The polar regions in a $2\hat{A}^oC$ warmer world

Science Advances

5, eaaw9883

DOI: 10.1126/sciadv.aaw9883

Citation Report

#	Article	IF	CITATIONS
1	Interrelated ecological impacts of climate change on an apex predator. Ecological Applications, 2020, 30, e02071.	1.8	57
2	Evaluating Post-Fire Vegetation Recovery in Cajander Larch Forests in Northeastern Siberia Using UAV Derived Vegetation Indices. Remote Sensing, 2020, 12, 2970.	1.8	23
3	Mammalian herbivory shapes intraspecific trait responses to warmer climate and nutrient enrichment. Global Change Biology, 2020, 26, 6742-6752.	4.2	14
4	Plant extinction excels plant speciation in the Anthropocene. BMC Plant Biology, 2020, 20, 430.	1.6	18
5	Spatially varying peatland initiation, Holocene development, carbon accumulation patterns and radiative forcing within a subarctic fen. Quaternary Science Reviews, 2020, 248, 106596.	1.4	21
6	A manipulative thermal challenge protocol for adult salmonids in remote field settings. , 2020, 8, coaa074.		7
7	Transcriptomic response to elevated water temperatures in adult migrating Yukon River Chinook salmon (Oncorhynchus tshawytscha). , 2020, 8, coaa084.		12
8	Increasing anthropogenic methane emissions arise equally from agricultural and fossil fuel sources. Environmental Research Letters, 2020, 15, 071002.	2.2	232
9	Detection of Microorganisms in Low-Temperature Water Environments by in situ Generation of Biogenic Nanoparticles. Frontiers in Astronomy and Space Sciences, 2020, 7, .	1.1	1
10	Performance evaluation of global hydrological models in six large Pan-Arctic watersheds. Climatic Change, 2020, 163, 1329-1351.	1.7	19
11	Vertical Land Motion From Presentâ€Ðay Deglaciation in the Wider Arctic. Geophysical Research Letters, 2020, 47, e2020GL088144.	1.5	10
12	Separating direct and indirect effects of rising temperatures on biogenic volatile emissions in the Arctic. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32476-32483.	3.3	31
13	Improved Estimates of Arctic Land Surface Phenology Using Sentinel-2 Time Series. Remote Sensing, 2020, 12, 3738.	1.8	15
14	Less climatic resilience in the Arctic. Weather and Climate Extremes, 2020, 30, 100275.	1.6	21
15	Evidence of prevalent heat stress in Yukon River Chinook salmon. Canadian Journal of Fisheries and Aquatic Sciences, 2020, 77, 1878-1892.	0.7	15
16	Transient benefits of climate change for a highâ€Arctic polar bear (<i>Ursus maritimus</i>) subpopulation. Clobal Change Biology, 2020, 26, 6251-6265.	4.2	23
17	Multiproxy paleoceanographic study from the western Barents Sea reveals dramatic Younger Dryas onset followed by oscillatory warming trend. Scientific Reports, 2020, 10, 15667.	1.6	6
18	Differential impact of thermal and physical permafrost disturbances on High Arctic dissolved and particulate fluvial fluxes. Scientific Reports, 2020, 10, 11836.	1.6	20

	CITATION RE	CITATION REPORT	
#	Article	IF	CITATIONS
19	Rapid worldwide growth of glacial lakes since 1990. Nature Climate Change, 2020, 10, 939-945.	8.1	235
20	Vegetation Expansion on the Tibetan Plateau and Its Relationship with Climate Change. Remote Sensing, 2020, 12, 4150.	1.8	23
21	Divergence of Arctic shrub growth associated with sea ice decline. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 33334-33344.	3.3	43
22	Body condition of phocid seals during a period of rapid environmental change in the Bering Sea and Aleutian Islands, Alaska. Deep-Sea Research Part II: Topical Studies in Oceanography, 2020, 181-182, 104904.	0.6	17
23	Light scattering by pure seawater at subzero temperatures. Deep-Sea Research Part I: Oceanographic Research Papers, 2020, 162, 103306.	0.6	8
24	Assessing Global and Local Radiative Feedbacks Based on AGCM Simulations for 1980–2014/2017. Geophysical Research Letters, 2020, 47, e2020GL088063.	1.5	9
25	Variability in fin whale (Balaenoptera physalus) occurrence in the Bering Strait and southern Chukchi Sea in relation to environmental factors. Deep-Sea Research Part II: Topical Studies in Oceanography, 2020, 177, 104782.	0.6	7
26	A meta-analysis on environmental drivers of marine phytoplankton C : N : P. Biogeosciences, 20 2939-2954.	020,17, 1.3	32
27	Determinants, effects, and coping strategies for low-yield periods of harvest: a qualitative study in two communities in Nunavut, Canada. Food Security, 2021, 13, 157-179.	2.4	8
28	Effects of sea ice cover, temperature and predation on the stock dynamics of the key Arctic fish species polar cod Boreogadus saida. Marine Ecology - Progress Series, 2021, 677, 141-159.	0.9	5
29	Modeling the Interconnectivity of Non-stationary Polar Ice Sheets. SSRN Electronic Journal, 0, , .	0.4	1
30	Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change: UNEP Environmental Effects Assessment Panel, Update 2020. Photochemical and Photobiological Sciences, 2021, 20, 1-67.	1.6	93
31	Diet and prey. , 2021, , 429-455.		6
32	Consistent trait–environment relationships within and across tundra plant communities. Nature Ecology and Evolution, 2021, 5, 458-467.	3.4	25
33	The Shrinking Resource Base of Pastoralism: Saami Reindeer Husbandry in a Climate of Change. Frontiers in Sustainable Food Systems, 2021, 4, .	1.8	12
34	Herbivory and warming interact in opposing patterns of covariation between arctic shrub species at large and local scales. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	9
35	A Perspective of the Cumulative Risks from Climate Change on Mt. Everest: Findings from the 2019 Expedition. International Journal of Environmental Research and Public Health, 2021, 18, 1928.	1.2	4
36	Annual air temperature variability and biotic interactions explain tundra shrub species abundance. Journal of Vegetation Science, 2021, 32, e13009.	1.1	11

