Hollow Structures Based on Prussian Blue and Its Analo Storage and Conversion

Advanced Materials 31, e1706825 DOI: 10.1002/adma.201706825

Citation Report

#	Article	IF	CITATIONS
1	Phosphorized polyoxometalate-etched iron-hydroxide porous nanotubes for efficient electrocatalytic oxygen evolution. Journal of Materials Chemistry A, 2018, 6, 24479-24485.	5.2	39
2	Layered Ternary and Quaternary Transition Metal Chalcogenide Based Catalysts for Water Splitting. Catalysts, 2018, 8, 551.	1.6	45
3	Double-Holey-Heterostructure Frameworks Enable Fast, Stable, and Simultaneous Ultrahigh Gravimetric, Areal, and Volumetric Lithium Storage. ACS Nano, 2018, 12, 12879-12887.	7.3	61
4	NiO/NiCo ₂ O ₄ Truncated Nanocages with PdO Catalyst Functionalization as Sensing Layers for Acetone Detection. ACS Applied Materials & amp; Interfaces, 2018, 10, 37242-37250.	4.0	69
5	Surface Anchoring Approach for Growth of CeO ₂ Nanocrystals on Prussian Blue Capsules Enable Superior Lithium Storage. ACS Applied Materials & Interfaces, 2019, 11, 33082-33090.	4.0	25
6	Amorphous Core–Shell Nanoparticles as a Highly Effective and Stable Batteryâ€Type Electrode for Hybrid Supercapacitors. Advanced Materials Interfaces, 2019, 6, 1900858.	1.9	10
7	Hollow Covalent Triazine Frameworks with Variable Shell Thickness and Morphology. Advanced Functional Materials, 2019, 29, 1904781.	7.8	80
8	Metalâ€Organicâ€Frameworkâ€Based Cathodes for Enhancing the Electrochemical Performances of Batteries: A Review. ChemElectroChem, 2019, 6, 5358-5374.	1.7	36
9	Well-designed hollow and porous Co3O4 microspheres used as an anode for Li-ion battery. Journal of Solid State Electrochemistry, 2019, 23, 2477-2482.	1.2	13
10	Metal-organic framework-derived materials for electrochemical energy applications. EnergyChem, 2019, 1, 100001.	10.1	438
11	Using CoS cathode materials with 3D hierarchical porosity and an ionic liquid (IL) as an electrolyte additive for high capacity rechargeable magnesium batteries. Journal of Materials Chemistry A, 2019, 7, 18880-18888.	5.2	31
12	Integrating Hydrogen Production with Aqueous Selective Semiâ€Dehydrogenation of Tetrahydroisoquinolines over a Ni ₂ P Bifunctional Electrode. Angewandte Chemie, 2019, 131, 12142-12145.	1.6	138
13	Integrating Hydrogen Production with Aqueous Selective Semiâ€Dehydrogenation of Tetrahydroisoquinolines over a Ni ₂ P Bifunctional Electrode. Angewandte Chemie - International Edition, 2019, 58, 12014-12017.	7.2	189
14	Boosting the activity of Prussian-blue analogue as efficient electrocatalyst for water and urea oxidation. Scientific Reports, 2019, 9, 15965.	1.6	51
15	Facile Synthesis of Fe ₂ O ₃ Nanomaterials from MIL-101(Fe) Template and Its Application in Lithium Ion Batteries. Journal of Nanomaterials, 2019, 2019, 1-5.	1.5	3
16	CoFeP hollow cube as advanced electrocatalyst for water oxidation. Inorganic Chemistry Frontiers, 2019, 6, 604-611.	3.0	61
17	Carved nanoframes of cobalt–iron bimetal phosphide as a bifunctional electrocatalyst for efficient overall water splitting. Chemical Science, 2019, 10, 464-474.	3.7	238
18	Embedding heterostructured MnS/Co _{1â^x} S nanoparticles in porous carbon/graphene for superior lithium storage. Journal of Materials Chemistry A, 2019, 7, 1260-1266.	5.2	64

#	Article	IF	CITATIONS
19	Recent progress in metal–organic polymers as promising electrodes for lithium/sodium rechargeable batteries. Journal of Materials Chemistry A, 2019, 7, 4259-4290.	5.2	249
20	Salt-templated growth of monodisperse hollow nanostructures. Journal of Materials Chemistry A, 2019, 7, 1404-1409.	5.2	33
21	Template confined synthesis of NiCo Prussian blue analogue bricks constructed nanowalls as efficient bifunctional electrocatalyst for splitting water. Electrochimica Acta, 2019, 318, 333-341.	2.6	33
22	Self-supported multidimensional Ni–Fe phosphide networks with holey nanosheets for high-performance all-solid-state supercapacitors. Journal of Materials Chemistry A, 2019, 7, 17386-17399.	5.2	72
23	Supercritical Fluid-Assisted Fabrication of Manganese (III) Oxide Hollow Nanozymes Mediated by Polymer Nanoreactors for Efficient Glucose Sensing Characteristics. ACS Applied Materials & Interfaces, 2019, 11, 28781-28790.	4.0	26
24	Construction of Oxygen-Deficient La(OH) ₃ Nanorods Wrapped by Reduced Graphene Oxide for Polysulfide Trapping toward High-Performance Lithium/Sulfur Batteries. ACS Applied Materials & Interfaces, 2019, 11, 23271-23279.	4.0	71
25	Design of Heterostructured Hollow Photocatalysts for Solarâ€toâ€Chemical Energy Conversion. Advanced Materials, 2019, 31, e1900281.	11.1	307
26	Prussian blue analogue-derived Ni and Co bimetallic oxide nanoplate arrays block-built from porous and hollow nanocubes for the efficient oxygen evolution reaction. Nanoscale, 2019, 11, 11765-11773.	2.8	50
27	Yolk–shell N-doped carbon coated FeS ₂ nanocages as a high-performance anode for sodium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 14051-14059.	5.2	84
28	SnS 2 Hollow Spheres: Templateâ€Free Synthesis and Growth Mechanism. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900185.	1.2	6
29	Regioselective metal deposition on polymer-Au nanoparticle hybrid chains. Science China Materials, 2019, 62, 1363-1367.	3.5	3
30	A unique sandwich structure of a CoMnP/Ni ₂ P/NiFe electrocatalyst for highly efficient overall water splitting. Journal of Materials Chemistry A, 2019, 7, 12325-12332.	5.2	62
31	Bifunctional Template-Induced VO ₂ @SiO ₂ Dual-Shelled Hollow Nanosphere-Based Coatings for Smart Windows. ACS Applied Materials & Interfaces, 2019, 11, 15960-15968.	4.0	26
32	Sea urchin-like Ni–Fe sulfide architectures as efficient electrocatalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 12350-12357.	5.2	109
33	Metal–Organic Frameworks and Their Derived Materials: Emerging Catalysts for a Sulfate Radicalsâ€Based Advanced Oxidation Process in Water Purification. Small, 2019, 15, e1900744.	5.2	170
34	A core–shell heterostructured CuFe@NiFe Prussian blue analogue as a novel electrode material for high-capacity and stable capacitive deionization. Journal of Materials Chemistry A, 2019, 7, 10464-10474.	5.2	91
35	Oriented Transformation of Co‣DH into 2D/3D ZIFâ€67 to Achieve Co–N–C Hybrids for Efficient Overall Water Splitting. Advanced Energy Materials, 2019, 9, 1803918.	10.2	260
36	Hollow Carbon Spheres and Their Hybrid Nanomaterials in Electrochemical Energy Storage. Advanced Energy Materials, 2019, 9, 1803900.	10.2	220

#	Article	IF	CITATIONS
37	Solar-driven organic solvent purification enabled by the robust cubic Prussian blue. Journal of Materials Chemistry A, 2019, 7, 8960-8966.	5.2	24
38	Novel acetic acid induced Na-rich Prussian blue nanocubes with iron defects as cathodes for sodium ion batteries. Journal of Materials Chemistry A, 2019, 7, 12134-12144.	5.2	63
39	Lanthanideâ€Doped Photoluminescence Hollow Structures: Recent Advances and Applications. Small, 2019, 15, e1804510.	5.2	28
40	Hierarchical porous hollow FeFe(CN) ₆ nanospheres wrapped with I-doped graphene as anode materials for lithium-ion batteries. Dalton Transactions, 2019, 48, 4058-4066.	1.6	13
41	Prussian blue analog-derived 2D ultrathin CoFe ₂ O ₄ nanosheets as high-activity electrocatalysts for the oxygen evolution reaction in alkaline and neutral media. Journal of Materials Chemistry A, 2019, 7, 7328-7332.	5.2	75
42	Nano-sandwiched metal hexacyanoferrate/graphene hybrid thin films for in-plane asymmetric micro-supercapacitors with ultrahigh energy density. Materials Horizons, 2019, 6, 1041-1049.	6.4	54
43	Facile fabrication of a hierarchical NiCoFeP hollow nanoprism for efficient oxygen evolution in the Zn–air battery. Journal of Materials Chemistry A, 2019, 7, 24964-24972.	5.2	65
44	Prussian blue derived metal oxides/graphene foam as anode materials for high-performance lithium-ion batteries. Journal of Materials Science: Materials in Electronics, 2019, 30, 982-990.	1.1	10
45	Three-dimensional coral-like NiCoP@C@Ni(OH)2 core-shell nanoarrays as battery-type electrodes to enhance cycle stability and energy density for hybrid supercapacitors. Chemical Engineering Journal, 2019, 361, 1-11.	6.6	177
46	Functional Electrocatalysts Derived from Prussian Blue and its Analogues for Metalâ€Air Batteries: Progress and Prospects. Batteries and Supercaps, 2019, 2, 290-310.	2.4	36
47	Nanoporous CuCo ₂ S ₄ Microspheres: A Novel Positive Electrode for High-Performance Hybrid Energy Storage Devices. ACS Applied Energy Materials, 2019, 2, 627-635.	2.5	74
48	Metal–Organic Frameworks Based Electrocatalysts for the Oxygen Reduction Reaction. Angewandte Chemie, 2020, 132, 4662-4678.	1.6	114
49	Metal–Organic Frameworks Based Electrocatalysts for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2020, 59, 4634-4650.	7.2	457
50	Hierarchical Hollow Heterostructures for Photocatalytic CO ₂ Reduction and Water Splitting. Small Methods, 2020, 4, 1900586.	4.6	157
51	Emerging polyanionic and organic compounds for high energy density, non-aqueous potassium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 16061-16080.	5.2	37
52	Optimizing the rate capability of nickel cobalt phosphide nanowires on graphene oxide by the outer/inter-component synergistic effects. Journal of Materials Chemistry A, 2020, 8, 1697-1708.	5.2	135
53	Ultrathin Prussian blue analogue nanosheet arrays with open bimetal centers for efficient overall water splitting. Nano Energy, 2020, 68, 104371.	8.2	123
54	CoP/C Nanocubes-Modified Separator Suppressing Polysulfide Dissolution for High-Rate and Stable Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2020, 12, 2497-2504.	4.0	80

