Medicine: An Overview. Magnetic Resonance in Medical Sciences, 2022, 21, 553-568.	1.1	2
68	Bayesian Uncertainty Estimation of Learned Variational MRI Reconstruction. IEEE Transactions on Medical Imaging, 2022, 41, 279-291.	5.4	18
69	Using 5D flow MRI to decode the effects of rhythm on left atrial 3D flow dynamics in patients with atrial fibrillation. Magnetic Resonance in Medicine, 2021, 85, 3125-3139.	1.9	14
70	Improved Multi-Echo Gradient-Echo-Based Myelin Water Fraction Mapping Using Dimensionality Reduction. IEEE Transactions on Medical Imaging, 2022, 41, 27-38.	5.4	2
71	Quad-Contrast Imaging: Simultaneous Acquisition of Four Contrast-Weighted Images (PD-Weighted,) Tj ETQq1 1 Transactions on Medical Imaging, 2021, 40, 3617-3626.	0.784314 5.4	rgBT /Overl 5
72	Accelerated white matter lesion analysis based on simultaneous <i>T</i> ₁ and <i>T</i> ₂ ^{â^—} quantification using magnetic resonance fingerprinting and deep learning. Magnetic Resonance in Medicine, 2021, 86, 471-486.	1.9	12
73	Machine learning in Magnetic Resonance Imaging: Image reconstruction. Physica Medica, 2021, 83, 79-87.	0.4	29

#	Article	IF	CITATIONS
74	GAMER-MRI in Multiple Sclerosis Identifies the Diffusion-Based Microstructural Measures That Are Most Sensitive to Focal Damage: A Deep-Learning-Based Analysis and Clinico-Biological Validation. Frontiers in Neuroscience, 2021, 15, 647535.	1.4	4
75	Improved parallel magnetic resonance imaging reconstruction with multiple variable density sampling. Scientific Reports, 2021, 11, 9005.	1.6	5
76	Evaluation of Iterative Denoising 3-Dimensional T2-Weighted Turbo Spin Echo for the Diagnosis of Deep Infiltrating Endometriosis. Investigative Radiology, 2021, 56, 637-644.	3.5	7
77	Self-Supervised Physics-Guided Deep Learning Reconstruction for High-Resolution 3D LGE CMR. , 2021, ,		10
78	Current and emerging artificial intelligence applications for pediatric abdominal imaging. Pediatric Radiology, 2021, , 1.	1.1	7
79	Ground-Truth Free Multi-Mask Self-Supervised Physics-Guided Deep Learning in Highly Accelerated MRI. , 2021, , .		8
80	Deep model-based magnetic resonance parameter mapping network (DOPAMINE) for fast T1 mapping using variable flip angle method. Medical Image Analysis, 2021, 70, 102017.	7.0	20
81	APIR4EMC: Autocalibrated parallel imaging reconstruction for extended multi-contrast imaging. Magnetic Resonance Imaging, 2021, 78, 80-89.	1.0	1
82	Synergistic multi-contrast cardiac magnetic resonance image reconstruction. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200197.	1.6	4
83	Systematic evaluation of iterative deep neural networks for fast parallel MRI reconstruction with sensitivityâ€weighted coil combination. Magnetic Resonance in Medicine, 2021, 86, 1859-1872.	1.9	39
84	Ultrahigh field and ultrahigh resolution fMRI. Current Opinion in Biomedical Engineering, 2021, 18, 100288.	1.8	13
85	Improved Supervised Training of Physics-Guided Deep Learning Image Reconstruction with Multi-Masking. , 2021, , .		2
86	Complementary timeâ€frequency domain networks for dynamic parallel MR image reconstruction. Magnetic Resonance in Medicine, 2021, 86, 3274-3291.	1.9	21
87	Deep learning for fast MR imaging: A review for learning reconstruction from incomplete k-space data. Biomedical Signal Processing and Control, 2021, 68, 102579.	3.5	43
88	Lesion probability mapping in MS patients using a regression network on MR fingerprinting. BMC Medical Imaging, 2021, 21, 107.	1.4	3
89	Deepâ€learning based superâ€resolution for 3D isotropic coronary MR angiography in less than a minute. Magnetic Resonance in Medicine, 2021, 86, 2837-2852.	1.9	32