#	ARTICLE Climate change impacts on population growth across a species' range differ due to nonlinear	IF	Citations
37	responses of populations to climate and variation in rates of climate change. PLoS ONE, 2021, 16, e0247290.	1,1	11
38	Effect of shipping activity on warming trends in the Canadian Arctic. Journal of Chinese Geography, 2021, 31, 369-388.	1.5	5
39	Accounting for species interactions is necessary for predicting how arctic arthropod communities respond to climate change. Ecography, 2021, 44, 885-896.	2.1	24
40	Ancient plant DNA reveals High Arctic greening during the Last Interglacial. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	29
41	Are Multiâ€Decadal Fluctuations in Arctic and Antarctic Surface Temperatures a Forced Response to Anthropogenic Emissions or Part of Internal Climate Variability?. Geophysical Research Letters, 2021, 48, e2020GL090631.	1.5	10
42	Integrating omics to characterize ecoâ€physiological adaptations: How moose diet and metabolism differ across biogeographic zones. Ecology and Evolution, 2021, 11, 3159-3183.	0.8	5
43	Exposure of mammal genetic diversity to midâ€⊋1st century global change. Ecography, 2021, 44, 817-831.	2.1	25
44	Estimates of temporal-spatial variability of wildfire danger across the Pan-Arctic and extra-tropics. Environmental Research Letters, 2021, 16, 044060.	2.2	9
45	Potential ecological impacts of climate intervention by reflecting sunlight to cool Earth. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	46
46	Volatile organic compound emission in tundra shrubs – Dependence on species characteristics and the near-surface environment. Environmental and Experimental Botany, 2021, 184, 104387.	2.0	13
47	Vegetation responses to 26 years of warming at Latnjajaure Field Station, northern Sweden. Arctic Science, 2022, 8, 858-877.	0.9	13
48	Permafrost carbon feedbacks threaten global climate goals. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	88
49	Are 100 Ensemble Members Enough to Capture the Remote Atmospheric Response to +2°C Arctic Sea Ice Loss?. Journal of Climate, 2021, 34, 3751-3769.	1.2	37
50	Divergent changes of the elevational synchronicity in vegetation spring phenology in North China from 2001 to 2017 in connection with variations in chilling. International Journal of Climatology, 2021, 41, 6109-6121.	1.5	17
51	Overwintering fires in boreal forests. Nature, 2021, 593, 399-404.	13.7	70
52	A New Paraglacial Typology of High Arctic Coastal Systems: Application to Recherchefjorden, Svalbard. Annals of the American Association of Geographers, 2022, 112, 184-205.	1.5	1
53	Emerging mosquitoes (Aedes nigripes) as a resource subsidy for wolf spiders (Pardosa glacialis) in western Greenland. Polar Biology, 0, , 1.	0.5	3
54	Long-term warming manipulations reveal complex decomposition responses across different tundra vegetation types. Arctic Science, 2022, 8, 979-991.	0.9	7

