Machine learning and the physical sciences

Reviews of Modern Physics 91, DOI: 10.1103/revmodphys.91.045002

Citation Report

#	Article	IF	CITATIONS
1	Deep learning-assisted classification of site-resolved quantum gas microscope images. Measurement Science and Technology, 2020, 31, 025201.	1.4	10
2	Learning Entropy Production via Neural Networks. Physical Review Letters, 2020, 125, 140604.	2.9	24
3	Insulation Fault Diagnosis of Disconnecting Switches Based on Wavelet Packet Transform and PCA-IPSO-SVM of Electric Fields. IEEE Access, 2020, 8, 176676-176690.	2.6	10
4	Quantum embedding electronic structure methods. International Journal of Quantum Chemistry, 2020, 120, e26495.	1.0	17
5	From Ionic Surfactants to Nafion through Convolutional Neural Networks. Journal of Physical Chemistry B, 2020, 124, 8918-8927.	1.2	7
6	Setting Up Experimental Bell Tests with Reinforcement Learning. Physical Review Letters, 2020, 125, 160401.	2.9	20
7	Unsupervised Phase Discovery with Deep Anomaly Detection. Physical Review Letters, 2020, 125, 170603.	2.9	51
8	Information Processing Capacity of Spin-Based Quantum Reservoir Computing Systems. Cognitive Computation, 2023, 15, 1440-1451.	3.6	20
9	Topological Quantum Compiling with Reinforcement Learning. Physical Review Letters, 2020, 125, 170501.	2.9	46
10	Understanding Human Intelligence through Human Limitations. Trends in Cognitive Sciences, 2020, 24, 873-883.	4.0	26
11	Toward exascale design of soft mesoscale materials. Journal of Computational Science, 2020, 46, 101175.	1.5	6
12	Neural-network quantum state tomography in a two-qubit experiment. Physical Review A, 2020, 102, .	1.0	45
13	Neural Networks for Detecting Multimode Wigner Negativity. Physical Review Letters, 2020, 125, 160504.	2.9	18
14	Data-driven Detection of Multimessenger Transients. Astrophysical Journal Letters, 2020, 894, L25.	3.0	5
15	Recent advances in bioelectronics chemistry. Chemical Society Reviews, 2020, 49, 7978-8035.	18.7	54
16	Entropic Dynamics in Neural Networks, the Renormalization Group and the Hamilton-Jacobi-Bellman Equation. Entropy, 2020, 22, 587.	1.1	5
17	Machine learning meets quantum foundations: A brief survey. AVS Quantum Science, 2020, 2, 034101.	1.8	30
18	Machine Learning for Electronically Excited States of Molecules. Chemical Reviews, 2021, 121, 9873-9926.	23.0	207

#	Article	IF	CITATIONS
19	Statistical Physics for Medical Diagnostics: Learning, Inference, and Optimization Algorithms. Diagnostics, 2020, 10, 972.	1.3	3
20	Machine learning the deuteron. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2020, 809, 135743.	1.5	33
21	A deep learning approach for determining the chiral indices of carbon nanotubes from high-resolution transmission electron microscopy images. Carbon, 2020, 169, 465-474.	5.4	27
22	Machine learning for quantum matter. Advances in Physics: X, 2020, 5, 1797528.	1.5	100
23	Differentiable strong lensing: uniting gravity and neural nets through differentiable probabilistic programming. Monthly Notices of the Royal Astronomical Society, 2020, 496, 381-393.	1.6	23
24	Variational quantum eigensolver for frustrated quantum systems. Physical Review B, 2020, 102, .	1.1	37
25	Cataloging accreted stars within <i>Gaia</i> DR2 using deep learning. Astronomy and Astrophysics, 2020, 636, A75.	2.1	17
26	A deep neural network for molecular wave functions in quasi-atomic minimal basis representation. Journal of Chemical Physics, 2020, 153, 044123.	1.2	34
27	Machine learning on quantifying quantum steerability. Quantum Information Processing, 2020, 19, 1.	1.0	7
28	Single-Exposure Absorption Imaging of Ultracold Atoms Using Deep Learning. Physical Review Applied, 2020, 14, .	1.5	17
29	Deep Learning the Hohenberg-Kohn Maps of Density Functional Theory. Physical Review Letters, 2020, 125, 076402.	2.9	38
30	Variational Quantum Circuits for Deep Reinforcement Learning. IEEE Access, 2020, 8, 141007-141024.	2.6	134
31	Towards novel insights in lattice field theory with explainable machine learning. Physical Review D, 2020, 101, .	1.6	30
32	Effective models and predictability of chaotic multiscale systems via machine learning. Physical Review E, 2020, 102, 052203.	0.8	13
33	Machine Learning Tackles Spacetime. Physics Magazine, 2020, 13, .	0.1	0
34	Modeling Complex Quantum Dynamics: Evolution of Numerical Algorithms in the HPC Context. Lobachevskii Journal of Mathematics, 2020, 41, 1509-1520.	0.1	1
35	Controlling Rayleigh–Bénard convection via reinforcement learning. Journal of Turbulence, 2020, 21, 585-605.	0.5	49
36	Topological quantum phase transitions retrieved through unsupervised machine learning. Physical Review B, 2020, 102, .	1.1	54

#	Article	IF	CITATIONS
37	Machine learning identifies scale-free properties in disordered materials. Nature Communications, 2020, 11, 4842.	5.8	18
38	Data-driven prediction and analysis of chaotic origami dynamics. Communications Physics, 2020, 3, .	2.0	13
39	Machine learning depinning of dislocation pileups. APL Materials, 2020, 8, .	2.2	6
40	Scalable neural networks for the efficient learning of disordered quantum systems. Physical Review E, 2020, 102, 033301.	0.8	11
41	Semi-Empirical Simulation of Learned Force Response Models for Heterogeneous Elastic Objects. , 2020, , .		1
42	Approximation of correlation functions in phaseâ€field crystal model by machine learning approach. Mathematical Methods in the Applied Sciences, 2021, 44, 12203-12210.	1.2	1
44	Insights into one-body density matrices using deep learning. Faraday Discussions, 2020, 224, 265-291.	1.6	3
45	Topological defects and confinement with machine learning: The case of monopoles in compact electrodynamics. Physical Review D, 2020, 102, .	1.6	8
46	Extending machine learning classification capabilities with histogram reweighting. Physical Review E, 2020, 102, 033303.	0.8	22
47	Classifying the pole of an amplitude using a deep neural network. Physical Review D, 2020, 102, .	1.6	10
48	Machine-learning study using improved correlation configuration and application to quantum Monte Carlo simulation. Physical Review E, 2020, 102, 021302.	0.8	12
49	Photonic Inverse Design with Neural Networks: The Case of Invisibility in the Visible. Physical Review Applied, 2020, 14, .	1.5	30
50	Predicting critical transitions in multiscale dynamical systems using reservoir computing. Chaos, 2020, 30, 123126.	1.0	12
51	DNN-assisted statistical analysis of a model of local cortical circuits. Scientific Reports, 2020, 10, 20139.	1.6	4
52	Machine Learning: Quantum vs Classical. IEEE Access, 2020, 8, 219275-219294.	2.6	79
53	Classical dynamical density functional theory: from fundamentals to applications. Advances in Physics, 2020, 69, 121-247.	35.9	126
54	Unsupervised Machine Learning of Quantum Phase Transitions Using Diffusion Maps. Physical Review Letters, 2020, 125, 225701.	2.9	32
55	Covariantizing phase space. Physical Review D, 2020, 102, .	1.6	4

#	Article	IF	CITATIONS
56	Mapping distinct phase transitions to a neural network. Physical Review E, 2020, 102, 053306.	0.8	19
57	Phases of two-dimensional spinless lattice fermions with first-quantized deep neural-network quantum states. Physical Review B, 2020, 102, .	1.1	25
58	The World as a Neural Network. Entropy, 2020, 22, 1210.	1.1	36
59	Machine Learning Analysis of Raman Spectra of MoS2. Nanomaterials, 2020, 10, 2223.	1.9	13
60	Deep learning and AdS/QCD. Physical Review D, 2020, 102, .	1.6	20
61	Semileptonic decays of heavy mesons with artificial neural networks. Physical Review D, 2020, 102, .	1.6	0
62	Mean-field inference methods for neural networks. Journal of Physics A: Mathematical and Theoretical, 2020, 53, 223002.	0.7	18
63	Identification of light sources using machine learning. Applied Physics Reviews, 2020, 7, 021404.	5.5	46
64	Unsupervised Manifold Clustering of Topological Phononics. Physical Review Letters, 2020, 124, 185501.	2.9	74
65	Learning physical properties of liquid crystals with deep convolutional neural networks. Scientific Reports, 2020, 10, 7664.	1.6	44
66	Convolutional neural networks for direct detection of dark matter. Journal of Physics G: Nuclear and Particle Physics, 2020, 47, 095201.	1.4	19
67	A machine learning workflow for molecular analysis: application to melting points. Machine Learning: Science and Technology, 2020, 1, 025015.	2.4	23
68	Shear-induced ordering in systems with competing interactions: A machine learning study. Journal of Chemical Physics, 2020, 152, 204905.	1.2	8
69	Unsupervised Machine Learning and Band Topology. Physical Review Letters, 2020, 124, 226401.	2.9	99
70	Exploring phononic properties of two-dimensional materials using machine learning interatomic potentials. Applied Materials Today, 2020, 20, 100685.	2.3	96
71	Transfer learning for scalability of neural-network quantum states. Physical Review E, 2020, 101, 053301.	0.8	26
72	The frontier of simulation-based inference. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30055-30062.	3.3	289
73	Artificial neural network based computation for out-of-time-ordered correlators. Physical Review B, 2020, 101, .	1.1	8

TION P

ARTICLE IF CITATIONS # Entanglement classification via neural network quantum states. New Journal of Physics, 2020, 22, 74 1.2 31 045001. Generative models of T-cell receptor sequences. Physical Review E, 2020, 101, 062414. 0.8 9 Boosting Monte Carlo simulations of spin glasses using autoregressive neural networks. Physical 76 0.8 25 Review E, 2020, 101, 053312. Purifying Electron Spectra from Noisy Pulses with Machine Learning Using Synthetic Hamilton Matrices. Physical Review Letters, 2020, 124, 113201. Data-Driven Collective Variables for Enhanced Sampling. Journal of Physical Chemistry Letters, 2020, 78 2.1 97 11, 2998-3004. Restricted Boltzmann Machines for Quantum States with Non-Abelian or Anyonic Symmetries. Physical 79 Review Letters, 2020, 124, 097201. 80 Explainable Machine Learning for Scientific Insights and Discoveries. IEEE Access, 2020, 8, 42200-42216. 2.6 466 Effective classical correspondence of the Mott transition. Physical Review B, 2020, 101, . 1.1 82 Neural hierarchical models of ecological populations. Ecology Letters, 2020, 23, 734-747. 3.0 28 Drawing Phase Diagrams of Random Quantum Systems by Deep Learning the Wave Functions. Journal of 39 the Physical Society of Japan, 2020, 89, 022001. Generalization properties of neural network approximations to frustrated magnet ground states. 84 5.873 Nature Communications, 2020, 11, 1593. Machine Learning Non-Markovian Quantum Dynamics. Physical Review Letters, 2020, 124, 140502. Property-Oriented Material Design Based on a Data-Driven Machine Learning Technique. Journal of 86 2.1 54 Physical Chemistry Letters, 2020, 11, 3920-3927. Physics Insights from Neural Networks. Physics Magazine, 0, 13, . 87 0.1 A perspective on machine learning in turbulent flows. Journal of Turbulence, 2020, 21, 567-584. 88 0.5 51 Combining SchNet and SHARC: The SchNarc Machine Learning Approach for Excited-State Dynamics. 114 Journal of Physical Chemistry Letters, 2020, 11, 3828-3834. A handle on the scandal: Data driven approaches to structure prediction. APL Materials, 2020, 8, 90 2.2 4 040903. What Can Artificial Intelligence Do for Scientific Realism?. Axiomathes, 2021, 31, 85-104.

#	Article	IF	CITATIONS
92	Towards a machine learned thermodynamics: exploration of free energy landscapes in molecular fluids, biological systems and for gas storage and separation in metal–organic frameworks. Molecular Systems Design and Engineering, 2021, 6, 52-65.	1.7	8
93	ClasSOMfier: A neural network for cluster analysis and detection of lattice defects. Computational Materials Science, 2021, 188, 110167.	1.4	3
94	Hidden unit specialization in layered neural networks: ReLU vs. sigmoidal activation. Physica A: Statistical Mechanics and Its Applications, 2021, 564, 125517.	1.2	29
95	Machine learning the thermodynamic arrow of time. Nature Physics, 2021, 17, 105-113.	6.5	55
96	Toward Machine Learning Optimization of Experimental Design. Nuclear Physics News, 2021, 31, 25-28.	0.1	8
97	Predicting long- and short-range order with restricted Boltzmann machine. AIP Advances, 2021, 11, 015027.	0.6	2
98	Finding symmetry breaking order parameters with Euclidean neural networks. Physical Review Research, 2021, 3, .	1.3	20
99	Interaction from structure using machine learning: in and out of equilibrium. Soft Matter, 2021, 17, 8322-8330.	1.2	5
100	Scheme for automatic differentiation of complex loss functions with applications in quantum physics. Physical Review E, 2021, 103, 013309.	0.8	13
102	Federated Transfer Learning for IIoT Devices With Low Computing Power Based on Blockchain and Edge Computing. IEEE Access, 2021, 9, 98630-98638.	2.6	28
103	Machine-learning engineering of quantum currents. Physical Review Research, 2021, 3, .	1.3	14
104	Data-driven approximations to the bridge function yield improved closures for the Ornstein–Zernike equation. Soft Matter, 2021, 17, 5393-5400.	1.2	6
105	Quantum system compression: A Hamiltonian guided walk through Hilbert space. Physical Review A, 2021, 103, .	1.0	3
106	Graph neural networks in particle physics. Machine Learning: Science and Technology, 2021, 2, 021001.	2.4	87
107	Machine learning based on wave and diffusion physical systems. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 144204.	0.2	2
108	Investigating the Use of Machine Learning Techniques in a Random Physical System. Communications in Computer and Information Science, 2021, , 109-118.	0.4	0
109	Machine learning toward advanced energy storage devices and systems. IScience, 2021, 24, 101936.	1.9	79
110	Machine learning non-Hermitian topological phases. Physical Review B, 2021, 103, .	1.1	13

#	Article	IF	CITATIONS
111	Unsupervised learning of topological phase transitions using the Calinski-Harabaz index. Physical Review Research, 2021, 3, .	1.3	22
112	The place of artificial intelligence in the risk management process. SHS Web of Conferences, 2021, 120, 02013.	0.1	Ο
113	Security Systems for Smart Cities Based on Acoustic Sensors and Machine Learning Applications. Studies in Computational Intelligence, 2021, , 369-393.	0.7	6
114	Comparison of Multiple Machine Learning Models Based on Enterprise Revenue Forecasting. , 2021, , .		6
115	Finding the deconfinement temperature in lattice Yang-Mills theories from outside the scaling window with machine learning. Physical Review D, 2021, 103, .	1.6	15
116	Spatial Mode Correction of Single Photons Using Machine Learning. Advanced Quantum Technologies, 2021, 4, 2000103.	1.8	19
117	Experimental progress of quantum machine learning based on spin systems. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 140305-140305.	0.2	1
118	Using Deep Learning to Understand and Mitigate the Qubit Noise Environment. PRX Quantum, 2021, 2, .	3.5	27
119	Application of Support Vector Machines and Holt-winters Model in Local Finance Forecast. , 2021, , .		0
120	Geometric Calculi and Automatic Learning An Outline. SEMA SIMAI Springer Series, 2021, , 153-178.	0.4	0
121	Emergence of a finite-size-scaling function in the supervised learning of the Ising phase transition. Journal of Statistical Mechanics: Theory and Experiment, 2021, 2021, 023202.	0.9	0
122	The view of TK-SVM on the phase hierarchy in the classical kagome Heisenberg antiferromagnet. Journal of Physics Condensed Matter, 2021, 33, 054002.	0.7	4
123	Automatic learning of topological phase boundaries. Physical Review E, 2021, 103, 023310.	0.8	4
124	Deep neural network application: Higgs boson CP state mixing angle in H→ττ decay and at the LHC. Physical Review D, 2021, 103, .	1.6	2
126	Predicting ultrafast nonlinear dynamics in fibre optics with a recurrent neural network. Nature Machine Intelligence, 2021, 3, 344-354.	8.3	92
127	Quantifying information accumulation encoded in the dynamics of biochemical signaling. Nature Communications, 2021, 12, 1272.	5.8	18
128	Efficient Decoding Scheme of Non-Uniform Concatenation Quantum Code with Deep Neural Network. International Journal of Theoretical Physics, 2021, 60, 848-864.	0.5	1
129	A Survey of Bayesian Calibration and Physics-informed Neural Networks in Scientific Modeling. Archives of Computational Methods in Engineering, 2021, 28, 3801-3830.	6.0	27

