Delineation of groundwater potential zones in semi-ario basin, Anantapur District, Andhra Pradesh, India using fuzzy-AHP approaches

HydroResearch 2, 97-108

DOI: 10.1016/j.hydres.2019.11.006

Citation Report

#	Article	IF	Citations
1	A Fuzzy-AHP based prioritization of trust criteria in fog computing services. Applied Soft Computing Journal, 2020, 97, 106789.	4.1	49
2	A fuzzy based MCDM–GIS framework to evaluate groundwater potential index for sustainable groundwater management - A case study in an urban-periurban ensemble, southern India. Groundwater for Sustainable Development, 2020, 11, 100466.	2.3	35
3	Optimization of sampling frequency for coastal seawater quality monitoring. Environmental Monitoring and Assessment, 2020, 192, 731.	1.3	1
4	Using Analytical Hierarchy Process and Multi-Influencing Factors to Map Groundwater Recharge Zones in a Semi-Arid Mediterranean Coastal Aquifer. Water (Switzerland), 2020, 12, 2525.	1.2	60
5	Identification of land degradation hotspots in semiarid region of Anantapur district, Southern India, using geospatial modeling approaches. Modeling Earth Systems and Environment, 2020, 6, 1841-1852.	1.9	30
6	Mapping and assessment of flood risk in Prayagraj district, India: a GIS and remote sensing study. Nanotechnology for Environmental Engineering, 2020, 5, 1.	2.0	42
7	Prioritization of sites for Managed Aquifer Recharge in a semi-arid environment in western India using GIS-Based multicriteria evaluation strategy. Groundwater for Sustainable Development, 2021, 12, 100501.	2.3	10
8	Analysis of fuzzy applications in the agri-supply chain: A literature review. Journal of Cleaner Production, 2021, 283, 124577.	4.6	29
9	A fuzzy geospatial approach for delineation of groundwater potential zones in Raipur district, India. Groundwater for Sustainable Development, 2021, 12, 100529.	2.3	12
10	Comparison of Multicriteria Decision-Making Techniques for Groundwater Recharge Potential Zonation: Case Study of the Willochra Basin, South Australia. Water (Switzerland), 2021, 13, 525.	1.2	10
11	A Spatial Non-Stationary Based Site Selection of Artificial Groundwater Recharge: a Case Study for Semi-Arid Regions. Water Resources Management, 2021, 35, 963-978.	1.9	11
12	Modeling and mapping geospatial distribution of groundwater potential zones in Darjeeling Himalayan region of India using analytical hierarchy process and GIS technique. Modeling Earth Systems and Environment, 2022, 8, 1563-1584.	1.9	44
13	Comparison of GIS-based AHP and fuzzy AHP methods for hospital site selection: a case study for Prayagraj City, India. Geo Journal, 2022, 87, 3507-3528.	1.7	36
14	Using GIS-based order weight average (OWA) methods to predict suitable locations for the artificial recharge of groundwater. Environmental Earth Sciences, 2021, 80, 1.	1.3	10
15	Multi-criteria Land Suitability Analysis for Agriculture in Semi-Arid Region of Kadapa District, Southern India: Geospatial Approaches. Remote Sensing of Land, 2021, 5, 59-72.	0.9	18
16	GISâ€based groundwater quality assessment using GQIs and fuzzyâ€logic approach. Water and Environment Journal, 0, , .	1.0	7
17	Identification of Groundwater Potential Zones Using GIS and Multi-Criteria Decision-Making Techniques: A Case Study Upper Coruh River Basin (NE Turkey). ISPRS International Journal of Geo-Information, 2021, 10, 396.	1.4	31
18	Fuzzy AHP based GIS and remote sensing techniques for the groundwater potential zonation for Bundelkhand Craton Region, India. Geocarto International, 2022, 37, 6671-6694.	1.7	17