#	Article	IF	CITATIONS
55	Contrasting dynamical responses of sympatric caribou and muskoxen to winter weather and earlier spring green-up in the Arctic. Food Webs, 2021, 27, e00196.	0.5	9
56	Long-Term Variations of Global Solar Radiation and Atmospheric Constituents at Sodankylän the Arctic. Atmosphere, 2021, 12, 749.	1.0	6
57	Simulating shrubs and their energy and carbon dioxide fluxes in Canada's Low Arctic with the Canadian Land Surface Scheme Including Biogeochemical Cycles (CLASSIC). Biogeosciences, 2021, 18, 3263-3283.	1.3	7
58	Incorporating climate change in a harvest risk assessment for polar bears Ursus maritimus in Southern Hudson Bay. Biological Conservation, 2021, 258, 109128.	1.9	4
59	Microcosm studies on the survival of Escherichia coli in the Kongsfjorden, an Arctic fjord. Polar Science, 2021, 30, 100722.	0.5	1
60	Warming amplification over the Arctic Pole and Third Pole: Trends, mechanisms and consequences. Earth-Science Reviews, 2021, 217, 103625.	4.0	157
61	Bowhead and beluga whale acoustic detections in the western Beaufort Sea 2008–2018. PLoS ONE, 2021, 16, e0253929.	1.1	6
62	Experimental warming differentially affects vegetative and reproductive phenology of tundra plants. Nature Communications, 2021, 12, 3442.	5.8	56
64	Egg retention of high-latitude sockeye salmon (Oncorhynchus nerka) in the Pilgrim River, Alaska, during the Pacific marine heatwave of 2014–2016. Polar Biology, 2021, 44, 1643-1654.	0.5	4
65	Comparison of the distribution and phenology of Arctic Mountain plants between the early 20th and 21st centuries. Global Change Biology, 2021, 27, 5070-5083.	4.2	9
66	Specific occupation of penguins under Neoglacial cooling on the Scott Coast, Antarctica. Quaternary Science Reviews, 2021, 264, 107010.	1.4	3
67	Quantifying the nature and strength of intraspecific density dependence in Arctic mosquitoes. Oecologia, 2021, 196, 1061-1072.	0.9	2
68	Co-production of knowledge reveals loss of Indigenous hunting opportunities in the face of accelerating Arctic climate change. Environmental Research Letters, 2021, 16, 095003.	2.2	28
69	Environmental vulnerability of the global ocean epipelagic plankton community interactome. Science Advances, 2021, 7, .	4.7	54
70	Declining fungal diversity in Arctic freshwaters along a permafrost thaw gradient. Global Change Biology, 2021, 27, 5889-5906.	4.2	10
71	Contrasting growth response of evergreen and deciduous arcticâ€elpine shrub species to climate variability. Ecosphere, 2021, 12, e03688.	1.0	12
72	Can root-associated fungi mediate the impact of abiotic conditions on the growth of a High Arctic herb?. Soil Biology and Biochemistry, 2021, 159, 108284.	4.2	0
73	Mercury stable isotopes reveal the sources and transformations of atmospheric Hg in the high Arctic. Applied Geochemistry, 2021, 131, 105002.	1.4	23

#	ARTICLE	IF	CITATIONS
74	Subarctic catchment water storage and carbon cycling – Leading the way for future studies using integrated datasets at Pallas, Finland. Hydrological Processes, 2021, 35, e14350.	1.1	10
75	Variable responses of carbon and nitrogen contents in vegetation and soil to herbivory and warming in highâ€Arctic tundra. Ecosphere, 2021, 12, e03746.	1.0	5
76	Understanding the Cold Season Arctic Surface Warming Trend in Recent Decades. Geophysical Research Letters, 2021, 48, e2021GL094878.	1.5	9
77	Modeling ringed seal Pusa hispida habitat and lair emergence timing in the eastern Bering and Chukchi Seas. Endangered Species Research, 2021, 46, 1-17.	1.2	3
78	Demographic risk assessment for a harvested species threatened by climate change: polar bears in the Chukchi Sea. Ecological Applications, 2021, 31, e02461.	1.8	12
79	Greening vs browning? Surface water cover mediates how tundra and boreal ecosystems respond to climate warming. Environmental Research Letters, 2021, 16, 104004.	2.2	6
80	Increasing temperature reduces cuticular melanism and immunity to fungal infection in a migratory insect. Ecological Entomology, 2022, 47, 109-113.	1.1	7
81	How does spatial heterogeneity affect inter―and intraspecific growth patterns in tundra shrubs?. Journal of Ecology, 2021, 109, 4115-4131.	1.9	11
82	The rapidly changing Arctic and its societal implications. Wiley Interdisciplinary Reviews: Climate Change, 2021, 12, e735.	3.6	19
83	Survival and abundance of polar bears in Alaska's Beaufort Sea, 2001–2016. Ecology and Evolution, 2021, 11, 14250-14267.	0.8	14
84	Variation in winter site fidelity within and among individuals influences movement behavior in a partially migratory ungulate. PLoS ONE, 2021, 16, e0258128.	1.1	9
85	Biting insects in a rapidly changing Arctic. Current Opinion in Insect Science, 2021, 47, 75-81.	2.2	11
86	Effects of experimental fire in combination with climate warming on greenhouse gas fluxes in Arctic tundra soils. Science of the Total Environment, 2021, 795, 148847.	3.9	8
87	Contrasting responses of major and minor volatile compounds to warming and gall-infestation in the Arctic willow Salix myrsinites. Science of the Total Environment, 2021, 793, 148516.	3.9	4
88	Increasing annual and extreme precipitation in permafrost-dominated Siberia during 1959–2018. Journal of Hydrology, 2021, 603, 126865.	2.3	26
89	Smouldering wildfires in peatlands, forests and the arctic: Challenges and perspectives. Current Opinion in Environmental Science and Health, 2021, 24, 100296.	2.1	29
90	Community-based monitoring in the Ponoy River, Kola Peninsula (Russia): reflections on Atlantic salmon, pink salmon, Northern pike and weather/climate change. Polar Biology, 2021, 44, 173-194.	0.5	5
91	Temperature fluctuations in a warmer environment: impacts on microbial plankton. Faculty Reviews, 2021, 10, 9.	1.7	4

