Alfvénic velocity spikes and rotational flows in the ne

Nature 576, 228-231 DOI: 10.1038/s41586-019-1813-z

Citation Report

#	Article	IF	CITATIONS
1	A step closer to the Sun's secrets. Nature, 2019, 576, 219-220.	13.7	9
2	Sun-bombing spacecraft uncovers secrets of the solar wind. Nature, 2019, 576, 15-16.	13.7	1
3	Probing the energetic particle environment near the Sun. Nature, 2019, 576, 223-227.	13.7	103
4	Exploring the innermost solar atmosphere. Nature Astronomy, 2020, 4, 19-20.	4.2	6
5	Understanding the origins of the heliosphere: integrating observations and measurements from Parker Solar Probe, Solar Orbiter, and other space- and ground-based observatories. Astronomy and Astrophysics, 2020, 642, A4.	2.1	35
6	The Solar Orbiter mission. Astronomy and Astrophysics, 2020, 642, A1.	2.1	514
7	(Non)radial Solar Wind Propagation through the Heliosphere. Astrophysical Journal Letters, 2020, 897, L39.	3.0	9
8	A new class of discontinuous solar wind solutions. Monthly Notices of the Royal Astronomical Society, 2020, 496, 1023-1034.	1.6	4
9	Structure of the Solar Atmosphere: A Radio Perspective. Frontiers in Astronomy and Space Sciences, 2020, 7, .	1.1	10
10	Possible Evolution of Minifilament-Eruption-Produced Solar Coronal Jets, Jetlets, and Spicules, into Magnetic-Twist-Wave "Switchbacks―Observed by the Parker Solar Probe (PSP). Journal of Physics: Conference Series, 2020, 1620, 012020.	0.3	4
11	Parker Solar Probe observations of suprathermal electron flux enhancements originating from Coronal Hole boundaries. Monthly Notices of the Royal Astronomical Society, 2020, 498, 5273-5283.	1.6	5
12	Proton core behaviour inside magnetic field switchbacks. Monthly Notices of the Royal Astronomical Society, 2020, 498, 5524-5531.	1.6	29
13	Parker Solar Probe: A Mission to Touch the Sun. , 2020, , .		3
14	Modeling Differential Faraday Rotation in the Solar Corona. Solar Physics, 2020, 295, 1.	1.0	2
15	Tearing Instability in Alfvén and Kineticâ€Alfvén Turbulence. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028185.	0.8	7
16	Parker Solar Probe Observations of Proton Beams Simultaneous with Ion-scale Waves. Astrophysical Journal, Supplement Series, 2020, 248, 5.	3.0	62
17	Proton-proton collisional age to order solar wind types. Astronomy and Astrophysics, 2020, 636, A103.	2.1	2
18	Switchbacks in the Solar Magnetic Field: Their Evolution, Their Content, and Their Effects on the Plasma. Astrophysical Journal, Supplement Series, 2020, 246, 68.	3.0	83

TION RE

#	Article	IF	CITATIONS
19	The Heliospheric Current Sheet and Plasma Sheet during Parker Solar Probe's First Orbit. Astrophysical Journal Letters, 2020, 894, L19.	3.0	39
20	The Solar Wind Prevents Reaccretion of Debris after Mercury's Giant Impact. Planetary Science Journal, 2020, 1, 7.	1.5	9
21	Nine Outstanding Questions of Solar Wind Physics. Journal of Geophysical Research: Space Physics, 2020, 125, e2018JA026005.	0.8	77
22	Coronal-jet-producing Minifilament Eruptions as a Possible Source of Parker Solar Probe Switchbacks. Astrophysical Journal Letters, 2020, 896, L18.	3.0	53
23	Use of the L1 Constellation as a Multispacecraft Solar Wind Monitor. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA027978.	0.8	19
24	Plasma and Magnetic-Field Structure of the Solar Wind at Inertial-Range Scale Sizes Discerned From Statistical Examinations of the Time-Series Measurements. Frontiers in Astronomy and Space Sciences, 2020, 7, .	1.1	15
25	MHD Mode Composition in the Inner Heliosphere from the <i>Parker Solar Probe</i> 's First Perihelion. Astrophysical Journal, Supplement Series, 2020, 246, 71.	3.0	17
26	Proton Temperature Anisotropy Variations in Inner Heliosphere Estimated with the First <i>Parker Solar Probe</i> Observations. Astrophysical Journal, Supplement Series, 2020, 246, 70.	3.0	56
27	Characterisation of suprathermal electron pitch-angle distributions. Astronomy and Astrophysics, 2020, 635, A79.	2.1	8
28	Sunward-propagating Whistler Waves Collocated with Localized Magnetic Field Holes in the Solar Wind: Parker Solar Probe Observations at 35.7 R _⊙ Radii. Astrophysical Journal Letters, 2020, 891, L20.	3.0	46
29	The Solar Probe Cup on the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 43.	3.0	154
30	Observations of Energetic-particle Population Enhancements along Intermittent Structures near the Sun from the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 61.	3.0	25
31	In-situ Switchback Formation in the Expanding Solar Wind. Astrophysical Journal Letters, 2020, 891, L2.	3.0	110
32	Effects of Radial Distances on Small-scale Magnetic Flux Ropes in the Solar Wind. Astrophysical Journal, 2020, 894, 25.	1.6	15
33	Kinetic Scale Slow Solar Wind Turbulence in the Inner Heliosphere: Coexistence of Kinetic Alfvén Waves and Alfvén Ion Cyclotron Waves. Astrophysical Journal Letters, 2020, 897, L3.	3.0	28
34	Relating Streamer Flows to Density and Magnetic Structures at the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 37.	3.0	52
35	Stellar rotation effects on the stellar winds. Physics of Plasmas, 2020, 27, .	0.7	3
36	Clustering of Intermittent Magnetic and Flow Structures near Parker Solar Probe's First Perihelion—A Partial-variance-of-increments Analysis. Astrophysical Journal, Supplement Series, 2020, 246. 31.	3.0	37

