Design of low bandgap tin–lead halide perovskite sola atmospheric and operational stability

Nature Energy 4, 939-947 DOI: 10.1038/s41560-019-0471-6

Citation Report

#	Article	IF	CITATIONS
1	Stabilization of Inorganic CsPb _{0.5} Sn _{0.5} I ₂ Br Perovskite Compounds by Antioxidant Tea Polyphenol. Solar Rrl, 2020, 4, 1900457.	3.1	43
2	Tuning the Thermoelectric Performance of Hybrid Tin Perovskites by Air Treatment. Advanced Energy and Sustainability Research, 2020, 1, 2000033.	2.8	20
3	Low-bandgap mixed tin–lead iodide perovskites with reduced methylammonium for simultaneous enhancement of solar cell efficiency and stability. Nature Energy, 2020, 5, 768-776.	19.8	165
4	Machine learning for halide perovskite materials. Nano Energy, 2020, 78, 105380.	8.2	65
5	All-Perovskite Tandem Solar Cells: A Roadmap to Uniting High Efficiency with High Stability. Accounts of Materials Research, 2020, 1, 63-76.	5.9	57
6	All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nature Energy, 2020, 5, 870-880.	19.8	497
7	Simplified interconnection structure based on C60/SnO2-x for all-perovskite tandem solar cells. Nature Energy, 2020, 5, 657-665.	19.8	186
8	Perovskiteâ€Based Tandem Solar Cells: Get the Most Out of the Sun. Advanced Functional Materials, 2020, 30, 2001904.	7.8	78
9	Pressing challenges of halide perovskite thin film growth. APL Materials, 2020, 8, .	2.2	42
10	Perovskite Tandem Solar Cells: From Fundamentals to Commercial Deployment. Chemical Reviews, 2020, 120, 9835-9950.	23.0	248
11	Barrier Designs in Perovskite Solar Cells for Longâ€Term Stability. Advanced Energy Materials, 2020, 10, 2001610.	10.2	84
12	Understanding the Degradation of Spiroâ€OMeTADâ€Based Perovskite Solar Cells at High Temperature. Solar Rrl, 2020, 4, 2000305.	3.1	53
13	Narrow-Bandgap Mixed Lead/Tin-Based 2D Dion–Jacobson Perovskites Boost the Performance of Solar Cells. Journal of the American Chemical Society, 2020, 142, 15049-15057.	6.6	103
14	Directly visualizing and exploring local heterointerface with high electro-catalytic activity. Nano Energy, 2020, 78, 105236.	8.2	31
15	Defects chemistry in high-efficiency and stable perovskite solar cells. Journal of Applied Physics, 2020, 128, .	1.1	91
16	A study on optoelectronic performance of perovskite solar cell under different stress testing conditions. Optical Materials, 2020, 109, 110377.	1.7	8
17	Interaction of the Cation and Vacancy in Hybrid Perovskites Induced by Light Illumination. ACS Applied Materials & Interfaces, 2020, 12, 42369-42377.	4.0	9
18	Heat dissipation effects on the stability of planar perovskite solar cells. Energy and Environmental Science, 2020, 13, 5059-5067.	15.6	44

#	Article	IF	CITATIONS
19	Choose Your Own Adventure: Fabrication of Monolithic Allâ€Perovskite Tandem Photovoltaics. Advanced Materials, 2020, 32, e2003312.	11.1	39
20	Co-Solvent Controllable Engineering of MA0.5FA0.5Pb0.8Sn0.2I3 Lead–Tin Mixed Perovskites for Inverted Perovskite Solar Cells with Improved Stability. Energies, 2020, 13, 2438.	1.6	8
21	Advancing Tin Halide Perovskites: Strategies toward the ASnX ₃ Paradigm for Efficient and Durable Optoelectronics. ACS Energy Letters, 2020, 5, 2052-2086.	8.8	54
22	Progress toward Applications of Perovskite Solar Cells. Energy & amp; Fuels, 2020, 34, 6624-6633.	2.5	31
23	Observing the Migration of Hydrogen Species in Hybrid Perovskite Materials through D/H Isotope Exchange. Journal of the American Chemical Society, 2020, 142, 10431-10437.	6.6	27
24	Defect suppression and passivation for perovskite solar cells: from the birth to the lifetime operation. EnergyChem, 2020, 2, 100032.	10.1	22
25	Highly Thermotolerant Metal Halide Perovskite Solids. Advanced Materials, 2020, 32, e2002495.	11.1	29