	Сітат	CITATION REPORT	
#	Article	IF	Citations
92	The future of Atlantic walrus in a rapidly warming Arctic. , 2021, , 309-332.		2
93	Complexity revealed in the greening of the Arctic. Nature Climate Change, 2020, 10, 106-117.	8.1	447
94	Pronounced and unavoidable impacts of low-end global warming on northern high-latitude land ecosystems. Environmental Research Letters, 2020, 15, 044006.	2.2	25
95	Aboveground biomass corresponds strongly with drone-derived canopy height but weakly with greenness (NDVI) in a shrub tundra landscape. Environmental Research Letters, 2020, 15, 125004.	2.2	36
96	Periglacial vegetation dynamics in Arctic Russia: decadal analysis of tundra regeneration on landslides with time series satellite imagery. Environmental Research Letters, 2020, 15, 105020.	2.2	22
97	Shallow soils are warmer under trees and tall shrubs across Arctic and Boreal ecosystems. Environmental Research Letters, 2021, 16, 015001.	2.2	39
98	Influence of sea ice dynamics on population energetics of Western Hudson Bay polar bears. , 2020, 8, coaa132.		4
99	Microbial genomics amidst the Arctic crisis. Microbial Genomics, 2020, 6, .	1.0	18
102	Research gaps and trends in the Arctic tundra: a topic-modelling approach. One Ecosystem, 0, 5, .	0.0	3
103	Volatile organic compound fluxes in a subarctic peatland and lake. Atmospheric Chemistry and Physics, 2020, 20, 13399-13416.	1.9	28
104	Technical note: Mobile open dynamic chamber measurement of methane macroseeps in lakes. Hydrology and Earth System Sciences, 2020, 24, 6047-6058.	1.9	2
105	Response of Antarctic soil fauna to climateâ€driven changes since the Last Glacial Maximum. Global Change Biology, 2022, 28, 644-653.	4.2	5
106	Fire increases soil nitrogen retention and alters nitrogen uptake patterns among dominant shrub species in an Arctic dry heath tundra. Science of the Total Environment, 2022, 807, 150990.	3.9	11
109	In the Climate Emergency, Conservation Must Become Survival Ecology. Frontiers in Conservation Science, 2021, 2, .	0.9	12
110	Field-scale CH ₄ emission at a subarctic mire with heterogeneous permafrost thaw status. Biogeosciences, 2021, 18, 5811-5830.	1.3	5
112	Plant trait response of tundra shrubs to permafrost thaw and nutrient addition. Biogeosciences, 2020, 17, 4981-4998.	1.3	6
114	Reindeer use of low Arctic tundra correlates with landscape structure. Environmental Research Letters, 2020, 15, 115012.	2.2	19
115	Occurrence and stability of organic intercalation in clay minerals from permafrost-affected soils in the High Arctic – A case study from Spitsbergen (Svalbard). Geoderma, 2022, 408, 115591.	2.3	10

