Near-zero-index materials for photonics

Nature Reviews Materials 4, 742-760 DOI: 10.1038/s41578-019-0133-0

Citation Report

#	Article	IF	CITATIONS
1	Epsilon-near-zero media coupled with localized surface plasmon modes. Physical Review B, 2020, 102, .	1.1	10
2	Emergent Opportunities with Metallic Alloys: From Material Design to Optical Devices. Advanced Optical Materials, 2020, 8, 2001082.	3.6	10
3	High‣peed Transmission Control in Gateâ€Tunable Metasurfaces Using Hybrid Plasmonic Waveguide Mode. Advanced Optical Materials, 2020, 8, 2001256.	3.6	25
4	Broadband Ultrafast Dynamics of Refractory Metals: TiN and ZrN. Advanced Optical Materials, 2020, 8, 2000652.	3.6	45
5	Flexible and Stretchable Photonics: The Next Stretch of Opportunities. ACS Photonics, 2020, 7, 2618-2635.	3.2	49
6	Robust Conformal Perfect Absorber Involving Lossy Ultrathin Film. Photonics, 2020, 7, 57.	0.9	1
7	A Controllable Plasmonic Resonance in a SiC-Loaded Single-Polarization Single-Mode Photonic Crystal Fiber Enables Its Application as a Compact LWIR Environmental Sensor. Materials, 2020, 13, 3915.	1.3	6
8	Near-zero-index media as electromagnetic ideal fluids. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24050-24054.	3.3	34
9	Comparative study on epsilon-near-zero transparent conducting oxides: High-order chromatic dispersions and modeling of ultrashort pulse interactions. Physical Review A, 2020, 102, .	1.0	15
10	Broadband Electromagnetic Wave Tunneling with Transmuted Material Singularity. Physical Review Letters, 2020, 125, 207401.	2.9	7
11	Transient Nonlinear Phase-Shift in Epsilon-Near-Zero Materials. , 2020, , .		1
12	Hyperbolic Bismuth–Dielectric Structure for Terahertz Photonics. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000093.	1.2	3
13	Plasmonic and phononic properties of epitaxial conductive transition metal nitrides. Journal of Optics (United Kingdom), 2020, 22, 084001.	1.0	20
14	Broad Frequency Shift of Parametric Processes in Epsilon-Near-Zero Time-Varying Media. Applied Sciences (Switzerland), 2020, 10, 1318.	1.3	35
15	Plasmonic resonators: fundamental properties and applications. Journal Physics D: Applied Physics, 2020, 53, 443002.	1.3	21
16	Dynamical Control of Broadband Coherent Absorption in ENZ Films. Micromachines, 2020, 11, 110.	1.4	9
17	Hot electron dynamics in ultrafast multilayer epsilon-near-zero metamaterials. Physical Review B, 2020, 101, .	1.1	32
18	Extraordinarily large permittivity modulation in zinc oxide for dynamic nanophotonics. Materials Today, 2021, 43, 27-36.	8.3	20

