More pressure needed

Nature Energy 4, 827-828 DOI: 10.1038/s41560-019-0478-z

Citation Report

#	Article	IF	CITATIONS
1	Mechanical properties of metallic lithium: from nano to bulk scales. Acta Materialia, 2020, 186, 215-222.	7.9	103
2	Nanomaterials for implantable batteries to power cardiac devices. Materials Today Nano, 2020, 9, 100070.	4.6	9
3	Physicochemical Concepts of the Lithium Metal Anode in Solid-State Batteries. Chemical Reviews, 2020, 120, 7745-7794.	47.7	468
4	Mitigating Interfacial Instability in Polymer Electrolyte-Based Solid-State Lithium Metal Batteries with 4 V Cathodes. ACS Energy Letters, 2020, 5, 3244-3253.	17.4	93
5	Establishing Ultralow Activation Energies for Lithium Transport in Garnet Electrolytes. ACS Applied Materials & Interfaces, 2020, 12, 32806-32816.	8.0	45
6	Advanced characterization techniques for solid state lithium battery research. Materials Today, 2020, 36, 139-157.	14.2	86
7	Elastic and Plastic Characteristics of Sodium Metal. ACS Applied Energy Materials, 2020, 3, 1759-1767.	5.1	33
8	Room-Temperature Solid-State Lithium-Ion Battery Using a LiBH ₄ –MgO Composite Electrolyte. ACS Applied Energy Materials, 2021, 4, 1228-1236.	5.1	45
9	Interface Aspects in Allâ€Solidâ€State Liâ€Based Batteries Reviewed. Advanced Energy Materials, 2021, 11, 2003939.	19.5	66
10	Compressive creep deformation of lithium foil at varied cell conditions. Journal of Power Sources, 2021, 488, 229404.	7.8	18
11	Lithium solid-state batteries: State-of-the-art and challenges for materials, interfaces and processing. Journal of Power Sources, 2021, 502, 229919.	7.8	92
12	Characterizing the mechanical behavior of lithium in compression. Journal of Materials Research, 2021, 36, 729-739.	2.6	15
13	Mechanical failures in solid-state lithium batteries and their solution. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 226201.	0.5	5
14	The effect of aspect ratio on the mechanical behavior of Li metal in solid-state cells. Journal of Power Sources, 2022, 520, 230831.	7.8	20
15	External pressure: An overlooked metric in evaluating next-generation battery performance. Current Opinion in Electrochemistry, 2022, 31, 100916.	4.8	3
16	Perspective on design and technical challenges of Li-garnet solid-state batteries. Science and Technology of Advanced Materials, 2022, 23, 41-48.	6.1	15
17	On the feasibility of all-solid-state batteries with LLZO as a single electrolyte. Scientific Reports, 2022, 12, 1177.	3.3	35
18	Challenges, interface engineering, and processing strategies toward practical <scp>sulfideâ€based allâ€solidâ€state</scp> lithium batteries. InformaÄnÃ-Materiály, 2022, 4, .	17.3	92

TION RED

#	Article	IF	CITATIONS
19	Effect of Environment on Nanoindentation Induced Cracking in Ta-Doped Li ₇ La ₃ Zr ₂ O ₁₂ Garnet. SSRN Electronic Journal, 0, , .	0.4	0
20	Laplace-Fourier transform solution to the electrochemical kinetics of a symmetric lithium cell affected by interface conformity. Journal of Power Sources, 2022, 531, 231305.	7.8	9
21	A phase field electro-chemo-mechanical formulation for predicting void evolution at the Li–electrolyte interface in all-solid-state batteries. Journal of the Mechanics and Physics of Solids, 2022, 167, 104999.	4.8	26
22	Hydrated lithium <i>nido</i> -boranes for solid–liquid hybrid batteries. Sustainable Energy and Fuels, 0, , .	4.9	1
23	LiAlO2-coated LiNi0.8Co0.1Mn0.1O2 and chlorine-rich argyrodite enabling high-performance all-solid-state lithium batteries at suitable stack pressure. Ceramics International, 2023, 49, 443-449.	4.8	19
24	Improving the Cycle Life of Solid-State Batteries by Addition of Oxide Nanoparticles to a Complex Hydride Solid Electrolyte. Journal of Physical Chemistry C, 2023, 127, 3988-3995.	3.1	3
25	Elastic and plastic mechanical properties of lithium measured by nanoindentation. Materials and Design, 2023, 233, 112200.	7.0	1
26	Critical Current Density Measurements of Argyrodite Li ₆ PS ₅ Cl Solid Electrolyte at Ambient Pressure. Journal of the Electrochemical Society, 2023, 170, 100525.	2.9	1
27	Optimizing Current Collector Interfaces for Efficient "Anodeâ€Free―Lithium Metal Batteries. Advanced Functional Materials, 2024, 34, .	14.9	2
28	Comprehending garnet solid electrolytes and interfaces in all-solid lithium-ion batteries. Materials Today Sustainability, 2024, 25, 100614.	4.1	0
29	Robust All-Solid-State Lithium Metal Batteries Enabled by a Composite Lithium Anode with Improved Bulk Li Diffusion Kinetics Properties. ACS Nano, 2023, 17, 24290-24298.	14.6	1
30	Modeling and simulation of a composite solid-state battery: The effects of stack pressure on electrochemical and mechanical behavior. Journal of Energy Storage, 2024, 78, 110051.	8.1	0
31	Lithium Metal under Static and Dynamic Mechanical Loading. Batteries, 2024, 10, 20.	4.5	0
32	Phase Field Modeling of Pressure Induced Densification in Solid Electrolytes. Jom, 2024, 76, 1180-1191.	1.9	0