#	Article	IF	CITATIONS
116	Will a legacy of enhanced resource availability accelerate the soil microbial response to future climate change?. Soil Biology and Biochemistry, 2022, 165, 108492.	4.2	4
117	Improving Representation of Tropical Wetland Methane Emissions With CYGNSS Inundation Maps. Global Biogeochemical Cycles, 2021, 35, e2020GB006890.	1.9	17
118	The immune response and diving: conservation considerations for belugas (Delphinapterus leucas) in a changing Arctic environment. Polar Research, 0, 40, .	1.6	2
119	Will accelerated soil development be a driver of Arctic Greening in the late 21st century? [#] . Journal of Plant Nutrition and Soil Science, 2022, 185, 19-23.	1.1	5
120	Carbon response of tundra ecosystems to advancing greenup and snowmelt in Alaska. Nature Communications, 2021, 12, 6879.	5.8	9
121	Ðм2ÐμргÐμÑ,Ð,чÐμÑÐºĐ¾Đμ Đ°Đ¹ĐºĐ,ĐʹĐ¾: бĐμÑÑ,Đ¾Đ¿Đ»Đ,Đ²Đ½Đ°Ñ•ÑÐ,ÑÑ,ĐμĐ¼Đ° ĐʹĐ»Ñ•Ñ,	ерм{	Ŋ¾ĨŇĨ,аĐ <mark>⊯</mark>
122	The Science Background. Springer Climate, 2021, , 1-20.	0.3	2
123	Relationships between aboveâ€ground plant traits and carbon cycling in tundra plant communities. Journal of Ecology, 2022, 110, 700-716.	1.9	21
124	Does polar amplification exist in Antarctic surface during the recent four decades?. Journal of Mountain Science, 2021, 18, 2626-2634.	0.8	6
125	Estimation of the Tower Shape Effect on the Stress–Strain Behavior of Wind Turbines Operating under Offshore Boundary Conditions. Inventions, 2022, 7, 11.	1.3	5
126	Biomolecular Composition of Sea Ice Microalgae and Its Influence on Marine Biogeochemical Cycling and Carbon Transfer through Polar Marine Food Webs. Geosciences (Switzerland), 2022, 12, 38.	1.0	9
127	Biodiversity of macrobenthic nematodes in the intertidal and shallow subtidal zones in the Eastern Canadian Arctic. Polar Biology, 2022, 45, 225-242.	0.5	2
128	Future ice loss captured by historical snapshots. Nature, 2022, 601, 325-326.	13.7	0
129	Large herbivores facilitate the persistence of rare taxa under tundra warming. Scientific Reports, 2022, 12, 1292.	1.6	4
130	Topography, Climate and Fire History Regulate Wildfire Activity in the Alaskan Tundra. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	1.3	12
131	Arctic warming-induced cold damage to East Asian terrestrial ecosystems. Communications Earth & Environment, 2022, 3, .	2.6	8
132	Accelerating Indigenous health and wellbeing: the Lancet Commission on Arctic and Northern Health. Lancet, The, 2022, 399, 613-614.	6.3	6
133	A sustainable concept for permafrost thermal stabilization. Sustainable Energy Technologies and Assessments, 2022, 52, 102003.	1.7	9

#	Article	IF	CITATIONS
134	A Pixel-Based Vegetation Greenness Trend Analysis over the Russian Tundra with All Available Landsat Data from 1984 to 2018. Remote Sensing, 2021, 13, 4933.	1.8	15
136	Effect of climate change on plant regeneration from seeds in the arctic and alpine biome. , 2022, , 3-18.		2
137	Properties and stratigraphy of polar ice patches in the Canadian High Arctic reveal their current resilience to warm summers. Arctic Science, 2022, 8, 414-449.	0.9	4
138	High spatiotemporal variability of methane concentrations challenges estimates of emissions across vegetated coastal ecosystems. Global Change Biology, 2022, 28, 4308-4322.	4.2	16
139	Long-Term Variations of Global Solar Radiation and Its Potential Effects at Dome C (Antarctica). International Journal of Environmental Research and Public Health, 2022, 19, 3084.	1.2	2
140	First evidence of a brown bear on Wrangel Island, Russia. Ursus, 2022, 2022, .	0.3	2
141	Closing the Winter Gap—Yearâ€Round Measurements of Soil CO ₂ Emission Sources in Arctic Tundra. Geophysical Research Letters, 2022, 49, .	1.5	9
142	Experimental Proof of a Solar-Powered Heat Pump System for Soil Thermal Stabilization. Energies, 2022, 15, 2118.	1.6	6
143	Vegetal Undercurrents—Obscured Riverine Dynamics of Plant Debris. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	1.3	6
144	Evaluation of Satellite-Derived Estimates of Lake Ice Cover Timing on Linnévatnet, Kapp Linné, Svalbard Using In-Situ Data. Remote Sensing, 2022, 14, 1311.	1.8	3
146	Different responses of surface freeze and thaw phenology changes to warming among Arctic permafrost types. Remote Sensing of Environment, 2022, 272, 112956.	4.6	12
147	The application of dendrometers to alpine dwarf shrubs – a case study to investigate stem growth responses to environmental conditions. Biogeosciences, 2022, 19, 1933-1958.	1.3	4
149	What evidence exists for temporal variability in Arctic terrestrial and freshwater biodiversity throughout the Holocene? A systematic map protocol. Environmental Evidence, 2022, 11, .	1.1	1
150	High resolution species distribution and abundance models cannot predict separate shrub datasets in adjacent Arctic fjords. Diversity and Distributions, 2022, 28, 956-975.	1.9	0
151	Increasing Arctic Tundra Flooding Threatens Wildlife Habitat and Survival: Impacts on the Critically Endangered Siberian Crane (Grus leucogeranus). Frontiers in Conservation Science, 2022, 3, .	0.9	3
152	Detection of Splendidofilaria sp. (Onchocercidae:Splendidofilariinae) Microfilaria within Alaskan Ground-Dwelling Birds in the Grouse Subfamily Tetraoninae Using Taqman Probe-Based Real-Time PCR. Journal of Parasitology, 2022, 108, 192-198.	0.3	2
153	Unexpected fish and squid in the central Arctic deep scattering layer. Science Advances, 2022, 8, eabj7536.	4.7	16
154	N/P Addition Is More Likely Than N Addition Alone to Promote a Transition from Moss-Dominated to Graminoid-Dominated Tundra in the High-Arctic. Atmosphere, 2022, 13, 676.	1.0	3