26	Potential applications for perovskite solar cells in space. Nano Energy, 2020, 76, 105019.	8.2	63
27	Interaction engineering in organic–inorganic hybrid perovskite solar cells. Materials Horizons, 2020, 7, 2208-2236.	6.4	35
28	Phase Evolution in Methylammonium Tin Halide Perovskites with Variable Temperature Solid-State 119Sn NMR Spectroscopy. Journal of Physical Chemistry C, 2020, 124, 15015-15027.	1.5	24
29	Tin–Lead Alloying for Efficient and Stable All-Inorganic Perovskite Solar Cells. Chemistry of Materials, 2020, 32, 2782-2794.	3.2	58
30	Improving Low-Bandgap Tin–Lead Perovskite Solar Cells via Contact Engineering and Gas Quench Processing. ACS Energy Letters, 2020, 5, 1215-1223.	8.8	78
31	A piperidinium salt stabilizes efficient metal-halide perovskite solar cells. Science, 2020, 369, 96-102.	6.0	461
32	Efficient and Reproducible Monolithic Perovskite/Organic Tandem Solar Cells with Low-Loss Interconnecting Layers. Joule, 2020, 4, 1594-1606.	11.7	116
33	Aqueous solvent-regulated crystallization and interfacial modification in perovskite solar cells with enhanced stability and performance. Journal of Power Sources, 2020, 471, 228447.	4.0	13
34	Combining Efficiency and Stability in Mixed Tin–Lead Perovskite Solar Cells by Capping Grains with an Ultrathin 2D Layer. Advanced Materials, 2020, 32, e1907058.	11.1	148
35	Investigating the Effects of Chemical Gradients on Performance and Reliability within Perovskite Solar Cells with TOFâ€&IMS. Advanced Energy Materials, 2020, 10, 1903674.	10.2	52
36	Tin and Mixed Lead–Tin Halide Perovskite Solar Cells: Progress and their Application in Tandem Solar Cells. Advanced Materials, 2020, 32, e1907392.	11.1	203

#	Article	IF	CITATIONS
37	Barium doping effect on the photovoltaic performance and stability of MA0.4FA0.6BaxPb1-xlyCl3-y perovskite solar cells. Applied Surface Science, 2020, 521, 146451.	3.1	7
38	Lowâ€Dimensional Contact Layers for Enhanced Perovskite Photodiodes. Advanced Functional Materials, 2020, 30, 2001692.	7.8	30
39	Halide Perovskites: Thermal Transport and Prospects for Thermoelectricity. Advanced Science, 2020, 7, 1903389.	5.6	129
40	Suppressing Ion Migration across Perovskite Grain Boundaries by Polymer Additives. Advanced Functional Materials, 2021, 31, 2006802.	7.8	66
41	Encapsulation for perovskite solar cells. Science Bulletin, 2021, 66, 100-102.	4.3	18
42	Roles of MACl in Sequentially Deposited Bromineâ€Free Perovskite Absorbers for Efficient Solar Cells. Advanced Materials, 2021, 33, e2007126.	11.1	112
43	Mechanisms and Suppression of Photoinduced Degradation in Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2002326.	10.2	118
44	Solution-processed ITO nanoparticles as hole-selective electrodes for mesoscopic lead-free perovskite solar cells. Materials Advances, 2021, 2, 754-759.	2.6	15
45	Progress in recycling organic–inorganic perovskite solar cells for eco-friendly fabrication. Journal of Materials Chemistry A, 2021, 9, 2612-2627.	5.2	17
46	Improving Performance and Stability of Planar Perovskite Solar Cells Through Passivation Effect with Green Additives. Solar Rrl, 2021, 5, 2000732.	3.1	5
47	Efficient photoselectrochemical hydrogen production utilizing of <scp> APbl ₃ </scp> (A) Tj ETQq0	0 0 rgBT /0	Overlock 10 ⁻ 26
48	Elimination of Charge Transport Layers in High-Performance Perovskite Solar Cells by Band Bending. ACS Applied Energy Materials, 2021, 4, 1294-1301.	2.5	13
49	Balancing crystallization rate in a mixed Sn–Pb perovskite film for efficient and stable perovskite solar cells of more than 20% efficiency. Journal of Materials Chemistry A, 2021, 9, 17830-17840.	5.2	51
50	Revealing the Local Sn and Pb Arrangements in CsSnxPb1–xBr3 Perovskites with Solid-State NMR Spectroscopy. , 2021, 3, 261-267.		24
