

IEEE Transactions on Cognitive Communications and Network 5, 1125-1139

DOI: 10.1109/tccn.2019.2952909

Citation Report

#	Article	IF	CITATIONS
1	Deep Reinforcement Learning for Dynamic Multichannel Access in Multi-Cognitive Radio Networks. Journal of Physics: Conference Series, 2020, 1550, 032135.	0.4	4
2	Multi-Agent Deep Stochastic Policy Gradient for Event Based Dynamic Spectrum Access. , 2020, , .		9
3	Deep Reinforcement Learning for Dynamic Spectrum Sensing and Aggregation in Multi-Channel Wireless Networks. IEEE Transactions on Cognitive Communications and Networking, 2020, 6, 464-475.	7.9	51
4	Hybrid NOMA/OMA-Based Dynamic Power Allocation Scheme Using Deep Reinforcement Learning in 5G Networks. Applied Sciences (Switzerland), 2020, 10, 4236.	2.5	17
5	Massive connectivity with machine learning for the Internet of Things. Computer Networks, 2021, 184, 107646.	5.1	5
6	Joint Traffic Control and Multi-Channel Reassignment for Core Backbone Network in SDN-IoT: A Multi-Agent Deep Reinforcement Learning Approach. IEEE Transactions on Network Science and Engineering, 2021, 8, 231-245.	6.4	24
7	A Context-Aware Radio Resource Management in Heterogeneous Virtual RANs. IEEE Transactions on Cognitive Communications and Networking, 2022, 8, 321-334.	7.9	2
8	Deep Dyna-Reinforcement Learning Based on Random Access Control in LEO Satellite IoT Networks. IEEE Internet of Things Journal, 2022, 9, 14818-14828.	8.7	11
9	Multi-Channel Opportunistic Access for Heterogeneous Networks Based on Deep Reinforcement Learning. IEEE Transactions on Wireless Communications, 2022, 21, 794-807.	9.2	9
10	An RL Approach to Radio Resource Management in Heterogeneous Virtual RANs., 2021,,.		3
11	Joint Network Control and Resource Allocation for Space-Terrestrial Integrated Network Through Hierarchal Deep Actor-Critic Reinforcement Learning. IEEE Transactions on Vehicular Technology, 2021, 70, 4943-4954.	6.3	22
13	Dynamic Multichannel Access via Multi-agent Reinforcement Learning: Throughput and Fairness Guarantees. , 2021, , .		2
14	Deep Reinforcement Learning for QoS provisioning at the MAC layer: A Survey. Engineering Applications of Artificial Intelligence, 2021, 102, 104234.	8.1	14
15	Deep Reinforcement Learning-Based Dynamic MultiChannel Access for Heterogeneous Wireless Networks with DenseNet. , 2021, , .		1
16	Better Late Than Never: GAN-Enhanced Dynamic Anti-Jamming Spectrum Access With Incomplete Sensing Information. IEEE Wireless Communications Letters, 2021, 10, 1800-1804.	5.0	4
17	DQN Algorithm Based on Target Value Network Parameter Dynamic Update. , 2021, , .		O
18	Dynamic Multichannel Sensing in Cognitive Radio: Hierarchical Reinforcement Learning. IEEE Access, 2021, 9, 25473-25481.	4.2	11
19	Energy-aware Multiple Access Using Deep Reinforcement Learning. , 2021, , .		O

#	Article	IF	Citations
20	Sensing-Transmission Tradeoff for Multimedia Transmission in Cognitive Radio Networks. , 2020, , .		4
21	Applications of Multi-Agent Deep Reinforcement Learning: Models and Algorithms. Applied Sciences (Switzerland), 2021, 11, 10870.	2.5	6
22	Multi-Objective Optimization of Energy Saving and Throughput in Heterogeneous Networks Using Deep Reinforcement Learning. Sensors, 2021, 21, 7925.	3.8	12
23	Resilient Dynamic Channel Access via Robust Deep Reinforcement Learning. IEEE Access, 2021, 9, 163188-163203.	4.2	4
24	Dynamic Multichannel Access via Multi-Agent Reinforcement Learning: Throughput and Fairness Guarantees. IEEE Transactions on Wireless Communications, 2022, 21, 3994-4008.	9.2	4
25	Primary-User-Friendly Dynamic Spectrum Anti-Jamming Access: A GAN-Enhanced Deep Reinforcement Learning Approach. IEEE Wireless Communications Letters, 2022, 11, 258-262.	5.0	8
26	Coexistence of Shared-Spectrum Radio Systems through Medium Access Pattern Learning using Artificial Neural Networks. , 2020, , .		3
27	Learning-Aided Dynamic Access Control in MEC-Enabled Green IoT Networks: A Convolutional Reinforcement Learning Approach. IEEE Transactions on Vehicular Technology, 2022, 71, 2098-2109.	6.3	10
28	Dynamic Spectrum Aggregation and Access Scheme Based on Multi-Agent Actor-Critic Reinforcement Learning. , 2021, , .		4
29	Intelligent Ultrareliable and Low-Latency Communications: Flexibility and Adaptation. IEEE Internet of Things Journal, 2022, 9, 16140-16153.	8.7	2
30	The Frontiers of Deep Reinforcement Learning for Resource Management in Future Wireless HetNets: Techniques, Challenges, and Research Directions. IEEE Open Journal of the Communications Society, 2022, 3, 322-365.	6.9	19
31	Visual servoing with deep reinforcement learning for rotor unmanned helicopter. International Journal of Advanced Robotic Systems, 2022, 19, 172988062210848.	2.1	2
32	Double Deep Recurrent Reinforcement Learning for Centralized Dynamic Multichannel Access. Wireless Communications and Mobile Computing, 2021, 2021, 1-10.	1.2	3
33	Dynamic Channel Access via Meta-Reinforcement Learning. , 2021, , .		1
34	Power Control Based on DRL Algorithm for D2D-Enabled Networks. , 2021, , .		0
35	Cooperative Multi-Agent Reinforcement-Learning-Based Distributed Dynamic Spectrum Access in Cognitive Radio Networks. IEEE Internet of Things Journal, 2022, 9, 19477-19488.	8.7	26
36	A tutorial on Al-powered 3D deployment of drone base stations: State of the art, applications and challenges. Vehicular Communications, 2022, 36, 100474.	4.0	13
37	Dynamic spectrum access and sharing through actor-critic deep reinforcement learning. Eurasip Journal on Wireless Communications and Networking, 2022, 2022, .	2.4	1