#	Article	IF	CITATIONS
55	Large-scale pattern transfer based on non-through-hole AAO self-supporting membranes. Nanotechnology, 2020, 31, 195301.	1.3	5
56	CoP Nanoframes as Bifunctional Electrocatalysts for Efficient Overall Water Splitting. ACS Catalysis, 2020, 10, 412-419.	5.5	361
57	Design and One-Pot Synthesis of Capsid-like Gold Colloids with Tunable Surface Roughness and Their Enhanced Sensing and Catalytic Performances. ACS Applied Materials & Interfaces, 2020, 12, 50152-50160.	4.0	11
58	Cost-effective and renewable paper derived hard carbon microfibers as superior anode for sodium-ion batteries. Electrochimica Acta, 2020, 364, 137313.	2.6	27
59	Double-shelled hollow bimetallic phosphide nanospheres anchored on nitrogen-doped graphene for boosting water electrolysis. Journal of Materials Chemistry A, 2020, 8, 22222-22229.	5.2	51
60	Electrocatalytic water oxidation reaction promoted by cobalt-Prussian blue and its thermal decomposition product under mild conditions. Dalton Transactions, 2020, 49, 16488-16497.	1.6	13
61	A Collaborative Strategy for Boosting Lithium Storage Performance of Iron Phosphide by Fabricating Hollow Structure and Doping Cobalt Species. ChemistrySelect, 2020, 5, 11378-11382.	0.7	5
62	Surfactantâ€Mediated Morphological Evolution of MnCo Prussian Blue Structures. Small, 2020, 16, e2004614.	5.2	49
63	Electrocatalysts for acidic oxygen evolution reaction: Achievements and perspectives. Nano Energy, 2020, 78, 105392.	8.2	86
64	High-power lithium–selenium batteries enabled by atomic cobalt electrocatalyst in hollow carbon cathode. Nature Communications, 2020, 11, 5025.	5.8	187
65	Rational design of hierarchical FeSe ₂ encapsulated with bifunctional carbon cuboids as an advanced anode for sodium-ion batteries. Nanoscale, 2020, 12, 22210-22216.	2.8	26
66	Capillary force driven printing of asymmetric Na-ion micro-supercapacitors. Journal of Materials Chemistry A, 2020, 8, 22083-22089.	5.2	8
67	Structural engineering and surface modification of MOF-derived cobalt-based hybrid nanosheets for flexible solid-state supercapacitors. Energy Storage Materials, 2020, 32, 167-177.	9.5	228
68	Stepwise Hollow Prussian Blue Nanoframes/Carbon Nanotubes Composite Film as Ultrahigh Rate Sodium Ion Cathode. Advanced Functional Materials, 2020, 30, 2002624.	7.8	49
69	More Efficient Prussian Blue Nanoparticles for an Improved Caesium Decontamination from Aqueous Solutions and Biological Fluids. Molecules, 2020, 25, 3447.	1.7	8
70	Nanosized-MnCo2O4-embedded 1D carbon nanofibres for supercapacitor with promising electrochemical properties. Journal of Materials Science: Materials in Electronics, 2020, 31, 13588-13596.	1.1	6
71	A General Strategy for Hollow Metalâ€₽hytate Coordination Complex Micropolyhedra Enabled by Cation Exchange. Angewandte Chemie - International Edition, 2020, 59, 20988-20995.	7.2	21
72	A General Strategy for Hollow Metalâ€Phytate Coordination Complex Micropolyhedra Enabled by Cation Exchange. Angewandte Chemie, 2020, 132, 21174-21181.	1.6	6

#	Article	IF	CITATIONS
73	Preparation of Single-Atom Ag-Decorated MnO ₂ Hollow Microspheres by Redox Etching Method for High-Performance Solid-State Asymmetric Supercapacitors. ACS Applied Energy Materials, 2020, 3, 10192-10201.	2.5	22
74	Fabrication of CdS Frameâ€inâ€Cage Particles for Efficient Photocatalytic Hydrogen Generation under Visibleâ€Light Irradiation. Advanced Materials, 2020, 32, e2004561.	11.1	102
75	Effects of Structure and Constituent of Prussian Blue Analogs on Their Application in Oxygen Evolution Reaction. Molecules, 2020, 25, 2304.	1.7	24
76	Morphology and Composition Regulation of FeCoNi Prussian Blue Analogues to Advance in the Catalytic Performances of the Derivative Ternary Transitionâ€Metal Phosphides for OER. ChemCatChem, 2020, 12, 4339-4345.	1.8	29
77	Hierarchical hollow manganese-magnesium-aluminum ternary metal oxide for fluoride elimination. Environmental Research, 2020, 188, 109735.	3.7	49
78	Doubleâ€6helled C@MoS 2 Structures Preloaded with Sulfur: An Additive Reservoir for Stable Lithium Metal Anodes. Angewandte Chemie, 2020, 132, 15973-15977.	1.6	11
79	Antifouling performance enhancement of polyethersulfone ultrafiltration membrane through increasing chargeâ€loading capacity over Prussian blue nanoparticles. Journal of Applied Polymer Science, 2020, 137, 49410.	1.3	4
80	Nanostructure Design Strategies for Aqueous Zincâ€lon Batteries. ChemElectroChem, 2020, 7, 2957-2978.	1.7	44
81	Double‣helled C@MoS ₂ Structures Preloaded with Sulfur: An Additive Reservoir for Stable Lithium Metal Anodes. Angewandte Chemie - International Edition, 2020, 59, 15839-15843.	7.2	79
82	Highly efficient and broad electromagnetic wave absorbers tuned via topology-controllable metal-organic frameworks. Science China Materials, 2020, 63, 2050-2061.	3.5	45
83	Structural Features of Porous CoFe Nanocubes and Their Performance for Oxygenâ€involving Energy Electrocatalysis. ChemElectroChem, 2020, 7, 3725-3732.	1.7	9
84	A multifunctional supercapacitor based on 2D nanosheets on a flexible carbon nanotube film. Dalton Transactions, 2020, 49, 9312-9321.	1.6	11
85	Hollow cobalt-iron prussian blue analogue nanocubes for high-performance supercapacitors. Journal of Energy Storage, 2020, 31, 101544.	3.9	36
86	Improved Electrochemical Performance of Na ₃ V _{2â^'x} Zr _x (PO ₄) ₃ /C Through Electronic and Ionic Conductivities Regulation. Journal of the Electrochemical Society, 2020, 167, 070548.	1.3	22
87	In situ grown NiFeP@NiCo2S4 nanosheet arrays on carbon cloth for asymmetric supercapacitors. Chemical Engineering Journal, 2020, 399, 125778.	6.6	88
88	Multifunctional Prussian blue-based nanomaterials: Preparation, modification, and theranostic applications. Coordination Chemistry Reviews, 2020, 419, 213393.	9.5	62
89	Copperâ€Enriched Prussian Blue Nanomedicine for In Situ Disulfiram Toxification and Photothermal Antitumor Amplification. Advanced Materials, 2020, 32, e2000542.	11.1	112
90	Heavy oil-derived carbon for energy storage applications. Journal of Materials Chemistry A, 2020, 8, 7066-7082.	5.2	57