51	Bulk halide perovskites as triplet sensitizers: progress and prospects in photon upconversion. Journal of Materials Chemistry C, 2021, 9, 2685-2694.	2.7	24
52	Boosting the performance of MA-free inverted perovskite solar cells <i>via</i> multifunctional ion liquid. Journal of Materials Chemistry A, 2021, 9, 12746-12754.	5.2	44
53	The limiting factors and improving solutions of P-I-N type tin-lead perovskite solar cells performance. Wuli Xuebao/Acta Physica Sinica, 2021, .	0.2	1
54	Mitigating Open-Circuit Voltage Loss in Pb–Sn Low-Bandgap Perovskite Solar Cells via Additive Engineering. ACS Applied Energy Materials, 2021, 4, 1731-1742.	2.5	43

#	Article	IF	CITATIONS
55	Toward efficient and stable operation of perovskite solar cells: Impact of sputtered metal oxide interlayers. Nano Select, 2021, 2, 1417-1436.	1.9	10
56	Stability Improvement of Perovskite Solar Cells by Compositional and Interfacial Engineering. Chemistry of Materials, 2021, 33, 1540-1570.	3.2	65
57	Large-Grain Double Cation Perovskites with 18 μs Lifetime and High Luminescence Yield for Efficient Inverted Perovskite Solar Cells. ACS Energy Letters, 2021, 6, 1045-1054.	8.8	54
58	Multifunctional Melamine Foam Assisted Lead Halide Perovskites for Highly Efficient and Longâ€Term Photocatalytic CO ₂ Reduction Under Pure Water. Solar Rrl, 2021, 5, 2000755.	3.1	12
59	Comparison of Perovskite Solar Cells with other Photovoltaics Technologies from the Point of View of Life Cycle Assessment. Advanced Energy and Sustainability Research, 2021, 2, 2000088.	2.8	46
60	Grain Boundary Passivation with Dion–Jacobson Phase Perovskites for Highâ€Performance Pb–Sn Mixed Narrowâ€Bandgap Perovskite Solar Cells. Solar Rrl, 2021, 5, 2000681.	3.1	22
61	Bulky Cations Improve Band Alignment and Efficiency in Sn–Pb Halide Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 2616-2628.	2.5	11
62	Monolithic all-perovskite tandem solar cells: recent progress and challenges. Journal of the Korean Ceramic Society, 2021, 58, 399-413.	1.1	14
63	Doubleâ€Side Crystallization Tuning to Achieve over 1µm Thick and Wellâ€Aligned Blockâ€Like Narrowâ€Bandgap Perovskites for Highâ€Efficiency Nearâ€Infrared Photodetectors. Advanced Functional Materials, 2021, 31, 2010532.	7.8	16
64	Stabilization of formamidinium lead triiodide α-phase with isopropylammonium chloride for perovskite solar cells. Nature Energy, 2021, 6, 419-428.	19.8	157
65	High-performance methylammonium-free ideal-band-gap perovskite solar cells. Matter, 2021, 4, 1365-1376.	5.0	51
66	Tinâ€Lead Perovskite Fabricated via Ethylenediamine Interlayer Guides to the Solar Cell Efficiency of 21.74%. Advanced Energy Materials, 2021, 11, 2101069.	10.2	110
67	Defect compensation in formamidinium–caesium perovskites for highly efficient solar mini-modules with improved photostability. Nature Energy, 2021, 6, 633-641.	19.8	215
68	Subcell Operation and Longâ€Term Stability Analysis of Perovskiteâ€Based Tandem Solar Cells Using a Bichromatic Light Emitting Diode Light Source. Solar Rrl, 2021, 5, 2100311.	3.1	9
69	Halide Perovskite Materials for Photo(Electro)Chemical Applications: Dimensionality, Heterojunction, and Performance. Advanced Energy Materials, 2022, 12, 2004002.	10.2	68
70	Real-Time Investigation of Sn(II) Oxidation in Pb-Free Halide Perovskites by X-ray Absorption and Mössbauer Spectroscopy. ACS Applied Energy Materials, 2021, 4, 4327-4332.	2.5	9
71	Defect activity in metal halide perovskites with wide and narrow bandgap. Nature Reviews Materials, 2021, 6, 986-1002.	23.3	121
72	Reducing Surface Recombination Velocity of Methylammonium-Free Mixed-Cation Mixed-Halide Perovskites via Surface Passivation. Chemistry of Materials, 2021, 33, 5035-5044.	3.2	33