#	Article	IF	CITATIONS
37	First In Situ Measurements of Electron Density and Temperature from Quasi-thermal Noise Spectroscopy with Parker Solar Probe/FIELDS. Astrophysical Journal, Supplement Series, 2020, 246, 44.	3.0	106
38	Observations of Heating along Intermittent Structures in the Inner Heliosphere from PSP Data. Astrophysical Journal, Supplement Series, 2020, 246, 46.	3.0	26
39	The Heliospheric Current Sheet in the Inner Heliosphere Observed by the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 47.	3.0	50
40	The Evolution and Role of Solar Wind Turbulence in the Inner Heliosphere. Astrophysical Journal, Supplement Series, 2020, 246, 53.	3.0	166
41	Measures of Scale-dependent Alfvénicity in the First <i>PSP</i> Solar Encounter. Astrophysical Journal, Supplement Series, 2020, 246, 58.	3.0	51
42	Small, Low-energy, Dispersive Solar Energetic Particle Events Observed by <i>Parker Solar Probe</i> . Astrophysical Journal, Supplement Series, 2020, 246, 65.	3.0	23
43	Solar Wind Streams and Stream Interaction Regions Observed by the Parker Solar Probe with Corresponding Observations at 1 au. Astrophysical Journal, Supplement Series, 2020, 246, 36.	3.0	43
44	The Role of Alfvén Wave Dynamics on the Large-scale Properties of the Solar Wind: Comparing an MHD Simulation with Parker Solar Probe E1 Data. Astrophysical Journal, Supplement Series, 2020, 246, 24.	3.0	66
45	Solar Energetic Particles Produced by a Slow Coronal Mass Ejection at â ⁻¹ ⁄40.25 au. Astrophysical Journal, Supplement Series, 2020, 246, 29.	3.0	35
46	Enhanced Energy Transfer Rate in Solar Wind Turbulence Observed near the Sun from <i>Parker Solar Probe</i> . Astrophysical Journal, Supplement Series, 2020, 246, 48.	3.0	56
47	CME-associated Energetic Ions at 0.23 au: Consideration of the Auroral Pressure Cooker Mechanism Operating in the Low Corona as a Possible Energization Process. Astrophysical Journal, Supplement Series, 2020, 246, 59.	3.0	21
48	Electrons in the Young Solar Wind: First Results from the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 22.	3.0	99
49	Identification of Magnetic Flux Ropes from Parker Solar Probe Observations during the First Encounter. Astrophysical Journal, Supplement Series, 2020, 246, 26.	3.0	57
50	The Enhancement of Proton Stochastic Heating in the Near-Sun Solar Wind. Astrophysical Journal, Supplement Series, 2020, 246, 30.	3.0	23
51	Magnetic Field Kinks and Folds in the Solar Wind. Astrophysical Journal, Supplement Series, 2020, 246, 32.	3.0	86
52	Parker Solar Probe In Situ Observations of Magnetic Reconnection Exhausts during Encounter 1. Astrophysical Journal, Supplement Series, 2020, 246, 34.	3.0	65
53	Turbulence Transport Modeling and First Orbit Parker Solar Probe (PSP) Observations. Astrophysical Journal, Supplement Series, 2020, 246, 38.	3.0	53
54	Switchbacks in the Near-Sun Magnetic Field: Long Memory and Impact on the Turbulence Cascade. Astrophysical Journal, Supplement Series, 2020, 246, 39.	3.0	152