#	Article	IF	CITATIONS
130	Bayesian neural networks for fast SUSY predictions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2021, 813, 136041.	1.5	10
131	Approximate Bayesian Uncertainties on Deep Learning Dynamical Mass Estimates of Galaxy Clusters. Astrophysical Journal, 2021, 908, 204.	1.6	13
132	Multiscale Sample Entropy of Two-Dimensional Decaying Turbulence. Entropy, 2021, 23, 245.	1.1	6
133	Quantum Simulators: Architectures and Opportunities. PRX Quantum, 2021, 2, .	3.5	229
134	On the descriptive power of Neural-Networks as constrained Tensor Networks with exponentially large bond dimension. SciPost Physics Core, 2021, 4, .	0.9	6
135	Estimating the degree of non-Markovianity using machine learning. Physical Review A, 2021, 103, .	1.0	17
136	Unsupervised Learning Universal Critical Behavior via the Intrinsic Dimension. Physical Review X, 2021, 11, .	2.8	26
137	Adding machine learning within Hamiltonians: Renormalization group transformations, symmetry breaking and restoration. Physical Review Research, 2021, 3, .	1.3	11
138	Latent Representation Learning for Structural Characterization of Catalysts. Journal of Physical Chemistry Letters, 2021, 12, 2086-2094.	2.1	27
139	Machine learning approach for the prediction and optimization of thermal transport properties. Frontiers of Physics, 2021, 16, 1.	2.4	39
140	Designing a physical quantum agent. Physical Review A, 2021, 103, .	1.0	5
141	A Linear Frequency Principle Model to Understand the Absence of Overfitting in Neural Networks. Chinese Physics Letters, 2021, 38, 038701.	1.3	8
143	Many-body localization in large systems: Matrix-product-state approach. Annals of Physics, 2021, 435, 168437.	1.0	13
144	Semantic segmentation with a sparse convolutional neural network for event reconstruction in MicroBooNE. Physical Review D, 2021, 103, .	1.6	19
145	Four Generations of High-Dimensional Neural Network Potentials. Chemical Reviews, 2021, 121, 10037-10072.	23.0	292
146	Determining the temperature in heavy-ion collisions with multiplicity distribution. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2021, 814, 136084.	1.5	15
147	Convolutional Neural Networks for Long Time Dissipative Quantum Dynamics. Journal of Physical Chemistry Letters, 2021, 12, 2476-2483.	2.1	28
148	Deep learning in electron microscopy. Machine Learning: Science and Technology, 2021, 2, 011004.	2.4	50

#	Article	IF	CITATIONS
149	Deep neural network-based automatic metasurface design with a wide frequency range. Scientific Reports, 2021, 11, 7102.	1.6	48
150	Experimental Quantum Principal Component Analysis via Parametrized Quantum Circuits. Physical Review Letters, 2021, 126, 110502.	2.9	27
151	Channel-noise tracking for sub-shot-noise-limited receivers with neural networks. Physical Review Research, 2021, 3, .	1.3	1
152	Absorbing phase transition with a continuously varying exponent in a quantum contact process: A neural network approach. Physical Review Research, 2021, 3, .	1.3	20
153	Electric Power Forecasting Based on Logistic Regression and Gradient Boost Regression Tree. , 2021, , .		0
154	Operator learning for predicting multiscale bubble growth dynamics. Journal of Chemical Physics, 2021, 154, 104118.	1.2	71
155	Classification Based on Decision Tree Algorithm for Machine Learning. Journal of Applied Science and Technology Trends, 2021, 2, 20-28.	10.8	536
156	PASP: Property analysis and simulation package for materials. Journal of Chemical Physics, 2021, 154, 114103.	1.2	32
157	Machine learning active-nematic hydrodynamics. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	44
158	Learning active nematics one step at a time. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	4
159	Machine-learning-based inversion of nuclear responses. Physical Review C, 2021, 103, .	1.1	16
160	Supervised learning of few dirty bosons with variable particle number. SciPost Physics, 2021, 10, .	1.5	7
161	Molecular design and performance improvement in organic solar cells guided by highâ€ŧhroughput screening and machine learning. Nano Select, 2021, 2, 1629-1641.	1.9	12
162	Application of machine learning for predicting strong phonon blockade. Applied Physics Letters, 2021, 118, 164003.	1.5	8
163	Machine learning outperforms thermodynamics in measuring how well a many-body system learns a drive. Scientific Reports, 2021, 11, 9333.	1.6	8
164	Calibration of Multiparameter Sensors via Machine Learning at the Single-Photon Level. Physical Review Applied, 2021, 15, .	1.5	23
165	Scientific intuition inspired by machine learning-generated hypotheses. Machine Learning: Science and Technology, 2021, 2, 025027.	2.4	23
166	Quantum State Learning via Single-Shot Measurements. Physical Review Letters, 2021, 126, 170504.	2.9	2

ARTICLE IF CITATIONS # Computational Infrared Spectroscopy of 958 Phosphorus-Bearing Molecules. Frontiers in Astronomy 167 1.1 10 and Space Sciences, 2021, 8, . Learning DFT. European Physical Journal: Special Topics, 2021, 230, 1021-1029. 1.2 Machine learning approach to muon spectroscopy analysis. Journal of Physics Condensed Matter, 169 0.7 3 2021, 33, 194002 Sensitivity-Informed Bayesian Inference for Home PLC Network Models with Unknown Parameters. 170 Energies, 2021, 14, 2402. Modified empirical formulas and machine learning for α-decay systematics. Journal of Physics G: 171 1.4 19 Nuclear and Particle Physics, 2021, 48, 055103. Machine learning time-local generators of open quantum dynamics. Physical Review Research, 2021, 3, . 1.3 Learning single-particle mobility edges by a neural network based on data compression. Physical 173 1.1 5 Review B, 2021, 103, . Theoretical Research and Framework Design of Spanish-Chinese Smart Translation System from 174 Machine Learning Perspectives., 2021,,. 175 Optimal Beam Loading in a Laser-Plasma Accelerator. Physical Review Letters, 2021, 126, 174801. 2.9 42 Helping restricted Boltzmann machines with quantum-state representation by restoring symmetry. 38 Journal of Physics Condensed Matter, 2021, 33, 174003. Quantum field-theoretic machine learning. Physical Review D, 2021, 103, . 177 19 1.6 Deep reinforcement learning for feedback control in a collective flashing ratchet. Physical Review 1.3 Research, 2021, 3, . Learning models of quantum systems from experiments. Nature Physics, 2021, 17, 837-843. 179 6.5 28 Social hierarchy promotes the cooperation prevalence. Physica A: Statistical Mechanics and Its 1.2 Applications, 2021, 567, 125726. Revealing the phase diagram of Kitaev materials by machine learning: Cooperation and competition 181 1.3 16 between spin liquids. Physical Review Research, 2021, 3, . Solving quasiparticle band spectra of real solids using neural-network quantum states. Communications Physics, 2021, 4, . Machine learning study of the deformed one-dimensional topological superconductor. Journal of the 183 0.3 3 Korean Physical Society, 2021, 79, 173-184. Modelling self-similar parabolic pulses in optical fibres with a neural network. Results in Optics, 2021, 184 3, 100066.

		CITATION R	EPORT	
#	Article		IF	Citations
185	Machine learning the dynamics of quantum kicked rotor. Annals of Physics, 2021, 435,	168500.	1.0	3
186	Supervised and unsupervised learning of directed percolation. Physical Review E, 2021,	103, 052140.	0.8	11
187	Reconstruction of nanoscale particles from single-shot wide-angle free-electron-laser dif patterns with physics-informed neural networks. Physical Review E, 2021, 103, 053312	fraction	0.8	3
188	Classification of periodic variable stars with novel cyclic-permutation invariant neural ne Monthly Notices of the Royal Astronomical Society, 2021, 505, 515-522.	tworks.	1.6	10
189	Conservation laws and spin system modeling through principal component analysis. Co Communications, 2021, 262, 107832.	mputer Physics	3.0	4
190	Machine learning and quantum devices. SciPost Physics Lecture Notes, 0, , .		0.0	12
191	Machine learning pipeline for quantum state estimation with incomplete measurements Learning: Science and Technology, 2021, 2, 035014.	s. Machine	2.4	14
192	Toward a theory of machine learning. Machine Learning: Science and Technology, 2021	, 2, 035012.	2.4	10
193	A data-driven approach to violin making. Scientific Reports, 2021, 11, 9455.		1.6	27
194	Neural ordinary differential equation and holographic quantum chromodynamics. Mach Science and Technology, 2021, 2, 035011.	ine Learning:	2.4	8
195	Adaptable Hamiltonian neural networks. Physical Review Research, 2021, 3, .		1.3	22
196	Recurrent localization networks applied to the Lippmann-Schwinger equation. Compute Materials Science, 2021, 192, 110356.	ational	1.4	4
197	Inverse renormalization group based on image super-resolution using deep convolution Scientific Reports, 2021, 11, 9617.	al networks.	1.6	7
198	Second Harmonic Imaging Enhanced by Deep Learning Decipher. ACS Photonics, 2021,	8, 1562-1568.	3.2	2
199	Can a CNN trained on the Ising model detect the phase transition of the <i>q</i> -state Progress of Theoretical and Experimental Physics, 2021, 2021, .	Potts model?.	1.8	3
200	Sampling asymmetric open quantum systems for artificial neural networks. Physical Rev 103, .	view B, 2021,	1.1	4
201	Topological persistence machine of phase transitions. Physical Review E, 2021, 103, 05.	2127.	0.8	20
202	Renormalized Mutual Information for Artificial Scientific Discovery. Physical Review Lett 200601.	ers, 2021, 126,	2.9	4

		CITATION RE	PORT	
#	Article		IF	CITATIONS
203	Cosmic Velocity Field Reconstruction Using Al. Astrophysical Journal, 2021, 913, 2.		1.6	11
204	Estimation of impact parameter and transverse spherocity in heavy-ion collisions at the using machine learning. Physical Review D, 2021, 103, .	e LHC energies	1.6	13
206	Scalability of All-Optical Neural Networks Based on Spatial Light Modulators. Physical F 2021, 15, .	eview Applied,	1.5	14
207	Inverse design of an optical film filter by a recurrent neural adjoint method: an example simulator. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 1814		0.9	8
208	Optimal quantum state transformations based on machine learning. Quantum Informa 2021, 20, 1.	ition Processing,	1.0	2
209	A convolutional-neural-network estimator of CMB constraints on dark matter energy ir Journal of Cosmology and Astroparticle Physics, 2021, 2021, 025.	njection.	1.9	1
210	Extracting Local Symmetry of Mono-Atomic Systems from Extended X-ray Absorption I Using Deep Neural Networks. Symmetry, 2021, 13, 1070.	-ine Structure	1.1	2
211	Unsupervised Learning of Non-Hermitian Topological Phases. Physical Review Letters, 2	2021, 126, 240402.	2.9	22
212	Opportunities in Quantum Reservoir Computing and Extreme Learning Machines. Adva Technologies, 2021, 4, 2100027.	anced Quantum	1.8	45
213	Relevance in the Renormalization Group and in Information Theory. Physical Review Le 240601.	tters, 2021, 126,	2.9	9
214	Perspective on integrating machine learning into computational chemistry and materia Journal of Chemical Physics, 2021, 154, 230903.	ıls science.	1.2	107
215	Feature space approximation for kernel-based supervised learning. Knowledge-Based S 106935.	ystems, 2021, 221,	4.0	3
216	Morphology of three-body quantum states from machine learning. New Journal of Phys 065009.	ics, 2021, 23,	1.2	5
217	Protocol Discovery for the Quantum Control of Majoranas by Differentiable Programm Natural Evolution Strategies. PRX Quantum, 2021, 2, .	ing and	3.5	15
218	The forgotten channels: charged Higgs boson decays to a W± and a non-SM-like Higg of High Energy Physics, 2021, 2021, 1.	;s boson. Journal	1.6	21
219	Application of kernel extreme learning machine and Kriging model in prediction of heav removal by biochar. Bioresource Technology, 2021, 329, 124876.	/y metals	4.8	36
220	Neural Monte Carlo renormalization group. Physical Review Research, 2021, 3, .		1.3	6
221	Machine-learning semilocal density functional theory for many-body lattice models at z temperature. Physical Review B, 2021, 103, .	tero and finite	1.1	0

#	Article	IF	CITATIONS
222	Incorporation of Physics into Machine Learning for Production Prediction from Unconventional Reservoirs: A Brief Review of the Gray-Box Approach. SPE Reservoir Evaluation and Engineering, 2021, 24, 847-858.	1.1	19
223	Machine learning for complete intersection Calabi-Yau manifolds: A methodological study. Physical Review D, 2021, 103, .	1.6	18
224	Efficient bit encoding of neural networks for Fock states. Physical Review A, 2021, 103, .	1.0	0
225	Quantum gates by adiabatic and superadiabatic probabilistic controlled evolutions. Europhysics Letters, 2021, 134, 50005.	0.7	0
226	Mixed state entanglement classification using artificial neural networks. New Journal of Physics, 2021, 23, 063033.	1.2	9
227	Deep generative models of gravitational waveforms via conditional autoencoder. Physical Review D, 2021, 103, .	1.6	5
228	Sparse Neural Networks for Inference of Interwell Connectivity and Production Prediction. SPE Journal, 2021, , 1-22.	1.7	6
229	Learning the ground state of a non-stoquastic quantum Hamiltonian in a rugged neural network landscape. SciPost Physics, 2021, 10, .	1.5	37
230	Highlighting photonics: looking into the next decade. ELight, 2021, 1, .	11.9	218
231	Deep learning stochastic processes with QCD phase transition. Physical Review D, 2021, 103, .	1.6	25
232	Implementation of Quantum Machine Learning for Electronic Structure Calculations of Periodic Systems on Quantum Computing Devices. Journal of Chemical Information and Modeling, 2021, 61, 2667-2674.	2.5	17
233	Deterministic modeling of the diffusive memristor. Chaos, 2021, 31, 073111.	1.0	8
234	HInet: Generating Neutral Hydrogen from Dark Matter with Neural Networks. Astrophysical Journal, 2021, 916, 42.	1.6	16
235			
	Unsupervised machine learning of topological phase transitions from experimental data. Machine Learning: Science and Technology, 2021, 2, 035037.	2.4	41
236	Unsupervised machine learning of topological phase transitions from experimental data. Machine Learning: Science and Technology, 2021, 2, 035037. Storage capacity and learning capability of quantum neural networks. Quantum Science and Technology, 2021, 6, 045002.	2.4 2.6	41
236 237	Learning: Science and Technology, 2021, 2, 035037. Storage capacity and learning capability of quantum neural networks. Quantum Science and		
	Learning: Science and Technology, 2021, 2, 035037. Storage capacity and learning capability of quantum neural networks. Quantum Science and Technology, 2021, 6, 045002. A neural network for prediction of high intensity resonance modes in magnetic multilayers. New	2.6	12

	Сітатіо	n Report	
# 240	ARTICLE U(1)-symmetric recurrent neural networks for quantum state reconstruction. Physical Review A, 2021, 104, .	IF 1.0	Citations
241	Discrimination of nano-objects via cluster analysis techniques applied to time-resolved thermo-acoustic microscopy. Ultrasonics, 2021, 114, 106403.	2.1	19
242	Classifying Near-Threshold Enhancement Using Deep Neural Network. Few-Body Systems, 2021, 62, 1.	0.7	7
243	Riemannian geometry and automatic differentiation for optimization problems of quantum physics and quantum technologies. New Journal of Physics, 2021, 23, 073006.	1.2	17
244	Deep Learning Transient Detection with VERITAS. , 2021, , .		1
245	Quantum-inspired machine learning on high-energy physics data. Npj Quantum Information, 2021, 7, .	2.8	14
246	Adversarial Multi-task Learning Enhanced Physics-informed Neural Networks for Solving Partial Differential Equations. , 2021, , .		6
247	Interpretable and unsupervised phase classification. Physical Review Research, 2021, 3, .	1.3	15
248	Inferring hidden symmetries of exotic magnets from detecting explicit order parameters. Physical Review E, 2021, 104, 015311.	0.8	3
249	Machine-learning-assisted modeling. Physics Today, 2021, 74, 36-41.	0.3	11
250	Framework for evaluating statistical models in physics education research. Physical Review Physics Education Research, 2021, 17, .	1.4	10
251	A rigorous and robust quantum speed-up in supervised machine learning. Nature Physics, 2021, 17, 1013-1017.	6.5	197
252	Neural network enhanced hybrid quantum many-body dynamical distributions. Physical Review Research, 2021, 3, .	1.3	4
253	Entanglement structure detection via machine learning. Quantum Science and Technology, 2021, 6, 035017.	2.6	5
254	Machine Learning Versus Semidefinite Programming Approach to a Particular Problem of the Theory of Open Quantum Systems. Lobachevskii Journal of Mathematics, 2021, 42, 1622-1629.	0.1	1
255	Extraction of the muon signals recorded with the surface detector of the Pierre Auger Observatory using recurrent neural networks. Journal of Instrumentation, 2021, 16, P07016.	0.5	11
256	Machine Learning Link Inference of Noisy Delay-Coupled Networks with Optoelectronic Experimental Tests. Physical Review X, 2021, 11, .	2.8	14
257	Disentangling boosted Higgs Boson production modes with machine learning. Journal of Instrumentation, 2021, 16, P07002.	0.5	8