#	Article	IF	CITATIONS
155	Opposite, but insufficient, phenological responses to climate in two circumpolar seabirds: Relative roles of phenotypic plasticity and selection. Functional Ecology, 2022, 36, 1782-1795.	1.7	9
156	Atmospheric trends over the Arctic Ocean in simulations from the Coordinated Regional Downscaling Experiment (CORDEX) and their driving GCMs. Climate Dynamics, 2022, 59, 3401-3426.	1.7	2
157	Impacts of elevation on plant traits and volatile organic compound emissions in deciduous tundra shrubs. Science of the Total Environment, 2022, 837, 155783.	3.9	5
158	Recent regional warming across the Siberian lowlands: a comparison between permafrost and non-permafrost areas. Environmental Research Letters, 2022, 17, 054047.	2.2	9
159	Pyrogenic organic matter as a nitrogen source to microbes and plants following fire in an Arctic heath tundra. Soil Biology and Biochemistry, 2022, 170, 108699.	4.2	8
160	Indigenous knowledge, mercury, and a remote Russian Indigenous river basin—Ponoi River. Current Directions in Water Scarcity Research, 2022, , 299-307.	0.2	0
161	Fire in lichen-rich subarctic tundra changes carbon and nitrogen cycling between ecosystem compartments but has minor effects on stocks. Biogeosciences, 2022, 19, 2729-2740.	1.3	3
162	Seasonal climate drivers of peak NDVI in a series of Arctic peatlands. Science of the Total Environment, 2022, 838, 156419.	3.9	9
163	A systematic overview of the barriers to building climate adaptation of cultural and natural heritage sites in polar regions. Environmental Science and Policy, 2022, 136, 19-32.	2.4	10
164	Bidirectional Exchange of Biogenic Volatile Organic Compounds in Subarctic Heath Mesocosms During Autumn Climate Scenarios. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	1.3	2
165	Shortâ€ŧerm effects of summer warming on caribou forage quality are mitigated by longâ€ŧerm warming. Ecosphere, 2022, 13, .	1.0	3
166	Distribution and prevalence of the myxozoan parasite Tetracapsuloides bryosalmonae in northernmost Europe: analysis of three salmonid species. Diseases of Aquatic Organisms, 2022, 151, 37-49.	0.5	1
167	Shortâ€ŧerm effects of experimental goose grazing and warming differ in three <scp>lowâ€Arctic</scp> coastal wetland plant communities. Journal of Vegetation Science, 2022, 33, .	1.1	1
168	In-depth characterization of denitrifier communities across different soil ecosystems in the tundra. Environmental Microbiomes, 2022, 17, .	2.2	25
169	Framing coâ€productive conservation in partnership with Arctic Indigenous peoples. Conservation Biology, 2022, 36, .	2.4	6
170	Dispersal and fire limit Arctic shrub expansion. Nature Communications, 2022, 13, .	5.8	6
171	The activity and functions of soil microbial communities in the Finnish sub-Arctic vary across vegetation types. FEMS Microbiology Ecology, 2022, 98, .	1.3	8
172	Herbivores in Arctic ecosystems: Effects of climate change and implications for carbon and nutrient cycling. Annals of the New York Academy of Sciences, 2022, 1516, 28-47.	1.8	10