ARTICLE IF CITATIONS Rational Design and Engineering of Nanomaterials Derived from Prussian Blue and Its Analogs for 1.7 28 91 Electrochemical Water Splitting. Chemistry - an Asian Journal, 2020, 15, 958-972. Niâ€"Fe nanocubes embedded with Pt nanoparticles for hydrogen and oxygen evolution reactions. 3.8 International Journal of Hydrogen Energy, 2020, 45, 20832-20842. NiMnâ€Based Bimetal–Organic Framework Nanosheets Supported on Multiâ€Channel Carbon Fibers for 93 1.6 24 Efficient Oxygen Electrocatalysis. Angewandte Chemie, 2020, 132, 18391-18396. Enabling Superior Sodium Capture for Efficient Water Desalination by a Tubular Polyaniline 94 11.1 Decorated with Prussian Blue Nanocrystals. Advanced Materials, 2020, 32, e1907404. NiMnâ€Based Bimetal–Organic Framework Nanosheets Supported on Multiâ€Channel Carbon Fibers for 95 7.2 232 Efficient Oxygen Electrocatalysis. Angewandte Chemie - International Edition, 2020, 59, 18234-18239. Bifunctionalized Prussian blue analogue particles oxidize luminol to produce chemiluminescence without other oxidants. Microchemical Journal, 2020, 158, 105213. 2.3 Rationally Designed Threeâ€Layered Cu₂S@Carbon@MoS₂ Hierarchical 97 1.6 42 Nanoboxes for Efficient Sodium Storage. Angewandte Chemie, 2020, 132, 7245-7250. Rationally Designed Three‣ayered Cu₂S@Carbon@MoS₂ Hierarchical Nanoboxes for Efficient Sodium Storage. Angewandte Chemie - International Edition, 2020, 59, 7.2 7178-7183. Fe-doped CoP coreâ€"shell structure with open cages as efficient electrocatalyst for oxygen evolution. 99 7.1 95 Journal of Energy Chemistry, 2020, 48, 328-333. A Universal Strategy toward Ultrasmall Hollow Nanostructures with Remarkable Electrochemical Performance. Angewandte Chemie - International Edition, 2020, 59, 8247-8254. Construction of Defectâ€Rich Niâ€Feâ€Doped K_{0.23}MnO₂ Cubic Nanoflowers via 101 5.2 62 Etching Prussian Blue Analogue for Efficient Overall Water Splitting. Small, 2020, 16, e1905223. A Universal Strategy toward Ultrasmall Hollow Nanostructures with Remarkable Electrochemical 1.6 Performance. Angewandte Chemie, 2020, 132, 8324-8331. Engineering Electronic Structure of Stannous Sulfide by Aminoâ€Functionalized Carbon: Toward Efficient Electrocatalytic Reduction of CO₂ to Formate. Advanced Energy Materials, 2020, 103 10.2 86 10, 1903664. Open-mouth N-doped carbon nanoboxes embedded with mixed metal phosphide nanoparticles as 104 2.8 high-efficiency catalysts for electrolytic water splitting. Nanoscale, 2020, 12, 5848-5856. Uniform Virus‣ike Co–N–Cs Electrocatalyst Derived from Prussian Blue Analog for Stretchable 105 7.8 81 Fiberâ€Shaped Zn–Air Batteries. Advanced Functional Materials, 2020, 30, 1908945. Facile synthesis of novel tungsten-based hierarchical core-shell composite for ultrahigh volumetric lithium storage. Journal of Colloid and Interface Science, 2020, 567, 28-36. Electrospun ZnCo2O4/C composite nanofibers with superior electrochemical performance for 107 1.9 29 supercapacitor. Journal of Physics and Chemistry of Solids, 2020, 140, 109385. Self-Templating Strategies for Transition Metal Sulfide Nanoboxes as Robust Bifunctional 3.2 Electrocatalysts. Chemistry of Materials, 2020, 32, 1371-1383.

#	Article	IF	CITATIONS
109	Rapid bacteria trapping and killing of metal-organic frameworks strengthened photo-responsive hydrogel for rapid tissue repair of bacterial infected wounds. Chemical Engineering Journal, 2020, 396, 125194.	6.6	142
110	Prussian blue/PVDF catalytic membrane with exceptional and stable Fenton oxidation performance for organic pollutants removal. Applied Catalysis B: Environmental, 2020, 273, 119047.	10.8	95
111	The immobilisation and reactivity of Fe(CN)63â^'/4â^' in an intrinsically microporous polyamine (PIM-EA-TB). Journal of Solid State Electrochemistry, 2020, 24, 2797-2806.	1.2	14
112	Co-precipitation synthesis of nickel cobalt hexacyanoferrate for binder-free high-performance supercapacitor electrodes. International Journal of Hydrogen Energy, 2020, 45, 14452-14460.	3.8	52
113	Characterization of porous cobalt hexacyanoferrate and activated carbon electrodes under dynamic polarization conditions in a sodium-ion pseudocapacitor. Journal of Energy Chemistry, 2021, 54, 53-62.	7.1	20
114	Core-shell nanoparticles of Prussian blue analogues as efficient capacitive deionization electrodes for brackish water desalination. Separation and Purification Technology, 2021, 266, 117899.	3.9	21
115	MOF derived multi-metal oxides anchored N, P-doped carbon matrix as efficient and durable electrocatalyst for oxygen evolution reaction. Journal of Colloid and Interface Science, 2021, 581, 608-618.	5.0	46
116	Advanced metal–organic frameworks for aqueous sodium-ion rechargeable batteries. Journal of Energy Chemistry, 2021, 53, 396-406.	7.1	37
117	Structure and Properties of Prussian Blue Analogues in Energy Storage and Conversion Applications. Advanced Functional Materials, 2021, 31, 2006970.	7.8	238
118	A novel in-situ preparation of N-rich spherical porous carbon as greatly enhanced material for high-performance supercapacitors. Carbon, 2021, 171, 62-71.	5.4	76
119	Organic carboxylate-based MOFs and derivatives for electrocatalytic water oxidation. Coordination Chemistry Reviews, 2021, 428, 213619.	9.5	122
120	Room temperature synthesis of high-entropy Prussian blue analogues. Nano Energy, 2021, 79, 105464.	8.2	54
121	Metal-organic framework-derived nanomaterials in environment related fields: Fundamentals, properties and applications. Coordination Chemistry Reviews, 2021, 429, 213618.	9.5	94
122	Preparation of hierarchical graphdiyne hollow nanospheres as anode for lithium-ion batteries. Chemical Engineering Journal, 2021, 413, 127486.	6.6	27
123	Optimization of cobalt-manganese binary sulfide for high performance supercapattery devices. Electrochimica Acta, 2021, 368, 137529.	2.6	76
124	Complex Hollow Bowlâ€Like Nanostructures: Synthesis, Application, and Perspective. Advanced Functional Materials, 2021, 31, 2007801.	7.8	35
125	A General Templateâ€Induced Sulfuration Approach for Preparing Bifunctional Hollow Sulfides for Highâ€Performance Al―and Liâ€ion Batteries. Energy Technology, 2021, 9, 2000900.	1.8	5
126	Metal–Organic Frameworkâ€Based Hybrid Frameworks. Small Structures, 2021, 2, 2000078.	6.9	65

ARTICLE IF CITATIONS Structural evolution of Ce[Fe(CN)6] and derived porous Fe-CeO2 with high performance for 127 6.6 41 supercapacitor. Chemical Engineering Journal, 2021, 421, 127826. Nanoboxes endow non-noble-metal-based electrocatalysts with high efficiency for overall water 5.2 100 splitting. Journal of Materials Chemistry A, 2021, 9, 857-874. Design of hollow carbon-based materials derived from metal–organic frameworks for 129 electrocatalysis and electrochemical energy storage. Journal of Materials Chemistry A, 2021, 9, 5.2 117 3880-3917. Synthesis of iron oxide cubes/reduced graphene oxide composite and its enhanced lithium storage 4.8 performance. Chinese Chemical Letters, 2021, 32, 113-118. MOFs derived NiFeP porous nanoflowers for boosted electrocatalytic water splitting. Microporous 131 2.2 16 and Mesoporous Materials, 2021, 312, 110760. Graphene Aerogel Supported Feâ^Co Selenide Nanocubes as Binderâ€Free Anodes for Lithiumâ€Ion Batteries. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 1025-1030. Solvent-assisted synthesis of dendritic cerium hexacyanocobaltate and derived porous dendritic 133 Co₃O₄/CeO₂ as supercapacitor electrode materials. 1.3 18 CrystEngComm, 2021, 23, 1704-1708. Thermally activated carbon–nitrogen vacancies in double-shelled NiFe Prussian blue analogue nanocages for enhanced electrocatalytic oxygen evolution. Journal of Materials Chemistry A, 2021, 9, 134 5.2 12734-12745. Long-life Na-rich nickel hexacyanoferrate capable of working under stringent conditions. Journal of 135 5.2 21 Materials Chemistry A, 2021, 9, 21228-21240. Hierarchical C/Co3O4 nanoarray on a nickel substrate integrating electromagnetic and thermal 3.2 shielding. Materials Chemistry Frontiers, 2021, 5, 6553-6558. Promising activated carbon derived from sugarcane tip as electrode material for high-performance 137 17 1.7 supercapacitors. RSC Advances, 2021, 11, 28138-28147. Hierarchical NaFePO₄ nanostructures in combination with an optimized carbon-based 138 1.7 electrode to achieve advanced aqueous Na-ion supercapacitors. RSC Advances, 2021, 11, 30031-30039. Self-induced cobalt-derived hollow structure Prussian blue as a cathode for sodium-ion batteries. 139 1.7 3 RSC Advances, 2021, 11, 31827-31833. Efficient Charge Migration in Chemically-Bonded Prussian Blue Analogue/CdS with Beaded Structure 140 3.6 for Photocatalytic H₂ Evolution. Jacs Au, 2021, 1, 212-220. Hybrid cobaltâ€"manganese oxides prepared by ordered steps with a ternary nanosheet structure and its 141 2.8 8 high performance as a binder free electrode for energy storage. Nanoscale, 2021, 13, 2573-2584. Design and Construction of 3D Porous Na3V2(PO4)3/C as High Performance Cathode for Sodium Ion 142 Batteries. Chemical Research in Chinese Universities, 2021, 37, 265-273. Triple functionalization of carved N-doped carbon nanoboxes with synergistic trimetallic sulphide 143 5.220 for high performance lithium–sulphur batteries. Journal of Materials Chemistry A, 2021, 9, 9028-9037. Engineering porous Pd–Cu nanocrystals with tailored three-dimensional catalytic facets for highly 144 2.8 efficient formic acid oxidation. Nanoscale, 2021, 13, 3709-3722.