#	Article	IF	CITATIONS
55	Coronal Electron Temperature Inferred from the Strahl Electrons in the Inner Heliosphere: Parker Solar Probe and Helios Observations. Astrophysical Journal, 2020, 892, 88.	1.6	34
56	Global Circulation of the Open Magnetic Flux of the Sun. Astrophysical Journal Letters, 2020, 894, L4.	3.0	87
57	Localized Magnetic-field Structures and Their Boundaries in the Near-Sun Solar Wind from Parker Solar Probe Measurements. Astrophysical Journal, 2020, 893, 93.	1.6	44
58	The evolution of inverted magnetic fields through the inner heliosphere. Monthly Notices of the Royal Astronomical Society, 2020, 494, 3642-3655.	1.6	29
59	Determination of Solar Wind Angular Momentum and Alfvén Radius from Parker Solar Probe Observations. Astrophysical Journal Letters, 2021, 908, L41.	3.0	14
60	Parker Solar Probe Observations of Alfvénic Waves and Ion-cyclotron Waves in a Small-scale Flux Rope. Astrophysical Journal Letters, 2021, 908, L19.	3.0	10
61	On the Origin of Hard X-Ray Emissions from the Behind-the-limb Flare on 2014 September 1. Astrophysical Journal, 2021, 909, 163.	1.6	4
63	The Encounter of the Parker Solar Probe and a Comet-like Object Near the Sun: Model Predictions and Measurements. Astrophysical Journal, 2021, 910, 7.	1.6	4
64	Source-dependent Properties of Two Slow Solar Wind States. Astrophysical Journal, 2021, 910, 63.	1.6	12
65	Switchbacks Explained: Super-Parker Fields—The Other Side of the Sub-Parker Spiral. Astrophysical Journal, 2021, 909, 95.	1.6	62
66	The Interplay Between Ambipolar Electric Field and Coulomb Collisions in the Solar Wind Acceleration Region. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028864.	0.8	7
67	Multiscale Solar Wind Turbulence Properties inside and near Switchbacks Measured by the Parker Solar Probe. Astrophysical Journal, 2021, 912, 28.	1.6	23
68	Matching Temporal Signatures of Solar Features to Their Corresponding Solar-Wind Outflows. Solar Physics, 2021, 296, 1.	1.0	3
69	Parker Solar Probe Evidence for Scattering of Electrons in the Young Solar Wind by Narrowband Whistler-mode Waves. Astrophysical Journal Letters, 2021, 911, L29.	3.0	24
70	Subproton-scale Intermittency in Near-Sun Solar Wind Turbulence Observed by the Parker Solar Probe. Astrophysical Journal Letters, 2021, 911, L7.	3.0	30
71	On Alfvénic Slow Wind: A Journey From the Earth Back to the Sun. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028996.	0.8	21
72	Critical Science Plan for the Daniel K. Inouye Solar Telescope (DKIST). Solar Physics, 2021, 296, 1.	1.0	65
73	Large Amplitude Switchback Turbulence: Possible Magnetic Velocity Alignment Structures. Astrophysical Journal, 2021, 911, 73.	1.6	10

#	Article	IF	CITATIONS
74	Pitch-angle distribution of accelerated electrons in 3D current sheets with magnetic islands. Astronomy and Astrophysics, 2021, 648, A51.	2.1	2
75	Could Switchbacks Originate in the Lower Solar Atmosphere? I. Formation Mechanisms of Switchbacks. Astrophysical Journal, 2021, 911, 75.	1.6	19
76	Solar Origin of Compressive Alfvénic Spikes/Kinks as Observed by Parker Solar Probe. Astrophysical Journal Letters, 2021, 913, L14.	3.0	17
77	Three-dimensional magnetic reconnection in particle-in-cell simulations of anisotropic plasma turbulence. Journal of Plasma Physics, 2021, 87, .	0.7	19
78	Inward-propagating Plasma Parcels in the Solar Corona: Models with Aerodynamic Drag, Ablation, and Snowplow Accretion. Astrophysical Journal, 2021, 913, 4.	1.6	2
79	The Dynamic Formation of Pseudostreamers. Astrophysical Journal, 2021, 913, 64.	1.6	8
80	A powerful machine learning technique to extract proton core, beam, and alpha-particle parameters from velocity distribution functions in space plasmas. Astronomy and Astrophysics, 0, , .	2.1	1
81	An approximate analytic solution to the coupled problems of coronal heating and solar-wind acceleration. Journal of Plasma Physics, 2021, 87, .	0.7	11
82	A non-equilibrium Alfvénic state of the Langevin system for single particles reproduces the linear relation between the cross helicity and the residual energy in the solar wind. AIP Advances, 2021, 11, 055005.	0.6	1
83	Plasma Dynamics in Low-Electron-Beta Environments. Frontiers in Astronomy and Space Sciences, 2021, 8, .	1.1	2
84	On the violation of the zeroth law of turbulence in space plasmas. Journal of Plasma Physics, 2021, 87,	0.7	33
85	Parker Solar Probe FIELDS Instrument Charging in the Near Sun Environment: Part 2: Comparison of Inâ€Flight Data and Modeling Results. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028689.	0.8	2
86	Magnetic increases with central current sheets: observations with Parker Solar Probe. Astronomy and Astrophysics, 2021, 650, A11.	2.1	8
87	Energetic particle behavior in near-Sun magnetic field switchbacks from PSP. Astronomy and Astrophysics, 2021, 650, L4.	2.1	12
88	Alfvénic versus non-Alfvénic turbulence in the inner heliosphere as observed by Parker Solar Probe. Astronomy and Astrophysics, 2021, 650, A21.	2.1	29
89	Applicability of Taylor's hypothesis during Parker Solar Probe perihelia. Astronomy and Astrophysics, 2021, 650, A22.	2.1	27
90	Switchbacks as signatures of magnetic flux ropes generated by interchange reconnection in the corona. Astronomy and Astrophysics, 2021, 650, A2.	2.1	80
91	Small-scale Magnetic Flux Ropes with Field-aligned Flows via the PSP In Situ Observations. Astrophysical Journal, 2021, 914, 108.	1.6	14

