A Real-Time Collision Avoidance Strategy in Dynamic A Potential Field Algorithm

IEEE Access 7, 169469-169479 DOI: 10.1109/access.2019.2953946

Citation Report

CITATION REDORT

#	Article	IF	CITATIONS
1	Multi UAV Cluster Control Method Based on Virtual Core in Improved Artificial Potential Field. IEEE Access, 2020, 8, 131647-131661.	4.2	31
2	Reactive Collision Avoidance Algorithm for UAV Using Bounding Tube Against Multiple Moving Obstacles. IEEE Access, 2020, 8, 218131-218144.	4.2	5
3	Dynamic collision avoidance scheme for unmanned surface vehicles under complex shallow sea Environments. Ocean Engineering, 2020, 218, 108102.	4.3	13
4	Pursuit-Evasion Game approach to Tree-Based Path Planning for Airborne Dynamic Obstacle Avoidance. , 2021, , .		1
5	Collision avoidance method of autonomous vehicle based on improved artificial potential field algorithm. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2021, 235, 3416-3430.	1.9	24
6	A Moving Target Tracking Control of Quadrotor UAV Based on Passive Control and Super-Twisting Sliding Mode Control. Mathematical Problems in Engineering, 2021, 2021, 1-17.	1.1	3
7	Efficient Reactive Obstacle Avoidance Using Spirals for Escape. Drones, 2021, 5, 51.	4.9	8
8	Path Planning and Collision Risk Management Strategy for Multi-UAV Systems in 3D Environments. Sensors, 2021, 21, 4414.	3.8	12
9	Deep Reinforcement Learning for Quadrotor Path Following and Obstacle Avoidance. Studies in Computational Intelligence, 2021, , 563-633.	0.9	1
10	Multi-UAV Path Planning Based on Fusion of Sparrow Search Algorithm and Improved Bioinspired Neural Network. IEEE Access, 2021, 9, 124670-124681.	4.2	41
11	Efficient Local Path Planning Algorithm Using Artificial Potential Field Supported by Augmented Reality. Energies, 2021, 14, 6642.	3.1	44
12	UAV Dynamic Path Planning Based on Obstacle Position Prediction in an Unknown Environment. IEEE Access, 2021, 9, 154679-154691.	4.2	13
13	Enhanced Artificial Potential Field-based Moving Obstacle Avoidance for UAV in Three-Dimensional Environment. , 2020, , .		6
14	Recent Progress on Multiple-Unmanned Aerial Vehicle Collision Avoidance Algorithms. , 2020, , .		1
15	Revue Systématique de la Littérature sur le Soutien à la Sécurité des Opérations de Drones. , 2021, , .		0
16	Collision Avoidance of Unmanned Aerial Vehicles Using Fuzzy Inference System-Aided Enhanced Potential Field. , 2022, , .		2
17	MAV-UAV Collaborative Route Planning Based on Intelligent Emotion Mode. Lecture Notes in Electrical Engineering, 2022, , 2744-2754.	0.4	0
18	Research on robot path planning based on A-weighted JPS Algorithm. , 2021, , .		1

#	ARTICLE	IF	CITATIONS
19	Energy Efficient Local Path Planning Algorithm Based on Predictive Artificial Potential Field. IEEE Access, 2022, 10, 39729-39742.	4.2	33
20	Multi-objective particle swarm optimization with multi-mode collaboration based on reinforcement learning for path planning of unmanned air vehicles. Knowledge-Based Systems, 2022, 250, 109075.	7.1	24
21	Flocking of Battery-Powered Mobile Agents with Energy-Aware Potential Function. , 2021, , .		0
22	LiDAR Based Detect and Avoid System for UAV Navigation in UAM Corridors. Drones, 2022, 6, 185.	4.9	15
23	An Adaptive 3D Artificial Potential Field for Fail-safe UAV Navigation. , 2022, , .		6
24	A Reconfigurable Modular Vehicle Control Strategy Based on an Improved Artificial Potential Field. Electronics (Switzerland), 2022, 11, 2539.	3.1	1
25	A Dynamic Obstacle Avoidance Control Algorithm for Distributed Multi-UAV Formation System. , 2022, , \cdot		2
26	Imaginary filtered hindsight experience replay for UAV tracking dynamic targets in large-scale unknown environments. Chinese Journal of Aeronautics, 2023, 36, 377-391.	5.3	7
27	Real-time Path Planning Algorithms for Autonomous UAV. , 2022, , .		1
28	Cooperative Collision Avoidance in Mobile Robots using Dynamic Vortex Potential Fields. , 2023, , .		1
29	Optimized APF-ACO Algorithm for Ship Collision Avoidance and Path Planning. Journal of Marine Science and Engineering, 2023, 11, 1177.	2.6	5
31	An Effective Strategy for Collision Avoidance of Multiple UAVs With Unknown Acceleration. IEEE Access, 2023, 11, 112600-112619.	4.2	0
32	Potential field-based cooperative adaptive cruising control for longitudinal following and lane changing of vehicle platooning. Physica A: Statistical Mechanics and Its Applications, 2023, 632, 129317.	2.6	0
33	ACACT: Adaptive Collision Avoidance Algorithm Based on Estimated Collision Time for Swarm UAVs. IEEE Access, 2023, 11, 120179-120191.	4.2	0
34	Real-Time Local Obstacle Avoidance and Trajectory Tracking Control of Quadrotor UAVs With Suspended Payload in Complex Environments. IEEE Access, 2023, 11, 144017-144029.	4.2	1
35	A review of perception sensors, techniques, and hardware architectures for autonomous low-altitude UAVs in non-cooperative local obstacle avoidance. Robotics and Autonomous Systems, 2024, 173, 104629.	5.1	0
36	Local Trajectory Planning for Obstacle Avoidance of Unmanned Tracked Vehicles Based on Artificial Potential Field Method. IEEE Access, 2024, 12, 19665-19681.	4.2	0
37	Multi-unmanned Surface Vehicles Formation Based on DMPC and Improved APF Method. , 2023, , .		Ο

CITATION REPORT

#	Article	IF	CITATIONS
38	A fast formation obstacle avoidance algorithm for clustered UAVs based on artificial potential field. Aerospace Science and Technology, 2024, 147, 108974.	4.8	0