		CITATION REP	PORT	
#	Article		IF	CITATIONS
258	Symmetry meets Al. SciPost Physics, 2021, 11, .		1.5	16
259	Learning crystal field parameters using convolutional neural networks. SciPost Physics, 2	021, 11, .	1.5	2
260	Variational Monte Carlo Calculations of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>A</mml:mi><mml:mo>≤/mml:mo><mml:mn Nuclei with an Artificial Neural-Network Correlator Ansatz. Physical Review Letters, 2021</mml:mn </mml:mo></mml:mrow></mml:math 	•4127, 022502.	w 3 ·?/mml:	math>
261	Turbulence theories and statistical closure approaches. Physics Reports, 2021, 935, 1-11	7.	10.3	49
262	Representations of hypergraph states with neural networks*. Communications in Theore 2021, 73, 105103.	tical Physics,	1.1	1
263	Reinforcement learning approach for deterministic SOT-MRAM switching. , 2021, , .			0
264	Neural-network-based parameter estimation for quantum detection. Quantum Science a Technology, 2021, 6, 045012.	ıd	2.6	6
265	Bandgap prediction of two-dimensional materials using machine learning. PLoS ONE, 202	.1, 16, e0255637.	1.1	11
266	Linear and nonlinear machine learning correlation of transition metal cluster characterist Journal of Nanoparticle Research, 2021, 23, 1.	cs.	0.8	2
267	Model-free prediction of emergence of extreme events in a parametrically driven nonlinea system by deep learning. European Physical Journal B, 2021, 94, 1.	ır dynamical	0.6	14
268	A Short Review on the Machine Learning-Guided Oxygen Uptake Prediction for Sport Scie Applications. Electronics (Switzerland), 2021, 10, 1956.	nce	1.8	5
269	Quantum compiling by deep reinforcement learning. Communications Physics, 2021, 4, .		2.0	29
270	Purifying Deep Boltzmann Machines for Thermal Quantum States. Physical Review Letter 060601.	s, 2021, 127,	2.9	12
271	Direct detection of plasticity onset through total-strain profile evolution. Physical Review 2021, 5, .	Materials,	0.9	2
272	Experimental Implementation of Universal Holonomic Quantum Computation on Solid-St Optimal Control. Physical Review Applied, 2021, 16, .	ate Spins with	1.5	14
273	Modal decomposition of a partially coherent Ince-Gaussian beams. , 2021, , .			0
274	Characterizing the acceleration time of laser-driven ion acceleration with data-informed r networks. Plasma Physics and Controlled Fusion, 2021, 63, 094005.	eural	0.9	4
275	Pairwise Difference Regression: A Machine Learning Meta-algorithm for Improved Predict Uncertainty Quantification in Chemical Search. Journal of Chemical Information and Mod 61, 3846-3857.	on and eling, 2021,	2.5	17

#	Article	IF	CITATIONS
276	Conceptual Understanding through Efficient Automated Design of Quantum Optical Experiments. Physical Review X, 2021, 11, .	2.8	17
277	Deep neural networks for inverse problems in mesoscopic physics: Characterization of the disorder configuration from quantum transport properties. Physical Review B, 2021, 104, .	1.1	6
278	Developing a multilateral-based neural network model for engineering of high entropy amorphous alloys. Modelling and Simulation in Materials Science and Engineering, 2021, 29, 065019.	0.8	7
279	Correlation Length in Random MPS and PEPS. Annales Henri Poincare, 2022, 23, 141-222.	0.8	5
280	Application of Artificial Intelligence in Food Industry—a Guideline. Food Engineering Reviews, 2022, 14, 134-175.	3.1	56
281	Classification of <i>Fermi</i> -LAT sources with deep learning using energy and time spectra. Monthly Notices of the Royal Astronomical Society, 2021, 507, 4061-4073.	1.6	13
282	2022 Roadmap on integrated quantum photonics. JPhys Photonics, 2022, 4, 012501.	2.2	152
283	Intrinsic Dimension of Path Integrals: Data-Mining Quantum Criticality and Emergent Simplicity. PRX Quantum, 2021, 2, .	3.5	18
284	Tracking droplets in soft granular flows with deep learning techniques. European Physical Journal Plus, 2021, 136, 864.	1.2	8
285	Model independent analysis of coupled-channel scattering: A deep learning approach. Physical Review D, 2021, 104, .	1.6	8
286	Conditional generative models for sampling and phase transition indication in spin systems. SciPost Physics, 2021, 11, .	1.5	11
287	Vision based supervised restricted Boltzmann machine helps to actuate novel shape memory alloy accurately. Scientific Reports, 2021, 11, 16446.	1.6	5
288	Machine learning identification of symmetrized base states of Rydberg atoms. Frontiers of Physics, 2022, 17, 1.	2.4	2
289	Machine learning detection of Berezinskii-Kosterlitz-Thouless transitions in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>q</mml:mi> -state clock models. Physical Review B, 2021, 104, .</mml:math 	1.1	17
290	Genetic Algorithms and Machine Learning for Predicting Surface Composition, Structure, and Chemistry: A Historical Perspective and Assessment. Chemistry of Materials, 2021, 33, 6589-6615.	3.2	8
291	A Reconfigurable Neural Network ASIC for Detector Front-End Data Compression at the HL-LHC. IEEE Transactions on Nuclear Science, 2021, 68, 2179-2186.	1.2	25
292	Unsupervised mapping of phase diagrams of 2D systems from infinite projected entangled-pair states via deep anomaly detection. SciPost Physics, 2021, 11, .	1.5	8
293	Deep learning for estimating parameters of gravitational waves. Monthly Notices of the Royal Astronomical Society, 2021, 508, 1358-1370.	1.6	3

	CITATION I	CEPURI	
#	Article	IF	CITATIONS
294	Boltzmann machines as two-dimensional tensor networks. Physical Review B, 2021, 104, .	1.1	6
295	Gaussian Process Regression for Materials and Molecules. Chemical Reviews, 2021, 121, 10073-10141.	23.0	384
296	A fast and efficient deep learning procedure for tracking droplet motion in dense microfluidic emulsions. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200400.	1.6	10
297	Physics-Based Feature Makes Machine Learning Cognizing Crystal Properties Simple. Journal of Physical Chemistry Letters, 2021, 12, 8521-8527.	2.1	3
298	Dirac-Type Nodal Spin Liquid Revealed by Refined Quantum Many-Body Solver Using Neural-Network Wave Function, Correlation Ratio, and Level Spectroscopy. Physical Review X, 2021, 11, .	2.8	60
299	Quantum reservoir computing in bosonic networks. , 2021, , .		0
300	Predicting quantum potentials by deep neural network and metropolis sampling. SciPost Physics Core, 2021, 4, .	0.9	3
301	Machine learning on neutron and x-ray scattering and spectroscopies. Chemical Physics Reviews, 2021, 2, .	2.6	49
302	Hybrid Machine Learning for Scanning Near-Field Optical Spectroscopy. ACS Photonics, 2021, 8, 2987-2996.	3.2	22
303	Frequentist parameter estimation with supervised learning. AVS Quantum Science, 2021, 3, .	1.8	3
304	Minimization of the micromotion of trapped ions with artificial neural networks. Applied Physics Letters, 2021, 119, .	1.5	1
305	Quantum federated learning through blind quantum computing. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	2.0	31
306	Analysis of Kohn–Sham Eigenfunctions Using a Convolutional Neural Network in Simulations of the Metal–Insulator Transition in Doped Semiconductors. Journal of the Physical Society of Japan, 2021, 90, 094001.	0.7	0
307	Uncertainty-aware machine learning for high energy physics. Physical Review D, 2021, 104, .	1.6	24
308	Statistical Mechanics of Deep Linear Neural Networks: The Backpropagating Kernel Renormalization. Physical Review X, 2021, 11, .	2.8	15
309	Rapid parameter estimation of discrete decaying signals using autoencoder networks. Machine Learning: Science and Technology, 2021, 2, 045024.	2.4	0
310	Data-driven effective model shows a liquid-like deep learning. Physical Review Research, 2021, 3, .	1.3	2
311	Selected Artificial Intelligence Methods in the Risk Analysis of Damage to Masonry Buildings Subject to Long-Term Underground Mining Exploitation. Minerals (Basel, Switzerland), 2021, 11, 958.	0.8	7

#	Article	IF	CITATIONS
312	Bulk reconstruction of metrics inside black holes by complexity. Journal of High Energy Physics, 2021, 2021, 1.	1.6	5
313	Data-driven flood hazard zonation of Italy. Journal of Environmental Management, 2021, 294, 112986.	3.8	7
314	Compact neural-network quantum state representations of Jastrow and stabilizer states. Journal of Physics A: Mathematical and Theoretical, 2021, 54, 405304.	0.7	2
315	Simulation and Optimization Studies of the LHCb Beetle Readout ASIC and Machine Learning Approach for Pulse Shape Reconstruction. Sensors, 2021, 21, 6075.	2.1	1
316	Reinforcement Learning for Many-Body Ground-State Preparation Inspired by Counterdiabatic Driving. Physical Review X, 2021, 11, .	2.8	29
317	Classification and reconstruction of optical quantum states with deep neural networks. Physical Review Research, 2021, 3, .	1.3	25
318	Neural Network Approach to Construction of Classical Integrable Systems. Journal of the Physical Society of Japan, 2021, 90, 093001.	0.7	0
319	Magnetic moment predictions of odd-A nuclei with the Bayesian neural network approach *. Chinese Physics C, 2021, 45, 124107.	1.5	6
320	Open Issues in Statistical Forecasting of Solar Proton Events: A Machine Learning Perspective. Space Weather, 2021, 19, e2021SW002794.	1.3	13
321	Machine-learned phase diagrams of generalized Kitaev honeycomb magnets. Physical Review Research, 2021, 3, .	1.3	9
322	Optical lattice experiments at unobserved conditions with generative adversarial deep learning. Physical Review Research, 2021, 3, .	1.3	4
323	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mmultiscripts><mml:mi>Sn</mml:mi> /><mml:none /><mml:mn>132</mml:mn></mml:none </mml:mmultiscripts><mml:mo>+</mml:mo><mml:mmultiscripts><mml:mi>Sn/><mml:none></mml:none><mml:mn>124</mml:mn></mml:mi></mml:mmultiscripts></mml:mrow> system.		10
324	Physical Review C, 2021, 104, . Machine learning universal bosonic functionals. Physical Review Research, 2021, 3, .	1.3	11
325	Learning impurity spectral functions from density of states. Journal of Physics Condensed Matter, 2021, 33, 495601.	0.7	0
326	Mode-assisted joint training of deep Boltzmann machines. Scientific Reports, 2021, 11, 19000.	1.6	1
327	Using machine-learning methods for analysing the results of numerical simulation of laser-plasma acceleration of electrons. Quantum Electronics, 2021, 51, 854-860.	0.3	5
328	Application of quantum machine learning using the quantum kernel algorithm on high energy physics analysis at the LHC. Physical Review Research, 2021, 3, .	1.3	35
329	The machine-learned radii of atoms. Computational and Theoretical Chemistry, 2021, 1204, 113389.	1.1	1

#	Article	IF	CITATIONS
330	A novel method of multiaxial fatigue life prediction based on deep learning. International Journal of Fatigue, 2021, 151, 106356.	2.8	74
331	Tree-based interpretable machine learning of the thermodynamic phases. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 412, 127589.	0.9	3
332	Exploring neural network training strategies to determine phase transitions in frustrated magnetic models. Computational Materials Science, 2021, 198, 110702.	1.4	13
333	Finding signatures of the nuclear symmetry energy in heavy-ion collisions with deep learning. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2021, 822, 136669.	1.5	15
334	Determination of thermodynamic state variables of liquids from their microscopic structures using an artificial neural network. Soft Matter, 2021, 17, 1975-1984.	1.2	5
335	A Deep Learning Approach to Ancient Egyptian Hieroglyphs Classification. IEEE Access, 2021, 9, 123438-123447.	2.6	22
336	Machine learning topological invariants of non-Hermitian systems. Physical Review A, 2021, 103, .	1.0	20
337	Validity of Machine Learning in the Quantitative Analysis of Complex Scanning Near-Field Optical Microscopy Signals Using Simulated Data. Physical Review Applied, 2021, 15, .	1.5	13
338	Random Features for Kernel Approximation: A Survey on Algorithms, Theory, and Beyond. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44, 7128-7148.	9.7	33
339	Machine Learning in Physics and Engineering. Studies in Computational Intelligence, 2021, , 47-54.	0.7	0
340	Demonstration of background rejection using deep convolutional neural networks in the NEXT experiment. Journal of High Energy Physics, 2021, 2021, 1.	1.6	13
341	Al for Humanity: The Global Challenges. Lecture Notes in Computer Science, 2021, , 116-126.	1.0	1
342	Hybrid convolutional neural network and projected entangled pair states wave functions for quantum many-particle states. Physical Review B, 2021, 103, .	1.1	11
343	Determining usefulness of machine learning in materials discovery using simulated research landscapes. Physical Chemistry Chemical Physics, 2021, 23, 14156-14163.	1.3	13
344	DLODE: a deep learning-based ODE solver for chemistry kinetics. , 2021, , .		8
345	The hidden geometry of particle collisions. Journal of High Energy Physics, 2020, 2020, 1.	1.6	29
346	Artificial neural networks for nonlinear pulse shaping in optical fibers. Optics and Laser Technology, 2020, 131, 106439.	2.2	50
347	Learning from the Machine: Uncovering Sustainable Nanoparticle Design Rules. Journal of Physical Chemistry C, 2020, 124, 13409-13420.	1.5	11

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
348	Understanding deep learning is also a job for physicists. Nature Physics, 2020, 16, 602-60	14.	6.5	39
349	Computer-inspired quantum experiments. Nature Reviews Physics, 2020, 2, 649-661.		11.9	48
350	Machine Learning for Nonadiabatic Molecular Dynamics. RSC Theoretical and Computatic Chemistry Series, 2020, , 76-108.	nal	0.7	3
351	Introduction to the dynamics of driven nonlinear systems. Contemporary Physics, 2020, 6	51, 169-192.	0.8	7
352	Application of artificial intelligence in the determination of impact parameter in heavy-ion at intermediate energies. Journal of Physics G: Nuclear and Particle Physics, 2020, 47, 115		1.4	24
353	Machine learning for condensed matter physics. Journal of Physics Condensed Matter, 20	21, 33, 053001.	0.7	47
354	Detecting composite orders in layered models via machine learning. New Journal of Physic 093026.	:s, 2020, 22,	1.2	5
355	Phase detection with neural networks: interpreting the black box. New Journal of Physics, 115001.	2020, 22,	1.2	19
356	Identifying nearby sources of ultra-high-energy cosmic rays with deep learning. Journal of and Astroparticle Physics, 2020, 2020, 005-005.	Cosmology	1.9	7
357	Ultrametric fitting by gradient descent [*] . Journal of Statistical Mechanics: Th Experiment, 2020, 2020, 124004.	eory and	0.9	6
358	Universal and optimal coin sequences for high entanglement generation in 1D discrete tir walks. Journal of Physics A: Mathematical and Theoretical, 2020, 53, 445306.	ne quantum	0.7	15
359	Probing criticality in quantum spin chains with neural networks. Journal of Physics Comple 1, 03LT01.	exity, 2020,	0.9	5
360	Machine learning at the (sub)atomic scale: next generation scanning probe microscopy. N Learning: Science and Technology, 2020, 1, 023001.	<i>l</i> achine	2.4	24
361	Quantum machine learning and quantum biomimetics: A perspective. Machine Learning: S Technology, 2020, 1, 033002.	Science and	2.4	41
362	Machine learning and excited-state molecular dynamics. Machine Learning: Science and T 2020, 1, 043001.	echnology,	2.4	50
363	Predicting excited states from ground state wavefunction by supervised quantum machin Machine Learning: Science and Technology, 2020, 1, 045027.	e learning.	2.4	13
364	Towards recognizing the light facet of the Higgs boson. Machine Learning: Science and Te 2020, 1, 045025.	2chnology,	2.4	5
365	Classifying global state preparation via deep reinforcement learning. Machine Learning: So Technology, 2021, 2, 01LT02.	cience and	2.4	25