#	Article	IF	Citations
145	Synthesis of Metal Oxides@C (Metal = Ni, Fe) Based Prussian Blue Analogs as a High-performance Anode Material for Lithium-ion Battery. Acta Metallurgica Sinica (English Letters), 2021, 34, 435-443.	1.5	4
146	Metal–Organic Framework-Derived Hierarchical MnO/Co with Oxygen Vacancies toward Elevated-Temperature Li-Ion Battery. ACS Nano, 2021, 15, 4594-4607.	7.3	121
147	Interlayer Spacing-Controlled Na _{0.71} Co _{0.96} O ₂ with High Pseudocapacitance for Enhanced Sodium Storage. Energy & Fuels, 2021, 35, 3479-3489.	2.5	6
148	Vertical Diffusion of Ions within Single Particles during Electrochemical Charging. ACS Nano, 2021, 15, 3522-3528.	7.3	13
149	Metal–Organic Frameworks Derived Functional Materials for Electrochemical Energy Storage and Conversion: A Mini Review. Nano Letters, 2021, 21, 1555-1565.	4.5	351
150	Regulating Latticeâ€Waterâ€Adsorbed Ions to Optimize Intercalation Potential in 3D Prussian Blue Based Multiâ€Ion Microbattery. Small, 2021, 17, e2007791.	5.2	12
151	Tunable Electrochemical Activity of P2–Na _{0.6} Mn _{0.7} Ni _{0.3} O _{2–<i>x</i>} F _{<i>x</i>} Microspheres as High-Rate Cathodes for High-Performance Sodium Ion Batteries. ACS Applied Materials & amp; Interfaces, 2021, 13, 15333-15343.	4.0	22
152	Novel K-V-Fe Prussian blue analogues nanocubes for high-performance aqueous ammonium ion batteries. Applied Surface Science, 2021, 543, 148843.	3.1	44
153	Supercapacitance Property Study of 3D Open-Framework Prussian Blue in Neutral Electrolyte. Science of Advanced Materials, 2021, 13, 436-446.	0.1	2
154	High-pressure microwave-assisted synthesis of WSx/Ni9S8/NF hetero-catalyst for efficient oxygen evolution reaction. Rare Metals, 2021, 40, 1048-1055.	3.6	26
155	Effect of the external metal on the electrochemical behavior of M3[Co(CN)6]2 (M: Co, Ni, Cu, Zn), towards their use as anodes in potassium ion batteries. Electrochimica Acta, 2021, 371, 137828.	2.6	16
156	Metal–Organic Frameworks and Their Derivatives as Cathodes for Lithium-Ion Battery Applications: A Review. Electrochemical Energy Reviews, 2022, 5, 312-347.	13.1	75
157	Improving Na+ transport kinetics and Na+ storage of hierarchical rhenium-nickel sulfide (ReS2@NiS2) hollow architecture by assembling layered 2D-3D heterostructures. Chinese Chemical Letters, 2021, 32, 3607-3612.	4.8	14
158	Cross-Linking and Charging Molecular Magnetoelectronics. Nano Letters, 2021, 21, 4099-4105.	4.5	6
159	Trimetallic Spinel NiCo _{2â^'<i>x</i>} Fe _{<i>x</i>} O ₄ Nanoboxes for Highly Efficient Electrocatalytic Oxygen Evolution. Angewandte Chemie, 2021, 133, 11947-11952.	1.6	33
160	NaTi2(PO4)3 hollow nanoparticles encapsulated in carbon nanofibers as novel anodes for flexible aqueous rechargeable sodium-ion batteries. Nano Energy, 2021, 82, 105764.	8.2	43
161	Trimetallic Spinel NiCo _{2â^'<i>x</i>} Fe _{<i>x</i>} O ₄ Nanoboxes for Highly Efficient Electrocatalytic Oxygen Evolution. Angewandte Chemie - International Edition, 2021, 60, 11841-11846.	7.2	247
162	Tumorâ€Targeted Disruption of Lactate Transport with Reactivityâ€Reversible Nanocatalysts to Amplify Oxidative Damage. Small, 2021, 17, e2100130.	5.2	31

#	Article	IF	CITATIONS
163	In‣itu Activated NiFePBAâ€FeOOH Electrocatalyst for Oxygen Evolution Reaction and Zincâ€Air Battery. ChemistrySelect, 2021, 6, 3683-3691.	0.7	4
164	Core-shell structure Co–Ni@Fe–Cu doped MOF–GR composites for water splitting. International Journal of Hydrogen Energy, 2021, 46, 15124-15134.	3.8	10
165	Unlocking Rapid and Robust Sodium Storage Performance of Zinc-Based Sulfide <i>via</i> Indium Incorporation. ACS Nano, 2021, 15, 8507-8516.	7.3	36
166	Interface Engineering of a Sandwich Flexible Electrode PAn@CoHCF Rooted in Carbon Cloth for Enhanced Sodium-Ion Storage. ACS Applied Materials & amp; Interfaces, 2021, 13, 23794-23802.	4.0	6
167	MOFs-derived hollow materials for electromagnetic wave absorption: prospects and challenges. Journal of Materials Science: Materials in Electronics, 2021, 32, 25631-25648.	1.1	10
168	Developing Binderâ€Free Electrode Based on Metalâ€Organic Frameworks and Graphene Hydrogel for Electrochemical Energy Storage. Energy Technology, 2021, 9, 2100121.	1.8	4
169	Green activation of sustainable resources to synthesize nitrogen-doped oxygen-riched porous carbon nanosheets towards high-performance supercapacitor. Chemical Engineering Journal, 2021, 412, 128673.	6.6	170
170	Building Zn-Fe bimetal selenides heterostructures caged in nitrogen-doped carbon cubic for lithium and sodium ion batteries. Journal of Alloys and Compounds, 2021, 863, 158329.	2.8	22
171	Ligandâ€Promoted Cooperative Electrochemical Oxidation of Bioâ€Alcohol on Distorted Cobalt Hydroxides for Bioâ€Hydrogen Extraction. ChemSusChem, 2021, 14, 2612-2620.	3.6	6
172	Single-atomic Fe anchored on hierarchically porous carbon frame for efficient oxygen reduction performance. Chinese Chemical Letters, 2022, 33, 1070-1073.	4.8	17
173	Metal-organic frameworks as highly efficient electrodes for long cycling stability supercapacitors. International Journal of Hydrogen Energy, 2021, 46, 18179-18206.	3.8	55
174	"Green―Prussian Blue Analogues as Peroxidase Mimetics for Amperometric Sensing and Biosensing. Biosensors, 2021, 11, 193.	2.3	8
175	Nitrogen Doped Carbon Coated Bi Microspheres as Highâ€performance Anode for Half and Full Sodium Ion Batteries. Chemistry - an Asian Journal, 2021, 16, 2314-2320.	1.7	19
176	Advances in Lithium–Sulfur Batteries: From Academic Research to Commercial Viability. Advanced Materials, 2021, 33, e2003666.	11.1	357
177	Metal organic frameworks as emergent oxygen-reducing cathode catalysts for microbial fuel cells: a review. International Journal of Environmental Science and Technology, 2022, 19, 11539-11560.	1.8	21
178	Bifunctional polyvinylpyrrolidone generates sulfur-rich copolymer and acts as "residence―of polysulfide for advanced lithium-sulfur battery. Chemical Engineering Journal, 2021, 414, 128799.	6.6	19
179	Efficient Electrochemical Production of H ₂ O ₂ on Hollow N-Doped Carbon Nanospheres with Abundant Micropores. ACS Applied Materials & Interfaces, 2021, 13, 29551-29557.	4.0	70
180	Self-supported Co/CoO anchored on N-doped carbon composite as bifunctional electrocatalyst for efficient overall water splitting. Chemical Engineering Journal, 2021, 414, 128804.	6.6	122

#	Article	IF	Citations
181	Smart nanozyme of silver hexacyanoferrate with versatile bio-regulated activities for probing different targets. Talanta, 2021, 228, 122268.	2.9	8
182	Relieving ammonia nitrogen inhibition in high concentration anaerobic digestion of rural organic household waste by Prussian blue analogue nanoparticles addition. Bioresource Technology, 2021, 330, 124979.	4.8	24
183	Study of synergetic effects of ternary transition metal in the electrochemical performance of metal oxides anode for lithium-ion battery. Ceramics International, 2021, 47, 20586-20594.	2.3	4
184	Advances in Understanding the Electrocatalytic Reconstruction Chemistry of Coordination Compounds. Small, 2021, 17, e2100629.	5.2	10
185	VN nanoparticle-assembled hollow microspheres/N-doped carbon nanofibers: An anode material for superior potassium storage. Nano Materials Science, 2022, 4, 104-112.	3.9	20
186	Atomic Welded Dual-Wall Hollow Nanospheres for Three-in-One Hybrid Storage Mechanism of Alkali Metal Ion Batteries. ACS Nano, 2021, 15, 14125-14136.	7.3	34
187	Self-Template Synthesis of Prussian Blue Analogue Hollow Polyhedrons as Superior Sodium Storage Cathodes. ACS Applied Materials & Interfaces, 2021, 13, 37187-37193.	4.0	26
188	Enhancing Catalytic Conversion of Polysulfides by Hollow Bimetallic Oxide-Based Heterostructure Nanocages for Lithium-Sulfur Batteries. ACS Sustainable Chemistry and Engineering, 2021, 9, 10392-10402.	3.2	15
189	X-Fe (X = Mn, Co, Cu) Prussian Blue Analogue-Modified Carbon Cloth Electrodes for Capacitive Deionization. ACS Applied Energy Materials, 2021, 4, 8275-8284.	2.5	37
190	Rapid and Scalable Synthesis of Prussian Blue Analogue Nanocubes for Electrocatalytic Water Oxidation ^{â€} . Chinese Journal of Chemistry, 2021, 39, 2347-2353.	2.6	15
191	Manipulating the Local Coordination and Electronic Structures for Efficient Electrocatalytic Oxygen Evolution. Advanced Materials, 2021, 33, e2103004.	11.1	142
192	Prussian Blue Analogues in Aqueous Batteries and Desalination Batteries. Nano-Micro Letters, 2021, 13, 166.	14.4	73
193	Construction of Co–Mn Prussian Blue Analog Hollow Spheres for Efficient Aqueous Znâ€ion Batteries. Angewandte Chemie, 2021, 133, 22363-22368.	1.6	12
194	Strategies for the enhanced water splitting activity over metal–organic frameworks-based electrocatalysts and photocatalysts. Materials Today Nano, 2021, 15, 100124.	2.3	28
195	Nitrogenâ€Ðoped Carbon Composites with Ordered Macropores and Hollow Walls. Angewandte Chemie - International Edition, 2021, 60, 23729-23734.	7.2	64
196	Construction of Co–Mn Prussian Blue Analog Hollow Spheres for Efficient Aqueous Znâ€ion Batteries. Angewandte Chemie - International Edition, 2021, 60, 22189-22194.	7.2	265
197	Co/MoC Nanoparticles Embedded in Carbon Nanoboxes as Robust Trifunctional Electrocatalysts for a Zn–Air Battery and Water Electrocatalysis. ACS Nano, 2021, 15, 13399-13414.	7.3	141
198	Nitrogenâ€Doped Carbon Composites with Ordered Macropores and Hollow Walls. Angewandte Chemie, 2021, 133, 23922-23927.	1.6	11