	СПАНОГ		
#	Article	IF	CITATIONS
92	Electron heat flux in the near-Sun environment. Astronomy and Astrophysics, 2021, 650, A15.	2.1	32
93	Whistler wave occurrence and the interaction with strahl electrons during the first encounter of Parker Solar Probe. Astronomy and Astrophysics, 2021, 650, A9.	2.1	22
94	Narrowband oblique whistler-mode waves: comparing properties observed by Parker Solar Probe at <0.3 AU and STEREO at 1 AU. Astronomy and Astrophysics, 2021, 650, A8.	2.1	20
95	Discontinuity analysis of the leading switchback transition regions. Astronomy and Astrophysics, 2021, 650, A4.	2.1	13
96	The active region source of a type III radio storm observed by Parker Solar Probe during encounter 2. Astronomy and Astrophysics, 2021, 650, A7.	2.1	17
97	Space weather: the solar perspective. Living Reviews in Solar Physics, 2021, 18, 1.	7.8	114
98	Switchbacks: statistical properties and deviations from Alfvénicity. Astronomy and Astrophysics, 2021, 650, A3.	2.1	37
99	Enhanced proton parallel temperature inside patches of switchbacks in the inner heliosphere. Astronomy and Astrophysics, 2021, 650, L1.	2.1	43
100	Statistical analysis of orientation, shape, and size of solar wind switchbacks. Astronomy and Astrophysics, 2021, 650, A1.	2.1	34
101	First Solar Orbiter observation of the Alfvénic slow wind and identification of its solar source. Astronomy and Astrophysics, 2021, 656, A21.	2.1	13
102	The angular-momentum flux in the solar wind observed during Solar Orbiter's first orbit. Astronomy and Astrophysics, 0, , .	2.1	2
103	Detection of small magnetic flux ropes from the third and fourth Parker Solar Probe encounters. Astronomy and Astrophysics, 2021, 650, A12.	2.1	35
104	Prevalence of magnetic reconnection in the near-Sun heliospheric current sheet. Astronomy and Astrophysics, 2021, 650, A13.	2.1	23
105	Measurement of the open magnetic flux in the inner heliosphere down to 0.13 AU. Astronomy and Astrophysics, 2021, 650, A18.	2.1	26
106	The contribution of alpha particles to the solar wind angular momentum flux in the inner heliosphere. Astronomy and Astrophysics, 2021, 650, A17.	2.1	11
107	Direct evidence for magnetic reconnection at the boundaries of magnetic switchbacks with Parker Solar Probe. Astronomy and Astrophysics, 2021, 650, A5.	2.1	27
108	Could Switchbacks Originate in the Lower Solar Atmosphere? II. Propagation of Switchbacks in the Solar Corona. Astrophysical Journal, 2021, 914, 8.	1.6	9
109	Switchback Boundary Dissipation and Relative Age. Astrophysical Journal, 2021, 915, 68.	1.6	3

#	Article	IF	CITATIONS
110	Flux conservation, radial scalings, Mach numbers, and critical distances in the solar wind: magnetohydrodynamics and <i>Ulysses</i> observations. Monthly Notices of the Royal Astronomical Society, 2021, 506, 4993-5004.	1.6	17
111	Turbulent Generation of Magnetic Switchbacks in the Alfvénic Solar Wind. Astrophysical Journal, 2021, 915, 52.	1.6	43
112	Mesoscale Structure in the Solar Wind. Frontiers in Astronomy and Space Sciences, 2021, 8, .	1.1	23
113	Turbulence transport in the solar corona: Theory, modeling, and Parker Solar Probe. Physics of Plasmas, 2021, 28, .	0.7	54
114	Coronal Hole Detection and Open Magnetic Flux. Astrophysical Journal, 2021, 918, 21.	1.6	28
115	Assessing the Role of Interchange Reconnection in Forming Switchbacks. Astrophysical Journal, 2021, 917, 110.	1.6	18
116	The Sun's dynamic extended corona observed in extreme ultraviolet. Nature Astronomy, 2021, 5, 1029-1035.	4.2	19
117	Stability of superthermal strahl electrons in the solar wind. Monthly Notices of the Royal Astronomical Society, 2021, 507, 1329-1336.	1.6	10
118	Plasma properties, switchback patches, and low <i>α</i> -particle abundance in slow Alfvénic coronal hole wind at 0.13 au. Monthly Notices of the Royal Astronomical Society, 2021, 508, 236-244.	1.6	9
119	On the Origin of Switchbacks Observed in the Solar Wind. Astrophysical Journal, 2021, 919, 60.	1.6	19
120	The Evolution of Compressible Solar Wind Turbulence in the Inner Heliosphere: PSP, THEMIS, and MAVEN Observations. Astrophysical Journal, 2021, 919, 19.	1.6	21
121	Solar wind rotation rate and shear at coronal hole boundaries. Astronomy and Astrophysics, 2021, 653, A92.	2.1	10
122	Evolution of Large-amplitude Alfvén Waves and Generation of Switchbacks in the Expanding Solar Wind. Astrophysical Journal, 2021, 918, 62.	1.6	24
123	Switchback-like structures observed by Solar Orbiter. Astronomy and Astrophysics, 2021, 656, A40.	2.1	7
124	Characteristic Scales of Magnetic Switchback Patches Near the Sun and Their Possible Association With Solar Supergranulation and Granulation. Astrophysical Journal, 2021, 919, 96.	1.6	50
125	The Solar Orbiter magnetometer. Astronomy and Astrophysics, 2020, 642, A9.	2.1	136
126	Assessment of CESE-HLLD ambient solar wind model results using multipoint observation. Journal of Space Weather and Space Climate, 2020, 10, 44.	1.1	5
127	Simulations of Magnetised Stellar-Wind Bubbles. Journal of Physics: Conference Series, 2020, 1620, 012012.	0.3	3