	CHATON R		
# 366	ARTICLE Building bulk from Wilson loops. Progress of Theoretical and Experimental Physics, 2021, 2021, .	IF 1.8	Citations 4
367	Tensor-network-based machine learning of non-Markovian quantum processes. Physical Review A, 2020, 102, .	1.0	30
368	Active learning algorithm for computational physics. Physical Review Research, 2020, 2, .	1.3	14
369	Precise measurement of quantum observables with neural-network estimators. Physical Review Research, 2020, 2, .	1.3	53
370	Geometry of learning neural quantum states. Physical Review Research, 2020, 2, .	1.3	26
371	Compressing deep neural networks by matrix product operators. Physical Review Research, 2020, 2, .	1.3	15
372	Recurrent neural network wave functions. Physical Review Research, 2020, 2, .	1.3	112
373	Neural network wave functions and the sign problem. Physical Review Research, 2020, 2, .	1.3	49
374	Learning the constitutive relation of polymeric flows with memory. Physical Review Research, 2020, 2,	1.3	15
375	Casimir effect with machine learning. Physical Review Research, 2020, 2, .	1.3	4
376	Density functionals and Kohn-Sham potentials with minimal wavefunction preparations on a quantum computer. Physical Review Research, 2020, 2, .	1.3	4
377	Machine Learning for Long-Distance Quantum Communication. PRX Quantum, 2020, 1, .	3.5	55
378	Enhanced light–matter interactions in dielectric nanostructures via machine-learning approach. Advanced Photonics, 2020, 2, 1.	6.2	81
379	Physics Inspired Models in Artificial Intelligence. , 2020, , .		3
380	Reproducibility and Replication of Experimental Particle Physics Results. , 2020, 2, .		7
381	From complex to simple : hierarchical free-energy landscape renormalized in deep neural networks. , 2020, 2, .		5
382	A non-review of Quantum Machine Learning: trends and explorations. , 0, 4, 32.		40
383	The First Application of Neural Networks to the Analysis of the TUS Orbital Detector Data. Moscow University Physics Bulletin (English Translation of Vestnik Moskovskogo Universiteta, Fizika), 2020, 75, 657-664.	0.1	5

	Сітаті	on Report	
#	Article	IF	CITATIONS
384	Deep Learning the Morphology of Dark Matter Substructure. Astrophysical Journal, 2020, 893, 15.	1.6	29
385	Full-sky Cosmic Microwave Background Foreground Cleaning Using Machine Learning. Astrophysical Journal, 2020, 903, 104.	1.6	26
386	Approaches Based on the Ising Model. Quantum Science and Technology, 2021, , 273-287.	1.5	0
387	Classifying lymphoma and tuberculosis case reports using machine learning algorithms. Bulletin of Electrical Engineering and Informatics, 2021, 10, 2857-2865.	0.6	0
388	Real-time artificial intelligence for accelerator control: A study at the Fermilab Booster. Physical Review Accelerators and Beams, 2021, 24, .	0.6	15
389	Machine learning for high-throughput experimental exploration of metal halide perovskites. Joule, 2021, 5, 2797-2822.	11.7	44
390	Training Gaussian boson sampling by quantum machine learning. Quantum Machine Intelligence, 2021, 3, 1.	2.7	3
391	A Hybrid Neural Network–Particle Swarm Optimization Informed Spatial Interpolation Technique for Groundwater Quality Mapping in a Small Island Province of the Philippines. Toxics, 2021, 9, 273.	1.6	18
392	Simultaneous serotonin and dopamine monitoring across timescales by rapid pulse voltammetry with partial least squares regression. Analytical and Bioanalytical Chemistry, 2021, 413, 6747-6767.	1.9	9
393	Towards ML-Based Diagnostics of Laser–Plasma Interactions. Sensors, 2021, 21, 6982.	2.1	3
394	Phase classification using neural networks: application to supercooled, polymorphic core-softened mixtures. Journal of Physics Condensed Matter, 2022, 34, 024002.	0.7	6
395	Machine learning the nuclear mass. Nuclear Science and Techniques/Hewuli, 2021, 32, 1.	1.3	37
396	Markovian Quantum Neuroevolution for Machine Learning. Physical Review Applied, 2021, 16, .	1.5	13
397	Analysis and Prediction of Hydrothermally Synthesized ZnO-Based Dye-Sensitized Solar Cell Properties Using Statistical and Machine-Learning Techniques. ACS Omega, 2021, 6, 29982-29992.	1.6	14
398	Programming with neural surrogates of programs. , 2021, , .		1
399	Improving failure rates in pulsed SOT-MRAM switching by reinforcement learning. Microelectronics Reliability, 2021, 126, 114231.	0.9	0
400	Nonequilibrium thermodynamics of self-supervised learning. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 419, 127756.	0.9	1
403	Magnetism trends in doped Ce-Cu intermetallics in the vicinity of quantum criticality: Realistic Kondo lattice models based on dynamical mean-field theory. Physical Review Materials, 2020, 4, .	0.9	1

ARTICLE IF CITATIONS # A comprehensive neural networks study of the phase transitions of Potts model. New Journal of 404 1.2 18 Physics, 2020, 22, 063016. Determining Crucial Factors for the Popularity of Scientific Articles. Acta Physica Polonica A, 2020, 0.2 138, 41-47 406 Artificial Intelligence for Monte Carlo Simulation in Medical Physics. Frontiers in Physics, 2021, 9, . 1.0 11 Deep Learning Analysis of Polaritonic Wave Images. ACS Nano, 2021, 15, 18182-18191. Combining Particle-Based Simulations and Machine Learning to Understand Defect Kinetics in Thin 409 2.2 11 Films of Symmetric Diblock Copolymers. Macromolecules, 2021, 54, 10074-10085. Quantum Machine-Learning for Eigenstate Filtration in Two-Dimensional Materials. Journal of the American Chemical Society, 2021, 143, 18426-18445. 6.6 Generalization in Quantum Machine Learning: A Quantum Information Standpoint. PRX Quantum, 2021, 411 3.5 55 2, . Machine learning on the electron–boson mechanism in superconductors. New Journal of Physics, 1.2 2020, 22, 123014. 413 New trends in quantum machine learning ^(a). Europhysics Letters, 2020, 132, 60004. 0.7 13 ML-Based Analysis of Particle Distributions in High-Intensity Laser Experiments: Role of Binning 414 1.1 Strategy. Entropy, 2021, 23, 21. Machine learning phases and criticalities without using real data for training. Physical Review B, 415 1.1 8 2020, 102, . The role of machine learning to boost the bioenergy and biofuels conversion. Bioresource 4.8 Technology, 2022, 343, 126099. Using Graph Databases. EPJ Web of Conferences, 2020, 245, 04004. 417 0.1 1 Contemplating the Future. Thirty Years of Astronomical Discovery With UKIRT, 2020, , 335-343. 0.3 Reinforcement Learning Approach for Sub-Critical Current SOT-MRAM Switching., 2021, , . 419 0 Integrating advanced measurement and signal processing for reliability decision-making. Eksploatacja I 1.1 14 Niezawodnosc, 2021, 23, 777-787. Cluster Fragments in Amorphous Phosphorus and their Evolution under Pressure. Advanced 421 11.1 13 Materials, 2022, 34, e2107515. Nonclassical kernels in continuous-variable systems. Physical Review A, 2021, 104, .

	CIT	ATION REPORT	
#	Article	IF	Citations
423	A universal neural network for learning phases. European Physical Journal Plus, 2021, 136, 1.	1.2	10
424	Measurement-Based Feedback Quantum Control with Deep Reinforcement Learning for a Double-Well Nonlinear Potential. Physical Review Letters, 2021, 127, 190403.	2.9	30
425	Independent component analysis combined with Laplace inversion of spectrally resolved spin-alignment echo/ <i>T</i> ₁ 3D ⁷ Li NMR of superionic Li ₁₀ GeP ₂ S ₁₂ . Zeitschrift Fur Physikalische Chemie, 2022, 236, 899-922.	1.4	1
426	Current Advances in Neural Networks. Annual Review of Statistics and Its Application, 2022, 9, 197-22.	2. 4.1	8
427	Convolutional neural network applied for nanoparticle classification using coherent scatterometry data. Applied Optics, 2020, 59, 8426.	0.9	9
428	The viewing angle in AGN SED models: a data-driven analysis. Monthly Notices of the Royal Astronomical Society, 2021, 510, 687-707.	1.6	13
429	Determining liquid crystal properties with ordinal networks and machine learning. Chaos, Solitons and Fractals, 2022, 154, 111607.	2.5	19
430	Reinforcement Learning to Reduce Failures in SOT-MRAM Switching. , 2021, , .		0
431	Biomaterials by design: Harnessing data for future development. Materials Today Bio, 2021, 12, 10016	5. 2.6	13
432	Unbiased Monte Carlo cluster updates with autoregressive neural networks. Physical Review Research, 2021, 3, .	1.3	20
433	Entanglement-Structured LSTM Boosts Chaotic Time Series Forecasting. Entropy, 2021, 23, 1491.	1.1	4
434	How to Use Machine Learning to Improve the Discrimination between Signal and Background at Particle Colliders. Applied Sciences (Switzerland), 2021, 11, 11076.	1.3	3
435	Global exploration of phase behavior in frustrated Ising models using unsupervised learning techniques. Physica A: Statistical Mechanics and Its Applications, 2022, 589, 126653.	1.2	2
436	Mismatching as a tool to enhance algorithmic performances of Monte Carlo methods for the planted clique model. Journal of Statistical Mechanics: Theory and Experiment, 2021, 2021, 113406.	0.9	3
437	Determinant-free fermionic wave function using feed-forward neural networks. Physical Review Research, 2021, 3, .	1.3	11
438	Electrostatic Discovery Atomic Force Microscopy. ACS Nano, 2022, 16, 89-97.	7.3	11
439	Dynamical symmetry breaking through AI: The dimer self-trapping transition. International Journal of Modern Physics B, 2022, 36, .	1.0	1
440	How To Use Neural Networks To Investigate Quantum Many-Body Physics. PRX Quantum, 2021, 2, .	3.5	25

\sim			REPO	
		(ΛN)		דער
<u> </u>	$\square \land \square$		IVE F	

#	Article	IF	CITATIONS
441	Sapsan: Framework for Supernovae Turbulence Modeling with Machine Learning. Journal of Open Source Software, 2021, 6, 3199.	2.0	1
442	Recognition of orbital-angular-momentum modes with different topological charges and their unknown superpositions via machine learning. Physical Review A, 2021, 104, .	1.0	12
443	Gradient domain machine learning with composite kernels: improving the accuracy of PES and force fields for large molecules. Machine Learning: Science and Technology, 2022, 3, 015005.	2.4	4
444	Machineâ€Learningâ€Assisted Accurate Prediction of Molecular Optical Properties upon Aggregation. Advanced Science, 2022, 9, e2101074.	5.6	17
445	An introduction to quantum machine learning: from quantum logic to quantum deep learning. Quantum Machine Intelligence, 2021, 3, 1.	2.7	34
446	Neural network architectures based on the classical XY model. Physical Review B, 2021, 104, .	1.1	2
447	Tomography of time-dependent quantum Hamiltonians with machine learning. Physical Review A, 2021, 104, .	1.0	4
448	Quantum generative adversarial networks with multiple superconducting qubits. Npj Quantum Information, 2021, 7, .	2.8	14
449	Machine-Learning-Based Parameter Estimation of Gaussian Quantum States. IEEE Transactions on Quantum Engineering, 2022, 3, 1-13.	2.9	7
450	Machine Learning in High Energy Physics. Springer Theses, 2021, , 21-33.	0.0	0
451	A Study of First-Passage Time Minimization via Q-Learning in Heated Gridworlds. IEEE Access, 2021, 9, 159349-159363.	2.6	1
451 452	A Study of First-Passage Time Minimization via Q-Learning in Heated Gridworlds. IEEE Access, 2021, 9,		1
	A Study of First-Passage Time Minimization via Q-Learning in Heated Gridworlds. IEEE Access, 2021, 9, 159349-159363. Supervised Classification Problems–Taxonomy of Dimensions and Notation for Problems	2.6	
452	A Study of First-Passage Time Minimization via Q-Learning in Heated Gridworlds. IEEE Access, 2021, 9, 159349-159363. Supervised Classification Problems–Taxonomy of Dimensions and Notation for Problems Identification. IEEE Access, 2021, 9, 151386-151400. Eigenvalue distribution of some nonlinear models of random matrices. Electronic Journal of	2.6 2.6	4
452 453	A Study of First-Passage Time Minimization via Q-Learning in Heated Gridworlds. IEEE Access, 2021, 9, 159349-159363. Supervised Classification Problems–Taxonomy of Dimensions and Notation for Problems Identification. IEEE Access, 2021, 9, 151386-151400. Eigenvalue distribution of some nonlinear models of random matrices. Electronic Journal of Probability, 2021, 26, . Machine learning of phase transitions in nonlinear polariton lattices. Communications Physics, 2022,	2.6 2.6 0.5	4 2
452 453 454	A Study of First-Passage Time Minimization via Q-Learning in Heated Gridworlds. IEEE Access, 2021, 9, 159349-159363. Supervised Classification Problems–Taxonomy of Dimensions and Notation for Problems Identification. IEEE Access, 2021, 9, 151386-151400. Eigenvalue distribution of some nonlinear models of random matrices. Electronic Journal of Probability, 2021, 26, . Machine learning of phase transitions in nonlinear polariton lattices. Communications Physics, 2022, 5, . Deep learning in searching the spectroscopic redshift of quasars. Monthly Notices of the Royal	2.6 2.6 0.5 2.0	4 2 7
452 453 454 455	A Study of First-Passage Time Minimization via Q-Learning in Heated Gridworlds. IEEE Access, 2021, 9, 159349-159363. Supervised Classification Problems–Taxonomy of Dimensions and Notation for Problems Identification. IEEE Access, 2021, 9, 151386-151400. Eigenvalue distribution of some nonlinear models of random matrices. Electronic Journal of Probability, 2021, 26, . Machine learning of phase transitions in nonlinear polariton lattices. Communications Physics, 2022, 5, . Deep learning in searching the spectroscopic redshift of quasars. Monthly Notices of the Royal Astronomical Society, 2022, 511, 4490-4499. Reconstructing the kinematics of deep inelastic scattering with deep learning. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated	2.6 2.6 0.5 2.0 1.6	4 2 7 4

#	Article	IF	Citations
459	Learning phase transitions in the ferrimagnetic GdFeCo alloy. , 2020, , .		0
461	Sample complexity of learning parametric quantum circuits. Quantum Science and Technology, 2022, 7, 025014.	2.6	9
462	The neutron star outer crust equation of state: a machine learning approach. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 045.	1.9	7
463	Autoencoder-aided analysis of low-dimensional Hilbert spaces. Lithuanian Journal of Physics, 2021, 61, .	0.1	0
464	Efficient parametrization of the atomic cluster expansion. Physical Review Materials, 2022, 6, .	0.9	23
465	An artificial intelligence model for heart disease detection using machine learning algorithms. Healthcare Analytics, 2022, 2, 100016.	2.6	65
466	Physics-informed deep learning for data-driven solutions of computational fluid dynamics. Korean Journal of Chemical Engineering, 2022, 39, 515-528.	1.2	13
467	Estimation for iron contamination in Si solar cell by ideality factor: Deep neural network approach. Progress in Photovoltaics: Research and Applications, 0, , .	4.4	2
468	Astronomical big data processing using machine learning: A comprehensive review. Experimental Astronomy, 2022, 53, 1-43.	1.6	25
469	Novel Bayesian neural network based approach for nuclear charge radii. Physical Review C, 2022, 105, .	1.1	26
470	Natural language based analysis of SQuAD: An analytical approach for BERT. Expert Systems With Applications, 2022, 195, 116592.	4.4	11
471	Stark spectral line broadening modeling by machine learning algorithms. Neural Computing and Applications, 2022, 34, 6349.	3.2	0
472	Learning Langevin dynamics with QCD phase transition. EPJ Web of Conferences, 2022, 259, 10017.	0.1	1
473	Search for glitches in gamma-ray pulsars with deep learning. Astronomy and Astrophysics, O, , .	2.1	0
474	A cautionary tale of decorrelating theory uncertainties. European Physical Journal C, 2022, 82, 1.	1.4	9
475	SUPPNet: Neural network for stellar spectrum normalisation. Astronomy and Astrophysics, 2022, 659, A199.	2.1	4
476	Quantum Reservoir Computing for Speckle Disorder Potentials. Condensed Matter, 2022, 7, 17.	0.8	3
477	Contactâ€Free Remote Manipulation of Hydrogel Properties Using Lightâ€Triggerable Nanoparticles: A Materials Science Perspective for Biomedical Applications. Advanced Healthcare Materials, 2022, 11, 22102088	3.9	12