#	Article	IF	CITATIONS
199	Construction of hierarchical Prussian blue microcrystal with high sunlight absorption for efficient photo-thermal degradation of organic pollutants. Separation and Purification Technology, 2021, 269, 118724.	3.9	20
200	Oxocarbons Electrode Materials for Alkali Ion Batteries: Challenges, Strategies and Development. Batteries and Supercaps, 2021, 4, 1791-1802.	2.4	2
201	Trimetallic Metalâ€Organic Framework Nanoframe Superstructures: A Stressâ€Buffering Architecture Engineering of Anode Material toward Boosted Lithium Storage Performance. Energy and Environmental Materials, 2023, 6, .	7.3	7
202	Polypyrrole-enveloped Prussian blue nanocubes with multi-metal synergistic adsorption toward lithium polysulfides: high-performance lithium-sulfur batteries. Chemical Engineering Journal, 2021, 420, 130518.	6.6	42
203	Self‣upported Electrocatalysts for Practical Water Electrolysis. Advanced Energy Materials, 2021, 11, 2102074.	10.2	161
204	Structure engineering in interconnected porous hollow carbon spheres with superior rate capability for supercapacitors and lithium-sulfur batteries. Chemical Engineering Journal, 2021, 419, 129649.	6.6	50
206	Fabrication of Co doped MoS2 nanosheets with enlarged interlayer spacing as efficient and pH-Universal bifunctional electrocatalyst for overall water splitting. Ceramics International, 2021, 47, 24501-24510.	2.3	31
207	Photocatalyst with Chloroplastâ€like Structure for Enhancing Hydrogen Evolution Reaction. Energy and Environmental Materials, 2022, 5, 1229-1237.	7.3	15
208	Microstructured ZrO2 coating of iron oxide for enhanced CO2 conversion. Applied Catalysis B: Environmental, 2021, 292, 120194.	10.8	17
209	The Role of Surface Curvature in Electrocatalysts. Chemistry - A European Journal, 2022, 28, .	1.7	9
209 210	The Role of Surface Curvature in Electrocatalysts. Chemistry - A European Journal, 2022, 28, . Constructing CoFe2O4 with cubic structure by Prussian blue to provide high-performance anodes for lithium-ion batteries. Materials Letters, 2021, 300, 130152.	1.7	9
	Constructing CoFe2O4 with cubic structure by Prussian blue to provide high-performance anodes for		
210	Constructing CoFe2O4 with cubic structure by Prussian blue to provide high-performance anodes for lithium-ion batteries. Materials Letters, 2021, 300, 130152. Building superior layered oxide cathode via rational surface engineering for both liquid &	1.3	6
210 211	Constructing CoFe2O4 with cubic structure by Prussian blue to provide high-performance anodes for lithium-ion batteries. Materials Letters, 2021, 300, 130152. Building superior layered oxide cathode via rational surface engineering for both liquid & solid-state sodium ion batteries. Chemical Engineering Journal, 2021, 421, 127788. Redox Targeting of Energy Materials for Energy Storage and Conversion. Advanced Materials, 2022, 34,	1.3 6.6	6 16
210 211 212	Constructing CoFe2O4 with cubic structure by Prussian blue to provide high-performance anodes for lithium-ion batteries. Materials Letters, 2021, 300, 130152. Building superior layered oxide cathode via rational surface engineering for both liquid & solid-state sodium ion batteries. Chemical Engineering Journal, 2021, 421, 127788. Redox Targeting of Energy Materials for Energy Storage and Conversion. Advanced Materials, 2022, 34, e2104562. Hollow performances quenching label of Au NPs@CoSnO3 nanoboxes-based sandwich	1.3 6.6 11.1	6 16 32
210211212213	Constructing CoFe2O4 with cubic structure by Prussian blue to provide high-performance anodes for lithium-ion batteries. Materials Letters, 2021, 300, 130152. Building superior layered oxide cathode via rational surface engineering for both liquid & solid-state sodium ion batteries. Chemical Engineering Journal, 2021, 421, 127788. Redox Targeting of Energy Materials for Energy Storage and Conversion. Advanced Materials, 2022, 34, e2104562. Hollow performances quenching label of Au NPs@CoSnO3 nanoboxes-based sandwich photoelectrochemical immunosensor for sensitive CYFRA 21-1 detection. Talanta, 2021, 233, 122552. Recent progress in CoP-based materials for electrochemical water splitting. International Journal of	1.3 6.6 11.1 2.9	6 16 32 9
210 211 212 213 214	Constructing CoFe2O4 with cubic structure by Prussian blue to provide high-performance anodes for lithium-ion batteries. Materials Letters, 2021, 300, 130152. Building superior layered oxide cathode via rational surface engineering for both liquid & solid-state sodium ion batteries. Chemical Engineering Journal, 2021, 421, 127788. Redox Targeting of Energy Materials for Energy Storage and Conversion. Advanced Materials, 2022, 34, e2104562. Hollow performances quenching label of Au NPs@CoSnO3 nanoboxes-based sandwich photoelectrochemical immunosensor for sensitive CYFRA 21-1 detection. Talanta, 2021, 233, 122552. Recent progress in CoP-based materials for electrochemical water splitting. International Journal of Hydrogen Energy, 2021, 46, 34194-34215.	1.3 6.6 11.1 2.9 3.8	6 16 32 9 38

#	Article	IF	CITATIONS
218	Modulating CoFe2O4 nanocube with oxygen vacancy and carbon wrapper towards enhanced electrocatalytic nitrogen reduction to ammonia. Applied Catalysis B: Environmental, 2021, 297, 120452.	10.8	42
219	Metal-organic frameworks and their derivatives as electrode materials for potassium ion batteries: A review. Coordination Chemistry Reviews, 2021, 446, 214118.	9.5	49
220	A multidimensional rational design of nickel–iron sulfide and carbon nanotubes on diatomite via synergistic modulation strategy for supercapacitors. Journal of Colloid and Interface Science, 2021, 603, 799-809.	5.0	138
221	Cyanide-metal framework derived porous MoO3-Fe2O3 hybrid micro- octahedrons as superior anode for lithium-ion batteries. Chemical Engineering Journal, 2021, 426, 130347.	6.6	24
222	Negative thermal expansion in framework structure materials. Coordination Chemistry Reviews, 2021, 449, 214204.	9.5	59
223	Facile fabrication of Fe0.8Mn1.2O3 with various nanostructures for high-performance lithium-ion batteries. Chemical Engineering Journal, 2022, 427, 131697.	6.6	8
224	Constructing NiS2/NiSe2 heteroboxes with phase boundaries for Sodium-Ion batteries. Journal of Colloid and Interface Science, 2022, 607, 752-759.	5.0	36
225	Solvent-free mechanochemical synthesis of Na-rich Prussian white cathodes for high-performance Na-ion batteries. Chemical Engineering Journal, 2022, 428, 131083.	6.6	33
226	Stepwise hollow Prussian blue/carbon nanotubes composite as a novel electrode material for high-performance desalination. Journal of Colloid and Interface Science, 2022, 605, 432-440.	5.0	27
227	A monocrystalline orthorhombic Na _{0.44} Mn _{0.9} Li _{0.1} O ₂ cathode with outstanding stability and negligible structural strain for sodium-ion batteries. Inorganic Chemistry Frontiers, 2021. 8. 2844-2853.	3.0	4
228	Tailorable MOF architectures for high-efficiency electromagnetic functions. Materials Chemistry Frontiers, 2021, 5, 6444-6460.	3.2	30
229	Self-assembled CoSe ₂ –FeSe ₂ heteronanoparticles along the carbon nanotube network for boosted oxygen evolution reaction. Nanoscale, 2021, 13, 9651-9658.	2.8	38
230	Recent progress in â€~water-in-salt' and â€~water-in-salt'-hybrid-electrolyte-based high voltage rechargeable batteries. Sustainable Energy and Fuels, 2021, 5, 1619-1654.	2.5	27
231	Assembly of lignin-based colloidal particles: effects of cationic surfactants, molecular weight, and solvent on morphology. RSC Advances, 2020, 10, 18594-18600.	1.7	10
232	Phase diagrams of simple models of colloidal nanocrystals in two dimensions. JPhys Materials, 2021, 4, 015006.	1.8	5
233	Template-free synthesis of a yolk–shell Co ₃ O ₄ /nitrogen-doped carbon microstructure for excellent lithium ion storage. Journal of Materials Chemistry A, 2021, 9, 24548-24559.	5.2	18
234	MXene for aqueous zinc-based energy storage devices. Functional Materials Letters, 2021, 14, .	0.7	15
235	Fabrication of complex, 3D, branched hollow carbonaceous structures and their applications for supercapacitors. Science Bulletin, 2021, , .	4.3	8