λτιών Ρερώ

#	Article	IF	CITATIONS
19	Light–Matter Interaction in Quantum Confined 2D Polar Metals. Advanced Functional Materials, 2021, 31, 2005977.	7.8	17
20	Inhibited Optical Turbulence in Near-Zero-Index Media. , 2021, , .		Ο
21	Salisbury screen absorbers using epsilon-near-zero substrate. Materials Research Express, 2021, 8, 016406.	0.8	6
22	Photo-tunable epsilon-near-zero behavior in a self-assembled liquid crystal – nanoparticle hybrid material. Nanoscale Advances, 2021, 3, 2508-2515.	2.2	11
23	Broadband terahertz wave generation from an epsilon-near-zero material. Light: Science and Applications, 2021, 10, 11.	7.7	47
24	Ultra-high extinction-ratio light modulation by electrically tunable metasurface using dual epsilon-near-zero resonances. Opto-Electronic Advances, 2021, 4, 200088-200088.	6.4	32
25	Giant enhancement of plasmonic response and epsilon-near-zero signature in refractory transition metals (Ta, W, and Mo) deposited at high-temperature. Applied Physics Letters, 2021, 118, 041902.	1.5	5
26	Low-Loss Zero-Index Materials. Nano Letters, 2021, 21, 914-920.	4.5	36
27	All-optical switching of an epsilon-near-zero plasmon resonance in indium tin oxide. Nature Communications, 2021, 12, 1017.	5.8	66
28	Amplification of Stimulated Raman Scattering in Media with a Near-Zero Refractive Index. JETP Letters, 2021, 113, 140-144.	0.4	2
29	Superscattering, Superabsorption, and Nonreciprocity in Nonlinear Antennas. ACS Photonics, 2021, 8, 585-591.	3.2	17
30	Anisotropic É>-near-zero multilayer structures for omnidirectional bending to the normal. Journal of Applied Physics, 2021, 129, 085110.	1.1	1
31	Fine-tuning of the electro-optical switching behavior in indium tin oxide. Physical Review B, 2021, 103, .	1.1	4
32	Two-plasmon spontaneous emission from a nonlocal epsilon-near-zero material. Communications Physics, 2021, 4, .	2.0	9
33	Nonlinear meta-optics towards applications. PhotoniX, 2021, 2, .	5.5	46
34	Nanophotonics for light detection and ranging technology. Nature Nanotechnology, 2021, 16, 508-524.	15.6	213
35	Numerical investigations on the cascaded high harmonic and quasi-supercontinuum generations in epsilon-near-zero aluminum-doped zinc oxide nanolayers. Results in Physics, 2021, 24, 104086.	2.0	11
36	Nonlocal effective-medium theory for periodic multilayered metamaterials. Journal of Optics (United) Tj ETQq1 1	0.784314	rgBT /Overlo

#	Article	IF	CITATIONS
37	Dependence of the coupling properties between a plasmonic antenna array and a sub-wavelength epsilon-near-zero film on structural and material parameters. Applied Physics Letters, 2021, 118, .	1.5	13
38	Mesoscopic electrodynamics at metal surfaces. Nanophotonics, 2021, 10, 2563-2616.	2.9	49
39	Rationale behind subpicosecond optical response of transparent conductive oxides in epsilon-near-zero region. Journal of Applied Physics, 2021, 129, .	1.1	10
40	Anisotropic epsilon-near-pole (ENP) resonance leads to hyperbolic photonic dispersion in homologous (Bi2)m(Bi2Se3)n topological quantum materials. Applied Physics Letters, 2021, 119, .	1.5	5
41	Epsilon-near-zero photonics: infinite potentials. Photonics Research, 2021, 9, 1616.	3.4	75
42	Tunable Metasurfaces: The Path to Fully Active Nanophotonics. Advanced Photonics Research, 2021, 2, 2000205.	1.7	57
43	Quasibound states in the continuum induced by <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi mathvariant="script">PT symmetry breaking. Physical Review B, 2021, 104, .</mml:mi </mml:math 	1.1	22
44	Dependence of evanescent wave polarization on the losses of guided optical modes. Physical Review B, 2021, 104, .	1.1	3
45	Highâ€Quality Plasmonic Materials TiN and ZnO:Al by Atomic Layer Deposition. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100227.	1.2	4
46	High-harmonic generation in metallic titanium nitride. Nature Communications, 2021, 12, 4981.	5.8	22
47	Time-resolved ultrafast laser ablation dynamics of thin film indium tin oxide. Optics Express, 2021, 29, 30062.	1.7	7
48	Longitudinal electromagnetic waves with extremely short wavelength. Physical Review B, 2021, 104, .	1.1	9
49	Visible photon generation via four-wave mixing in near-infrared near-zero-index thin films. Optics Letters, 2021, 46, 5433.	1.7	4
50	Integrated Terahertz Generator-Manipulators Using Epsilon-near-Zero-Hybrid Nonlinear Metasurfaces. Nano Letters, 2021, 21, 7699-7707.	4.5	52
51	Dirac-like cone-based electromagnetic zero-index metamaterials. Light: Science and Applications, 2021, 10, 203.	7.7	50
52	Superscattering from cylindrical hyperbolic metamaterials in the visible region. Optics Express, 2020, 28, 1507.	1.7	12
53	Experimental demonstration of the magnetic field concentration effect in circuit-based magnetic near-zero index media. Optics Express, 2020, 28, 17064.	1.7	11
54	Dynamic coherent perfect absorption in nonlinear metasurfaces. Optics Letters, 2020, 45, 6414.	1.7	18