#	ARTICLE	IF	CITATIONS
73	First-principles study on structural stability and reaction with H2O and O2 of vacancy-ordered double perovskite halides: Cs2(Ti, Zr, Hf)X6. Results in Physics, 2021, 25, 104225.	2.0	19
74	Linearly Tailored Work Function of Orthorhombic CsSnl ₃ Perovskites. ACS Energy Letters, 2021, 6, 2328-2335.	8.8	11
75	Surface Defect Passivation of Pb–Snâ€Alloyed Perovskite Film by 1,3â€Propanediammonium lodide toward Highâ€Performance Photovoltaic Devices. Solar Rrl, 2021, 5, 2100299.	3.1	7
76	Inorganic top electron transport layer for high performance inverted perovskite solar cells. EcoMat, 2021, 3, e12127.	6.8	26
77	A roadmap towards stable perovskite solar cells: prospective on substitution of organic (A) & inorganic (B) cations. Journal of Materials Science: Materials in Electronics, 2021, 32, 18466-18511.	1.1	8
78	Optoelectronic Properties of Lowâ€Bandgap Halide Perovskites for Solar Cell Applications. Advanced Materials, 2021, 33, e2102300.	11.1	36
79	Comparative Study of Recombination Dynamics in Optimized Composition of Sn- <i>Versus</i> Pb-Based Perovskite Solar Cells. ACS Applied Materials & amp; Interfaces, 2021, 13, 42297-42306.	4.0	9
80	Robust Unencapsulated Perovskite Solar Cells Protected by a Fluorinated Fullerene Electron Transporting Layer. ACS Energy Letters, 2021, 6, 3376-3385.	8.8	27
81	Highly efficient wide-band-gap perovskite solar cells fabricated by sequential deposition method. Nano Energy, 2021, 86, 106114.	8.2	34
82	Bulky organic cations engineered lead-halide perovskites: a review on dimensionality and optoelectronic applications. Materials Today Energy, 2021, 21, 100759.	2.5	24
83	A Perspective on the Commercial Viability of Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100401.	3.1	33
84	Protonâ€Radiation Tolerant Allâ€Perovskite Multijunction Solar Cells. Advanced Energy Materials, 2021, 11, 2102246.	10.2	25
85	In ₂ O ₃ :H-Based Hole-Transport-Layer-Free Tin/Lead Perovskite Solar Cells for Efficient Four-Terminal All-Perovskite Tandem Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 46488-46498.	4.0	20
86	Strategies and methods for fabricating high quality metal halide perovskite thin films for solar cells. Journal of Energy Chemistry, 2021, 60, 300-333.	7.1	31
87	Radiation stability of mixed tin–lead halide perovskites: Implications for space applications. Solar Energy Materials and Solar Cells, 2021, 230, 111232.	3.0	15
88	Designing hole conductor free tin–lead halide based all-perovskite heterojunction solar cell by numerical simulation. Journal of Physics and Chemistry of Solids, 2021, 156, 110168.	1.9	20
89	Antioxidation and Energy-Level Alignment for Improving Efficiency and Stability of Hole Transport Layer-Free and Methylammonium-Free Tin–Lead Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 45059-45067.	4.0	18
90	Hot carrier redistribution, electron-phonon interaction, and their role in carrier relaxation in thin film metal-halide perovskites. Physical Review Materials, 2021, 5, .	0.9	8

#	Article	IF	CITATIONS
91	A review on perovskite solar cells (PSCs), materials and applications. Journal of Materiomics, 2021, 7, 940-956.	2.8	111
92	Pyreneâ€Based Smallâ€Molecular Hole Transport Layers for Efficient and Stable Narrowâ€Bandgap Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100454.	3.1	14
93	Stable and high-efficiency P3CT-Na based MAPbI3 solar cells with a graphene quantum-dots down-converter. Solar Energy, 2021, 225, 882-891.	2.9	5
94	Interface Energyâ€Level Management toward Efficient Tin Perovskite Solar Cells with Holeâ€Transportâ€Layerâ€Free Structure. Advanced Functional Materials, 2021, 31, 2106560.	7.8	30