90	Temporally aware volumetric generative adversarial networkâ€based MR image reconstruction with simultaneous respiratory motion compensation: Initial feasibility in 3D dynamic cine cardiac MRI. Magnetic Resonance in Medicine, 2021, 86, 2666-2683.	1.9	9
91	Deep learning in magnetic resonance image reconstruction. Journal of Medical Imaging and Radiation Oncology, 2021, 65, 564-577.	0.9	22

#	Article	IF	CITATIONS
92	Which multiband factor should you choose for your resting-state fMRI study?. NeuroImage, 2021, 234, 117965.	2.1	43
93	Tiny golden angle ultrashort echoâ€ŧime lung imaging in mice. NMR in Biomedicine, 2021, 34, e4591.	1.6	3
94	Adaptive convolutional neural networks for accelerating magnetic resonance imaging via k-space data interpolation. Medical Image Analysis, 2021, 72, 102098.	7.0	18
95	Lowering the thermal noise barrier in functional brain mapping with magnetic resonance imaging. Nature Communications, 2021, 12, 5181.	5.8	68
96	Feasibility of late gadolinium enhancement (LGE) in ischemic cardiomyopathy using 2D-multisegment LGE combined with artificial intelligence reconstruction deep learning noise reduction algorithm. International Journal of Cardiology, 2021, 343, 164-170.	0.8	17
97	Multiscale U-net-based accelerated magnetic resonance imaging reconstruction. Signal, Image and Video Processing, 2022, 16, 881-888.	1.7	4
98	Domain knowledge augmentation of parallel MR image reconstruction using deep learning. Computerized Medical Imaging and Graphics, 2021, 92, 101968.	3.5	10
99	CAMER MRI: Gated-attention mechanism ranking of multi-contrast MRI in brain pathology. NeuroImage: Clinical, 2021, 29, 102522.	1.4	4
100	Magnetic resonance parameter mapping using modelâ€guided selfâ€supervised deep learning. Magnetic Resonance in Medicine, 2021, 85, 3211-3226.	1.9	41
101	A Bayesian Deep CNN Framework for Reconstructing k-t-Undersampled Resting-fMRI. , 2021, , .		0
101 102	A Bayesian Deep CNN Framework for Reconstructing k-t-Undersampled Resting-fMRI. , 2021, , . Artificial Intelligence for MR Image Reconstruction: An Overview for Clinicians. Journal of Magnetic Resonance Imaging, 2021, 53, 1015-1028.	1.9	0
101 102 103	A Bayesian Deep CNN Framework for Reconstructing k-t-Undersampled Resting-fMRI., 2021, , . Artificial Intelligence for MR Image Reconstruction: An Overview for Clinicians. Journal of Magnetic Resonance Imaging, 2021, 53, 1015-1028. Splitâ€slice training and hyperparameter tuning of RAKI networks for simultaneous multiâ€slice reconstruction. Magnetic Resonance in Medicine, 2021, 85, 3272-3280.	1.9	0 150 6
101 102 103 104	A Bayesian Deep CNN Framework for Reconstructing k-t-Undersampled Resting-fMRI., 2021, , . Artificial Intelligence for MR Image Reconstruction: An Overview for Clinicians. Journal of Magnetic Resonance Imaging, 2021, 53, 1015-1028. Splitâ€slice training and hyperparameter tuning of RAKI networks for simultaneous multiâ€slice reconstruction. Magnetic Resonance in Medicine, 2021, 85, 3272-3280. k-t NEXT: Dynamic MR Image Reconstruction Exploiting Spatio-Temporal Correlations. Lecture Notes in Computer Science, 2019, 505-513.	1.9 1.9 1.0	0 150 6 18
101 102 103 104	A Bayesian Deep CNN Framework for Reconstructing k-t-Undersampled Resting-fMRI., 2021, , . Artificial Intelligence for MR Image Reconstruction: An Overview for Clinicians. Journal of Magnetic Resonance Imaging, 2021, 53, 1015-1028. Splitâ€slice training and hyperparameter tuning of RAKI networks for simultaneous multiâ€slice reconstruction. Magnetic Resonance in Medicine, 2021, 85, 3272-3280. k-t NEXT: Dynamic MR Image Reconstruction Exploiting Spatio-Temporal Correlations. Lecture Notes in Computer Science, 2019, , 505-513. VS-Net: Variable Splitting Network for Accelerated Parallel MRI Reconstruction. Lecture Notes in Computer Science, 2019, , 713-722.	1.9 1.9 1.0 1.0	0 150 6 18 42