#	Article	IF	Citations
128	Evolving solar wind flow properties of magnetic inversions observed by <i>Helios</i> . Monthly Notices of the Royal Astronomical Society, 2021, 501, 5379-5392.	1.6	3
129	Eulerian space-time correlation of strong magnetohydrodynamic turbulence. Physical Review Research, 2020, 2, .	1.3	6
130	Vacuum-ultraviolet photodetectors. PhotoniX, 2020, 1, .	5.5	126
131	Coronal Bright Points as Possible Sources of Density Variations in the Solar Corona. Astrophysical Journal, 2020, 893, 64.	1.6	6
132	Spectral Features in Field-aligned Solar Wind Turbulence from Parker Solar Probe Observations. Astrophysical Journal, 2020, 898, 113.	1.6	44
133	On the Scaling Properties of Magnetic-field Fluctuations through the Inner Heliosphere. Astrophysical Journal, 2020, 902, 84.	1.6	26
134	Shear-driven Transition to Isotropically Turbulent Solar Wind Outside the Alfvén Critical Zone. Astrophysical Journal, 2020, 902, 94.	1.6	83
135	Small-scale Magnetic Flux Ropes in the First Two Parker Solar Probe Encounters. Astrophysical Journal, 2020, 903, 76.	1.6	22
136	The Origin of Switchbacks in the Solar Corona: Linear Theory. Astrophysical Journal, 2020, 903, 1.	1.6	78
137	Magnetic Cloud and Sheath in the Ground-level Enhancement Event of 2000 July 14. I. Effects on the Solar Energetic Particles. Astrophysical Journal, 2020, 904, 151.	1.6	4
138	Coherent Events at Ion Scales in the Inner Heliosphere: Parker Solar Probe Observations during the First Encounter. Astrophysical Journal, 2020, 905, 142.	1.6	23
139	Magnetic Connectivity of the Ecliptic Plane within 0.5 au: Potential Field Source Surface Modeling of the First Parker Solar Probe Encounter. Astrophysical Journal, Supplement Series, 2020, 246, 23.	3.0	100
140	Sharp Alfvénic Impulses in the Near-Sun Solar Wind. Astrophysical Journal, Supplement Series, 2020, 246, 45.	3.0	115
141	Kinetic-scale Spectral Features of Cross Helicity and Residual Energy in the Inner Heliosphere. Astrophysical Journal, Supplement Series, 2020, 246, 52.	3.0	10
143	Magnetic Field Dropouts at Near-Sun Switchback Boundaries: A Superposed Epoch Analysis. Astrophysical Journal, Supplement Series, 2020, 249, 28.	3.0	39
144	Cross Helicity of the 2018 November Magnetic Cloud Observed by the Parker Solar Probe. Astrophysical Journal Letters, 2020, 900, L32.	3.0	14
145	Wave Composition, Propagation, and Polarization of Magnetohydrodynamic Turbulence within 0.3 au as Observed by Parker Solar Probe. Astrophysical Journal Letters, 2020, 901, L3.	3.0	21
146	The Solar Wind Angular Momentum Flux as Observed by Parker Solar Probe. Astrophysical Journal Letters, 2020, 902, L4.	3.0	11

9

#	Article	IF	CITATIONS
147	Turbulence Characteristics of Switchback and Nonswitchback Intervals Observed byÂParker Solar Probe. Astrophysical Journal Letters, 2020, 904, L30.	3.0	31
148	Particle-in-cell Simulation of Whistler Heat-flux Instabilities in the Solar Wind: Heat-flux Regulation and Electron Halo Formation. Astrophysical Journal Letters, 2020, 903, L23.	3.0	31
149	A statistical evaluation of ballistic backmapping for the slow solar wind: The interplay of solar wind acceleration and corotation. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	9
150	Magnetic reconnection as a mechanism to produce multiple thermal proton populations and beams locally in the solar wind. Astronomy and Astrophysics, 2021, 656, A37.	2.1	12
151	Multiscale views of an Alfvénic slow solar wind: 3D velocity distribution functions observed by the Proton-Alpha Sensor of Solar Orbiter. Astronomy and Astrophysics, 2021, 656, A36.	2.1	12
152	Radio Propagation Studies of the Solar Wind in the Era of Parker Solar Probe. Research Notes of the AAS, 2020, 4, 102.	0.3	0
153	Comparison of Radioastronomical Estimates of the Coronal and Solar Wind Magnetic Field with Measurements from Parker Solar Probe. Research Notes of the AAS, 2020, 4, 147.	0.3	2
154	Active Femto- and Nano-Objects in Relation to the Solar and Interstellar Winds in Anisotropic Models. Bulletin of the Russian Academy of Sciences: Physics, 2020, 84, 1505-1510.	0.1	3
155	Onset of fast magnetic reconnection and particle energization in laboratory and space plasmas. Journal of Plasma Physics, 2020, 86, .	0.7	8
156	Relation of Microstreams in the Polar Solar Wind to Switchbacks and Coronal X-Ray Jets. Astrophysical Journal Letters, 2021, 920, L31.	3.0	13
158	The interpretation of data from the Parker Solar Probe mission: shear-driven transition to an isotropically turbulent solar wind. Radiation Effects and Defects in Solids, 2020, 175, 1002-1003.	0.4	0
159	In Situ Detection of the Solar Eruption: Lay a Finger on the Sun. Chinese Astronomy and Astrophysics, 2021, 45, 301-351.	0.1	0
160	Impact of Switchbacks on Turbulent Cascade and Energy Transfer Rate in the Inner Heliosphere. Astrophysical Journal Letters, 2021, 922, L11.	3.0	18
161	MHD and Ion Kinetic Waves in Field-aligned Flows Observed by Parker Solar Probe. Astrophysical Journal, 2021, 922, 188.	1.6	19
163	Analysis of the Distribution, Rotation and Scale Characteristics of Solar Wind Switchbacks: Comparison between the First and Second Encounters of Parker Solar Probe. Research in Astronomy and Astrophysics, 2022, 22, 035018.	0.7	7
164	Inertial-range Magnetic-fluctuation Anisotropy Observed from Parker Solar Probe's First Seven Orbits. Astrophysical Journal Letters, 2022, 924, L5.	3.0	19
165	Small-scale Magnetic Flux Ropes and Their Properties Based on In Situ Measurements from the Parker Solar Probe. Astrophysical Journal, 2022, 924, 43.	1.6	15
166	Improving the Alfvén Wave Solar Atmosphere Model Based on Parker Solar Probe Data. Astrophysical Journal, 2022, 925, 146.	1.6	16