95	The effect of defects in tin-based perovskites and their photovoltaic devices. Materials Today Physics, 2021, 21, 100513.	2.9	17
96	Stability of Sn-Pb mixed organic–inorganic halide perovskite solar cells: Progress, challenges, and perspectives. Journal of Energy Chemistry, 2022, 65, 371-404.	7.1	36
97	Mixed lead–tin perovskite films with >7 μs charge carrier lifetimes realized by maltol post-treatment. Chemical Science, 2021, 12, 13513-13519.	3.7	36
98	Rational strategies toward efficient and stable lead-free tin halide perovskite solar cells. Materials Chemistry Frontiers, 2021, 5, 4107-4127.	3.2	11
99	Electronic and optical properties of orthorhombic (CH3NH3)BX3 (B = Sn, Pb; X = F, Cl, Br, I) perovskites: a first-principles investigation. RSC Advances, 2021, 11, 22264-22272.	1.7	6
100	Surface-Activated Corrosion in Tin–Lead Halide Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 3344-3351.	8.8	55
101	Recent progress in developing efficient monolithic all-perovskite tandem solar cells. Journal of Semiconductors, 2020, 41, 051201.	2.0	19
102	Lead-lean and MA-free perovskite solar cells with an efficiency over 20%. Joule, 2021, 5, 2904-2914.	11.7	39
103	Layered Dion–Jacobson-Type Chalcogenide Perovskite CsLaM ₂ X ₇ (M = Ta/Nb; X) Tj E ACS Applied Materials & Interfaces, 2021, 13, 48971-48980.	ETQq0 0 0 4.0	rgBT /Overlo 3
104	Emerging Perovskite Solar Cell Technology: Remedial Actions for the Foremost Challenges. Advanced Energy Materials, 2021, 11, .	10.2	40
105	Lowâ€Bandgap Organic Bulkâ€Heterojunction Enabled Efficient and Flexible Perovskite Solar Cells. Advanced Materials, 2021, 33, e2105539.	11.1	89
106	Efficient 2T CsKPb(IBr)3—Tin Incorporated Narrow Bandgap Perovskite Tandem Solar Cells: A Numerical Study with Current Matching Conditions. Advanced Theory and Simulations, 2021, 4, 2100121.	1.3	5
107	Combining Efficiency and Stability in Mixed Tin-Lead Perovskite Solar Cells by Capping Grains with an Ultra-thin 2D layer. , 2020, , .		4
108	Structural Stability of Tin-Lead Halide Perovskite Solar Cells. , 2020, , .		0

#	Article	IF	CITATIONS
109	Thermally Stable Allâ€Perovskite Tandem Solar Cells Fully Using Metal Oxide Charge Transport Layers and Tunnel Junction. Solar Rrl, 2021, 5, 2100814.	3.1	24
115	Deployment Opportunities for Space Photovoltaics and the Prospects for Perovskite Solar Cells. Advanced Materials Technologies, 2022, 7, .	3.0	25
116	Lowâ€Cost Strategy for Highâ€Efficiency Bifacial Perovskite/câ€6i Tandem Solar Cells. Solar Rrl, 2022, 6, 2100781.	3.1	5
118	Highly Efficient Hole Transport Layerâ€Free Low Bandgap Mixed Pb–Sn Perovskite Solar Cells Enabled by a Binary Additive System. Advanced Functional Materials, 2022, 32, 2110069.	7.8	30
119	Electrode Engineering in Halide Perovskite Electronics: Plenty of Room at the Interfaces. Advanced Materials, 2022, 34, e2108616.	11.1	55
120	Efficient and Stable Methylammonium-Free Tin-Lead Perovskite Solar Cells with Hexaazatrinaphthylene-Based Hole-Transporting Materials. ACS Applied Materials & Interfaces, 2022, 14, 6852-6858.	4.0	13
121	Ultrasensitive Nearâ€Infrared Circularly Polarized Light Detection Using 3D Perovskite Embedded with Chiral Plasmonic Nanoparticles. Advanced Science, 2022, 9, e2104598.	5.6	23
122	Light-induced halogen defects as dynamic active sites for CO2 photoreduction to CO with 100% selectivity. Science Bulletin, 2022, 67, 1137-1144.	4.3	35
123	Interface Engineering of Pb–Sn Lowâ€Bandgap Perovskite Solar Cells for Improved Efficiency and Stability. Solar Rrl, 2022, 6, .	3.1	8
124	Recent Progress and Future Prospects for Light Management of Allâ€Perovskite Tandem Solar Cells. Advanced Materials Interfaces, 2022, 9, .	1.9	16