 101 102 103 104 105 106 	A Bayesian Deep CNN Framework for Reconstructing k-t-Undersampled Resting-fMRI. , 2021, , . Artificial Intelligence for MR Image Reconstruction: An Overview for Clinicians. Journal of Magnetic Resonance Imaging, 2021, 53, 1015-1028. Splitâ Splitâ Splitâ Solitâ Kesonance Imaging, 2021, 53, 1015-1028. Splitâ Silitâ Splitâ Solitâ Kesonance Imaging, 2021, 53, 1015-1028. Splitâ Solitâ Kesonance Imaging, 2021, 53, 1015-1028. Splitâ Solitâ Splitâ Solitâ Kesonance Imaging, 2021, 53, 1015-1028. Splitâ Solitâ Splitâ Solitâ Kesonance Imaging, 2021, 53, 1015-1028. kesonance Image Reconstruction Exploiting Spatio-Temporal Correlations. Lecture Notes in Computer Science, 2019, , 713-722. Joint Multi-anatomy Training of a Variational Network for Reconstruction of Accelerated Magnetic Resonance Image Acquisitions. Lecture Notes in Computer Science, 2019, , 71-79.	1.9 1.9 1.0 1.0	0 150 6 18 42 4
 101 102 103 104 105 106 107 	A Bayesian Deep CNN Framework for Reconstructing k-t-Undersampled Resting-fMRL , 2021, , . Artificial Intelligence for MR Image Reconstruction: An Overview for Clinicians, Journal of Magnetic Resonance Imaging, 2021, 53, 1015-1028. Splitâ€slice training and hyperparameter tuning of RAKI networks for simultaneous multiâ€slice reconstruction. Magnetic Resonance in Medicine, 2021, 85, 3272-3280. k-t NEXT: Dynamic MR Image Reconstruction Exploiting Spatio-Temporal Correlations. Lecture Notes in Computer Science, 2019, , 505-513. VS-Net: Variable Splitting Network for Accelerated Parallel MRI Reconstruction. Lecture Notes in Computer Science, 2019, , 713-722. Joint Multi-anatomy Training of a Variational Network for Reconstruction of Accelerated Magnetic Resonance Image Acquisitions. Lecture Notes in Computer Science, 2019, , 713-722. MRI Image Reconstruction via Learning Optimization Using Neural ODEs. Lecture Notes in Computer Science, 2020, , 83-93.	1.9 1.9 1.0 1.0 1.0	0 150 6 18 42 4
 101 102 103 104 105 106 107 108 	A Bayesian Deep CNN Framework for Reconstructing k-t-Undersampled Resting-fMRL , 2021, , . Artificial Intelligence for MR Image Reconstruction: An Overview for Clinicians. Journal of Magnetic Resonance Imaging, 2021, 53, 1015-1028. Splitâ€slice training and hyperparameter tuning of RAKI networks for simultaneous multiâ€slice reconstruction. Magnetic Resonance in Medicine, 2021, 85, 3272-3280. k-t NEXT: Dynamic MR Image Reconstruction Exploiting Spatio-Temporal Correlations. Lecture Notes in Computer Science, 2019, , 505-513. VS-Net: Variable Splitting Network for Accelerated Parallel MRI Reconstruction. Lecture Notes in Computer Science, 2019, , 713-722. Joint Multi-anatomy Training of a Variational Network for Reconstruction of Accelerated Magnetic Resonance Image Acquisitions. Lecture Notes in Computer Science, 2019, , 713-722. MRI Image Reconstruction via Learning Optimization Using Neural ODEs. Lecture Notes in Computer Science, 2020, , 83-93. Correction of out-of-FOV motion artifacts using convolutional neural network. Magnetic Resonance Imaging, 2020, 71, 93-102.	1.9 1.9 1.0 1.0 1.0 1.0	0 150 6 18 42 4 11

ARTICLE IF CITATIONS # Highly efficient MRI through multi-shot echo planar imaging., 2019,,. 10 111 sRAKI-RNN: accelerated MRI with scan-specific recurrent neural networks using densely connected blocks., 2019,,. Scanâ€specific artifact reduction in kâ€space (SPARK) neural networks synergize with physicsâ€based 113 1.9 19 reconstruction to accelerate MRI. Magnetic Resonance in Medicine, 2022, 87, 764-780. APIR-Net: Autocalibrated Parallel Imaging Reconstruction Using a Neural Network. Lecture Notes in 114 Computer Science, 2019, , 36-46. Learning-based computational MRI reconstruction without big data: from linear interpolation and 115 1 structured low-rank matrices to recurrent neural networks., 2019,,. Acceleration of High-Resolution 3D MR Fingerprinting via a Graph Convolutional Network. Lecture 1.0 Notes in Computer Science, 2020, , 158-166. 