CITATION REPORT ARTICLE IF CITATIONS Absorptive loss and band non-parabolicity as a physical origin of large nonlinearity in 1.6 40 epsilon-near-zero materials. Optical Materials Express, 2020, 10, 1545. Optical materials for maximal nanophotonic response [Invited]. Optical Materials Express, 2020, 10, 1.6 1561. Reduced optical losses in refractory plasmonic titanium nitride thin films deposited with molecular 39 1.6 beam epitaxy. Optical Materials Express, 2020, 10, 2679. Adiabatic frequency shifting in epsilon-near-zero materials: the role of group velocity. Optica, 2020, 7, 4.8 226. Pump-probe ultrashort pulse modulation in an AZO/ZnO metamaterial at the epsilon near zero 1.8 9 spectral point. OSA Continuum, 2020, 3, 3225. Boron nitride for excitonics, nano photonics, and quantum technologies. Nanophotonics, 2020, 9, 3483-3504. Role of hot electron scattering in epsilon-near-zero optical nonlinearity. Nanophotonics, 2020, 9, 2.9 11 4287-4293. Broadband dispersive free, large, and ultrafast nonlinear material platforms for photonics. Nanophotonics, 2020, 9, 4609-4618. 2.9 Polarization-selected nonlinearity transition in gold dolmens coupled to an epsilon-near-zero 2.9 14 material. Nanophotonics, 2020, 9, 4839-4851. Zero-index and hyperbolic metacavities: fundamentals and applications. Journal Physics D: Applied 1.3 Physics, 2022, 55, 083001. Shaping magnetic fields with zero-magnetic-permeability media. Journal of Applied Physics, 2021, 130, . 1.1 1 Electrical and optical properties linked to laser damage behavior in conductive thin film materials. 1.6 Optical Materials Express, 2021, 11, 35. Fast and Slow Nonlinearities in Epsilonâ€Nearâ€Zero Materials. Laser and Photonics Reviews, 2021, 15, 4.4 44 2000291. Long-range plasmons and epsilon-near-zero modes in ultraviolet. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 79. Ellipsometric Characterization of Ag-Bi Films for Application as Epsilon-Near-Zero Materials., 2020, , . 0 Ultrathin planar resonant cavities with refractive index below unity., 2021, , . Dependence of the Efficiency of the Nonlinearâ€Optical Response of Materials on their Linear

73	Modelling Nonlinear Optics in Epsilon-Near-Zero Oxides Through Carrier Kinetics. , 2020, , .	0

Permittivity and Permeability. Laser and Photonics Reviews, 0, , 2100032.