#	ARTICLE	IF	CITATIONS
173	Biodiversity of coastal epibenthic macrofauna in Eastern Canadian Arctic: Baseline mapping for management and conservation. Frontiers in Marine Science, 0, 9, .	1.2	0
174	Behavioural thermoregulation by montane ungulates under climate warming. Diversity and Distributions, 2022, 28, 2229-2238.	1.9	5
175	Alpine shrub growth follows bimodal seasonal patterns across biomes – unexpected environmental controls. Communications Biology, 2022, 5, .	2.0	9
176	Satellite Observational Evidence of Contrasting Changes in Northern Eurasian Wildfires from 2003 to 2020. Remote Sensing, 2022, 14, 4180.	1.8	2
177	Spatiotemporal influences of climate and humans on muskox range dynamics over multiple millennia. Global Change Biology, 2022, 28, 6602-6617.	4.2	10
178	Current Siberian heating is unprecedented during the past seven millennia. Nature Communications, 2022, 13, .	5.8	17
179	Projected bioclimatic distributions in Nearctic <i>Bovidae</i> signal the potential for reduced overlap with protected areas. Ecology and Evolution, 2022, 12, .	0.8	1
180	The Longest Baseline Record of Vegetation Dynamics in Antarctica Reveals Acute Sensitivity to Water Availability. Earth's Future, 2022, 10, .	2.4	3
181	Centennial Memory of the Arctic Ocean for Future Arctic Climate Recovery in Response to a Carbon Dioxide Removal. Earth's Future, 2022, 10, .	2.4	5
183	Arctic shrub expansion revealed by Landsat-derived multitemporal vegetation cover fractions in the Western Canadian Arctic. Remote Sensing of Environment, 2022, 281, 113228.	4.6	18
184	Molecular Biological Characteristics of Soil Microbiome in the Northern Part of the Novaya Zemlya Archipelago. Eurasian Soil Science, 2022, 55, 1106-1115.	0.5	3
185	Extreme event impacts on terrestrial and freshwater biota in the arctic: A synthesis of knowledge and opportunities. Frontiers in Environmental Science, 0, 10, .	1.5	6
186	Strong isoprene emission response to temperature in tundra vegetation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	14
187	A camera trapâ€based assessment of climateâ€driven phenotypic plasticity of seasonal moulting in an endangered carnivore. Remote Sensing in Ecology and Conservation, 0, , .	2.2	0
188	A Quantitative Analysis of the Source of Interâ€Model Spread in Arctic Surface Warming Response to Increased CO ₂ Concentration. Geophysical Research Letters, 2022, 49, .	1.5	5
189	Microclimate relationships of intraspecific trait variation in subâ€Arctic plants. Oikos, 2022, 2022, .	1.2	6
190	Barrier islands influence the assimilation of terrestrial energy in nearshore fishes. Estuarine, Coastal and Shelf Science, 2022, 278, 108094.	0.9	2
191	Warmer winters are reducing potential ice roads and port accessibility in the Pan-Arctic. Environmental Research Letters, 2022, 17, 104051.	2.2	2

	C	Citation Report		
#	Article		IF	CITATIONS
192	Multi-dietary tracer approach reveals little overlap in foraging ecology between seasonally sympatric ringed and harp seals in the high Arctic. Frontiers in Marine Science, 0, 9, .		1.2	2
193	pathway and prospect. Journal of Cleaner Production, 2022, 377, 134372.		4.6	21
194	Impact of tundra vegetation type on topsoil temperature in central Spitsbergen (Svalbard, High) Tj E	TQq0 0 0 rgB1	7/Overloc 2.3	k_10 Tf 50 6
195	Morphology, flow dynamics and evolution of englacial conduits in cold ice. Earth Surface Processes and Landforms, 0, , .		1.2	0
196	Interrelationships among mountain relief, surface organic layer, soil organic carbon, and its mineral association under subarctic forest tundra. Scientific Reports, 2022, 12, .		1.6	0
198	Evaluating photosynthetic activity across Arctic-Boreal land cover types using solar-induced fluorescence. Environmental Research Letters, 2022, 17, 115009.		2.2	3
199	Evaluation of the Landsat-8 Albedo Product across the Circumpolar Domain. Remote Sensing, 2022, 5320.	14,	1.8	2
200	Unprecedented fire activity above the Arctic Circle linked to rising temperatures. Science, 2022, 378 532-537.	2	6.0	44
201	Atmospheric biogenic volatile organic compounds in the Alaskan Arctic tundra: constraints from measurements at Toolik Field Station. Atmospheric Chemistry and Physics, 2022, 22, 14037-14058.		1.9	4
202	Year-round distribution of bearded seals, Erignathus barbatus, throughout the Alaskan Chukchi and northern Bering Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 2022, , 105215.		0.6	2
203	Influence of sea-ice-related features and anthropogenic subsidies on the foraging behaviour of a high-Arctic seabird, the ivory gull (Pagophila eburnea). Marine Biology, 2022, 169, .		0.7	0
204	Tracing changes in base cation sources for Arctic tundra vegetation upon permafrost thaw. Geoderma, 2023, 429, 116277.		2.3	3
205	Community adaptation to temperature explains abrupt soil bacterial community shift along a geothermal gradient on Iceland. Soil Biology and Biochemistry, 2023, 177, 108914.		4.2	2
206	Active and dormant microorganisms on glacier surfaces. Geobiology, 2023, 21, 244-261.		1.1	5
207	Soil Geochemical Properties Influencing the Diversity of Bacteria and Archaea in Soils of the Kitezh Lake Area, Antarctica. Biology, 2022, 11, 1855.		1.3	2
208	Consistent centennialâ€scale change in European <scp>subâ€Arctic</scp> peatland vegetation tow <i>Sphagnum</i> dominance—Implications for carbon sink capacity. Global Change Biology, 2023 1530-1544.	ard , 29,	4.2	6
209	Rapid Response to Experimental Warming of a Microbial Community Inhabiting High Arctic Patterne Ground Soil. Biology, 2022, 11, 1819.	d	1.3	2