125	Recent Advances of Monolithic <scp>Allâ€Perovskite</scp> Tandem Solar Cells: From Materials to Devices. Chinese Journal of Chemistry, 2022, 40, 856-871.	2.6	11
126	Suppressed Halide Segregation and Defects in Wide Bandgap Perovskite Solar Cells Enabled by Doping Organic Bromide Salt with Moderate Chain Length. Journal of Physical Chemistry C, 2022, 126, 1711-1720.	1.5	8
127	Importance of tin (II) acetate additives in sequential deposited fabrication of Sn-Pb-based perovskite solar cells. Journal of Alloys and Compounds, 2022, 904, 164050.	2.8	5
128	Unsupervised machine learning for solar cell materials from the literature. Journal of Applied Physics, 2022, 131, .	1.1	7
129	Data-driven design of novel halide perovskite alloys. Energy and Environmental Science, 2022, 15, 1930-1949.	15.6	26
130	Selection of the ultimate perovskite solar cell materials and fabrication processes towards its industrialization: A review. Energy Science and Engineering, 2022, 10, 1478-1525.	1.9	9
131	Gradient Doping in Sn–Pb Perovskites by Barium Ions for Efficient Singleâ€Junction and Tandem Solar Cells. Advanced Materials, 2022, 34, e2110351.	11.1	62
132	Understanding the Impacts of Grain Size Variation, Distribution, and Recombination Losses in Halide Perovskites: A Generalized Semiâ€Analytical Model from Thinâ€Film to Photovoltaics. Energy Technology, 2022, 10, .	1.8	1

#	Article	IF	CITATIONS
133	Temperature and pressure driven spin transitions and piezochromism in a Mn-based hybrid perovskite. Physical Review Materials, 2022, 6, .	0.9	3
134	Structural and optoelectronic properties of the Cs2InMCl6 (M: Sb, Bi, Ag) double perovskite compounds: A first-principles study. Computational Condensed Matter, 2022, 31, e00669.	0.9	4
135	Are Perovskite Solar Cell Potentialâ€Induced Degradation Proof?. Solar Rrl, 2022, 6, .	3.1	14
136	The emergence of concentrator photovoltaics for perovskite solar cells. Applied Physics Reviews, 2021, 8, .	5.5	8
137	Crystallization Regulation and Morphological Evolution for HTMâ€free Tin‣ead (1.28eV) Alloyed Perovskite Solar Cells. Energy and Environmental Materials, 2023, 6, .	7.3	8
138	Unveiling the Relationship between Passivation Groups and the Structural and Optoelectronic Performances of Perovskite Surfaces and Devices. Journal of Physical Chemistry C, 2022, 126, 597-604.	1.5	3
139	Perovskite Solar Cells Go Bifacial—Mutual Benefits for Efficiency and Durability. Advanced Materials, 2022, 34, e2106805.	11.1	31
140	Multifunction Sandwich Structure Based on Diffusible 2-Chloroethylamine for High-Efficiency and Stable Tin–Lead Mixed Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2022, 13, 118-129.	2.1	6
141	Optimized carrier extraction at interfaces for 23.6% efficient tin–lead perovskite solar cells. Energy and Environmental Science, 2022, 15, 2096-2107.	15.6	172
142	Efficient Ma-Free Pb-Sn Alloyed Low-Bandgap Perovskite Solar Cells Via Surface Passivation. SSRN Electronic Journal, 0, , .	0.4	0
143	CsPbBr ₃ microarrays with tunable periodicity, optoelectronic and field emission properties using self-assembled polystyrene template and co-evaporation method. Physical Chemistry Chemical Physics, 2022, 24, 13210-13216.	1.3	1
144	Scalable processing for realizing 21.7%-efficient all-perovskite tandem solar modules. Science, 2022, 376, 762-767.	6.0	127
145	Efficient interconnecting layers in monolithic all-perovskite tandem solar cells. Energy and Environmental Science, 2022, 15, 3152-3170.	15.6	26
146	Intrinsic and extrinsic stability of triple-cation perovskite solar cells through synergistic influence of organic additive. Cell Reports Physical Science, 2022, 3, 100906.	2.8	7
147	Perovskite-based tandem solar cells: Device architecture, stability, and economic perspectives. Renewable and Sustainable Energy Reviews, 2022, 165, 112553.	8.2	16