4.4

3

#

55

57

58

59

61

63

65

67

69

#	Article	IF	CITATIONS
74	Multiqubit entanglement and quantum phase gates with epsilon-near-zero plasmonic waveguides. Applied Physics Letters, 2021, 119, .	1.5	7
75	Temporal dynamics of strongly coupled epsilon near-zero plasmonic systems. Applied Physics Letters, 2021, 119, .	1.5	3
76	Enhanced optical spatial differential operations via strong spin-orbit interactions in an anisotropic epsilon-near-zero slab. Physical Review A, 2021, 104, .	1.0	12
77	Optical properties of highly-crystalline tin-doped indium oxide films in their near-zero permittivity spectral region. Optical Materials Express, 2022, 12, 96.	1.6	12
78	Pulse interactions in periodic and genetic-algorithm-optimized aperiodic epsilon-near-zero multilayers. Journal of the Optical Society of America B: Optical Physics, 2022, 39, 258.	0.9	2
79	Light propagation and magnon-photon coupling in optically dispersive magnetic media. Physical Review B, 2022, 105, .	1.1	9
80	Deterministic modeling of hybrid nonlinear effects in epsilon-near-zero thin films. Applied Physics Letters, 2022, 120, .	1.5	8
81	Understanding all-optical switching at the epsilon-near-zero point: a tutorial review. Applied Physics B: Lasers and Optics, 2022, 128, 1.	1.1	7
82	Tunable radiation enhancement and suppression using a pair of photonically doped epsilon-near-zero (ENZ) slabs. Optics Letters, 2022, 47, 1319.	1.7	3
83	Metamaterial Electromagnetic Wave Absorbers. Synthesis Lectures on Electromagnetics, 2022, 3, 1-199.	0.5	0
84	Differential Polymer Chain Scission Enables Freeâ€Standing Microcavity Laser Arrays. Advanced Materials, 2022, 34, e2107611.	11.1	12
85	Thin Ag/Bi coatings as epsilon-near-zero material with low optical losses. Optical Materials, 2022, 124, 112040.	1.7	3
86	Tailoring Infrared Absorption and Thermal Emission with Ultrathin Film Interferences in Epsilonâ€Nearâ€Zero Media. Advanced Photonics Research, 2022, 3, .	1.7	6
87	Transparent conducting oxides: from all-dielectric plasmonics to a new paradigm in integrated photonics. Advances in Optics and Photonics, 2022, 14, 148.	12.1	34
88	Ultrafast all-optical phase switching enabled by epsilon-near-zero materials in silicon. Optics Express, 2022, 30, 14518.	1.7	7
89	How does light behave in a material whose refractive index vanishes?. Physics Today, 2022, 75, 62-63.	0.3	4
90	Enhanced Light Absorption in Allâ€Polymer Biomimetic Photonic Structures by Nearâ€Zeroâ€Index Organic Matter. Advanced Functional Materials, 2022, 32, .	7.8	8
91	Ultrafast infrared plasmon switching in aligned carbon-nanotube optical resonators. Journal of Optics (United Kingdom), 2022, 24, 044009.	1.0	0