#	Article	IF	CITATIONS
478	Toward Excellence of Electrocatalyst Design by Emerging Descriptorâ€Oriented Machine Learning. Advanced Functional Materials, 2022, 32, .	7.8	43
479	Screening toward the Development of Fingerprints of Atomic Environments Using Bond-Orientational Order Parameters. ACS Omega, 2022, 7, 4606-4613.	1.6	2
480	Seeking new physics in cosmology with Bayesian neural networks: Dark energy and modified gravity. Physical Review D, 2022, 105, .	1.6	2
481	Highly accurate machine learning prediction of crystal point groups for ternary materials from chemical formula. Scientific Reports, 2022, 12, 1577.	1.6	9
482	Identification of moyamoya disease based on cerebral oxygen saturation signals using machine learning methods. Journal of Biophotonics, 2022, , e202100388.	1.1	2
483	Berezinskii–Kosterlitz–Thouless transition – A universal neural network study with benchmarks. Results in Physics, 2022, 33, 105134.	2.0	3
484	Predicting magnetic anisotropy energies using site-specific spin-orbit coupling energies and machine learning: Application to iron-cobalt nitrides. Physical Review Materials, 2022, 6, .	0.9	3
485	Phase diagram of quantum generalized Potts-Hopfield neural networks. New Journal of Physics, 2022, 24, 033012.	1.2	8
486	Machine classification for probe-based quantum thermometry. Physical Review A, 2022, 105, .	1.0	4
487	Graph Neural Networks for Particle Tracking and Reconstruction. , 2022, , 387-436.		1
488	Evaporation of liquid nanofilms: A minireview. Physics of Fluids, 2022, 34, 021302.	1.6	2
489	Matrix-Model Simulations Using Quantum Computing, Deep Learning, and Lattice Monte Carlo. PRX Quantum, 2022, 3, .	3.5	17
490	Evaporation Forecasting through Interpretable Data Analysis Techniques. Electronics (Switzerland), 2022, 11, 536.	1.8	8
491	Recent advances for quantum classifiers. Science China: Physics, Mechanics and Astronomy, 2022, 65, 1.	2.0	40
492	Bell nonlocality in networks. Reports on Progress in Physics, 2022, 85, 056001.	8.1	78
493	Deep Learning for the Modeling and Inverse Design of Radiative Heat Transfer. Physical Review Applied, 2021, 16, .	1.5	20
494	Deep learning the astrometric signature of dark matter substructure. Physical Review D, 2021, 104, .	1.6	3
495	Gauge Equivariant Neural Networks for Quantum Lattice Gauge Theories. Physical Review Letters, 2021, 127, 276402.	2.9	14

#	Article	IF	CITATIONS
496	Matrix product states and projected entangled pair states: Concepts, symmetries, theorems. Reviews of Modern Physics, 2021, 93, .	16.4	221
497	Entropic Alternatives to Initialization. SSRN Electronic Journal, 0, , .	0.4	0
498	Multiscale molecular modelling: from electronic structure to dynamics of nanosystems and beyond. Physical Chemistry Chemical Physics, 2022, 24, 9051-9081.	1.3	10
499	Modern Machine Learning: Applications and Methods. Management and Industrial Engineering, 2022, , 19-61.	0.3	1
501	Noisy intermediate-scale quantum algorithms. Reviews of Modern Physics, 2022, 94, .	16.4	521
502	Machine learning as a tool in theoretical science. Nature Reviews Physics, 2022, 4, 145-146.	11.9	7
503	Machine-Learning-Assisted Quantum Control in a Random Environment. Physical Review Applied, 2022, 17, .	1.5	9
504	Supervised graph classification for chiral quantum walks. Physical Review A, 2022, 105, .	1.0	6
505	Machine learning for percolation utilizing auxiliary Ising variables. Physical Review E, 2022, 105, 024144.	0.8	5
506	Quantum error reduction with deep neural network applied at the post-processing stage. Quantum Information Processing, 2022, 21, 1.	1.0	5
507	Low-Power Artificial Neural Network Perceptron Based on Monolayer MoS ₂ . ACS Nano, 2022, 16, 3684-3694.	7.3	20
508	Deep learning of deformation-dependent conductance in thin films: Nanobubbles in graphene. Physical Review B, 2022, 105, .	1.1	4
509	Joint machine learning analysis of muon spectroscopy data from different materials. Journal of Physics: Conference Series, 2022, 2164, 012018.	0.3	1
510	Machine learning in energy storage materials. , 2022, 1, 175-195.		45
511	Machine-learning classification of two-dimensional vortex configurations. Physical Review A, 2022, 105, .	1.0	3
512	Machine learning primordial black hole formation. Physical Review D, 2022, 105, .	1.6	0
513	Variational autoencoder analysis of Ising model statistical distributions and phase transitions. European Physical Journal B, 2022, 95, .	0.6	2
514	Identification of high order closure terms from fully kinetic simulations using machine learning. Physics of Plasmas, 2022, 29, 032706.	0.7	4

#	Article	IF	CITATIONS
515	Accurate, affordable, and generalizable machine learning simulations of transition metal x-ray absorption spectra using the XANESNET deep neural network. Journal of Chemical Physics, 2022, 156, 164102.	1.2	17
516	Evaluation of performance of machine learning methods in mining structure–property data of halide perovskite materials. Chinese Physics B, 2022, 31, 056302.	0.7	8
517	Detection of Berezinskii-Kosterlitz-Thouless transition via Generative Adversarial Networks. SciPost Physics, 2022, 12, .	1.5	4
518	Migration of self-propelling agent in a turbulent environment with minimal energy consumption. Physics of Fluids, 2022, 34, 035117.	1.6	3
519	Generalized scale behavior and renormalization group for data analysis. Journal of Statistical Mechanics: Theory and Experiment, 2022, 2022, 033101.	0.9	3
520	Machine learning methods in predicting Down Syndrome. , 2022, , .		0
521	Perspective: Predicting and optimizing thermal transport properties with machine learning methods. Energy and Al, 2022, 8, 100153.	5.8	18
522	Nuclear energy density functionals from machine learning. Physical Review C, 2022, 105, .	1.1	18
523	Determining impact parameters of heavy-ion collisions at low-intermediate incident energies using deep learning with convolutional neural networks. Physical Review C, 2022, 105, .	1.1	6
524	Boosted decision trees in the era of new physics: a smuon analysis case study. Journal of High Energy Physics, 2022, 2022, 1.	1.6	11
525	Persistence in complex systems. Physics Reports, 2022, 957, 1-73.	10.3	24
526	Neural network flows of low q-state Potts and clock models. New Journal of Physics, 2022, 24, 043040.	1.2	8
527	Randomized-Gauge Test for Machine Learning of Ising Model Order Parameter. Journal of the Physical Society of Japan, 2022, 91, .	0.7	1
528	Exploring Fresnel diffraction at a straight edge with a neural network. European Journal of Physics, 2022, 43, 035306.	0.3	1
529	Integration of machine learning and first principles models. AICHE Journal, 2022, 68, .	1.8	23
530	Learning quantum dynamics with latent neural ordinary differential equationsÂ. Physical Review A, 2022, 105, .	1.0	10
531	A tutorial on optimal control and reinforcement learning methods for quantum technologies. Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 434, 128054.	0.9	22
532	深度å¦ä¹äœ¨é«~èf½æ,物ç†ä,çš,,应甓. Scientia Sinica: Physica, Mechanica Et Astronomica, 2021, , .	0.2	О

#	Article	IF	Citations
533	Convolutional Neural Networks for Radio Frequency Ray Tracing. , 2021, , .		1
534	JAX, M.D. A framework for differentiable physics*. Journal of Statistical Mechanics: Theory and Experiment, 2021, 2021, 124016.	0.9	15
535	A machine learning approach to Bayesian parameter estimation. Npj Quantum Information, 2021, 7, .	2.8	19
536	Imaging by Unsupervised Feature Learning of the Wave Equation. Physical Review Applied, 2021, 16, .	1.5	3
537	Learning quantum phase transitions through topological data analysis. Physical Review B, 2021, 104, .	1.1	11
538	Nonlinear interferometry beyond classical limit enabled by cyclic dynamics. Nature Physics, 2022, 18, 167-171.	6.5	20
539	Adversarial Domain Adaptation via Class Correlation. , 2021, , .		0
540	Optimized Machine Learning: Training and Classification Performance Using Quantum Computing. , 2021, , .		4
541	Prediction and Inverse Design of Structural Colors of Nanoparticle Systems via Deep Neural Network. Nanomaterials, 2021, 11, 3339.	1.9	8
542	Industry 4.0 and International Collaborative Online Learning in a Higher Education Course on Machine Learning. , 2021, , .		5
543	Electron-boson spectral density functions of cuprates obtained from optical spectra via machine learning. Physical Review B, 2021, 104, .	1.1	0
544	Symmetries and phase diagrams with real-space mutual information neural estimation. Physical Review E, 2021, 104, 064106.	0.8	7
545	Machine Learning-Assisted Analysis of Small Angle X-ray Scattering. , 2021, , .		3
546	Digraph states and their neural network representations. Chinese Physics B, O, , .	0.7	2
547	Quantum-Tailored Machine-Learning Characterization of a Superconducting Qubit. PRX Quantum, 2021, 2, .	3.5	10
548	Prediction of occurrence of extreme events using machine learning. European Physical Journal Plus, 2022, 137, 1.	1.2	9
549	Nuclei with Up to \$\$varvec{A=6}\$\$ Nucleons with Artificial Neural Network Wave Functions. Few-Body Systems, 2022, 63, 1.	0.7	13
550	Machine learning S-wave scattering phase shifts bypassing the radial Schrödinger equation. European Physical Journal B, 2021, 94, 1.	0.6	1

#	Article	IF	CITATIONS
551	Variational quantum anomaly detection: Unsupervised mapping of phase diagrams on a physical quantum computer. Physical Review Research, 2021, 3, .	1.3	13
552	Probabilistic Autoencoder Using Fisher Information. Entropy, 2021, 23, 1640.	1.1	1
553	Frontiers in computing for artificial intelligence. Journal of Instrumentation, 2022, 17, C03037.	0.5	1
554	Ranking the information content of distance measures. , 2022, 1, .		13
555	Scale-invariant representation of machine learning. Physical Review E, 2022, 105, 044306.	0.8	2
556	Machine learning approach to the Floquet–Lindbladian problem. Chaos, 2022, 32, 043117.	1.0	1
557	Applications and Techniques for Fast Machine Learning in Science. Frontiers in Big Data, 2022, 5, 787421.	1.8	20
558	Utilizing Adaptive Boosting to Detect Quantum Steerability. International Journal of Theoretical Physics, 2022, 61, .	0.5	1
559	Application of Unsupervised Transfer Technique Based on Deep Learning Model in Physical Training. Computational Intelligence and Neuroscience, 2022, 2022, 1-12.	1.1	1
560	RotEqNet: Rotation-equivariant network for fluid systems with symmetric high-order tensors. Journal of Computational Physics, 2022, 461, 111205.	1.9	2
561	Philosophy of science at sea: Clarifying the interpretability of machine learning. Philosophy Compass, 2022, 17, .	0.7	11
562	Data-driven causal inference of process-structure relationships in nanocatalysis. Current Opinion in Chemical Engineering, 2022, 36, 100818.	3.8	9
563	Efficient dendritic learning as an alternative to synaptic plasticity hypothesis. Scientific Reports, 2022, 12, 6571.	1.6	20
564	Comparison of Catalysts with MIRA21 Model in Heterogeneous Catalytic Hydrogenation of Aromatic Nitro Compounds. Catalysts, 2022, 12, 467.	1.6	5
565	Quantum kernels to learn the phases of quantum matter. Physical Review A, 2022, 105, .	1.0	8
566	Learning aerodynamics with neural network. Scientific Reports, 2022, 12, 6779.	1.6	9
567	A Comprehensive Study on the Role of Machine Learning in Hybrid Biometric Recognition. , 2022, , .		0
568	Modeling of electron nonlocal transport in plasmas using artificial neural networks. Physical Review E, 2022, 105, .	0.8	3

ARTICLE IF CITATIONS # Dynamical reciprocity in interacting games: Numerical results and mechanism analysis. Physical Review 569 0.8 4 E, 2022, 105, . Intelligent metasurfaces: control, communication and computing. ELight, 2022, 2, . 570 11.9 158 571 Adaptive random quantum eigensolver. Physical Review A, 2022, 105, . 1.0 0 Physicochemical properties and detection of glucose syrup adulterated Kelulut (<i>Heterotrigona) Tj ETQq1 1 0.784314 rgBT /Overld Data driven soliton solution of the nonlinear SchrĶdinger equation with certain PT-symmetric 573 1.0 6 potentials via deep learning. Chaos, 2022, 32, . Interpretable machine-learning identification of the crossover from subradiance to superradiance in an atomic array. Journal of Physics B: Atomic, Molecular and Optical Physics, 0, , .Predictive Modelling of Statistical Downscaling Based on Hybrid Machine Learning Model for Daily 575 1.1 8 Rainfall in East-Coast Peninsular Malaysia. Symmetry, 2022, 14, 927. Interfacing finite elements with deep neural operators for fast multiscale modeling of mechanics 3.4 38 problems. Computer Methods in Applied Mechanics and Engineering, 2022, 402, 115027. A method for ï¬nding the background potential of quantum devices from scanning gate microscopy 577 2.4 2 data using machine learning. Machine Learning: Science and Technology, 0, , . Learning algorithm reflecting universal scaling behavior near phase transitions. Physical Review 1.3 Research, 2022, 4, . Inverse molecular design from first principles: Tailoring organic chromophore spectra for 579 1.2 6 optoelectronic applications. Journal of Chemical Physics, 2022, 156, 180901. A machine learning approach to correct for mass resolution effects in simulated halo clustering 580 1.6 statistics. Monthly Notices of the Royal Astronomical Society, 2022, 513, 4318-4331. Research on Intelligent Bodybuilding System Based on Machine Learning, Journal of Sensors, 2022, 581 0.6 2 2022, 1-8. Incremental learning of phase transition in Ising model: Preprocessing, finite-size scaling and critical 1.2 exponents. Physica A: Statistical Mechanics and Its Applications, 2022, 600, 127538. Reinforcement learning explains various conditional cooperation. Applied Mathematics and 583 7 1.4 Computation, 2022, 427, 127182. State Classification via a Random-Walk-Based Quantum Neural Network. Chinese Physics Letters, 2022, 584 39,050301. Quantum Continual Learning Overcoming Catastrophic Forgetting. Chinese Physics Letters, 2022, 39, 585 1.33 050303. Network-Initialized Monte Carlo Based on Generative Neural Networks. Chinese Physics Letters, 2022, 1.3 39,050701.