#	Article	IF	CITATIONS
167	Flux Rope Merging and the Structure of Switchbacks in the Solar Wind. Astrophysical Journal, 2022, 925, 213.	1.6	11
168	PSP/IS⊙IS Observation of a Solar Energetic Particle Event Associated with a Streamer Blowout Coronal Mass Ejection during Encounter 6. Astrophysical Journal, 2022, 925, 212.	1.6	3
169	Sub-Alfvénic Solar Wind Observed by the Parker Solar Probe: Characterization of Turbulence, Anisotropy, Intermittency, and Switchback. Astrophysical Journal Letters, 2022, 926, L1.	3.0	28
170	Oscillatory Reconnection of a 2D X-point in a Hot Coronal Plasma. Astrophysical Journal, 2022, 925, 195.	1.6	8
171	Probing the Physics of the Solar Atmosphere with the Multi-slit Solar Explorer (MUSE). I. Coronal Heating. Astrophysical Journal, 2022, 926, 52.	1.6	25
172	<i>Parker Solar Probe</i> Enters the Magnetically Dominated Solar Corona. Physical Review Letters, 2021, 127, 255101.	2.9	104
173	Geometry of Magnetic Fluctuations near the Sun from the Parker Solar Probe. Astrophysical Journal, 2021, 923, 193.	1.6	21
174	Categorizing MHD Discontinuities in the Inner Heliosphere by Utilizing the PSP Mission. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	8
175	High-frequency heating of the solar wind triggered by low-frequency turbulence. Nature Astronomy, 2022, 6, 715-723.	4.2	41
176	Sudden depletion of Alfvénic turbulence in the rarefaction region of corotating solar wind high-speed streams at 1 AU: Possible solar origin?. Astronomy and Astrophysics, 2022, 661, A64.	2.1	3
177	First Results From the SCM Searchâ€Coil Magnetometer on Parker Solar Probe. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	9
178	Using Single-view Observations of Cometary Plasma Tails to Infer Solar Wind Speed. Astrophysical Journal, 2022, 928, 121.	1.6	3
179	The incompressible energy cascade rate in anisotropic solar wind turbulence. Astronomy and Astrophysics, 2022, 661, A116.	2.1	15
180	Testing the Alfvén-wave Model of the Solar Wind with Interplanetary Scintillation. Astrophysical Journal, 2022, 928, 130.	1.6	1
181	A Solar Source of Alfvénic Magnetic Field Switchbacks: In Situ Remnants of Magnetic Funnels on Supergranulation Scales. Astrophysical Journal, 2021, 923, 174.	1.6	67
182	Mode Conversion and Period Doubling in a Liquid Rubidium Alfvén-Wave Experiment with Coinciding Sound and Alfvén Speeds. Physical Review Letters, 2021, 127, 275001.	2.9	2
183	Lepton-driven Nonresonant Streaming Instability. Astrophysical Journal, 2021, 923, 208.	1.6	4
184	Domains of Magnetic Pressure Balance in Parker Solar Probe Observations of the Solar Wind. Astrophysical Journal, 2021, 923, 158.	1.6	4