\sim	<u> </u>	
	REPC	ID T
	ILLI U	

#	Article	IF	CITATIONS
92	Nonreciprocal Epsilon-Near-Zero-Dielectric Bilayers: Enhancement of Nonreciprocity from a Nonlinear Transparent Conducting Oxide Thin Film at Epsilon-Near-Zero Frequency. Physical Review Applied, 2022, 17, .	1.5	6
93	Structure-dependent optical nonlinearity of indium tin oxide. Applied Physics Letters, 2022, 120, .	1.5	11
94	Epsilon-Near-Zero Plasmonics. Lecture Notes in Nanoscale Science and Technology, 2022, , 27-55.	0.4	1
95	Enhancement of the Cubic Nonlinearity in Epsilon-Near-Zero Media: Nondegenerate Optical Kerr Effect. JETP Letters, 2021, 114, 687-692.	0.4	1
96	Polarization-Independent Large Third-Order-Nonlinearity of Orthogonal Nanoantennas Coupled to an Epsilon-Near-Zero Material. Nanomaterials, 2021, 11, 3424.	1.9	3
98	Parallel directional coupler based dual-polarization electro-absorption modulator using epsilon near-zero material. Journal Physics D: Applied Physics, 2022, 55, 135107.	1.3	9
99	Formula Graph Selfâ€Attention Network for Representationâ€Domain Independent Materials Discovery. Advanced Science, 2022, 9, e2200164.	5.6	9
100	Optimizing epsilon-near-zero based plasmon assisted modulators through surface-to-volume ratio. Optics Express, 2022, 30, 19781.	1.7	6
101	Recent Developments in Plasmonic Alloy Nanoparticles: Synthesis, Modelling, Properties and Applications. ChemPhysChem, 2022, 23, .	1.0	30
102	Optomagnonics in Dispersive Media: Magnon-Photon Coupling Enhancement at the Epsilon-near-Zero Frequency. Physical Review Letters, 2022, 128, 183603.	2.9	13
103	Ultrafast dynamic switching of optical response based on nonlinear hyperbolic metamaterial platform. Optics Express, 2022, 30, 21634.	1.7	8
104	Developing momentum in vanishing index photonics. Light: Science and Applications, 2022, 11, .	7.7	2
105	Relaxed Phase-Matching Constraints in Zero-Index Waveguides. Physical Review Letters, 2022, 128, .	2.9	11
106	Polytypes of sp2-Bonded Boron Nitride. Crystals, 2022, 12, 782.	1.0	10
107	Engineering Casimir interactions with epsilon-near-zero materials. Physical Review A, 2022, 105, .	1.0	5
108	Metamaterial Perfect Absorbers and Performance. Synthesis Lectures on Electromagnetics, 2022, , 29-91.	0.5	1
109	Epitaxial mid-IR nanophotonic optoelectronics. Applied Physics Letters, 2022, 120, .	1.5	3
110	Achieving Scalable Nearâ€Zeroâ€Index Materials. Advanced Photonics Research, 0, , 2200109.	1.7	2

#	Article	IF	CITATIONS
111	Realization of tunable index-near-zero modes in nonreciprocal magneto-optical heterostructures. Optics Express, 2022, 30, 27259.	1.7	3
112	Polar Semiconducting Scandium Nitride as an Infrared Plasmon and Phonon–Polaritonic Material. Nano Letters, 2022, 22, 5182-5190.	4.5	11
113	Near-zero-index ultra-fast pulse characterization. Nature Communications, 2022, 13, .	5.8	6
114	Dispersion coding of ENZ media via multiple photonic dopants. Light: Science and Applications, 2022, 11,	7.7	13
115	Thermal energy dependent transient permittivity of epsilon-near-zero material. Science China: Physics, Mechanics and Astronomy, 2022, 65, .	2.0	4
116	Surface-Normal Free-Space Beam Projection via Slow-Light Standing-Wave Resonance Photonic Gratings. ACS Photonics, 0, , .	3.2	0
117	Toward a universal metasurface for optical imaging, communication, and computation. Nanophotonics, 2022, 11, 3745-3768.	2.9	20
118	Performing calculus with epsilon-near-zero metamaterials. Science Advances, 2022, 8, .	4.7	11
119	Observation of SQUIDâ€Like Behavior in Fiber Laser with Intraâ€Cavity Epsilonâ€Nearâ€Zero Effect. Laser and Photonics Reviews, 2022, 16, .	4.4	3
120	Extremely large nondegenerate nonlinear index and phase shift in epsilon-near-zero materials [Invited]. Optical Materials Express, 2022, 12, 3856.	1.6	7
121	Near-zero-index-featured multi-band highly directional radiator with large Purcell factors. Results in Physics, 2022, 40, 105875.	2.0	0
123	Optically Tunable Third Harmonic Generation in a Conducting Oxide Film. , 2022, , .		0
124	CPA-Lasing Associated with the Quasibound States in the Continuum in Asymmetric Non-Hermitian Structures. ACS Photonics, 2022, 9, 3035-3042.	3.2	10
125	Hexagonal-boron nitride/graphene van der Waals heterostructure-based wavelength-selective infrared absorbers using plasmonic metasurfaces for multi-spectral infrared photodetectors. Journal of the Optical Society of America B: Optical Physics, 2022, 39, 3149.	0.9	2
126	Post-2000 nonlinear optical materials and measurements: data tables and best practices. JPhys Photonics, 2023, 5, 035001.	2.2	19
127	One-Step Formation of Plasmonic Cu Nanodomains in p-Type Cu ₂ 0 Matrix Films for Enhanced Photoconversion of n-ZnO/p-Cu ₂ 0 Heterojunctions. ACS Applied Electronic Materials, 2022, 4, 5527-5537.	2.0	2
128	Tunable Berreman mode in highly conductive organic thin films. Optics Express, 2022, 30, 43590.	1.7	2
129	Spin Hall Effect of Light: From Fundamentals To Recent Advancements. Laser and Photonics Reviews, 2023, 17	4.4	19