		CITATION REPORT		
#	Article		IF	CITATIONS
587	A New Look at the Spin Glass Problem from a Deep Learning Perspective. Entropy, 2022, 2	4, 697.	1.1	3
588	Soft mode in the dynamics of over-realizable online learning for soft committee machines. Review E, 2022, 105, .	Physical	0.8	0
589	The machine learning in lithium-ion batteries: A review. Engineering Analysis With Boundar 2022, 141, 1-16.	y Elements,	2.0	13
590	Forecasting molecular dynamics energetics of polymers in solution from supervised machin learning. Chemical Science, 2022, 13, 7021-7033.	ne	3.7	5
592	Role of stochastic noise and generalization error in the time propagation of neural-network quantum states. SciPost Physics, 2022, 12, .	2	1.5	9
595	Deep-Learning-Based Electrical Noise Removal Enables High Spectral Optoacoustic Contras Tissue. IEEE Transactions on Medical Imaging, 2022, 41, 3182-3193.	st in Deep	5.4	12
596	Neural Annealing and Visualization of Autoregressive Neural Networks in the Newman–N Condensed Matter, 2022, 7, 38.	100re Model.	0.8	3
597	Finite-Size Scaling on a Digital Quantum Simulator Using Quantum Restricted Boltzmann N Frontiers in Physics, 0, 10, .	Machine.	1.0	2
598	Renormalization-group-inspired neural networks for computing topological invariants. Phys Review B, 2022, 105, .	sical	1.1	1
599	Local order metrics for two-phase media across length scales*. Journal of Physics A: Mather and Theoretical, 2022, 55, 274003.	matical	0.7	7
600	Applying machine learning methods to prediction problems of lattice observables. SciPost Proceedings, 2022, , .	Physics	0.2	0
601	Metalearning and data augmentation for mass-generalized jet taggers. Physical Review D, 2	2022, 105, .	1.6	4
602	Unveiling the pole structure of S-matrix using deep learning. Suplemento De La Revista Me FÃsica, 2022, 3, .	xicana De	0.1	0
603	Bi-LSTM-Augmented Deep Neural Network for Multi-Gbps VCSEL-Based Visible Light Comm Sensors, 2022, 22, 4145.	unication Link.	2.1	6
604	Efficient Bayesian phase estimation via entropy-based sampling. Quantum Science and Tec 7, 035022.	hnology, 2022,	2.6	1
605	Reinforcement learning to reduce failures in SOT-MRAM switching. Microelectronics Reliab 135, 114570.	ility, 2022,	0.9	0
606	Using machine learning to identify epidemic threshold in complex networks. , 2021, , .			0
607	Neural-network quantum states for periodic systems in continuous space. Physical Review 2022, 4, .	Research,	1.3	18

#	Article	IF	CITATIONS
608	Application of kernel ridge regression in predicting neutron-capture reaction cross-sections. Communications in Theoretical Physics, 2022, 74, 095302.	1.1	6
609	On the generalizability of artificial neural networks in spin models. SciPost Physics Core, 2022, 5, .	0.9	5
610	A machine learning-based methodology for pulse classification inÂdual-phase xenon time projection chambers. European Physical Journal C, 2022, 82, .	1.4	0
611	Self-learning emulators and eigenvector continuation. Physical Review Research, 2022, 4, .	1.3	12
612	Quantifying information of intracellular signaling: progress with machine learning. Reports on Progress in Physics, 2022, 85, 086602.	8.1	10
613	Deep-learning density functional theory Hamiltonian for efficient ab initio electronic-structure calculation. Nature Computational Science, 2022, 2, 367-377.	3.8	38
614	From predicting to learning dissipation from pair correlations of active liquids. Journal of Chemical Physics, 2022, 157, .	1.2	4
615	Deep learning approach to nuclear masses and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>α</mml:mi> -decay half-lives. Physical Review C, 2022, 105, .</mml:math 	1.1	8
616	Estimating elliptic flow coefficient in heavy ion collisions using deep learning. Physical Review D, 2022, 105, .	1.6	7
617	Estimating the Euclidean quantum propagator with deep generative modeling of Feynman paths. Physical Review B, 2022, 105, .	1.1	6
618	Deciphering quantum fingerprints in electric conductance. Nature Communications, 2022, 13, .	5.8	3
619	A BFRC compressive strength prediction method via kernel extreme learning machine-genetic algorithm. Construction and Building Materials, 2022, 344, 128076.	3.2	6
620	Calculation of the Ground States of Spin Glasses Using a Restricted Boltzmann Machine. JETP Letters, 2022, 115, 466-470.	0.4	2
621	Development of a resource-efficient FPGA-based neural network regression model for the ATLAS muon trigger upgrades. European Physical Journal C, 2022, 82, .	1.4	3
622	Major Challenges and Future Approaches in the Employment of Blockchain and Machine Learning Techniques in the Health and Medicine. Security and Communication Networks, 2022, 2022, 1-11.	1.0	11
623	Graph representation-based machine learning framework for predicting electronic band structures of quantum-confined nanostructures. Science China Materials, 2022, 65, 3157-3170.	3.5	5
624	Experimental Quantumâ€Enhanced Machine Learning in Spinâ€Based Systems. Advanced Quantum Technologies, 0, , 2200005.	1.8	3
625	Transfer learning of phase transitions in percolation and directed percolation. Physical Review E, 2022, 105, .	0.8	4

#	Article	IF	CITATIONS
626	Quantum neural networks force fields generation. Machine Learning: Science and Technology, 2022, 3, 035004.	2.4	5
627	Inferring Markovian quantum master equations of few-body observables in interacting spin chains. New Journal of Physics, 0, , .	1.2	0
628	Predicting the Properties of High-Performance Epoxy Resin by Machine Learning Using Molecular Dynamics Simulations. Nanomaterials, 2022, 12, 2353.	1.9	4
629	Configuration-Induced Directional Nonlinearity Enhancement in Composite Thermal Media. Frontiers in Physics, 0, 10, .	1.0	2
630	Singleâ€Shot Recognition of 3D Phase Images With Deep Learning. Laser and Photonics Reviews, 2022, 16, .	4.4	7
631	Stochastic normalizing flows as non-equilibrium transformations. Journal of High Energy Physics, 2022, 2022, .	1.6	13
632	Machine-Learning-Assisted Acceleration on High-Symmetry Materials Search: Space Group Predictions from Band Structures. Journal of Physical Chemistry C, 2022, 126, 12264-12273.	1.5	2
633	Metamaterials: From fundamental physics to intelligent design. , 2023, 2, 5-29.		30
634	Learning deep Implicit Fourier Neural Operators (IFNOs) with applications to heterogeneous material modeling. Computer Methods in Applied Mechanics and Engineering, 2022, 398, 115296.	3.4	21
635	Recent progress in generative adversarial networks applied to inversely designing inorganic materials: A brief review. Computational Materials Science, 2022, 213, 111612.	1.4	8
636	On the neural network flow of spin configurations. Computational Materials Science, 2022, 213, 111634.	1.4	1
637	Efficient and robust entanglement generation with deep reinforcement learning for quantum metrology. New Journal of Physics, 2022, 24, 083011.	1.2	5
638	Quantum optimal control in quantum technologies. Strategic report on current status, visions and goals for research in Europe. EPJ Quantum Technology, 2022, 9, .	2.9	123
639	Causal Paths Allowing Simultaneous Control of Multiple Nanoparticle Properties Using Multiâ€Target Bayesian Inference. Advanced Theory and Simulations, 2022, 5, .	1.3	2
640	High-dimensional encryption in optical fibers using spatial modes of light and machine learning. Machine Learning: Science and Technology, 2022, 3, 035006.	2.4	4
641	Machine learning for microalgae detection and utilization. Frontiers in Marine Science, 0, 9, .	1.2	16
642	Machine learning estimation of magnetic parameters and classification of magnetic vortex states. Journal of Applied Physics, 2022, 132, 043904.	1.1	1
643	Variational quantum algorithm for Gaussian discrete solitons and their boson sampling. Physical Review A, 2022, 106, .	1.0	2

#	Article	IF	CITATIONS
644	Exploring superadditivity of coherent information of noisy quantum channels through genetic algorithms. Physical Review A, 2022, 106, .	1.0	2
645	Genetic improvement of shoreline evolution forecasting models. , 2022, , .		2
646	Machine learning predictions for local electronic properties of disordered correlated electron systems. Physical Review B, 2022, 106, .	1.1	4
647	A Critical Significance of Using Machine Learning in Strengthening Financial Risk Management in Banking Firms. , 2022, , .		3
648	A Face Spoof Detection in Artificial Neural Networks Using Concepts of Machine Learning. , 2022, , .		0
649	EL-RFSVM: An Ensemble Learning Framework Based on Support Vector Machine and Random Forests for Labour Resource Allocation. , 2022, , .		0
650	Classification of Apples using Machine Learning. , 2022, , .		12
651	Dark soliton detection using persistent homology. Chaos, 2022, 32, 073133.	1.0	3
652	Monitoring Fast Superconducting Qubit Dynamics Using a Neural Network. Physical Review X, 2022, 12,	2.8	9
653	Towards an Approximation-Aware Computational Workflow Framework for Accelerating Large-Scale Discovery Tasks. , 2022, , .		0
654	Semi-supervised physics guided deep learning framework: An application in modeling of gallium nitride based high electron mobility transistors. Journal of Applied Physics, 2022, 132, 044902.	1.1	0
655	Bayesian learning for optimal control of quantum many-body states in optical lattices. Physical Review A, 2022, 106, .	1.0	2
656	Data-driven model discovery of ideal four-wave mixing in nonlinear fibre optics. Scientific Reports, 2022, 12, .	1.6	11
657	Robust prediction of force chains in jammed solids using graph neural networks. Nature Communications, 2022, 13, .	5.8	10
658	Research on financial loan default risk prediction based on integrated model. , 2022, , .		0
659	Neighborhood-based inference and restricted Boltzmann machine for microbe and drug associations prediction. PeerJ, 0, 10, e13848.	0.9	3
660	Neural network analysis of quasistationary magnetic fields in microcoils driven by short laser pulses. Scientific Reports, 2022, 12, .	1.6	9
661	Toward Deep-Learning-Assisted Spectrally Resolved Imaging of Magnetic Noise. Physical Review Applied, 2022, 18, .	1.5	1

	Сітатіо	on Report	
#	Article	IF	CITATIONS
662	Conditional Born machine for Monte Carlo event generation. Physical Review A, 2022, 106, .	1.0	3
663	NetKet 3: Machine Learning Toolbox for Many-Body Quantum Systems. , 0, , .		30
664	Machine Learning Guides the Solution of Blocks Relocation Problem in Container Terminals. Transportation Research Record, 0, , 036119812211171.	1.0	1
665	Emerging technologies for combating pandemics. Expert Review of Medical Devices, 2022, 19, 533-538.	1.4	3
666	Gradient dynamics in reinforcement learning. Physical Review E, 2022, 106, .	0.8	1
667	DropTrack—Automatic droplet tracking with YOLOv5 and DeepSORT for microfluidic applications. Physics of Fluids, 2022, 34, .	1.6	11
668	Matrix product states with backflow correlations. Physical Review B, 2022, 106, .	1.1	3
669	Machine learning in interpretation of electronic core-level spectra. Journal of Electron Spectroscopy and Related Phenomena, 2022, 260, 147243.	0.8	4
670	Experimental demonstration of adversarial examples in learning topological phases. Nature Communications, 2022, 13, .	5.8	5
671	Time-dependent Dirac Equation with Physics-Informed Neural Networks: Computation and Properties. Computer Physics Communications, 2022, 280, 108474.	3.0	2
672	Solutions to large beam-deflection problems by Taylor series and Padé approximant for compliant mechanisms. Mechanism and Machine Theory, 2022, 177, 105033.	2.7	6
674	Predicting glass structure by physics-informed machine learning. Npj Computational Materials, 2022, 8,	3.5	9
675	Machine-assisted agent-based modeling: Opening the black box. Journal of Computational Science, 2022, 64, 101854.	1.5	8
676	Multi-task learning on nuclear masses and separation energies with the kernel ridge regression. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2022, 834, 137394.	1.5	14
677	Prediction of threshold voltage of GaN HEMTs using deep learning model designed by genetic algorithm. Materials Science in Semiconductor Processing, 2022, 152, 107057.	1.9	2
678	Machine fault detection methods based on machine learning algorithms: A review. Mathematical Biosciences and Engineering, 2022, 19, 11453-11490.	1.0	13
679	Pure state tomography with adaptive Pauli measurements. , 2022, 52, 1.		1
680	Numerical study on discharge characteristics of atmospheric dielectric barrier discharges by integrating machine learning. Wuli Xuebao/Acta Physica Sinica, 2022, .	0.2	0

#	Article	IF	Citations
681	Accelerating colloidal quantum dot innovation with algorithms and automation. Materials Advances, 2022, 3, 6950-6967.	2.6	7
682	Prediction ofÂChaotic Attractors inÂQuasiperiodically Forced Logistic Map Using Deep Learning. Springer Proceedings in Complexity, 2022, , 649-657.	0.2	0
683	Machine Learning Spectral Indicators of Topology. Springer Theses, 2022, , 79-93.	0.0	1
684	Emergence in Condensed Matter Physics. SpringerBriefs in Physics, 2022, , 11-43.	0.2	0
685	Quantum machine learning for chemistry and physics. Chemical Society Reviews, 2022, 51, 6475-6573.	18.7	40
687	Modeling Systems with Machine Learning BasedÂDifferential Equations. SSRN Electronic Journal, 0, , .	0.4	1
688	Numerical study on discharge characteristics of atmospheric dielectric barrier discharges by integrating machine learning. Wuli Xuebao/Acta Physica Sinica, 2022, .	0.2	0
689	Automated pH Adjustment Driven by Robotic Workflows and Active Machine Learning. Chemical Engineering Journal, 2023, 451, 139099.	6.6	9
690	Deep learning for non-parameterized MEMS structural design. Microsystems and Nanoengineering, 2022, 8, .	3.4	12
691	Persistent homology analysis of a generalized Aubry-André-Harper model. Physical Review B, 2022, 106, .	1.1	7
692	DADApy: Distance-based analysis of data-manifolds in Python. Patterns, 2022, 3, 100589.	3.1	6
693	Introduction to the dynamics of disordered systems: Equilibrium and gradient descent. Physica A: Statistical Mechanics and Its Applications, 2023, 631, 128152.	1.2	3
694	Data-centric machine learning in quantum information science. Machine Learning: Science and Technology, 2022, 3, 04LT01.	2.4	6
695	Thermodynamics and dielectric response of BaTiO3 by data-driven modeling. Npj Computational Materials, 2022, 8, .	3.5	15
696	Subaging in underparametrized deep neural networks. Machine Learning: Science and Technology, 2022, 3, 035013.	2.4	0
697	Decoding Optical Spectra with Neural Networks to Monitor the Elimination of Carbon Nanoagents from the Body. Optical Memory and Neural Networks (Information Optics), 2022, 31, 256-265.	0.4	1
698	Deep Learning the Functional Renormalization Group. Physical Review Letters, 2022, 129, .	2.9	11
699	Metric learning for kernel ridge regression: assessment of molecular similarity. Machine Learning: Science and Technology, 2022, 3, 035015.	2.4	4

#	Article	IF	CITATIONS
700	A Posteriori Learning for Quasi eostrophic Turbulence Parametrization. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	14
701	Using machine learning to improve neutron identification in water Cherenkov detectors. Frontiers in Big Data, 0, 5, .	1.8	2
702	Provably efficient machine learning for quantum many-body problems. Science, 2022, 377, .	6.0	65
703	Machine learning-accelerated chemistry modeling of protoplanetary disks. Astronomy and Astrophysics, 2022, 666, L8.	2.1	4
704	Predicting solid state material platforms for quantum technologies. Npj Computational Materials, 2022, 8, .	3.5	3
705	Machine Learning for Detection and Prediction of Crop Diseases and Pests: A Comprehensive Survey. Agriculture (Switzerland), 2022, 12, 1350.	1.4	39
706	Designing quantum many-body matter with conditional generative adversarial networks. Physical Review Research, 2022, 4, .	1.3	6
707	Machine Learning for Harnessing Thermal Energy: From Materials Discovery to System Optimization. ACS Energy Letters, 2022, 7, 3204-3226.	8.8	11
708	The role of coherence theory in attractor quantum neural networks. Quantum - the Open Journal for Quantum Science, 0, 6, 794.	0.0	1
709	Rapid detection of phase transitions from Monte Carlo samples before equilibrium. SciPost Physics, 2022, 13, .	1.5	0
710	Imaging and computing with disorder. Nature Physics, 2022, 18, 980-985.	6.5	14
711	Replacing Neural Networks by Optimal Analytical Predictors for the Detection of Phase Transitions. Physical Review X, 2022, 12, .	2.8	6
712	Distance Measurement by Neural Network Learning of Near-Field Microwave Reflection Spectra. Journal of Sensors, 2022, 2022, 1-9.	0.6	0
713	Entanglement features of random neural network quantum states. Physical Review B, 2022, 106, .	1.1	5
714	The development of machine learning in lung surgery: A narrative review. Frontiers in Surgery, 0, 9, .	0.6	0
715	Analysis of Neural Network Predictions for Entanglement Self-Catalysis. Brazilian Journal of Physics, 2022, 52, .	0.7	1
716	<i>Colloquium</i> : Machine learning in nuclear physics. Reviews of Modern Physics, 2022, 94, .	16.4	57
717	A machine learning algorithm for direct detection of axion-like particle domain walls. Physics of the Dark Universe, 2022, 37, 101118.	1.8	3

#	Article	IF	CITATIONS
718	Approximating solutions of the Chemical Master equation using neural networks. IScience, 2022, 25, 105010.	1.9	17
719	Symmetry-aware deep neural networks for high harmonic spectroscopy in solids. Optics Express, 0, , .	1.7	0
720	Three learning stages and accuracy–efficiency tradeoff of restricted Boltzmann machines. Nature Communications, 2022, 13, .	5.8	5
721	Optimizing measurement-based cooling by reinforcement learning. Physical Review A, 2022, 106, .	1.0	1
722	Machine learning for excitation energy transfer dynamics. Physical Review Research, 2022, 4, .	1.3	4
723	Engine Overheating Prediction with Machine Learning Using Gaussian Mixture Model (GMM). , 0, , .		0
724	Machine‣earning Spectral Indicators of Topology. Advanced Materials, 2022, 34, .	11.1	10
725	Investigation on Deep Learning Model of College English Based on Multimodal Learning Method. Computational Intelligence and Neuroscience, 2022, 2022, 1-10.	1.1	1
726	Machine learning models for photonic crystals band diagram prediction and gap optimisation. Photonics and Nanostructures - Fundamentals and Applications, 2022, 52, 101076.	1.0	6
727	Modelling dynamic 3D heat transfer in laser material processing based on physics informed neural networks. EPJ Web of Conferences, 2022, 266, 02010.	0.1	1
728	Machine learning assisted droplet trajectories extraction in dense emulsions. Communications in Applied and Industrial Mathematics, 2022, 13, 70-77.	0.6	0
729	Research and Application of Mathematical Knowledge Graph Based on Ontology Learning. Lecture Notes in Electrical Engineering, 2022, , 1387-1394.	0.3	0
730	Ancient Egyptian Hieroglyphs Segmentation and Classification with Convolutional Neural Networks. Communications in Computer and Information Science, 2022, , 126-139.	0.4	3
731	A Machine Learning approach to the classification of chemo-structural determinants in label-free SERS detection of proteins. , 2022, , .		1
732	Quantum Multi-Agent Reinforcement Learning via Variational Quantum Circuit Design. , 2022, , .		18
733	Hybrid Classical-Quantum Optimization for Ensemble Learning. , 2022, , .		2
734	Training-free hyperparameter optimization of neural networks for electronic structures in matter. Machine Learning: Science and Technology, 2022, 3, 045008.	2.4	5
735	Unsupervised Learning of Rydberg Atom Array Phase Diagram with Siamese Neural Networks. New Journal of Physics, 0, , .	1.2	0