#	Article	IF	Citations
19	Multi-criteria analysis of social isolation barriers amid COVID-19 using fuzzy AHP. World Journal of Engineering, 2022, 19, 195-203.	1.0	12
20	Evaluation of coffee ecological adaptability using Fuzzy, AHP, and GIS in Yunnan Province, China. Arabian Journal of Geosciences, 2021, 14, 1.	0.6	12
21	Assessment and Modeling of Groundwater Potential Zones by using Geospatial and Decision-making approaches: A case study in Anantapur district, Andhra Pradesh, India. Hydrospatial Analysis, 2021, 5, 34-44.	0.5	0
22	Analysing principal components of physiographic factors affecting groundwater occurrences within Keffi, NorthÂ-Central Nigeria. Egyptian Journal of Remote Sensing and Space Science, 2021, 24, 665-674.	1.1	2
23	Assessment of groundwater quality for drinking and irrigation in semi-arid regions of Andhra Pradesh, Southern India, using multivariate statistical analysis. Arabian Journal of Geosciences, 2021, 14, 1.	0.6	4
24	Land suitability analysis and water resources for agriculture in semi-arid regions of Andhra Pradesh, South India using remote sensing and GIS techniques. International Journal of Energy and Water Resources, 0 , 1 .	1.3	11
25	Assessing groundwater status and human perception in drought-prone areas: a case of Bankura-I and Bankura-II blocks, West Bengal (India). Environmental Earth Sciences, 2021, 80, 636.	1.3	14
26	Vulnerability assessment and management planning for the ecological environment in urban wetlands. Journal of Environmental Management, 2021, 298, 113540.	3.8	42
28	Assessment of Aeolian Desertification Near Vedavathi River Cannel in Central Part of Andhra Pradesh: Remote Sensing Approach. Remote Sensing of Land, 2019, 3, 39-49.	0.9	10
29	Identification of Groundwater Potential Zones using AHP and Geospatial Techniques in Western Part of Cuddapah Basin, Andhra Pradesh, India. Hydrospatial Analysis, 2019, 3, 60-71.	0.5	4
30	A GIS-Based Multicriteria Decision for Groundwater Potential Zone in the West Desert of Iraq. IOP Conference Series: Earth and Environmental Science, 2021, 856, 012049.	0.2	16
31	An Approach to Delineate Potential Groundwater Zones in Kilinochchi District, Sri Lanka, Using GIS Techniques. ISPRS International Journal of Geo-Information, 2021, 10, 730.	1.4	6
32	Determination of Groundwater Potential Zone in Arid and Semi-Arid Regions: A review., 2020,,.		10
33	Seasonal Groundwater Table Depth Prediction Using Fuzzy Logic and Artificial Neural Network in Gangetic Plain, India. Lecture Notes in Civil Engineering, 2022, , 549-564.	0.3	0
34	Asserting the Depleting Groundwater Condition in Coastal Region and Its Relation to River System by Using Remote Sensing and GIS: A Case Study of Rushikulya River Basin, Odisha, India. Journal of the Indian Society of Remote Sensing, 2022, 50, 55-71.	1.2	2
35	Deciphering groundwater potential zones using AHP and geospatial modelling approaches: a case study from YSR district, Andhra Pradesh, India. International Journal of Energy and Water Resources, 2023, 7, 259-269.	1.3	4
36	Analysis of Influence Mechanism of Spatial Distribution of Incoming Solar Radiation Based on DEM. Earth Science Informatics, 2022, 15, 635-648.	1.6	1
37	Integration of shannon entropy (SE), frequency ratio (FR) and analytical hierarchy process (AHP) in GIS for suitable groundwater potential zones targeting in the Yoyo river basin, M©iganga area, Adamawa Cameroon. Journal of Hydrology: Regional Studies, 2022, 39, 100997.	1.0	19