#	Article	IF	CITATIONS
236	High performance Zn-I2 battery with acetonitrile electrolyte working at low temperature. Nano Research, 2022, 15, 3170-3177.	5.8	11
237	Tailored dodecahedral polyoxometalates nanoframes with in situ encapsulated Co, N, C for oxygen evolution reaction. Chemical Engineering Journal, 2022, 430, 133116.	6.6	8
238	Stable Li ⁺ /Na ⁺ Batteries with Anodes Boosted by Hollow Tubular-Structured MoS ₂ Nanosheet/N-Doped Carbon Nanosheet Composites. ACS Applied Nano Materials, 2021, 4, 10257-10266.	2.4	6
239	Hexacyanoferrate-modified polyvinyl alcohol/graphene oxide aerogel as an efficient and retrievable adsorbent for cesium. Journal of Materials Science, 2022, 57, 351-365.	1.7	5
240	3D frame-like architecture of N-C-incorporated mixed metal phosphide boosting ultrahigh energy density pouch-type supercapacitors. Nano Energy, 2022, 91, 106630.	8.2	74
241	Synthesis of truncated octahedral zinc-doped manganese hexacyanoferrates and low-temperature calcination activation for lithium-ion battery. Journal of Colloid and Interface Science, 2022, 607, 1898-1907.	5.0	21
242	Prussian blue analogue cobalt tetracyanonickelate hexacyanochromate decorated by CNTs: structural, morphological, optical characterization. Materials Research Express, 2020, 7, 075004.	0.8	4
244	Advanced Characterization Techniques Paving the Way for Commercialization of Lowâ€Cost Prussian Blue Analog Cathodes. Advanced Functional Materials, 2022, 32, 2108616.	7.8	35
245	A novel Fe-defect induced pure-phase Na4Fe2.91(PO4)2P2O7 cathode material with high capacity and ultra-long lifetime for low-cost sodium-ion batteries. Nano Energy, 2022, 91, 106680.	8.2	67
246	Nanoframes of Co ₃ O ₄ –Mo ₂ N Heterointerfaces Enable Highâ€Performance Bifunctionality toward Both Electrocatalytic HER and OER. Advanced Functional Materials, 2022, 32, 2107382.	7.8	153
247	Differentiated Oxygen Evolution Behavior in MOF-Derived Oxide Nanomaterials Induced by Phase Transition. ACS Applied Materials & amp; Interfaces, 2021, 13, 55454-55462.	4.0	16
248	Synthesis and Applications of Prussian Blue and Its Analogues as Electrochemical Sensors. ChemPlusChem, 2021, 86, 1608-1622.	1.3	14
249	γ-Mo ₂ N Nanobelts with Controlled Grain and Mesopore Sizes as High-Performance Anodes for Lithium-Ion Capacitors. ACS Applied Nano Materials, 2021, 4, 12514-12526.	2.4	4
250	Hollow CoP Encapsulated in an N-Doped Carbon Nanocage as an Efficient Bifunctional Electrocatalyst for Overall Water Splitting. ACS Applied Nano Materials, 2021, 4, 13450-13458.	2.4	20
251	Sulfur Vacanciesâ€Engineered Ni ₃ S _{4â€x} Hollow Microspheres with Optimized Anionic Adsorption Energy for Highâ€Performance Supercapacitor. Small, 2022, 18, e2106074.	5.2	41
252	Three-dimensional Prussian blue nanoflower as a high-performance sodium storage electrode for water desalination. Separation and Purification Technology, 2022, 285, 120333.	3.9	6
253	Realizing electrochemical transformation of a metal–organic framework precatalyst into a metal hydroxide–oxy(hydroxide) active catalyst during alkaline water oxidation. Journal of Materials Chemistry A, 2022, 10, 3843-3868.	5.2	44
254	Electrode Materials for Supercapacitors in Hybrid Electric Vehicles: Challenges and Current Progress. Condensed Matter, 2022, 7, 6.	0.8	66

#	Article	IF	CITATIONS
255	Modified Metalâ^'Organic Frameworks for Electrochemical Applications. Small Structures, 2022, 3, .	6.9	20
256	Topotactic Epitaxy Self-Assembly of Potassium Manganese Hexacyanoferrate Superstructures for Highly Reversible Sodium-Ion Batteries. ACS Nano, 2022, 16, 453-461.	7.3	24
257	Green Reduction of Cobalt Ferrocyanide with Excellent Electrocatalytic Activity toward the Oxygen Evolution Reaction. Energy & amp; Fuels, 2022, 36, 1654-1664.	2.5	13
258	Metal–organic framework derived carbon-encapsulated hollow CuO/Cu ₂ O heterostructure heterohedron as an efficient electrocatalyst for hydrogen evolution reaction. Dalton Transactions, 2022, 51, 3349-3356.	1.6	10
259	Vanadiumâ€based metalâ€organic frameworks and their derivatives for electrochemical energy conversion and storage. SmartMat, 2022, 3, 384-416.	6.4	51
260	A stochastic DNA walker electrochemiluminescence biosensor based on quenching effect of Pt@CuS on luminol@Au/Ni-Co nanocages for ultrasensitive detection of I27L gene. Chemical Engineering Journal, 2022, 434, 134681.	6.6	15
261	Synergistic effect of NiCo alloy and NiCoS integrated with N doped carbon for superior rate and ultralong-lifespan lithium sulfur batteries. Journal of Alloys and Compounds, 2022, 905, 164175.	2.8	5
262	Recent developments and viable approaches for high-performance supercapacitors using transition metal-based electrode materials. Journal of Energy Storage, 2022, 49, 104120.	3.9	49
263	Mo,Fe-codoped metal phosphide nanosheets derived from Prussian blue analogues for efficient overall water splitting. Journal of Colloid and Interface Science, 2022, 615, 456-464.	5.0	15
264	Nafion assisted preparation of prussian blue nanoparticles and its application in electrochemical analysis of l-ascorbic acid. Microchemical Journal, 2022, 177, 107278.	2.3	10
265	Prussian Blue Analogues for Sodiumâ€lon Batteries: Past, Present, and Future. Advanced Materials, 2022, 34, e2108384.	11.1	252
266	Shape-controlled Mn–Fe PBA derived micromotors for organic pollutant removal. New Journal of Chemistry, 2022, 46, 8611-8618.	1.4	3
267	Metal organic framework-based nanostructure materials: applications for non-lithium ion battery electrodes. CrystEngComm, 2022, 24, 2925-2947.	1.3	18
268	Hollow-Structured Microporous Organic Networks Adsorbents Enabled Specific and Sensitive Identification and Determination of Aflatoxins. Toxins, 2022, 14, 137.	1.5	3
269	Mo/Fe bimetallic pyrophosphates derived from Prussian blue analogues for rapid electrocatalytic oxygen evolution. Green Energy and Environment, 2023, 8, 1450-1458.	4.7	4
270	MOF-derived double-shelled Fe(OH)3@NiCo-LDH hollow cubes and their efficient adsorption for anionic organic pollutant. Journal of Porous Materials, 2022, 29, 931-945.	1.3	9
271	Cage-Like Porous Prussian Blue as High-Capacity Cathode for Sodium-Ion Batteries. ACS Applied Nano Materials, 2022, 5, 4833-4840.	2.4	16
272	An Openâ€Ended Ni ₃ S ₂ –Co ₉ S ₈ Heterostructures Nanocage Anode with Enhanced Reaction Kinetics for Superior Potassiumâ€Ion Batteries. Advanced Materials, 2022, 34, e2201420.	11.1	68

# 273	ARTICLE Recent Progress and Future Advances on Aqueous Monovalentâ€ion Batteries towards Safe and Highâ€Power Energy Storage. Advanced Materials, 2022, 34, e2107965.	IF 11.1	CITATIONS
274	Wetâ€Chemistry: A Useful Tool for Deriving Metal–Organic Frameworks toward Supercapacitors and Secondary Batteries. Advanced Materials Interfaces, 2022, 9, .	1.9	9
275	A wearable All-Solid-State supercapacitor with extremely high stability based on 2D Co-HCF/GO. Applied Surface Science, 2022, 586, 152739.	3.1	12
276	"Twin Lotus Flower―Adsorbents Derived from LaFe Cyanometallate for High-Performance Phosphorus Removal. Separation and Purification Technology, 2022, 291, 120924.	3.9	16
277	Superior detection and classification of ethanol and acetone using 3D ultra-porous Î ³ -Fe2O3 nanocubes-based sensor. Sensors and Actuators B: Chemical, 2022, 362, 131737.	4.0	11
278	Fatigue Resistant Aerogel/Hydrogel Nanostructured Hybrid for Highly Sensitive and Ultrabroad Pressure Sensing. Small, 2022, 18, e2104706.	5.2	15
279	Hybrid Nanostructure of Mixed Transition Metal Oxysulfides Supported by Porous PBA as Efficient Electrocatalysts for the Oxygen Evolution Reaction. Israel Journal of Chemistry, 2022, 62, .	1.0	6
280	Phytic Acid Doped Polypyrrole as a Mediating Layer Promoting Growth of Prussian Blue on Cotton Fibers for Solar-Driven Interfacial Water Evaporation. Polymers, 2022, 14, 6.	2.0	2
281	Wide-Spectrum Modulated Electrochromic Smart Windows Based on MnO ₂ /PB Films. ACS Applied Materials & Interfaces, 2022, 14, 1443-1451.	4.0	62
282	Metal oxy compounds heterogeneous interfaces joining for water splitting. , 2022, , 273-292.		1
283	CuCo ₂ S ₄ –MoS ₂ nanocomposite: a novel electrode for high-performance supercapacitors. Journal of Materials Chemistry C, 2022, 10, 7980-7996.	2.7	27
284	Cubic core–shell structure of NiCoS _{<i>x</i>} /CoS ₂ as a high-efficiency tri-functional catalyst for Zn–air battery and overall water splitting. CrystEngComm, 2022, 24, 3894-3902.	1.3	4
285	Mesoporous K-doped NiCo ₂ O ₄ derived from a Prussian blue analog: high-yielding synthesis and assessment as oxygen evolution reaction catalyst. RSC Advances, 2022, 12, 12371-12376.	1.7	3
286	Real-Time Plasmonic Imaging of the Compositional Evolution of Single Nanoparticles in Electrochemical Reactions. Nano Letters, 2022, 22, 4383-4391.	4.5	9
287	Synthesis of NiSe ₂ /Fe ₃ O ₄ Nanotubes with Heteroepitaxy Configuration as a Highâ€Efficient Oxygen Evolution Electrocatalyst. Small Methods, 2022, 6, e2200377.	4.6	22
288	Well-defined bimetal oxides derived from Prussian blue analogues with regulable active sites for phosphate removal. Journal of Colloid and Interface Science, 2022, 622, 390-401.	5.0	8
289	Anchoring MoS ₂ on an ethanol-etched Prussian blue analog for enhanced electrocatalytic efficiency for the oxygen evolution reaction. Materials Chemistry Frontiers, 2022, 6, 1770-1778.	3.2	9
290	Earthâ€Abundant Metalâ€Based Electrocatalysts Promoted Anodic Reaction in Hybrid Water Electrolysis for Efficient Hydrogen Production: Recent Progress and Perspectives. Advanced Energy Materials, 2022, 12, .	10.2	87