148	Suppressing interface charge recombination for efficient integrated perovskite/organic bulk-heterojunction solar cells. Journal of Power Sources, 2022, 541, 231665.	4.0	6
149	Band Alignment of Cs2bx6 Double Halide Perovskites and Tio2 Using Electron Affinity Rule. SSRN Electronic Journal, 0, , .	0.4	0
150	Methylammonium and Bromideâ€Free Tinâ€Based Low Bandgap Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, .	10.2	18

#	Article	IF	CITATIONS
151	Light Management through Organic Bulk Heterojunction and Carrier Interfacial Engineering for Perovskite Solar Cells with 23.5% Efficiency. Advanced Functional Materials, 2022, 32, .	7.8	16
152	Perovskite solar cells for building integrated photovoltaicsâ—glazing applications. Joule, 2022, 6, 1446-1474.	11.7	39
153	Recent advances in Pb–Sn mixed perovskite solar cells. Journal of Energy Chemistry, 2022, 73, 615-638.	7.1	12
154	Scalable two-terminal all-perovskite tandem solar modules with a 19.1% efficiency. Nature Energy, 2022, 7, 620-630.	19.8	58
155	Efficient MA-free Pb-Sn alloyed low-bandgap perovskite solar cells via surface passivation. Nano Energy, 2022, 101, 107596.	8.2	10
156	Efficient Idealâ€Bandgap Tin–Lead Alloyed Inorganic Perovskite Solar Cells Enabled by Structural Dimension Engineering. Advanced Optical Materials, 2022, 10, .	3.6	3
157	Sub-millimetre light detection and ranging using perovskites. Nature Electronics, 2022, 5, 511-518.	13.1	28
158	Resolving Mixed Intermediate Phases in Methylammonium-Free Sn–Pb Alloyed Perovskites for High-Performance Solar Cells. Nano-Micro Letters, 2022, 14, .	14.4	19
159	Suppressing Bulk and Interfacial Recombination Losses in Sn–Pb Perovskites for Efficient Printable Lowâ€Bandgap Photovoltaic Devices. Solar Rrl, 0, , 2200619.	3.1	3
160	Carbazole-Based Hole Transport Polymer for Methylammonium-Free Tin–Lead Perovskite Solar Cells with Enhanced Efficiency and Stability. ACS Energy Letters, 2022, 7, 3353-3361.	8.8	32
161	Band alignment of Cs2BX6 double halide perovskites and TiO2 using electron affinity rule. Results in Physics, 2022, 42, 106015.	2.0	5
162	The role of A-site composition in the photostability of tin–lead perovskite solar cells. Sustainable Energy and Fuels, 2022, 6, 4605-4613.	2.5	6
163	Recent Advances in the Combined Elevated Temperature, Humidity, and Light Stability of Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	12
164	The role of innovation for economy and sustainability of photovoltaic modules. IScience, 2022, 25, 105208.	1.9	6
165	Solutionâ€Processed Ternary Tin (II) Alloy as Holeâ€Transport Layer of Sn–Pb Perovskite Solar Cells for Enhanced Efficiency and Stability. Advanced Materials, 2022, 34, .	11.1	32
166	Organic–Inorganic Hybrid Devices—Perovskite-Based Devices. , 2022, , 283-307.		0
167	Small Molecule Passivation Leading to Efficient Hole Transport Layerâ€Free Sn–Pb Mixed Perovskite Solar Cells with High Open ircuit Voltage. Solar Rrl, 2022, 6, .	3.1	5
168	Efficient and Thermally Stable Allâ€Perovskite Tandem Solar Cells Using Allâ€FA Narrowâ€Bandgap Perovskite and Metalâ€oxideâ€based Tunnel Junction. Advanced Energy Materials, 2022, 12, .	10.2	26

#	Article	IF	CITATIONS
169	Compositional Engineering in α-CsPbI ₃ toward the Efficiency and Stability Enhancement of All Inorganic Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 12099-12108.	2.5	10
170	Additive Engineering for Highâ€Performance Twoâ€Dimensional Dion–Jacobson Pb–Sn Alloyed Perovskite Solar Cells. Energy Technology, 2022, 10, .	1.8	3
171	Metal Halide Perovskite/Electrode Contacts in Chargeâ€Transportingâ€Layerâ€Free Devices. Advanced Science, 2022, 9, .	5.6	11