#	Article	IF	CITATIONS
185	Exact nonlinear solutions for three-dimensional Alfvén-wave packets in relativistic magnetohydrodynamics. Journal of Plasma Physics, 2021, 87, .	0.7	3
186	Large-scale Structure and Turbulence Transport in the Inner Solar Wind: Comparison of Parker Solar Probe's First Five Orbits with a Global 3D Reynolds-averaged MHD Model. Astrophysical Journal, 2021, 923, 89.	1.6	20
187	Magnetic Switchback Occurrence Rates in the Inner Heliosphere: Parker Solar Probe and 1 au. Astrophysical Journal Letters, 2022, 929, L10.	3.0	11
188	Perpendicular heating of ions by low-frequency polarized Alfvén waves. Advances in Space Research, 2022, , .	1.2	0
189	Density Compressions at Magnetic Switchbacks Associated With Fast Plasma: A Superposed Epoch Analysis. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	2
190	The Structure of the Large-Scale Heliosphere as Seen by Current Models. Space Science Reviews, 2022, 218, .	3.7	23
191	MHD-scale anisotropy in solar wind turbulence near the Sun using Parker solar probe data. Monthly Notices of the Royal Astronomical Society, 2022, 514, 1282-1288.	1.6	4
192	The preferential orientation of magnetic switchbacks and its implications for solar magnetic flux transport. Astronomy and Astrophysics, 2022, 663, A109.	2.1	12
193	Tracking IMF Fluctuations Nearby Sun Using Wavelet Analysis: Parker Solar Probe First Encounter Data. Geomagnetism and Aeronomy, 2022, 62, 138-150.	0.2	1
194	Features of Magnetic Field Switchbacks in Relation to the Local-field Geometry of Large-amplitude Alfvénic Oscillations: Wind and PSP Observations. Astrophysical Journal Letters, 2022, 932, L13.	3.0	4
195	Isotropization and Evolution of Energy-containing Eddies in Solar Wind Turbulence: Parker Solar Probe, Helios 1, ACE, WIND, and Voyager 1. Astrophysical Journal Letters, 2022, 932, L11.	3.0	16
196	Investigating Alfvénic Turbulence in Fast and Slow Solar Wind Streams. Universe, 2022, 8, 352.	0.9	0
197	Quasi-periodic Energy Release and Jets at the Base of Solar Coronal Plumes. Astrophysical Journal, 2022, 933, 21.	1.6	16
198	Taylor Microscale and Effective Reynolds Number near the Sun from PSP. Astrophysical Journal, 2022, 933, 33.	1.6	5
199	Fine Structures of the Inner Solar Corona and the Associated Magnetic Topology. Astrophysical Journal, 2022, 933, 95.	1.6	1
200	Searching for a Solar Source of Magnetic-Field Switchbacks in Parker Solar Probe's First Encounter. Solar Physics, 2022, 297, .	1.0	2
201	The Independence of Oscillatory Reconnection Periodicity from the Initial Pulse. Astrophysical Journal, 2022, 933, 142.	1.6	6
202	On the properties of Alfvénic switchbacks in the expanding solar wind: Three-dimensional numerical simulations. Physics of Plasmas, 2022, 29, .	0.7	12

#	Article	IF	CITATIONS
203	An inner boundary condition for solar wind models based on coronal density. Journal of Space Weather and Space Climate, 2022, 12, 30.	1.1	6
204	Stirring the base of the solar wind: On heat transfer and vortex formation. Astronomy and Astrophysics, 2022, 665, A118.	2.1	6
205	Electromagnetic fields simulating a rotating sphere and its exterior with implications to the modeling of the heliosphere. Mathematical Methods in the Applied Sciences, 2023, 46, 1952-1963.	1.2	1
206	Magnetic Field Dropouts and Associated Plasma Wave Emission near the Electron Plasma Frequency at Switchback Boundaries as Observed by the Parker Solar Probe. Astrophysical Journal, 2022, 935, 81.	1.6	3
207	Turbulence and Waves in the Sub-Alfvénic Solar Wind Observed by the Parker Solar Probe during Encounter 10. Astrophysical Journal Letters, 2022, 934, L36.	3.0	10
208	Solar Chromospheric Network as a Source for Solar Wind Switchbacks. Astrophysical Journal Letters, 2022, 935, L27.	3.0	3
209	Patches of Magnetic Switchbacks and Their Origins. Astrophysical Journal, 2022, 934, 152.	1.6	14
210	The Radial Evolution of the Solar Wind as Organized by Electron Distribution Parameters. Astrophysical Journal, 2022, 936, 53.	1.6	13
211	Plasma Turbulence in the Near-Sun and Near-Earth Solar Wind: A Comparison via Observation-Driven 2D Hybrid Simulations. Universe, 2022, 8, 453.	0.9	1
212	Evolution of coronal hole solar wind in the inner heliosphere: Combined observations by Solar Orbiter and Parker Solar Probe. Astronomy and Astrophysics, 2022, 668, A189.	2.1	3
213	Observation of a Magnetic Switchback in the Solar Corona. Astrophysical Journal Letters, 2022, 936, L25.	3.0	29
214	Inhomogeneous Kinetic Alfvén Waves in the Near-Sun Solar Wind. Astrophysical Journal, 2022, 936, 128.	1.6	3
215	On the construction of general large-amplitude spherically polarised Alfvén waves. Journal of Plasma Physics, 2022, 88, .	0.7	3
216	Switchback deflections beyond the early parker solar probe encounters. Monthly Notices of the Royal Astronomical Society, 2022, 517, 1001-1005.	1.6	4
217	Exploring the Potential of Neural Networks to Predict Statistics of Solar Wind Turbulence. Space Weather, 2022, 20, .	1.3	0
218	Switchbacks in the Young Solar Wind: Electron Evolution Observed inside Switchbacks between 0.125 au and 0.25 au. Astrophysical Journal, 2022, 936, 164.	1.6	1
219	Solar Orbiter SWA Observations of Electron Strahl Properties Inside 1 AU. Universe, 2022, 8, 509.	0.9	3
220	Magnetic Switchbacks Heat the Solar Corona. Astrophysical Journal Letters, 2022, 937, L39.	3.0	5