3

#	Article	IF	CITATIONS
38	An efficient Actor Critic DRL Framework for Resource Allocation in Multi-cell Downlink NOMA. , 2022, , .		2
39	Simultaneous Sensing and Channel Access based on Partial Observations via Deep Reinforcement Learning. , 2022, , .		O
40	Actor-Critic Scheduling for Path-Aware Air-to-Ground Multipath Multimedia Delivery. , 2022, , .		3
41	Routing and Resource Allocation for IAB Multi-Hop Network in 5G Advanced. IEEE Transactions on Communications, 2022, 70, 6704-6717.	7.8	5
42	Decentralized Joint Pilot and Data Power Control Based on Deep Reinforcement Learning for the Uplink of Cell-Free Systems. IEEE Transactions on Vehicular Technology, 2023, 72, 957-972.	6.3	2
43	A Usage Aware Dynamic Spectrum Access Scheme for Interweave Cognitive Radio Network by Exploiting Deep Reinforcement Learning. Sensors, 2022, 22, 6949.	3.8	1
44	A Dueling Deep Recurrent $ Q $ -Network Framework for Dynamic Multichannel Access in Heterogeneous Wireless Networks. Wireless Communications and Mobile Computing, 2022, 2022, 1-14.	1.2	1
45	CAPL: Criticality-Aware Adaptive Path Learning for Industrial Wireless Sensor–Actuator Networks. IEEE Transactions on Industrial Informatics, 2023, 19, 9123-9133.	11.3	1
46	Model-Based Reinforcement Learning for Wireless Channel Access. , 2022, , .		0
47	Deep Reinforcement Learning for Energy Efficient Routing and Throughput Maximization in Various Networks. , 2022, , .		7
48	Priorityâ€aware intelligent device access management for carbon footprint monitoring in sustainable cites and society. IET Communications, 2023, 17, 409-417.	2.2	2
49	Deep Reinforcement Learning for Simultaneous Sensing and Channel Access in Cognitive Networks. IEEE Transactions on Wireless Communications, 2023, 22, 4930-4946.	9.2	3
50	Federated Multi-Agent Deep Reinforcement Learning (Fed-MADRL) for Dynamic Spectrum Access. IEEE Transactions on Wireless Communications, 2023, 22, 5337-5348.	9.2	2
51	Dynamic Spectrum Access in Non-stationary Environments: A DRL-LSTM Integrated Approach. , 2023, , .		O
52	Learning-Based Traffic Scheduling in Non-Stationary Multipath 5G Non-Terrestrial Networks. Remote Sensing, 2023, 15, 1842.	4.0	1
53	A tutorial on reinforcement learning in selected aspects of communications and networking. Computer Communications, 2023, 208, 89-110.	5.1	O
54	Deep Reinforcement Learning-Based Scheduling for NR-U/WiGig Coexistence in Unlicensed mmWave Bands. IEEE Transactions on Wireless Communications, 2024, 23, 58-73.	9.2	0
55	Dynamic Spectrum Sharing Based on Federated Learning and Multi-Agent Actor-Critic Reinforcement Learning., 2023,,.		0

#	Article	IF	CITATIONS
56	A Cognitive Multi-Carrier Radar for Communication Interference Avoidance Via Deep Reinforcement Learning. IEEE Transactions on Cognitive Communications and Networking, 2023, , 1-1.	7.9	0
57	Toward a Fully-Observable Markov Decision Process With Generative Models for Integrated 6G-Non-Terrestrial Networks. IEEE Open Journal of the Communications Society, 2023, 4, 1913-1930.	6.9	0
58	Traffic Priority-Aware Multi-User Distributed Dynamic Spectrum Access: A Multi-Agent Deep RL Approach. IEEE Transactions on Cognitive Communications and Networking, 2023, , 1-1.	7.9	0
59	A Joint Scheme on Spectrum Sensing and Access with Partial Observation: A Multi-Agent Deep Reinforcement Learning Approach. , 2023, , .		0
60	Auto scheduling through distributed reinforcement learning in SDN based IoT environment. Eurasip Journal on Wireless Communications and Networking, 2023, 2023, .	2.4	0
61	Channel Allocation to GAA Users Using Double Deep Recurrent Q-Learning Based on Double Auction Method. IEEE Access, 2023, , 1-1.	4.2	0
62	Multi-view reinforcement learning for sequential decision-making with insufficient state information. International Journal of Machine Learning and Cybernetics, 2024, 15, 1533-1552.	3.6	0
63	RevAP: A bankruptcy-based algorithm to solve the multi-agent credit assignment problem in task start threshold-based multi-agent systems. Robotics and Autonomous Systems, 2024, 174, 104631.	5.1	O