117 Predicting Residual Stress by Finding Peak Shape Using Artificial Neural Networks., 2020, , . 0 Multi-institutional Collaborations for Improving Deep Learning-based Magnetic Resonance Image 118 Reconstruction Using Federated Learning., 2021, 2021, 2423-2432. Joint Deep Model-based MR Image and Coil Sensitivity Reconstruction Network (Joint-ICNet) for Fast 119 24 MRI., 2021, , . Compressive sensing MR imaging based on adaptive tight frame and reference image. IET Image 1.4 Processing, 2020, 14, 3508-3515. Studying osteoarthritis with artificial intelligence applied to magnetic resonance imaging. Nature 121 3.5 23 Reviews Rheumatology, 2022, 18, 112-121. Deep Learning Applications in Magnetic Resonance Imaging: Has the Future Become Present?. Diagnostics, 2021, 11, 2181. 1.3 ColL: Coordinate-Based Internal Learning for Tomographic Imaging. IEEE Transactions on 123 2.6 31 Computational Imaging, 2021, 7, 1400-1412. Parallel MRI Reconstruction Using Broad Learning System., 2021, 2021, 2704-2707. 124 Scan-Specific Generative Neural Network for MRI Super-Resolution Reconstruction. IEEE Transactions 125 5.415 on Medical Imaging, 2022, 41, 1383-1399. Unsupervised MRI Reconstruction via Zero-Shot Learned Adversarial Transformers. IEEE Transactions 88 on Medical Imaging, 2022, 41, 1747-1763. Convolutional neural network-based reconstruction for acceleration of prostate T₂ 127 1.0 5 weighted MR imaging: a retro- and prospective study. British Journal of Radiology, 2022, 95, 20211378. Group feature selection for enhancing information gain in MRI reconstruction. Physics in Medicine 1.6 and Biology, 2022, 67, 045011.

#	Article	IF	CITATIONS
129	Al-Based Reconstruction for Fast MRI—A Systematic Review and Meta-Analysis. Proceedings of the IEEE, 2022, 110, 224-245.	16.4	57
130	Undersampled magnetic resonance image reconstruction based on support prior and deep image prior without pre-training. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 058701.	0.2	0
131	Pyramid Convolutional RNN for MRI Image Reconstruction. IEEE Transactions on Medical Imaging, 2022, 41, 2033-2047.	5.4	19
132	On the shape of convolution kernels in MRI reconstruction: Rectangles versus ellipsoids. Magnetic Resonance in Medicine, 2022, 87, 2989-2996.	1.9	3
133	Cardiac MR: From Theory to Practice. Frontiers in Cardiovascular Medicine, 2022, 9, 826283.	1.1	18
134	Multiparametric Functional MRI of the Kidney: Current State and Future Trends with Deep Learning Approaches. RoFo Fortschritte Auf Dem Gebiet Der Rontgenstrahlen Und Der Bildgebenden Verfahren, 2022, 194, 983-992.	0.7	2
135	Highly accelerated 3D MPRAGE using deep neural network–based reconstruction for brain imaging in children and young adults. European Radiology, 2022, 32, 5468-5479.	2.3	6
136	ReconResNet: Regularised residual learning for MR image reconstruction of Undersampled Cartesian and Radial data. Computers in Biology and Medicine, 2022, 143, 105321.	3.9	14
137	Progressively volumetrized deep generative models for data-efficient contextual learning of MR image recovery. Medical Image Analysis, 2022, 78, 102429.	7.0	9
138	Motion-Guided Physics-Based Learning for Cardiac MRI Reconstruction. , 2021, , .		8
139	Learning-based k-Space Weighted Image Contrast (L-KWIC) for Golden Angle Radial Dynamic MRI. , 2021, ,		0
140	Improving Nonlinear Interpolation of K-Space Data Using Semi-Supervised Learning and Autoregressive Model. , 2021, 2021, 3057-3060.		2