3

#	Article	IF	Citations
38	Application of analytical hierarchy process and integrated fuzzy-analytical hierarchy process for mapping potential groundwater recharge zone using GIS in the arid areas of Ewaso Ng'iro – Lagh Dera Basin, Kenya. HydroResearch, 2022, 5, 22-34.	1.7	15
40	A GIS-Agriflux Modeling and AHP Techniques for Groundwater Potential Zones Mapping. Journal of Geographic Information System, 2022, 14, 113-133.	0.3	4
41	Identification of groundwater potential zones in southern India using geospatial and decision-making approaches. Applied Water Science, 2022, 12, 1.	2.8	11
42	Assessment of Groundwater Potential Zones of Upper Blue Nile River Basin Using Multi-Influencing Factors under GIS and RS Environment: A Case Study on Guder Watersheds, Abay Basin, Oromia Region, Ethiopia. Geofluids, 2022, 2022, 1-26.	0.3	8
43	Delineation of groundwater potential zones in the Central Region of Ghana using GIS and fuzzy analytic hierarchy process. Modeling Earth Systems and Environment, 2022, 8, 5305-5326.	1.9	4
44	Delineating groundwater potential zones using geospatial techniques and fuzzy analytical hierarchy process (FAHP) ensemble in the data-scarce region: evidence from the lower Thoubal river watershed of Manipur, India. Arabian Journal of Geosciences, 2022, 15, 1.	0.6	11
45	Site selection for managed aquifer recharge in the city of Kabul, Afghanistan, using a multi-criteria decision analysis and geographic information system. Hydrogeology Journal, 2022, 30, 59-78.	0.9	17
46	Spatial modeling of solar photovoltaic power plant in Kabul, Afghanistan. Journal of Mountain Science, 2021, 18, 3291-3305.	0.8	7
47	Evaluation of Distribution Network Reconstruction Scheme Based on Dynamic Interval Intuitionistic Fuzzy Group Decision-Making., 2021,,.		2
48	Analysis of Driving Force and Driving Mechanism of the Spatial Change of LST Based on Landsat 8. Journal of the Indian Society of Remote Sensing, 2022, 50, 1787-1801.	1.2	5
49	Review of Groundwater Analysis in Various Regions in Tamil Nadu, India. KSCE Journal of Civil Engineering, 2022, 26, 3204-3215.	0.9	7
50	A GIS based Fuzzy-AHP for delineating groundwater potential zones in tropical river basin, southern part of India. Geosystems and Geoenvironment, 2022, 1, 100093.	1.7	15
51	Developing a new method for future groundwater potentiality mapping under climate change in Bisha watershed, Saudi Arabia. Geocarto International, 2022, 37, 14495-14527.	1.7	7
52	Application of Machine Learning and Geospatial Techniques for Groundwater Potential Mapping. Journal of the Indian Society of Remote Sensing, 2022, 50, 1995-2010.	1.2	4
53	Detection of groundwater potential zones using analytical hierarchical process (AHP) for a tropical river basin in the Western Ghats of India. Environmental Earth Sciences, 2022, 81, .	1.3	4
54	A FUZZY SCALE APPROACH TO THE THOR ALGORITHM. Pesquisa Operacional, 0, 42, .	0.1	1
55	Construction of Credit Assessment Model for International Import and Export Trade Based on Fuzzy Hierarchical Analysis. Mathematical Problems in Engineering, 2022, 2022, 1-10.	0.6	0
56	Global review of groundwater potential models in the last decade: Parameters, model techniques, and validation. Journal of Hydrology, 2022, 614, 128501.	2.3	13