172	A Roadmap for Efficient and Stable All-Perovskite Tandem Solar Cells from a Chemistry Perspective. ACS Central Science, 2023, 9, 14-26.	5.3	13
173	Metal-Free Interconnecting Layer for Monolithic Perovskite/Organic Tandem Solar Cells with Enhanced Outdoor Stability. ACS Applied Energy Materials, 2022, 5, 14035-14044.	2.5	4
174	Toward efficient hybrid solar cells comprising quantum dots and organic materials: progress, strategies, and perspectives. Journal of Materials Chemistry A, 2023, 11, 1013-1038.	5.2	8
175	Bifacial all-perovskite tandem solar cells. Science Advances, 2022, 8, .	4.7	26
176	Factors Limiting the Operational Stability of Tin–Lead Perovskite Solar Cells. ACS Energy Letters, 2023, 8, 259-273.	8.8	12
177	Engineering Stable Leadâ€Free Tin Halide Perovskite Solar Cells: Lessons from Materials Chemistry. Advanced Materials, 2023, 35, .	11.1	13
178	Greenâ€solvent Processable Dopantâ€free Hole Transporting Materials for Inverted Perovskite Solar Cells. Angewandte Chemie, 2023, 135, .	1.6	0
179	Highâ€throughput compositional mapping of tripleâ€cation tin–lead perovskites for highâ€efficiency solar cells. InformaÄnÃ-Materiály, 2023, 5, .	8.5	5
180	Greenâ€solvent Processable Dopantâ€free Hole Transporting Materials for Inverted Perovskite Solar Cells. Angewandte Chemie - International Edition, 2023, 62, .	7.2	24
181	New Pathways toward Sustainable Snâ€Related Perovskite Solar Cells. Advanced Energy and Sustainability Research, 2023, 4, .	2.8	0
182	Enhancing Photoresponse and Photocurrent of Integrated Perovskite/Organic Solar Cells via Layer-by-Layer Processing. ACS Applied Energy Materials, 2023, 6, 981-988.	2.5	2
183	Perovskite-quantum dot hybrid solar cells: a multi-win strategy for high performance and stability. Journal of Materials Chemistry A, 2023, 11, 4487-4509.	5.2	6
184	Perovskite solar cells on the horizon for space power systems. , 2023, , 175-195.		0
185	Optimization of Sn defects through multiple coordination effect to realize stable Sn–Pb mixed perovskite solar cells. Solar Energy Materials and Solar Cells, 2023, 254, 112283.	3.0	3
186	Dual Optimization of Bulk and Interface via the Synergistic Effect of Ligand Anchoring and Hole Transport Dopant Enables 23.28% Efficiency Inverted Perovskite Solar Cells. ACS Nano, 2023, 17, 3776-3785.	7.3	12

#	Article	IF	CITATIONS
187	Low-temperature synthesis of lead-free Cs ₂ AgBiBr ₆ double-perovskite ink. Nanomaterials and Energy, 2022, 11, 80-84.	0.1	0
188	Enhancing Photostability of Snâ€Pb Perovskite Solar Cells by an Alkylammonium Pseudoâ€Halogen Additive. Advanced Energy Materials, 2023, 13, .	10.2	38
189	Chemical Reaction Kinetics of the Decomposition of Low-Bandgap Tin–Lead Halide Perovskite Films and the Effect on the Ambipolar Diffusion Length. ACS Energy Letters, 2023, 8, 1688-1696.	8.8	5
190	Oxidation-resistant all-perovskite tandem solar cells in substrate configuration. Nature Communications, 2023, 14, .	5.8	24
191	Perovskite Materials for Photovoltaics: A Review. EPJ Applied Physics, 0, , .	0.3	0
192	Influence of SWCNT on the Electrical Behavior of an Environmentally Friendly CH ₃ NH ₃ SnI ₃ Perovskite-Based Optoelectronic Schottky Device. ACS Applied Electronic Materials, 0, , .	2.0	1
193	Prospects for Tin-Containing Halide Perovskite Photovoltaics. , 2023, 1, 69-82.		8
194	Alkali Metal Ion-Mediated Augmented Carrier Extraction in Iodobismuth Ternary Perovskite-Based Photovoltaic Device. ACS Applied Electronic Materials, 2023, 5, 5332-5342.	2.0	5
210	Recent advances in electrode interface modifications in perovskite solar cells. Materials Chemistry Frontiers, 0, , .	3.2	0
227	Renewable energy: The future of photovoltaic energy. , 2024, , 373-396.		0
228	Perovskite–organic tandem solar cells. Nature Reviews Materials, 2024, 9, 202-217.	23.3	0