141	A review on deep learning MRI reconstruction without fully sampled k-space. BMC Medical Imaging, 2021, 21, 195.	1.4	41
142	Improving high frequency image features of deep learning reconstructions via kâ€space refinement with nullâ€space kernel. Magnetic Resonance in Medicine, 2022, , .	1.9	2
144	Artificial Intelligence for Image Enhancement and Reconstruction in Magnetic Resonance Imaging. Contemporary Medical Imaging, 2022, , 125-138.	0.3	1
146	Universal Generative Modeling for Calibration-Free Parallel Mr Imaging. , 2022, , .		1
147	Assessment of data consistency through cascades of independently recurrent inference machines for fast and robust accelerated MRI reconstruction. Physics in Medicine and Biology, 2022, 67, 124001.	1.6	4
148	Residual RAKI: A hybrid linear and non-linear approach for scan-specific k-space deep learning. NeuroImage, 2022, 256, 119248.	2.1	6

ARTICLE IF CITATIONS # A tailor-made 3-dimensional directional Haar semi-tight framelet for pMRI reconstruction. Applied and 149 1.1 3 Computational Harmonic Analysis, 2022, 60, 446-470. Improved signalâ€toâ€noise performance of <scp>MultiNet GRAPPA ¹H FID MRSI</scp> reconstruction with semiâ€synthetic calibration data. Magnetic Resonance in Medicine, 2022, 88, 1500-1515. A miniature U-net for k-space-based parallel magnetic resonance imaging reconstruction with a mixed 152 1.1 1 loss function. Quantitative Imaging in Medicine and Surgery, 2021, . Multimodal Transformer for Accelerated MR Imaging. IEEE Transactions on Medical Imaging, 2023, 42, 2804-2816. FlowRAU-Net: Accelerated 4D Flow MRI of Aortic Valvular Flows With a Deep 2D Residual Attention 154 2.5 4 Network. IEEE Transactions on Biomedical Engineering, 2022, 69, 3812-3824. Improved <scp>TSE</scp> imaging at <scp>ultrahigh</scp> field using nonlocalized efficiency <scp>RF</scp> shimming and acquisition modes optimized for refocused echoes (<scp>AMORE</scp>). Magnetic Resonance in Medicine, 2022, 88, 1702-1719. Accelerated 3D myelin water imaging using joint spatioâ€temporal reconstruction. Medical Physics, 156 1.6 2 2022, 49, 5929-5942. <scp>EPI</scp> phase error correction with deep learning (<scp>PECâ€DL</scp>) at <scp>7ÂT</scp>. Magnetic Resonance in Medicine, 2022, 88, 1775-1784. Deep learning–based acceleration of Compressed Sense MR imaging of the ankle. European Radiology, 158 2.3 18 2022, 32, 8376-8385. Multiâ€mask selfâ€supervised learning for physicsâ€guided neural networks in highly accelerated magnetic 159 1.6 resonance imaging. NMR in Biomedicine, 2022, 35, A dual-interpolator method for improving parallel MRI reconstruction. Magnetic Resonance Imaging, 160 3 1.0 2022, 92, 108-119. Accelerating 3D MTC-BOOST in patients with congenital heart disease using a joint multi-scale 1.0 variational neural network reconstruction. Magnetic Resonance Imaging, 2022, 92, 120-132. Comparative Analysis of Neural Networks and Deep Learning using Wireless Communication., 2022,,. 162 0 Multi-Coil MRI Reconstruction Challengeâ€"Assessing Brain MRI Reconstruction Models and Their 1.4 Generalizability to Varying Coil Configurations. Frontiers in Neuroscience, 0, 16, . 11. Deep Learning in Magnetic Resonance Imaging: An Overview and Applications. Japanese Journal of 164 0.0 0 Radiological Technology, 2022, 78, 876-881. <scp>Dualâ€domain</scp> reconstruction network with <scp>Vâ€Net</scp> and <scp>Kâ€Net</scp> for fast <scp>MRI</scp>. Magnetic Resonance in Medicine, 2022, 88, 2694-2708. NPB-REC: Non-parametric Assessment ofÂUncertainty inÂDeep-Learning-Based MRI Reconstruction 166 1.0 1 fromÂUndersampled Data. Lecture Notes in Computer Science, 2022, , 14-23. Semi-Supervised Learning of MRI Synthesis Without Fully-Sampled Ground Truths. IEEE Transactions 5.4 on Medical Imaging, 2022, 41, 3895-3906.