#	Article	IF	CITATIONS
291	Preventing surface passivation of transition metal nanoparticles in oxygen electrocatalyst to extend the lifespan of Zn-air battery. Journal of Materials Science and Technology, 2022, 128, 205-212.	5.6	5
292	Treatment dependent sodium-rich Prussian blue as a cathode material for sodium-ion batteries. Dalton Transactions, 2022, 51, 9622-9626.	1.6	10
293	Hierarchical hollow-tubular porous carbon microtubes prepared <i>via</i> a mild method for supercapacitor electrode materials with high volumetric capacitance. RSC Advances, 2022, 12, 16257-16266.	1.7	10
294	Simultaneously promoting charge and mass transports in carved particle-in-box nanoreactor for rechargeable Zn-air battery. Chemical Engineering Journal, 2022, 446, 137210.	6.6	22
295	Niobiumâ€Incorporated CoSe ₂ Nanothorns with Electronic Structural Alterations for Efficient Alkaline Oxygen Evolution Reaction at High Current Density. ChemSusChem, 2022, 15, .	3.6	6
296	Coupling N-doping and rich oxygen vacancies in mesoporous ZnMn2O4 nanocages toward advanced aqueous zinc ion batteries. Nano Research, 2022, 15, 8118-8127.	5.8	28
297	Na _{1.51} Fe[Fe(CN) ₆] _{0.87} ·1.83H ₂ O Hollow Nanospheres via Nonâ€Aqueous Ballâ€Milling Route to Achieve High Initial Coulombic Efficiency and High Rate Capability in Sodiumâ€ion Batteries. Small Methods, 2022, 6, .	4.6	15
298	Prussian blue and its analogues for aqueous energy storage: From fundamentals to advanced devices. Energy Storage Materials, 2022, 50, 618-640.	9.5	34
299	Efficient removal of Cs(I) from water using a novel Prussian blue and graphene oxide modified PVDF membrane: Preparation, characterization, and mechanism. Science of the Total Environment, 2022, 838, 156530.	3.9	14
300	Bimetallic CuCo Prussian blue analogue nanocubes induced chemiluminescence of luminol under alkaline solution for uric acid detection in human serum. Microchemical Journal, 2022, 181, 107667.	2.3	15
301	Post-synthetic modification of Prussian blue type nanoparticles: tailoring the chemical and physical properties. Inorganic Chemistry Frontiers, 2022, 9, 3943-3971.	3.0	5
302	Phosphorus modified hollow, porous Nickel-Cobalt oxides nanocubes with heterostructure for oxygen evolution reaction in alkaline. Journal of Alloys and Compounds, 2022, 925, 166338.	2.8	7
303	Exposing Single Ni Atoms in Hollow S/Nâ€Đoped Carbon Macroporous Fibers for Highly Efficient Electrochemical Oxygen Evolution. Advanced Materials, 2022, 34, .	11.1	42
304	Accelerating Fe sites saturation coverage through Bi-metal dynamic balances on double-layer hollow MOF nanocages for oxygen evolution. Materials Today Physics, 2022, 27, 100778.	2.9	6
305	Effect of Surface Charge on the Fabrication of Hierarchical Mn-Based Prussian Blue Analogue for Capacitive Desalination. ACS Applied Materials & amp; Interfaces, 2022, 14, 40371-40381.	4.0	11
306	Facile synthesis of high quality hard carbon anode from Eucalyptus wood for sodium-ion batteries. Chemical Papers, 2022, 76, 7465-7473.	1.0	6
307	"Sea Anemone―like CeFe Oxides for High-Efficient Phosphate Removal. Water (Switzerland), 2022, 14, 2445.	1.2	1
308	Enhanced Electrochemical Water Oxidation Activity by Structural Engineered Prussian Blue Analogue/rGO Heterostructure. Molecules, 2022, 27, 5472.	1.7	1

#	Article	IF	CITATIONS
309	Metal–Organic Frameworkâ€Derived Ultrafine ZnO/Co ₃ ZnC Particles Embedded in Nâ€Doped Carbon Concaveâ€Dodecahedron Towards Enhanced Lithium Storage. ChemElectroChem, 2022, 9, .	1.7	3
310	Prussian-blue-derived FeS2 spheres with abundant pore canals for efficient hydrogen evolution reaction. Chemical Engineering Science, 2022, 262, 118028.	1.9	4
311	A systematic review on recent advances of metal–organic frameworks-based nanomaterials for electrochemical energy storage and conversion. Coordination Chemistry Reviews, 2022, 471, 214741.	9.5	24
312	Anchoring highly-dispersed ZnCdS nanoparticles on NiCo Prussian blue Analogue-derived cubic-like NiCoP forms an S-scheme heterojunction for improved hydrogen evolution. Journal of Colloid and Interface Science, 2022, 628, 64-78.	5.0	45
313	Highly crystalline Prussian blue cubes filled with tin oxide as anode materials for lithium-ion batteries. Applied Surface Science, 2022, 604, 154533.	3.1	3
314	Metal-organic frameworks derived transition metal phosphide/carbon for high performance asymmetric supercapacitor. Journal of Energy Storage, 2022, 55, 105623.	3.9	9
315	Tannic acid-assisted in-situ interfacial formation of Prussian blue-assembled adsorptive membranes for radioactive cesium removal. Journal of Hazardous Materials, 2023, 442, 129967.	6.5	8
316	Chemical–physical synergistic etching enabling deep reconstruction of NiFe Prussian blue analogue for efficient oxygen evolution reaction and Zn–air batteries. Journal of Materials Chemistry A, 2022, 10, 21251-21259.	5.2	16
317	Regulating the coordination environment of a metal–organic framework for an efficient electrocatalytic oxygen evolution reaction. Energy Advances, 2022, 1, 641-647.	1.4	2
318	A processable Prussian blue analogue-mediated route to promote alkaline electrocatalytic water splitting over bifunctional copper phosphide. Dalton Transactions, 2022, 51, 13451-13461.	1.6	2
319	Localizing Tungsten Single Atoms around Tungsten Nitride Nanoparticles for Efficient Oxygen Reduction Electrocatalysis in Metal–Air Batteries. Advanced Science, 2022, 9, .	5.6	11
320	In situ characterizations of advanced electrode materials for sodium-ion batteries toward high electrochemical performances. Journal of Energy Chemistry, 2023, 76, 146-164.	7.1	28
321	Inorganic Complexes and Metal-Based for Biomarkers Sensors. , 2023, , 113-155.		0
322	Doubleâ€Carbonâ€Layer Coated Na ₄ MnV(PO ₄) ₃ Towards Highâ€Performance Sodiumâ€Ion Full Batteries. Advanced Materials Interfaces, 2022, 9, .	1.9	5
323	Formation of CuMn Prussian Blue Analog Doubleâ€Shelled Nanoboxes Toward Longâ€Life Znâ€ion Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	64
324	Formation of CuMn Prussian Blue Analog Doubleâ€Shelled Nanoboxes Toward Longâ€Life Znâ€ion Batteries. Angewandte Chemie, 2022, 134, .	1.6	8
325	Tuning the electronic structure and hydrophilicity of Prussian-blue type catalysts by incorporation of alklypyrazinium bromides, for enhanced activity. Applied Catalysis A: General, 2022, 647, 118889.	2.2	3
326	Manipulating the morphology and the electronic structures of nickel-cobalt selenides@N-doped carbon for aqueous alkaline batteries. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 655, 130191.	2.3	1