#	Article	IF	CITATIONS
221	Probing the Density Fine Structuring of the Solar Corona with Comet Lovejoy. Astrophysical Journal, 2022, 938, 20.	1.6	2
222	Anisotropic Magnetic Turbulence in the Inner Heliosphere—Radial Evolution of Distributions Observed by Parker Solar Probe. Astrophysical Journal, 2022, 939, 33.	1.6	4
223	Observation and Modeling of the Solar Wind Turbulence Evolution in the Sub-Mercury Inner Heliosphere. Astrophysical Journal Letters, 2022, 938, L8.	3.0	6
224	A journey to touch the Sun. Physics Today, 2022, 75, 28-34.	0.3	6
225	On the properties of Alfvénic switchbacks in the expanding solar wind: The influence of the Parker spiral. Physics of Plasmas, 2022, 29, .	0.7	8
226	Properties of a Supercritical Quasi-perpendicular Interplanetary Shock Propagating in the Terrestrial Foreshock Region. Astrophysical Journal, Supplement Series, 2022, 263, 11.	3.0	1
227	Observations of Quiescent Solar Wind Regions with Near-f _{ce} Wave Activity. Astrophysical Journal, 2022, 940, 45.	1.6	2
228	Reconciling Parker Solar Probe Observations and Magnetohydrodynamic Theory. Astrophysical Journal Letters, 2022, 940, L13.	3.0	5
229	The Imprint of Intermittent Interchange Reconnection on the Solar Wind. Astrophysical Journal Letters, 2022, 941, L29.	3.0	8
230	Deciphering the birth region, formation, and evolution of ambient and transient solar wind using heavy ion observations. Frontiers in Astronomy and Space Sciences, 0, 9, .	1.1	3
231	Acceleration of polytropic solar wind: Parker Solar Probe observation and one-dimensional model. Physics of Plasmas, 2022, 29, .	0.7	7
232	Innovative technique for separating proton core, proton beam, and alpha particles in solar wind 3D velocity distribution functions. Astronomy and Astrophysics, 2023, 669, A108.	2.1	3
233	Scaling laws for the energy transfer in space plasma turbulence. Physics Reports, 2023, 1006, 1-144.	10.3	31
234	Small-scale Magnetic Flux Ropes in Stream Interaction Regions from Parker Solar Probe and Wind Spacecraft Observations. Astrophysical Journal, 2023, 943, 33.	1.6	3
235	Parker Solar Probe Encounters the Leg of a Coronal Mass Ejection at 14 Solar Radii. Astrophysical Journal, 2023, 943, 71.	1.6	5
236	Strategic Study for the Development of Space Physics. Kongjian Kexue Xuebao, 2023, 43, 9.	0.2	0
237	Electrostatic Plasma Wave Excitations at the Interplanetary Shocks. Astrophysical Journal, 2023, 943, 16.	1.6	0
238	On the Generation and Evolution of Switchbacks and the Morphology of the Alfvénic Transition: Low Mach-number Boundary Layers. Astrophysical Journal, 2023, 944, 116.	1.6	8

#	Article	IF	CITATIONS
239	Optimal stereoscopic angle for 3D reconstruction of synthetic small-scale coronal transients using the CORAR technique. Astronomy and Astrophysics, 2023, 672, A100.	2.1	2
240	Parker Solar Probe: Four Years of Discoveries at Solar Cycle Minimum. Space Science Reviews, 2023, 219, .	3.7	41
241	Oscillatory Reconnection as a Plasma Diagnostic in the Solar Corona. Astrophysical Journal, 2023, 943, 131.	1.6	1
242	Energy transfer of the solar wind turbulence based on Parker solar probe and other spacecraft observations. Physics of Plasmas, 2023, 30, .	0.7	2
243	ICARUS: in-situ studies of the solar corona beyond Parker Solar Probe and Solar Orbiter. Experimental Astronomy, 2022, 54, 277-315.	1.6	0
244	Multistage Reconnection Powering a Solar Coronal Jet. Astrophysical Journal, 2023, 944, 19.	1.6	4
245	In Situ Detection of the Solar Eruption: Lay a Finger on the Sunormalsize. Kongjian Kexue Xuebao, 2021, 41, 183.	0.2	1
246	Stability of Parker's Steady Solar Wind Solution in the Subcritical Region. Astrophysical Journal, 2023, 944, 96.	1.6	0
247	Whistler waves generated inside magnetic dips in the young solar wind: Observations of the search-coil magnetometer on board Parker Solar Probe. Astronomy and Astrophysics, 2023, 672, A135.	2.1	5
248	Magnetic Reconnection as the Driver of the Solar Wind. Astrophysical Journal, 2023, 945, 28.	1.6	36
249	Accounting for differential rotation in calculations of the Sun's angular momentum-loss rate. Astronomy and Astrophysics, 2023, 674, A42.	2.1	4
250	A statistical study of the compressible energy cascade rate in solar wind turbulence: Parker solar probe observations. Physics of Plasmas, 2023, 30, .	0.7	3
251	Statistical Study of Ejections in Coronal Hole Regions As Possible Sources of Solar Wind Switchbacks and Small-scale Magnetic Flux Ropes. Astrophysical Journal Letters, 2023, 946, L17.	3.0	2
252	Parker Solar Probe Observations of High Plasma β Solar Wind from the Streamer Belt. Astrophysical Journal, Supplement Series, 2023, 265, 47.	3.0	2
253	Strategic Study for the Development of Solar Physics in Space. Kongjian Kexue Xuebao, 2023, 43, 199.	0.2	1
254	Total electron temperature derived from quasi-thermal noise spectroscopy in the pristine solar wind from Parker Solar Probe observations. Astronomy and Astrophysics, 2023, 674, A49.	2.1	4
280	Exploring the Hottest Atmosphere with the Parker Solar Probe. Lecture Notes in Physics, 2023, , 161-190.	0.3	0