#	Article	IF	CITATIONS
736	Flexible learning of quantum states with generative query neural networks. Nature Communications, 2022, 13, .	5.8	3
737	Measurement-induced criticality as a data-structure transition. Physical Review B, 2022, 106, .	1.1	18
738	Estimation and Mapping of Actual and Potential Grassland Root Carbon Storage: A Case Study in the Altay Region, China. Agronomy, 2022, 12, 2632.	1.3	0
739	Artificial neural network states for nonadditive systems. Physical Review B, 2022, 106, .	1.1	0
740	Deep-learning density functionals for gradient descent optimization. Physical Review E, 2022, 106, .	0.8	2
741	Observing how deep neural networks understand physics through the energy spectrum of 1D quantum mechanics. Progress of Theoretical and Experimental Physics, 2022, 2022, .	1.8	1
742	Generalization properties of restricted Boltzmann machine for short-range order. Chinese Physics B, 2023, 32, 067401.	0.7	1
743	Computational design of magnetic molecules and their environment using quantum chemistry, machine learning and multiscale simulations. Nature Reviews Chemistry, 2022, 6, 761-781.	13.8	21
744	Heat Conduction Plate Layout Optimization Using Physics-Driven Convolutional Neural Networks. Applied Sciences (Switzerland), 2022, 12, 10986.	1.3	1
745	Operationally meaningful representations of physical systems in neural networks. Machine Learning: Science and Technology, 2022, 3, 045025.	2.4	3
746	A Multidimensional Graph Fourier Transformation Neural Network for Vehicle Trajectory Prediction. , 2022, , .		2
747	Obtaining Electronic Properties of Molecules through Combining Density Functional Tight Binding with Machine Learning. Journal of Physical Chemistry Letters, 2022, 13, 10132-10139.	2.1	10
748	Schwarz waveform relaxation-learning for advection-diffusion-reaction equations. Journal of Computational Physics, 2023, 473, 111657.	1.9	1
749	Decoding conformal field theories: From supervised to unsupervised learning. Physical Review Research, 2022, 4, .	1.3	0
750	Advancements in Dentistry with Artificial Intelligence: Current Clinical Applications and Future Perspectives. Healthcare (Switzerland), 2022, 10, 2188.	1.0	21
751	Detecting the chiral magnetic effect via deep learning. Physical Review C, 2022, 106, .	1.1	5
752	A simple guide from machine learning outputs to statistical criteria in particle physics. SciPost Physics Core, 2022, 5, .	0.9	1
753	Decoding the nuclear symmetry energy event-by-event in heavy-ion collisions with machine learning. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2022, 835, 137508.	1.5	5

	CITATION RE	CITATION REPORT	
# 754	ARTICLE Effects of environmental and anthropogenic factors on the distribution and abundance of microplastics in freshwater ecosystems. Science of the Total Environment, 2023, 856, 159030.	IF 3.9	CITATIONS
755	Combination of explainable machine learning and conceptual density functional theory: applications for the study of key solvation mechanisms. Physical Chemistry Chemical Physics, 2022, 24, 28314-28324.	1.3	3
756	Publisher's Note:. Astroparticle Physics, 2023, 147, 102794.	1.9	14
757	Application of machine and deep learning algorithms in optical microscopic detection of Plasmodium: A malaria diagnostic tool for the future. Photodiagnosis and Photodynamic Therapy, 2022, 40, 103198.	1.3	11
758	Machine Learning for Optical Scanning Probe Nanoscopy. Advanced Materials, 2023, 35, .	11.1	8
759	Random matrix analysis of deep neural network weight matrices. Physical Review E, 2022, 106, .	0.8	5
760	Experimental Identification of the Secondâ€Order Nonâ€Hermitian Skin Effect with Physicsâ€Graphâ€Informed Machine Learning. Advanced Science, 2022, 9, .	5.6	27
761	Analysis of the Application Efficiency of TensorFlow and PyTorch in Convolutional Neural Network. Sensors, 2022, 22, 8872.	2.1	7
762	Unsupervised machine learning approaches to the q-state Potts model. European Physical Journal B, 2022, 95, .	0.6	3
763	Machine learning of pair-contact process with diffusion. Scientific Reports, 2022, 12, .	1.6	1
764	Harnessing interpretable machine learning for holistic inverse design of origami. Scientific Reports, 2022, 12, .	1.6	1
765	Physics-informed Machine Learning for Modeling Turbulence in Supernovae. Astrophysical Journal, 2022, 940, 26.	1.6	6
766	A perspective on machine learning and data science for strongly correlated electron problems. Carbon Trends, 2022, 9, 100231.	1.4	4
767	Feature extended energy landscape model for interpreting coercivity mechanism. Communications Physics, 2022, 5, .	2.0	5
768	A method for approximating optimal statistical significances with machine-learned likelihoods. European Physical Journal C, 2022, 82, .	1.4	6
769	Modeling systems with machine learning based differential equations. Chaos, Solitons and Fractals, 2022, 165, 112872.	2.5	0
770	Extending the reach of quantum computing for materials science with machine learning potentials. AIP Advances, 2022, 12, 115321.	0.6	1
771	Learning physics-consistent particle interactions. , 2022, 1, .		1

#	Article	IF	CITATIONS
772	Unsupervised machine learning of quenched gauge symmetries: A proof-of-concept demonstration. Physical Review Research, 2022, 4, .	1.3	0
773	Continuous-Mixture Autoregressive Networks Learning the Kosterlitz-Thouless Transition. Chinese Physics Letters, 2022, 39, 120502.	1.3	8
774	Electronic Synaptic Devices with High Thermostability Induced by Embedded Tungsten Disulfide Quantum Dots for Machine Learning. Advanced Electronic Materials, 0, , 2200876.	2.6	0
775	Tailoring Structureâ€Borne Sound through Bandgap Engineering in Phononic Crystals and Metamaterials: A Comprehensive Review. Advanced Functional Materials, 2023, 33, .	7.8	37
776	Towards Explainable AutoML Using Error Decomposition. Lecture Notes in Computer Science, 2022, , 177-190.	1.0	0
777	Noise-Adaptive Intelligent Programmable Meta-Imager. , 2022, 2022, .		4
778	Photonic quantum Hall effects. , 2024, , 575-586.		0
779	Neural network potentials for chemistry: concepts, applications and prospects. , 2023, 2, 28-58.		17
780	Applying deep reinforcement learning to the HP model for protein structure prediction. Physica A: Statistical Mechanics and Its Applications, 2023, 609, 128395.	1.2	2
781	HADB: A materials-property database for hard-coating alloys. Thin Solid Films, 2023, 766, 139627.	0.8	1
782	Analysis of the effect of additives on the fermentation quality of whole-plant corn silage based on machine learning. Optik, 2023, 273, 170444.	1.4	2
783	A deep learning method for the trajectory reconstruction of cosmic rays with the DAMPE mission. Astroparticle Physics, 2023, 146, 102795.	1.9	2
784	Readability Research: An Interdisciplinary Approach. Foundations and Trends in Human-Computer Interaction, 2022, 16, 214-324.	1.8	6
785	CLASSIFICATION OF Phaseolus lunatus L. USING IMAGE ANALYSIS AND MACHINE LEARNING MODELS. Revista Caatinga, 2022, 35, 772-782.	0.3	1
786	Convolutional neural network-based image recognition for animals. , 2022, , .		0
787	The physics of learning machines. Contemporary Physics, 2022, 63, 34-60.	0.8	1
788	Hammering with the telescope. Frontiers in Artificial Intelligence, 0, 5, .	2.0	0
789	Thermodynamics of the Ising Model Encoded in Restricted Boltzmann Machines. Entropy, 2022, 24, 1701.	1.1	2

#	Article	IF	CITATIONS
790	Neural tensor contractions and the expressive power of deep neural quantum states. Physical Review B, 2022, 106, .	1.1	18
791	Implementation of BP neural network acceleration based on FPGA. , 2022, , .		1
792	A Comparative Study for Machine Learning Models in Retail Demand Forecasting. Smart Innovation, Systems and Technologies, 2023, , 273-282.	0.5	0
793	Machine learning phase transitions of the three-dimensional Ising universality class*. Chinese Physics C, 2023, 47, 034101.	1.5	3
794	Quantum Teleportation Error Suppression Algorithm Based on Convolutional Neural Networks and Quantum Topological Semion Codes. Quantum Engineering, 2022, 2022, 1-10.	1.2	3
795	Partial quantisation scheme for optimising the performance of hopfield network. Frontiers in Physics, 0, 10, .	1.0	0
796	Supervised Hebbian learning. Europhysics Letters, 2023, 141, 11001.	0.7	10
797	Number-state preserving tensor networks as classifiers for supervised learning. Frontiers in Physics, 0, 10, .	1.0	3
798	Accelerated motional cooling with deep reinforcement learning. Physical Review Research, 2022, 4, .	1.3	2
799	Parallel Learning between Science for AI and AI for Science: A Brief Overview and Perspective. , 2022, , .		1
800	Toward a Mobility-Preserving Coarse-Grained Model: A Data-Driven Approach. Journal of Chemical Theory and Computation, 2022, 18, 7108-7120.	2.3	4
801	Machine learning-aided atomic structure identification of interfacial ionic hydrates from AFM images. National Science Review, 2023, 10, .	4.6	4
802	Artificial Intelligence and Advanced Materials. Advanced Materials, 2023, 35, .	11.1	10
804	Searching topological magnetic textures with machine learning. Physics-Uspekhi, 0, , .	0.8	0
805	Machine-Learning-Assisted Manipulation and Readout of Molecular Spin Qubits. Physical Review Applied, 2022, 18, .	1.5	1
806	Controlling quantum effects in enhanced strong-field ionisation with machine-learning techniques. Journal of Physics B: Atomic, Molecular and Optical Physics, 2022, 55, 245501.	0.6	1
807	A universal training scheme and the resulting universality for machine learning phases. Progress of Theoretical and Experimental Physics, 2023, 2023, .	1.8	3
808	Assessing the foundation and applicability of some dark energy fluid models in the Dirac-Born-Infeld framework. International Journal of Modern Physics A, 0, , .	0.5	4

#	Article	IF	CITATIONS
809	Neural network evidence of a weakly first-order phase transition for the two-dimensional 5-state Potts model. European Physical Journal Plus, 2022, 137, .	1.2	1
810	Stable Many-Body Resonances in Open Quantum Systems. Symmetry, 2022, 14, 2562.	1.1	1
811	Denoising scanning tunneling microscopy images of graphene with supervised machine learning. Physical Review Materials, 2022, 6, .	0.9	6
812	A transferable recommender approach for selecting the best density functional approximations in chemical discovery. Nature Computational Science, 2023, 3, 38-47.	3.8	10
813	Emulating quantum dynamics with neural networks via knowledge distillation. Frontiers in Materials, 0, 9, .	1.2	1
814	Machine learning-assisted materials development and device management in batteries and supercapacitors: performance comparison and challenges. Journal of Materials Chemistry A, 2023, 11, 3904-3936.	5.2	5
815	Machine learning based nonlinear adaptive optimal control of capacitive micro-actuator subjected to electrostatic field. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2023, 45, .	0.8	0
816	Machine learning and artificial intelligence in CNC machine tools, A review. , 2023, 2, 100009.		21
817	Quantum Multiagent Actor–Critic Neural Networks for Internet-Connected Multirobot Coordination in Smart Factory Management. IEEE Internet of Things Journal, 2023, 10, 9942-9952.	5.5	7
818	Artificial intelligence and machine learning for quantum technologies. Physical Review A, 2023, 107, .	1.0	23
819	SYMBA: symbolic computation of squared amplitudes in high energy physics with machine learning. Machine Learning: Science and Technology, 2023, 4, 015007.	2.4	3
820	Unsupervised Data-Driven Classification of Topological Gapped Systems with Symmetries. Physical Review Letters, 2023, 130, .	2.9	5
821	Categorical Variable Mapping Considerations in Classification Problems: Protein Application. Mathematics, 2023, 11, 279.	1.1	0
822	Framework for Contrastive Learning Phases of Matter Based on Visual Representations. Chinese Physics Letters, 2023, 40, 027501.	1.3	1
823	Reconstruction of fast neutron direction in segmented organic detectors using deep learning. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2023, 1049, 168024.	0.7	1
824	Machine learning applications for urban photovoltaic potential estimation: A survey. Neurocomputing, 2023, 526, 80-95.	3.5	1
825	Data-driven many-body potentials from density functional theory for aqueous phase chemistry. Chemical Physics Reviews, 2023, 4, .	2.6	4
826	On-line evaluation and monitoring technology for material surface integrity in laser shock peening – A review. Journal of Materials Processing Technology, 2023, 313, 117851.	3.1	15

#	Article	IF	Citations
827	Proactive Push Research on Personalized Learning Resources Based on Machine Learning. , 2022, , .		1
828	Neural-network quantum states for a two-leg Bose-Hubbard ladder under magnetic flux. Physical Review A, 2022, 106, .	1.0	3
829	Data Analytics and Machine Learning for Reliable Energy Management: A Case Study. , 2022, , .		1
830	Inferring the Physics of Structural Evolution of Multicomponent Polymers via Machine-Learning-Accelerated Method. Chinese Journal of Polymer Science (English Edition), 2023, 41, 1377-1385.	2.0	1
831	Tuneable Gaussian entanglement in levitated nanoparticle arrays. Npj Quantum Information, 2022, 8, .	2.8	2
832	Exploring Explicit Coarse-Grained Structure in Artificial Neural Networks. Chinese Physics Letters, 2023, 40, 020501.	1.3	1
833	Presence and Absence of Barren Plateaus in Tensor-Network Based Machine Learning. Physical Review Letters, 2022, 129, .	2.9	11
834	Mateverse, the Future Materials Science Computation Platform Based on Metaverse. Journal of Physical Chemistry Letters, 2023, 14, 148-157.	2.1	4
835	Unsupervised generalization of correlated quantum dynamics on disordered lattices. Physical Review A, 2023, 107, .	1.0	0
836	Unsupervised and supervised learning of interacting topological phases from single-particle correlation functions. SciPost Physics, 2023, 14, .	1.5	13
837	Exponential data encoding for quantum supervised learning. Physical Review A, 2023, 107, .	1.0	7
838	Relevant Analytic Spontaneous Magnetization Relation for the Face-Centered-Cubic Ising Lattice. Entropy, 2023, 25, 197.	1.1	0
839	Unsupervised learning of interacting topological phases from experimental observables. Fundamental Research, 2023, , .	1.6	1
840	Deep Reinforcement Learning for Preparation of Thermal and Prethermal Quantum States. Physical Review Applied, 2023, 19, .	1.5	2
841	Simple deep-learning approach for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>α</mml:mi> -decay half-life studies. Physical Review C, 2023, 107, .</mml:math 	1.1	2
842	Machine learning for nanoplasmonics. Nature Nanotechnology, 2023, 18, 111-123.	15.6	15
843	Role of Buccal Cells in Neurodegeneration. , 2023, , 1-16.		0
844	Assessing Metabolic Markers in Glioblastoma Using Machine Learning: A Systematic Review. Metabolites, 2023, 13, 161.	1.3	1