#	Article	IF	CITATIONS
327	Ni–Fe nanoframes <i>via</i> a unique structural formation induced by sonochemical etching. Chemical Communications, 0, , .	2.2	0
328	Unlocking the Potential of Vanadium Oxide for Ultrafast and Stable Zn ²⁺ Storage Through Optimized Stress Distribution: From Engineering Simulation to Elaborate Structure Design. Small Methods, 2022, 6, .	4.6	9
330	Self-templating synthesis of Pd4S hollow nanospheres as electrocatalysts for oxygen reduction reaction. Nano Research, 0, , .	5.8	2
331	Mixed Cu–Fe Sulfides Derived from Polydopamine-Coated Prussian Blue Analogue as a Lithium-Ion Battery Electrode. ACS Omega, 2022, 7, 38674-38685.	1.6	4
332	Advancements of Prussian blue-based nanoplatforms in biomedical fields: Progress and perspectives. Journal of Controlled Release, 2022, 351, 752-778.	4.8	9
333	Tunable active-sites of Co– nanoparticles encapsulated in carbon nanofiber as high performance bifunctional OER/ORR electrocatalyst. Journal of Colloid and Interface Science, 2023, 630, 140-149.	5.0	36
334	MnO2 decorated Prussian blue analogues as high-performance supercapacitor electrodes. Materials Letters, 2023, 330, 133341.	1.3	4
335	Morphology engineering ultrathin nitrogen-doped carbon Co-FeP derived from Co-Fe Prussian Blue Analogs for wide spectrum photocatalytic H2 evolution. Fuel, 2023, 333, 126336.	3.4	12
336	Preparation of hierarchical hollow CoFe Prussian blue analogues and its heat-treatment derivatives for the electrocatalyst of oxygen evolution reaction. Journal of Colloid and Interface Science, 2023, 631, 8-16.	5.0	8
337	Design of five two-dimensional Co-metal-organic frameworks for oxygen evolution reaction and dye degradation properties. Frontiers in Chemistry, 0, 10, .	1.8	1
338	Induced Crystallizationâ€Controllable Nanoarchitectonics of 3Dâ€Ordered Hierarchical Macroporous Co@Nâ€Doped Carbon Frameworks for Enhanced Microwave Absorption. Small, 2023, 19, .	5.2	21
339	Confined replacement synthesis of SnSe nanoplates in N-doped hollow carbon nanocages for high-performance sodium–ion batteries. Inorganic Chemistry Frontiers, 2023, 10, 793-803.	3.0	9
340	Self-sacrificial growth of hierarchical P(Ni, Co, Fe) for enhanced asymmetric supercapacitors and oxygen evolution reactions. Electrochimica Acta, 2023, 438, 141582.	2.6	10
341	The synthesis of zeolitic imidazolate framework/prussian blue analogue heterostructure composites and their application in supercapacitors. Inorganic Chemistry Frontiers, 2022, 10, 78-84.	3.0	14
342	Constructing an asymmetric supercapacitor based on Prussian blue analogues-derived cobalt selenide nanoframeworks and iron oxide nanoparticles. Electrochimica Acta, 2023, 439, 141686.	2.6	9
343	In-situ growth of hierarchical nickel sulfide composites on nickel foam for enhanced urea oxidation reaction and urine electrolysis. Journal of Electroanalytical Chemistry, 2023, 928, 117082.	1.9	6
344	Building Na-ion full cells using homologous Prussian blue and its phosphide derivative. Applied Surface Science, 2023, 612, 155952.	3.1	7
345	<i>In-situ</i> Raman spectroscopic insight into charge delocalization-improved electrical conductivity in metal–cyanide frameworks. Nanoscale, 2022, 14, 18184-18191.	2.8	1

#	Article	IF	CITATIONS
346	Dispersed Mn2Co2C nanoparticles in interconnected nitrogen-doped carbon framework as cathode catalysts for efficient and long-life Li-CO2 batteries. Chemical Engineering Journal, 2023, 455, 140564.	6.6	8
347	Global-Local CNTs Conductive Network Couple with Co-Based Polyhedral Promotes the Electrocatalytic Reduction of Oxygen. Catalysts, 2022, 12, 1508.	1.6	1
348	<i>In Situ</i> Fabrication of Highly Dispersed Co–Fe-Doped-δ-MnO ₂ Catalyst by a Facile Redox-Driving MOFs-Derived Method for Low-Temperature Oxidation of Toluene. ACS Applied Materials & Interfaces, 2022, 14, 53872-53883.	4.0	8
349	Naâ€Rich Na ₃ V ₂ (PO ₄) ₃ Cathodes for Long Cycling Rechargeable Sodium Full Cells. Advanced Energy Materials, 2023, 13, .	10.2	21
350	Preparation of N _x â^'Fe/Fe ₃ C/KVO ₃ composites by heat treatment for highâ€performance electrocatalytic oxygen evolution. ChemistrySelect, 2022, 7, .	0.7	1
351	DNAâ€Dependent Prussian Blue Nanoflowers for Biosensing, Catalysis and Imaging. Advanced Functional Materials, 2023, 33, .	7.8	10
352	Dual elemental modulation in cationic and anionic sites of the multi-metal Prussian blue analogue pre-catalysts for promoted oxygen evolution reaction. Progress in Natural Science: Materials International, 2022, 32, 705-714.	1.8	12
353	Fabrication of a Cation Exchange Membrane with Largely Reduced Anion Permeability for Advanced Aqueous Kâ€ion Battery in an Alkalineâ€Neutral Electrolyte Decoupling System. Small, 2023, 19, .	5.2	5
354	Heterostructured Core–Shell Ni–Co@Fe–Co Nanoboxes of Prussian Blue Analogues for Efficient Electrocatalytic Hydrogen Evolution from Alkaline Seawater. ACS Catalysis, 2023, 13, 1349-1358.	5.5	25
355	Compositing redox-rich Co–Co@Ni–Fe PBA nanocubes into cauliflower-like conducting polypyrrole as an electrode material in supercapacitors. Materials Chemistry Frontiers, 2023, 7, 1110-1119.	3.2	9
356	Advance of Prussian Blueâ€Derived Nanohybrids in Energy Storage: Current Status and Perspective. Small, 2023, 19, .	5.2	8
357	Surface-defect engineering of a nickel hexacyanoferrate material for high-performance printed flexible supercapacitors. Journal of Materials Chemistry A, 2023, 11, 3493-3503.	5.2	6
358	Precursor design in a self-templating strategy for carbon-encapsulated bimetallic CoFe catalysts: Boosting organic pollutant degradation via nonradical pathways. Separation and Purification Technology, 2023, 310, 123111.	3.9	5
359	Ti ₃ C ₂ T _{<i>x</i>} MXene-Coupled NiCo-Layered Double Hydroxide Nanosheets with Entire Contact for High-Performance Supercapacitors. ACS Applied Energy Materials, 2023, 6, 636-643.	2.5	13
360	Hydrothermal synthesis as a versatile tool for the preparation of metal hexacyanoferrates: a review. Journal of Materials Science, 2023, 58, 2993-3024.	1.7	3
361	Application of Capacitive Deionization in Water Treatment and Energy Recovery: A Review. Energies, 2023, 16, 1136.	1.6	24
362	Manganese (Sulfide/Oxide) based electrode materials advancement in supercapattery devices. Materials Science in Semiconductor Processing, 2023, 158, 107366.	1.9	22
363	The effect of high-frequency acoustic wave vibration pattern on HKUST's multi-level pore structure. Ultrasonics Sonochemistry, 2023, 95, 106368.	3.8	Ο

#	Article	IF	CITATIONS
364	Prussian blue and its analogues: Reborn as emerging catalysts for a Fenton-like process in water purification. Coordination Chemistry Reviews, 2023, 482, 215067.	9.5	13
365	CoPx co-catalyst decorated CdS hollow nanocubes as efficient photocatalysts for hydrogen production under visible light irradiation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 666, 131368.	2.3	2
366	Insight into the surface-reconstruction of metal–organic framework-based nanomaterials for the electrocatalytic oxygen evolution reaction. Coordination Chemistry Reviews, 2023, 484, 215117.	9.5	7
367	Synthesis of high-specific-capacity Prussian blue analogues for sodium-ion batteries boosted by grooved structure. Journal of Alloys and Compounds, 2023, 950, 169928.	2.8	5
368	Chemical etching and phase transformation of Nickel-Cobalt Prussian blue analogs for improved solar-driven water-splitting applications. Journal of Colloid and Interface Science, 2023, 641, 861-874.	5.0	2
369	Ultrasmall Co ₃ O ₄ nanoparticles as a long-lived high-rate lithium-ion battery anode. Dalton Transactions, 2023, 52, 3270-3274.	1.6	5
370	Interaction Between Prussian Blue Ultrathin Nanosheet and Ammonium Perchlorate for Highly Efficient Thermal Decomposition. Advanced Functional Materials, 2023, 33, .	7.8	4
371	å·æœ‰ä¸ºå⁻Œç¡«ç©ºä¼₂的强å¸å‰Cu2S/CuClå¼,舑阵列的构çťåŠå¶åœ¨â‰å电èµç"µå®¹ä¸ç	5" å .ťç" So	ci e nce China
372	Constructing Spatially Separated Cage‣ike Zâ€scheme Heterojunction Photocatalyst for Enhancing Photocatalytic H ₂ Evolution. Small, 2023, 19, .	5.2	15
373	Prussian blue and its analogues as functional template materials: control of derived structure compositions and morphologies. Journal of Materials Chemistry A, 2023, 11, 10473-10492.	5.2	14
374	Supporting Trimetallic Metalâ€Organic Frameworks on S/Nâ€Doped Carbon Macroporous Fibers for Highly Efficient Electrocatalytic Oxygen Evolution. Advanced Materials, 2023, 35, .	11.1	44
375	Soft–hard interface design in super-elastic conductive polymer hydrogel containing Prussian blue analogues to enable highly efficient electrochemical deionization. Materials Horizons, 2023, 10, 3548-3558.	6.4	13
376	Non-stoichiometric Cu2-xSe hollow nanocubes cathodes enabling high-rate capability and ultra-long cyclic stability rechargeable Mg batteries. Chemical Engineering Journal, 2023, 464, 142654.	6.6	4
377	Special Poreâ€Spaceâ€Partition CoFePBA Hollow Framework Realizing Highâ€Performance Glucose Sensing. European Journal of Inorganic Chemistry, 0, , .	1.0	0
378	Electrocatalytic Overall Water Splitting Induced by Surface Reconstruction of an Iron-Modified Ni ₂ P/Ni ₅ P ₄ Heterojunction Array Encapsulated into a N-Doped Carbon Layer. Inorganic Chemistry, 2023, 62, 6518-6526.	1.9	6
379	Core-shell heterostructure by coupling layered ReS2 with Co9S8 nanocubes for boosted oxygen evolution reaction. Chinese Chemical Letters, 2024, 35, 108484.	4.8	1
380	Prussian blue nanozymes coated with Pluronic attenuate inflammatory osteoarthritis by blocking c-Jun N-terminal kinase phosphorylation. Biomaterials, 2023, 297, 122131.	5.7	5
428	Buffer solution induced highly crystalline sodium-rich Prussian blue for sodium storage. Chemical Communications, 2024, 60, 1603-1606.	2.2	0

#	Article	IF	CITATIONS
430	Research progress of Prussian blue and its analogues for cathodes of aqueous zinc ion batteries. Journal of Materials Chemistry A, 2024, 12, 2647-2672.	5.2	1
435	Hollow metal-organic frameworks and derivatives. , 2024, , 135-162.		Ο