210	Borealization of nearshore fishes on an interior Arctic shelf over multiple decades. Global Change Biology, 2023, 29, 1822-1838.	4.2
-----	--	-----

#	ARTICLE	IF	Citations
211	Changing features of the Northern Hemisphere 500-hPa circumpolar vortex. Frontiers in Big Data, 0, 5,	1.8	1
212	Weakening summer westerly circulation actuates greening of the Tibetan Plateau. Global and Planetary Change, 2023, 221, 104027.	1.6	5
213	Salmonâ€ l ice as a potential threat to anadromous Arctic charr populations. Journal of Fish Diseases, 2023, 46, 465-475.	0.9	1
214	Bioclimatic atlas of the terrestrial Arctic. Scientific Data, 2023, 10, .	2.4	2
215	Adult spawners: A critical period for subarctic Chinook salmon in a changing climate. Global Change Biology, 2023, 29, 1759-1773.	4.2	7
216	Can Plot-Level Photographs Accurately Estimate Tundra Vegetation Cover in Northern Alaska?. Remote Sensing, 2023, 15, 1972.	1.8	1
217	Deepened snow in combination with summer warming increases growing season nitrous oxide emissions in dry tundra, but not in wet tundra. Soil Biology and Biochemistry, 2023, 180, 109013.	4.2	1
218	Characteristics of ringed seal Pusa hispida (â€~natchiq') denning habitat in Kotzebue Sound, Alaska, during a year of limited sea ice and snow. Marine Ecology - Progress Series, 2023, 705, 1-20.	0.9	1
219	Assembly and Network Stability of Planktonic Microorganisms under the Influence of Salinity Gradient: an Arctic Case Study from the Lena River Estuary to the Laptev Sea. Microbiology Spectrum, 2023, 11, .	1.2	1
220	Elodea mediates juvenile salmon growth by altering physical structure in freshwater habitats. Biological Invasions, 2023, 25, 1509-1525.	1.2	0
221	Maximum summer temperatures predict the temperature adaptation of Arctic soil bacterial communities. Biogeosciences, 2023, 20, 767-780.	1.3	4
222	High emission rates and strong temperature response make boreal wetlands a large source of isoprene and terpenes. Atmospheric Chemistry and Physics, 2023, 23, 2683-2698.	1.9	5
223	Distinct Growth Responses of Tundra Soil Bacteria to Short-Term and Long-Term Warming. Applied and Environmental Microbiology, 2023, 89, .	1.4	4
224	Shipping code towards data in an inter-region serverless environment to leverage latency. Journal of Supercomputing, 0, , .	2.4	1
225	Why Does Arctic Sea Ice Respond More Evidently than Antarctic Sea Ice to Climate Change?. , 2023, 2, .		5
226	Current wildlife crime (Indian scenario): major challenges and prevention approaches. Biodiversity and Conservation, 2023, 32, 1473-1491.	1.2	4
227	Seasonal and regional contrasts of future trends in interannual arctic climate variability. Climate Dynamics, 0, , .	1.7	1
228	Quantitative fatty acid signature analysis reveals a high level of dietary specialization in killer whales across the North Atlantic. Journal of Animal Ecology, 2023, 92, 1216-1229.	1.3	6

#	Article	IF	CITATIONS
229	A Coordination of the Capacities of the Hybrid Renewable Energy System and the Seasonal Variable Load Following the Intermittent Generation. , 2023, , .		1
263	Evaluation of Photovoltaic Potential in Antarctica for Operation of Eco-Friendly Research Station. , 2023, , .		0
277	Warming food webs at high latitudes. Nature Climate Change, 2024, 14, 120-121.	8.1	0