#	Article	IF	CITATIONS
845	Analysis and design of transition radiation in layered uniaxial crystals using Tandem neural networks. Journal of the Optical Society of America B: Optical Physics, 0, , .	0.9	0
846	Machine Learning Reveals Memory of the Parent Phases in Ferroelectric Relaxors Ba(Ti1â^'x\$_{1-x}\$,Zr) Tj ETQq1	1 0,7843 1.3	14 ₀ rgBT /Ove
847	Optimization of TCP Congestion Control Algorithms Loss-Based in Wireless Network. Communications in Computer and Information Science, 2023, , 381-392.	0.4	0
848	Shielded Reinforcement Learning: A review of reactive methods for safe learning. , 2023, , .		0
849	<mml:math <br="" display="inline" id="d1e1121" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si485.svg"><mml:mi>p</mml:mi></mml:math> -adic statistical field theory and deep belief networks. Physica A: Statistical Mechanics and Its Applications, 2023, 612, 128492.	1.2	4
850	Egyptian Hieroglyphs Segmentation with Convolutional Neural Networks. Algorithms, 2023, 16, 79.	1.2	5
851	mlpack 4: a fast, header-only C++ machine learning library. Journal of Open Source Software, 2023, 8, 5026.	2.0	2
852	Taming hyperparameter tuning in continuous normalizing flows using the JKO scheme. Scientific Reports, 2023, 13, .	1.6	2
853	Machine learning light hypernuclei. Nuclear Physics A, 2023, 1032, 122625.	0.6	2
854	Physical information-fused deep learning model ensembled with a subregion-specific sampling method for predicting flood dynamics. Journal of Hydrology, 2023, 620, 129465.	2.3	4
855	Study of phase transition of Potts model with Domain Adversarial Neural Network. Physica A: Statistical Mechanics and Its Applications, 2023, 617, 128666.	1.2	3
856	Diagnosis of ultrafast ultraintense laser pulse characteristics by machine-learning-assisted electron spin. Matter and Radiation at Extremes, 2023, 8, .	1.5	1
857	Photon/electron classification in liquid argon detectors by means of Soft Computing. Engineering Applications of Artificial Intelligence, 2023, 122, 106079.	4.3	0
858	New metric formulas that include measurement errors in machine learning for natural sciences. Expert Systems With Applications, 2023, 224, 120013.	4.4	0
859	Sophisticated deep learning with on-chip optical diffractive tensor processing. Photonics Research, 2023, 11, 1125.	3.4	4
860	Identifying lightning structures via machine learning. Chaos, Solitons and Fractals, 2023, 170, 113346.	2.5	1
861	Ultra high energy cosmic rays The intersection of the Cosmic and Energy Frontiers. Astroparticle Physics, 2023, 149, 102819.	1.9	10
862	Machine Learning Approach in Human Resources Department. Advances in Computer and Electrical Engineering Book Series, 2023, , 271-294.	0.2	0

#	Article	IF	CITATIONS
863	Efficient numerical simulation of atmospheric pulsed discharges by introducing deep learning. Frontiers in Physics, 0, 11, .	1.0	2
864	Neural Network Driven by Space-time Partial Differential Equation for Predicting Sea Surface Temperature. , 2022, , .		2
865	Target Detection Framework for Lobster Eye X-Ray Telescopes with Machine-learning Algorithms. Astrophysical Journal, Supplement Series, 2023, 264, 43.	3.0	2
866	Nuclear charge radii in Bayesian neural networks revisited. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2023, 838, 137726.	1.5	12
867	Kernel-based quantum regressor models learning non-Markovianity. Physical Review A, 2023, 107, .	1.0	2
868	Physics-guided genetic programming for predicting field-monitored suction variation with effects of vegetation and atmosphere. Engineering Geology, 2023, 315, 107031.	2.9	0
869	Efficient numerical simulation on dielectric barrier discharges at atmospheric pressure integrated by deep neural network. Journal of Applied Physics, 2023, 133, .	1.1	3
870	Virtual distillation with noise dilution. Physical Review A, 2023, 107, .	1.0	2
871	Spatial distribution order parameter prediction of collective system using graph network. Chinese Physics B, 0, , .	0.7	1
872	Reigniting the power of artificial intelligence in education sector for the educators and students competence. , 2023, , 103-116.		5
873	Certificates of quantum many-body properties assisted by machine learning. Physical Review Research, 2023, 5, .	1.3	0
875	Learning quantum systems. Nature Reviews Physics, 2023, 5, 141-156.	11.9	24
876	Benchmarking energy consumption and latency for neuromorphic computing in condensed matter and particle physics. , 2023, 1, 016101.		3
877	Confinement in non-Abelian lattice gauge theory via persistent homology. Physical Review D, 2023, 107,	1.6	2
878	Quantum machine learning: from physics to software engineering. Advances in Physics: X, 2023, 8, .	1.5	10
879	Improving the performance of fermionic neural networks with the <scp>Slater</scp> exponential <i>Ansatz</i> . International Journal of Quantum Chemistry, 0, , .	1.0	0
880	Data-driven selection and spectral classification of white dwarf stars. Monthly Notices of the Royal Astronomical Society, 2023, 521, 760-771.	1.6	4
881	Data-driven approximation for extracting the transition dynamics of a genetic regulatory network with non-Gaussian Lévy noise. Journal of Statistical Mechanics: Theory and Experiment, 2023, 2023, 023403.	0.9	0

#	Article	IF	CITATIONS
882	Inverse design of microwave waveguide devices based on deep physics-informed neural networks. Wuli Xuebao/Acta Physica Sinica, 2023, 72, 080201.	0.2	0
883	Fundamental limits to learning closed-form mathematical models from data. Nature Communications, 2023, 14, .	5.8	4
884	QBoost for regression problems: solving partial differential equations. Quantum Information Processing, 2023, 22, .	1.0	0
885	Similarity assessment and model migration for measurement processes. International Journal of Quality and Reliability Management, 2023, ahead-of-print, .	1.3	0
886	Studies of different kernel functions in nuclear mass predictions with kernel ridge regression. Frontiers in Physics, 0, 11, .	1.0	2
887	Imaginary components of out-of-time-order correlator and information scrambling for navigating the learning landscape of a quantum machine learning model. Physical Review Research, 2023, 5, .	1.3	7
888	Machine learning phases in swarming systems. Machine Learning: Science and Technology, 2023, 4, 015028.	2.4	1
889	Machine learning coarse-grained models of dissolutive wetting: a droplet on soluble surfaces. Physical Chemistry Chemical Physics, 2023, 25, 7487-7495.	1.3	2
891	Foundations of machine learning for low-temperature plasmas: methods and case studies. Plasma Sources Science and Technology, 2023, 32, 024003.	1.3	8
892	Application of neural networks to the prediction of the compressive capacity of corroded steel plates. Frontiers in Built Environment, 0, 9, .	1.2	0
893	Machine learning nonequilibrium electron forces for spin dynamics of itinerant magnets. Npj Computational Materials, 2023, 9, .	3.5	3
894	Supernova search with active learning in ZTF DR3. Astronomy and Astrophysics, 2023, 672, A111.	2.1	1
895	Precision studies of QCD in the low energy domain of the EIC. Progress in Particle and Nuclear Physics, 2023, 131, 104032.	5.6	19
896	Characterization of a Driven Two-Level Quantum System by Supervised Learning. Entropy, 2023, 25, 446.	1.1	1
897	ESR-PINNs: Physics-Informed Neural Networks with Expansion-Shrinkage Resampling Selection Strategies. Chinese Physics B, O, , .	0.7	0
898	Prediction and Control in DNA Nanotechnology. ACS Applied Bio Materials, 2024, 7, 626-645.	2.3	5
899	A quantum information processing machine for computing by observables. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	1
900	Neural network-based control of an ultrafast laser. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2023, , 168195.	0.7	ο

#	Article	IF	CITATIONS
901	The Gulf of Mexico in trouble: Big data solutions to climate change science. Frontiers in Marine Science, 0, 10, .	1.2	4
902	Systematically improvable mean-field variational ansatz for strongly correlated systems: Application to the Hubbard model. Physical Review B, 2023, 107, .	1.1	2
903	Uncertainty-aware predictions of molecular x-ray absorption spectra using neural network ensembles. Physical Review Research, 2023, 5, .	1.3	9
904	Application of artificial neural networks for modeling of electronic excitation dynamics in 2D lattice: Direct and inverse problems. AIP Advances, 2023, 13, 035224.	0.6	0
905	Trigger Detection forÂtheÂsPHENIX Experiment viaÂBipartite Graph Networks withÂSet Transformer. Lecture Notes in Computer Science, 2023, , 51-67.	1.0	1
906	Metabolomics integrated with machine learning to discriminate the geographic origin of Rougui Wuyi rock tea. Npj Science of Food, 2023, 7, .	2.5	5
907	Neural-network solutions to stochastic reaction networks. Nature Machine Intelligence, 2023, 5, 376-385.	8.3	5
908	Deep learning representations for quantum many-body systems on heterogeneous hardware. Machine Learning: Science and Technology, 2023, 4, 015035.	2.4	1
909	A review of deep learning and machine learning techniques for hydrological inflow forecasting. Environment, Development and Sustainability, 2023, 25, 12189-12216.	2.7	6
910	Fill in the Blank: Transferrable Deep Learning Approaches to Recover Missing Physical Field Information. Advanced Materials, 2023, 35, .	11.1	6
911	Machine learning of the well-known things. Theoretical and Mathematical Physics(Russian) Tj ETQq0 0 0 rgBT /O	verloçk 10 0.3	0 Tf 50 342 Tc
912	Assessing machine learning adoption at the firm level: the moderating effect of the environmental context. Procedia Computer Science, 2023, 219, 1034-1042.	1.2	Ο
913	Learning the black hole metric from holographic conductivity. Physical Review D, 2023, 107, .	1.6	2
914	Application of Computer Vision in Machine Learning-Based Diagnosis of Water Production Mechanisms in Oil Wells. SPE Journal, 2023, 28, 2365-2384.	1.7	1
915	Classification of four-qubit entangled states via machine learning. Physical Review A, 2023, 107, .	1.0	3
916	Machine Learning Understands Knotted Polymers. Macromolecules, 2023, 56, 2899-2909.	2.2	3
917	Machine-learning screening of luminogens with aggregation-induced emission characteristics for fluorescence imaging. Journal of Nanobiotechnology, 2023, 21, .	4.2	1
918	Association between Posttreatment Serum Platelet-to-Lymphocyte Ratio and Distant Metastases in Patients with Hepatocellular Carcinoma Receiving Curative Radiation Therapy. Cancers, 2023, 15, 1978.	1.7	0

ARTICLE IF CITATIONS # Examination of machine learning for assessing physical effects: Learning the relativistic continuum 919 1.5 3 mass table with kernel ridge regression*. Chinese Physics C, 2023, 47, 074108. Two types of neural network representations of quantum mixed states. Wuli Xuebao/Acta Physica 0.2 Sinica, 2023, . Machine learning enables precise holographic characterization of colloidal materials in real time. 921 1.2 2 Soft Matter, 2023, 19, 3002-3014. Predicting <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>î²</mml:mi></mml:math> -decay energy 1.1 with machine learning. Physical Review C, 2023, 107, . Deep-neural-network approach to solving the <i>ab initio</i> 923 1.1 2 Review C, 2023, 107, . 924 Fabrication-Aware Joint Clustering in Freeform Space-Frames. Buildings, 2023, 13, 962. 1.4 A nonlinear autoregressive with external input neural network for predicting the nonlinear 925 dynamics of supercontinuum generation in optical fibers. Journal of the Optical Society of America B: 0.9 0 Optical Physics, 0, , . Reduced basis emulation of pairing in finite systems. Physical Review B, 2023, 107, . 1.1 926 927 Emergence of hierarchical modes from deep learning. Physical Review Research, 2023, 5, . 1.3 1 Machine learning amplitudes for faster event generation. Physical Review D, 2023, 107, . 1.6 Superpolynomial quantum-classical separation for density modeling. Physical Review A, 2023, 107, . 929 1.0 3 Generative Models as an Emerging Paradigm in the Chemical Sciences. Journal of the American 930 6.6 36 Chemical Society, 2023, 145, 8736-8750 Extracting electronic many-body correlations from local measurements with artificial neural 931 0.9 5 networks. SciPost Physics Core, 2023, 6, . Machine-learning detection of the Berezinskii-Kosterlitz-Thouless transition and the second-order 1.1 phase transition in XXZ models. Physical Review B, 2023, 107, . Optimized numerical gradient and Hessian estimation for variational quantum algorithms. Physical 933 1.0 1 Review A, 2023, 107, . Using machine learning to compress the matter transfer function <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> < mml:mi > T < /mml:mi > < mml:mo 934 stretchy="false">(</mml:mo></mml:mi>k</mml:mi><mml:mo</ml:mo</mml:mo></mml:math>. Physical Review D, 2023, 107. Uncertainty aware machine-learning-based surrogate models for particle accelerators: Study at the 935 0.6 1 Fermilab Booster Accelerator Complex. Physical Review Accelerators and Beams, 2023, 26, . Graphical User Interface for the Development of Probabilistic Convolutional Neural Networks. 1.2 Signals, 2023, 4, 297-314.

#	Article	IF	CITATIONS
943	Automated Radar Data Labeling through Computer Vision. , 2023, , .		0
945	Machine Learning: An Analytical Approach for Pattern Detection in Diabetes. Lecture Notes in Networks and Systems, 2023, , 135-145.	0.5	1
959	Integrated photonic platforms for quantum technology: a review. ISSS Journal of Micro and Smart Systems, 2023, 12, 83-104.	1.0	1
961	Discussing the Future Perspective of Machine Learning and Artificial Intelligence in COVID-19 Vaccination: A Review. Springer Proceedings in Mathematics and Statistics, 2023, , 151-160.	0.1	0
965	Deep learning for novel drug development. , 2023, , 263-284.		0
968	Challenges Encountered in the Implementation of Machine Learning in the Healthcare Industry. Springer Proceedings in Mathematics and Statistics, 2023, , 377-386.	0.1	0
970	Enhancing Education Performance through Machine Learning: A Study of Student Learning Outcomes Prediction Using GANs and ANNs. , 2023, , .		0
975	Quantum Machine Learning. , 2023, , 1-12.		1
979	The State of Art in Machine Learning Applications in Civil Engineering. Studies in Systems, Decision and Control, 2023, , 147-177.	0.8	1
984	Machine learning enabled rational design of atomic catalysts for electrochemical reactions. Materials Chemistry Frontiers, 2023, 7, 4445-4459.	3.2	3
1003	Approximation of Physicochemical Properties Based on a Message Passing Neural Network Approach. Studies in Computational Intelligence, 2023, , 15-26.	0.7	0
1010	Machine learning in nuclear physics at low and intermediate energies. Science China: Physics, Mechanics and Astronomy, 2023, 66, .	2.0	15
1016	A Machine Learning Approach for Predicting Emissions Based on GDP: A Case of South Africa in Comparison with the United Kingdom. Advances in African Economic, Social and Political Development, 2023, , 91-116.	0.1	0
1022	Role of Buccal Cells in Neurodegeneration. , 2023, , 245-260.		0
1031	Ab initio quantum chemistry with neural-network wavefunctions. Nature Reviews Chemistry, 2023, 7, 692-709.	13.8	8
1068	The Coming Decades of Quantum Simulation. Lecture Notes in Physics, 2023, , 85-125.	0.3	2
1072	Demultiplexing OAM beams via Fourier optical convolutional neural network. , 2023, , .		0
1073	Application of Neural Network Methods for Crossword Prediction. , 2023, , .		0

#	Article	IF	CITATIONS
1078	Machine-Learning for Static andÂDynamic Electronic StructureÂTheory. Challenges and Advances in Computational Chemistry and Physics, 2023, , 113-160.	0.6	0
1080	Machine Learning in Computer Aided Engineering. Computational Methods in Engineering & the Sciences, 2023, , 1-83.	0.3	0
1094	An Incremental MaxSAT-Based Model toÂLearn Interpretable andÂBalanced Classification Rules. Lecture Notes in Computer Science, 2023, , 227-242.	1.0	0
1097	A Review on Rural Women's Entrepreneurship Using Machine Learning Models. Lecture Notes in Networks and Systems, 2023, , 375-395.	0.5	0
1113	Advances of machine learning in materials science: Ideas and techniques. Frontiers of Physics, 2024, 19,	2.4	0
1136	Forest Cover Type Prediction using Automatic Machine Learning. , 2023, , .		0
1155	Artificial Intelligence in Phycochemicals Recognition. , 2024, , 97-122.		0
1158	Neural Networks And Machine Learning. , 2023, , .		1
1167	Variational Circuits for Quantum Solitons. Quantum Science and Technology, 2024, , 347-373.	1.5	0
1168	Variational Algorithms, Quantum Approximate Optimization Algorithm, and Neural Network Quantum States with Two Qubits. Quantum Science and Technology, 2024, , 141-167.	1.5	0
1173	The use of Open-Source Boards for Data Collection and Machine Learning in Remote Deployments. , 2023, , .		0
1178	Improving Creditworthiness Prediction Using Preprocessing Stages and Feature Selection. , 2023, , .		0
1179	Modification of the Haar Wavelet Algorithm for Texture Identification of Types of Meat Using Machine Learning. Lecture Notes in Networks and Systems, 2024, , 225-239.	0.5	0
1185	Unravelling abnormal in-plane stretchability of two-dimensional metal–organic frameworks by machine learning potential molecular dynamics. Nanoscale, 2024, 16, 3438-3447.	2.8	0
1190	Machine learning methods for liquid crystal research: phases, textures, defects and physical properties. Soft Matter, 2024, 20, 1380-1391.	1.2	1
1192	Shallow water equations-fused dam-break wave propagation prediction model ensembled with a training process resampling method. , 2023, , .		0
1225	An Uncertainty-Aware Auction Mechanism forÂFederated Learning. Lecture Notes in Computer Science, 2024, , 1-18.	1.0	0
1226	Decision Tree using Feature Grouping. , 2023, , .		0

ARTICLE

IF CITATIONS