	CHATON	REPORT	
#	Article	IF	CITATIONS
168	Artificial intelligence in oncologic imaging. European Journal of Radiology Open, 2022, 9, 100441.	0.7	10
169	Towards Performant andÂReliable Undersampled MR Reconstruction viaÂDiffusion Model Sampling. Lecture Notes in Computer Science, 2022, , 623-633.	1.0	17
170	Recurrent Variational Network: A Deep Learning Inverse Problem Solver applied to the task of Accelerated MRI Reconstruction. , 2022, , .		16
171	Learning Optimal K-space Acquisition and Reconstruction using Physics-Informed Neural Networks. , 2022, , .		4
172	Improved MR image reconstruction using federated learning. , 2023, , 351-368.		0
173	A densely interconnected network for deep learning accelerated MRI. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2023, 36, 65-77.	1.1	4
174	PARCEL: Physics-based Unsupervised Contrastive Representation Learning for Multi-coil MR Imaging. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022, , 1-12.	1.9	4
175	One-Dimensional Deep Low-Rank and Sparse Network for Accelerated MRI. IEEE Transactions on Medical Imaging, 2023, 42, 79-90.	5.4	11
176	The Capture and Evaluation System of Student Actions in Physical Education Classroom Based on Deep Learning. Journal of Interconnection Networks, 2022, 22, .	0.6	0
177	Iterative training of robust kâ€space interpolation networks for improved image reconstruction with limited scan specific training samples. Magnetic Resonance in Medicine, 2023, 89, 812-827.	1.9	0
178	Magnetic resonance imaging reconstruction using a deep energyâ€based model. NMR in Biomedicine, 2023, 36, .	1.6	3
179	Virtual coil augmentation for MR coil extrapoltion via deep learning. Magnetic Resonance Imaging, 2023, 95, 1-11.	1.0	1
180	Machine Learning for MRI Reconstruction. Advances in Magnetic Resonance Technology and Applications, 2022, , 281-323.	0.0	0
181	High-Resolution 3D Magnetic Resonance Fingerprinting With a Graph Convolutional Network. IEEE Transactions on Medical Imaging, 2023, 42, 674-683.	5.4	3
182	Federated Learning of Generative Image Priors for MRI Reconstruction. IEEE Transactions on Medical Imaging, 2023, 42, 1996-2009.	5.4	35
183	Artificial Intelligence–Driven Ultra-Fast Superresolution MRI. Investigative Radiology, 2023, 58, 28-42.	3.5	28
184	SelfCoLearn: Self-Supervised Collaborative Learning for Accelerating Dynamic MR Imaging. Bioengineering, 2022, 9, 650.	1.6	7
185	A Joint Group Sparsity-based deep learning for multi-contrast MRI reconstruction. Journal of Magnetic Resonance, 2023, 346, 107354.	1.2	1

#	Article	IF	Citations
186	Parallel non-Cartesian spatial-temporal dictionary learning neural networks (stDLNN) for accelerating 4D-MRI. Medical Image Analysis, 2023, 84, 102701.	7.0	4
187	Applications of Artificial Intelligence in MR Image Acquisition and Reconstruction. Journal of the Korean Society of Radiology, 2022, 83, 1229.	0.1	0
188	Wave-Encoded Model-Based Deep Learning for Highly Accelerated Imaging with Joint Reconstruction. Bioengineering, 2022, 9, 736.	1.6	7
189	<scp>JSENSEâ€Pro</scp> : Joint sensitivity estimation and image reconstruction in parallel imaging using p <scp>reâ€learned</scp> subspaces of coil sensitivity functions. Magnetic Resonance in Medicine, 2023, 89, 1531-1542.	1.9	2
190	Improving accelerated <scp>MRI</scp> by deep learning withÂsparsified complex data. Magnetic Resonance in Medicine, 0, , .	1.9	1
191	Physics-Driven Deep Learning for Computational Magnetic Resonance Imaging: Combining physics and machine learning for improved medical imaging. IEEE Signal Processing Magazine, 2023, 40, 98-114.	4.6	8