#	Article	IF	CITATIONS
130	Oxide Materials for Emerging Applications in Photonics: introduction to the special issue. Optical Materials Express, 2022, 12, 4418.	1.6	0
131	Tailoring Nonlinearities in Epsilon-Near-Zero Materials via Structure and Excitation. , 2022, , .		0
132	Low-loss, geometry-invariant optical waveguides with near-zero-index materials. Nanophotonics, 2022, 11, 4747-4753.	2.9	3
133	High Symmetry Metalâ€Dielectric Photonic Crystal Organic Light Emitting Diodes With Singleâ€Cavity Unit Cells. Advanced Optical Materials, 2023, 11, .	3.6	2
134	A characterization of plasma properties of a heterogeneous magnetized low pressure discharge column. AIP Advances, 2022, 12, .	0.6	2
135	Spatial heterogeneity of the doping mode: A potential optical reconfiguration freedom of photonic doping epsilon-near-zero media. Optical Materials, 2023, 135, 113300.	1.7	1
136	Broadband nonlinear optical response of titanium nitride in the visible spectral range. Optical Materials, 2023, 136, 113375.	1.7	3
137	Near-field radiative modulator driven by anisotropic hyperbolic polaritons in biaxial hyperbolic materials. Journal of Quantitative Spectroscopy and Radiative Transfer, 2023, 296, 108468.	1.1	11
138	Saturable Time-Varying Mirror Based on an Epsilon-Near-Zero Material. Physical Review Applied, 2022, 18, .	1.5	17
139	Enhancing Large-Area Scintillator Detection with Photonic Crystal Cavities. ACS Photonics, 2022, 9, 3917-3925.	3.2	7
140	Unipolar pulse of an electromagnetic field with uniform motion of a charge in a vacuum. Physics-Uspekhi, 2023, 66, 1059-1064.	0.8	4
141	Thickness-dependent loss-induced failure of an ideal ENZ-enhanced optical response in planar ultrathin transparent conducting oxide films. Optics Express, 2023, 31, 2208.	1.7	3
142	Morphology-Controlled Reststrahlen Band and Infrared Plasmon Polariton in GaN Nanostructures. Nano Letters, 2022, 22, 9606-9613.	4.5	3
144	Substrate engineering of plasmonic nanocavity antenna modes. Optics Express, 0, , .	1.7	2
145	Epsilon near zero metamaterial-based Optical Filter. , 2022, , .		0
146	Dynamic Nanophotonics in Epsilonâ€Nearâ€Zero Conductive Oxide Films and Metasurfaces: A Quantitative, Nonlinear, Computational Model. Advanced Photonics Research, 2023, 4, .	1.7	2
147	Frenkel-Poole Mechanism Unveils Black Diamond as Quasi-Epsilon-Near-Zero Surface. Nanomaterials, 2023, 13, 240.	1.9	1
148	Excitation of Epsilonâ€Nearâ€Zero Mode in Optical Fiber. Laser and Photonics Reviews, 2023, 17, .	4.4	3