#	ARTICLE	IF	Citations
57	Exploration of critical factors in adoption of electrical vehicles in India using Fuzzy Analytic Hierarchy Process method. , 2022, , .		1
58	Groundwater potential mapping using integrations of remote sensing and analytical hierarchy process methods in Ataye-watershed, Middle Awash Basin, Ethiopia. Sustainable Water Resources Management, 2022, 8, .	1.0	7
59	Modeling the spatial pattern of potential groundwater zone using MCDM-AHP and geospatial technique in sub-tropical plain region: a case study of Islampur sub-division, West Bengal, India. Sustainable Water Resources Management, 2022, 8, .	1.0	1
60	Multi-criteria approach to assess groundwater potential: a case study of Baringo County, Kenya. Water Practice and Technology, 2022, 17, 2199-2223.	1.0	3
61	Geostatistical modelling of groundwater quality for irrigation: a case study of Mayiladuthurai district, Tamil Nadu. Modeling Earth Systems and Environment, 0, , .	1.9	0
62	Evaluation of the heavy metal pollution ecological risk in topsoil: a case study from Nanjing, China. Environmental Earth Sciences, 2022, 81, .	1.3	1
63	Application of GIS Techniques in Identifying Artificial Groundwater Recharging Zones in Arid Regions: A Case Study in Tissamaharama, Sri Lanka. Hydrology, 2022, 9, 224.	1.3	2
64	Assessing groundwater potentials of Kaduna state, Northwestern Nigeria, using Geographic Information System (GIS) and Remote Sensing (RS) techniques. Arabian Journal of Geosciences, 2022, 15, .	0.6	2
65	Urban flood susceptibility analysis of Saroor Nagar Watershed of India using Geomatics-based multi-criteria analysis framework. Environmental Science and Pollution Research, 2023, 30, 107021-107040.	2.7	4
66	Criteria Affecting Groundwater Potential: A Systematic Review of Literature. Environmental Science and Engineering, 2023, , 85-110.	0.1	O
67	Demarcation of subsurface water storage potential zone and identification of artificial recharge site in Vel River watershed of western India: integrated geospatial and hydrogeological modeling approach. Modeling Earth Systems and Environment, 2023, 9, 3263-3278.	1.9	3
68	Comparison of Novel Hybrid and Benchmark Machine Learning Algorithms to Predict Groundwater Potentiality: Case of a Drought-Prone Region of Medjerda Basin, Northern Tunisia. Remote Sensing, 2023, 15, 152.	1.8	5
69	An improved hybrid-coupled model for delineation of groundwater potential zones using surface and climatological factors. Theoretical and Applied Climatology, 0, , .	1.3	1
70	Novel Ensemble Machine Learning Modeling Approach for Groundwater Potential Mapping in Parbhani District of Maharashtra, India. Water (Switzerland), 2023, 15, 419.	1.2	8
71	Water Harvesting in the Garmian Region (Kurdistan, Iraq) Using GIS and Remote Sensing. Water (Switzerland), 2023, 15, 507.	1.2	3
72	Delineation of Groundwater Potential Area using an AHP, Remote Sensing, and GIS Techniques in the Ifni Basin, Western Anti-Atlas, Morocco. Water (Switzerland), 2023, 15, 1436.	1.2	9
73	Groundwater potential zone mapping using geographic information systems and multi-influencing factors: A case study of the Kohat District, Khyber Pakhtunkhwa. Frontiers in Earth Science, $0,11,10$	0.8	3
74	RS and GIS analysis of the groundwater potential zones in the Upper Blue Nile River Basin, Ethiopia. Journal of Hydrology: Regional Studies, 2023, 46, 101344.	1.0	0

#	Article	IF	CITATIONS
75	Mapping and Assessment of Flood Risk in the Wadi Al-Lith Basin, Saudi Arabia. Water (Switzerland), 2023, 15, 902.	1.2	4
76	Integrated GIS, Remote Sensing, and Electrical Resistivity Tomography Methods for the Delineation of Groundwater Potential Zones in Sangaw Sub-Basin, Sulaymaniyah, KRG-Iraq. Water (Switzerland), 2023, 15, 1055.	1.2	2
77	An Assessment of Geospatial Analysis Combined with AHP Techniques to Identify Groundwater Potential Zones in the Pudukkottai District, Tamil Nadu, India. Water (Switzerland), 2023, 15, 1101.	1.2	6
78	Sustainability of Groundwater Potential Zones in Coastal Areas of Cuddalore District, Tamil Nadu, South India Using Integrated Approach of Remote Sensing, GIS and AHP Techniques. Sustainability, 2023, 15, 5339.	1.6	1
82	Geographic Information System and Remote Sensing in Deciphering Groundwater Potential Zones. Springer Water, 2023, , 133-169.	0.2	0
85	Delineation of Groundwater Potential Zones Using Multi-Criteria Decision Analysis: The Case of Balkh Province, Northern Afghanistan. , 0, , .		O
102	GIS Based Delineation of Flood Susceptibility Mapping Using Analytic Hierarchy Process in East Vidarbha Region, India. Environmental Science and Engineering, 2024, , 305-329.	0.1	0