192	Multi-weight respecification of scan-specific learning for parallel imaging. Magnetic Resonance Imaging, 2023, 97, 1-12.	1.0	1
193	<scp>3Dâ€EPI</scp> blipâ€up/down acquisition (<scp>BUDA</scp>) with <scp>CAIPI</scp> and joint <scp>H</scp> ankel structured lowâ€rank reconstruction for rapid distortionâ€free highâ€resolution T2* mapping. Magnetic Resonance in Medicine, 2023, 89, 1961-1974.	1.9	10
194	MEDLâ€Net: A modelâ€based neural network for MRI reconstruction with enhanced deep learned regularizers. Magnetic Resonance in Medicine, 0, , .	1.9	2
195	Reconstruction: supervised artifact reduction. , 2023, , 137-167.		0
196	Using robotics, artificial intelligence, and deep learning to collect COVID-19 samples. , 2023, , 87-125.		0
197	Deep learning based MRI reconstruction with transformer. Computer Methods and Programs in Biomedicine, 2023, 233, 107452.	2.6	7
198	K-space and image domain collaborative energy-based model for parallel MRI reconstruction. Magnetic Resonance Imaging, 2023, 99, 110-122.	1.0	5
199	Dual-domain accelerated MRI reconstruction using transformers with learning-based undersampling. Computerized Medical Imaging and Graphics, 2023, 106, 102206.	3.5	5
201	Evaluation of a deep learning-based reconstruction method for denoising and image enhancement of shoulder MRI in patients with shoulder pain. European Radiology, 2023, 33, 4875-4884.	2.3	7
202	Sampling technique for Fourier convolution theorem based kâ \in space filtering. , 2023, 2, .		Ο
203	Calibrationless reconstruction of <scp>uniformlyâ€undersampled multiâ€channel MR</scp> data with deep learning estimated <scp>ESPIRiT</scp> maps. Magnetic Resonance in Medicine, 0, ,	1.9	0
204	Complex Network for Complex Problems: A comparative study of CNN and Complex-valued CNN. , 2022, ,		4

	CITATION	CITATION REPORT	
#	Article	IF	Citations
205	Accelerated SPIRiT Parallel MR Image Reconstruction Based on Joint Sparsity and Sparsifying Transform Learning. IEEE Transactions on Computational Imaging, 2023, 9, 276-288.	2.6	2
206	Deep Learning-Based Reconstruction for Cardiac MRI: A Review. Bioengineering, 2023, 10, 334.	1.6	9
210	Neural Implicit k-Space forÂBinning-Free Non-Cartesian Cardiac MR Imaging. Lecture Notes in Computer Science, 2023, , 548-560.	1.0	8
223	Acceleration methods for perfusion imaging. Advances in Magnetic Resonance Technology and Applications, 2023, , 253-289.	0.0	0
225	Iterative Data Refinement for Self-Supervised Learning MR Image Reconstruction. , 2023, , .		0
227	A Scan-Specific Unsupervised Method for Parallel MRI Reconstruction Via Implicit Neural Representation. , 2023, , .		0
228	Global k-Space Interpolation forÂDynamic MRI Reconstruction Using Masked Image Modeling. Lecture Notes in Computer Science, 2023, , 228-238.	1.0	0
229	Improved Multi-shot Diffusion-Weighted MRI withÂZero-Shot Self-supervised Learning Reconstruction. Lecture Notes in Computer Science, 2023, , 457-466.	1.0	0
233	Managing Motion in Kidney MRI. , 2023, , 47-57.		0
237	High-fidelity Database-free Deep Learning Reconstruction for Real-time Cine Cardiac MRI. , 2023, , .		0
240	Deep learning for medical image reconstruction. , 2024, , 247-278.		0
243	Cardiac MRI Reconstruction fromÂUndersampled K-Space Using Double-Stream IFFT andÂaÂDenoising GNA-UNET Pipeline. Lecture Notes in Computer Science, 2024, , 326-338.	1.0	0
244	CineJENSE: Simultaneous Cine MRI Image Reconstruction andÂSensitivity Map Estimation Using Neural Representations. Lecture Notes in Computer Science, 2024, , 467-478.	1.0	0
245	k-t CLAIR: Self-consistency Guided Multi-prior Learning forÂDynamic Parallel MR Image Reconstruction. Lecture Notes in Computer Science, 2024, , 314-325.	1.0	0