#	Article	IF	CITATIONS
149	Scalable Superabsorbers and Color Filters Based on Earth-Abundant Materials. , 2023, 1, 825-831.		0
150	High-Sensitivity Sensing in All-Dielectric Metasurface Driven by Quasi-Bound States in the Continuum. Nanomaterials, 2023, 13, 505.	1.9	6
151	Dual-band electro-optic modulator based on tunable broadband metamaterial absorber. Optics and Laser Technology, 2023, 161, 109129.	2.2	14
152	Anisotropic optical and magnetic response in self-assembled TiN–CoFe2 nanocomposites. Materials Today Nano, 2023, 22, 100316.	2.3	2
153	Near-Zero-Index and Epsilon-Near-Zero Phenomena in Indium Tin Oxide Nanofilms with Tunable Optical Properties Controlled via Post-Annealing. , 2022, , .		0
154	Thickness dependence of optical properties of thin multilayer Ag/Bi structures and their surface plasmon-enhanced photoluminescence capability. Journal of Physics: Conference Series, 2023, 2436, 012019.	0.3	1
155	All-optical polarization tuning based on an intensity-dependent nonlinear metasurface. Journal Physics D: Applied Physics, 2023, 56, 15LT01.	1.3	0
156	Gallium-doped zinc oxide: nonlinear reflection and transmission measurements and modeling in the ENZ region. JPhys Photonics, 2023, 5, 024001.	2.2	3
157	Field enhancement of epsilon-near-zero modes in realistic ultrathin absorbing films. Nanophotonics, 2023, 12, 2913-2920.	2.9	3
158	Band Structure Engineering of MXenes for Lowâ€Loss Visible Epsilonâ€Nearâ€Zero Properties by Firstâ€Principles Calculation. Advanced Electronic Materials, 2023, 9, .	2.6	0
159	Polarization- and Angle-Insensitive Tunable Metasurface for Electro-Optic Modulation. IEEE Photonics Technology Letters, 2023, 35, 879-882.	1.3	2
160	Ideal Phase-Free Wave Propagation in Air Channel. ACS Photonics, 0, , .	3.2	0
161	Invertible optical nonlinearity in epsilon-near-zero materials. Physical Review Research, 2023, 5, .	1.3	1
162	Optical Isolation by Temporal Modulation: Size, Frequency, and Power Constraints. ACS Photonics, 0, ,	3.2	2
163	Wide-angle and simultaneously wideband blazing (deflection) enabling multifunctionality in metagratings comprising epsilon-near-zero materials. Journal of the Optical Society of America B: Optical Physics, 2023, 40, 1340.	0.9	2
164	Double-slit time diffraction at optical frequencies. Nature Physics, 2023, 19, 999-1002.	6.5	33
165	Comparative Performance Evaluation of Transparent Conducting Oxides With Different Mobilities for All-Optical Switching in Silicon. IEEE Journal of Quantum Electronics, 2023, 59, 1-7.	1.0	2
166	Epsilon-near-zero (ENZ)-based optomechanics. Communications Physics, 2023, 6, .	2.0	1

#	Article	IF	CITATIONS
169	Nonlinear photonics in plasmonic semiconductors. , 2023, , 349-380.		0
170	Nonlinearities in epsilon-near-zero media. , 2023, , 319-348.		0
171	Nonlinear Epsilon-Near-Zero (NLENZ) Predictive Modeling App. , 2023, , .		0
174	Plasmonic nanostructures with local temporal response: a platform for time-varying photonics. , 2023, , .		0
189	Laser Sintering of Porous Aluminum Nitride for Environmental Applications. , 2023, , .		0
190	Near-Zero-Index Conducting Oxides for Nonlinear Photonics. , 2023, , .		0
194	Fundamentals of plasmonic materials. , 2024, , 3-33.		0
197	Near-zero-index metastructures. , 2024, , 197-226.		0
198	Refractory plasmonic materials. , 2024, , 139-161.		0
199	Applications of bound states in the continuum in photonics. Nature Reviews Physics, 2023, 5, 659-678.	11.9	6
201	Epsilon-Near-Zero Material based C-Band Electro-absorption Modulator for Integrated Nanophotonic Systems. , 2023, , .		0
228	Nonlinear phenomena empowered by resonant dielectric nanostructures. , 2024, , 329-364.		0