Energy and emissions implications of automated vehicl

Transportation Research, Part D: Transport and Environment 77, 132-147

DOI: 10.1016/j.trd.2019.09.003

Citation Report

#	Article	IF	Citations
1	Addressing EU climate targets: Reducing CO2 emissions using cooperative and automated vehicles. Transportation Research, Part D: Transport and Environment, 2020, 86, 102437.	6.8	26
2	An Air Pollutant Emission Reduction Path of China's Power Industry. Atmosphere, 2020, 11, 852.	2.3	2
3	Electric Vehicle Model Based on Multiple Recharge System and a Particular Traction Motor Conception. IEEE Access, 2021, 9, 49308-49324.	4.2	17
4	Integration of automated vehicles in mixed traffic: Evaluating changes in performance of following human-driven vehicles. Accident Analysis and Prevention, 2021, 152, 106006.	5.7	55
5	A closer look at urban development under the emergence of autonomous vehicles: Traffic, land use and air quality impacts. Journal of Transport Geography, 2021, 94, 103113.	5.0	15
6	Assessing Trust Level of a Driverless Car Using Deep Learning. IEEE Transactions on Intelligent Transportation Systems, 2021, 22, 4457-4466.	8.0	24
7	Fuel consumption and transportation emissions evaluation of mixed traffic flow with connected automated vehicles and human-driven vehicles on expressway. Energy, 2021, 230, 120766.	8.8	64
8	A review of spatial resolution and regionalisation in national-scale energy systems optimisation models. Energy Strategy Reviews, 2021, 37, 100702.	7.3	38
9	Urban air mobility: A comprehensive review and comparative analysis with autonomous and electric ground transportation for informing future research. Transportation Research Part C: Emerging Technologies, 2021, 132, 103377.	7.6	128
10	Air quality and greenhouse gas implications of autonomous vehicles in Vancouver, Canada. Transportation Research, Part D: Transport and Environment, 2021, 90, 102676.	6.8	25
11	Hopes and fears about autonomous vehicles. Case Studies on Transport Policy, 2021, 9, 1933-1933.	2.5	0
12	Assessment of decarbonization alternatives for passenger transportation in Rio de Janeiro, Brazil. Transportation Research, Part D: Transport and Environment, 2022, 103, 103161.	6.8	8
13	Assessing the Effect of Drivers' Gender on Their Intention to Use Fully Automated Vehicles. Applied Sciences (Switzerland), 2022, 12, 103.	2.5	10
14	Toward Human-Centric Transportation and Energy Metrics: Influence of Mode, Vehicle Occupancy, Trip Distance, and Fuel Economy. Transportation Research Record, 2022, 2676, 467-478.	1.9	1
15	Characterizing car-following behaviors of human drivers when following automated vehicles using the real-world dataset. Accident Analysis and Prevention, 2022, 172, 106689.	5.7	18
16	How can the built environment affect the impact of autonomous vehicles' operational behaviour on air quality?. Journal of Environmental Management, 2022, 315, 115154.	7.8	4
17	Adoption of Autonomous and Electric Vehicles in Private and Shared Mobility Systems. SSRN Electronic Journal, 0 , , .	0.4	0
18	Connected automated vehicle impacts in Southern California part-II: VMT, emissions, and equity. Transportation Research, Part D: Transport and Environment, 2022, 109, 103381.	6.8	10

#	ARTICLE	IF	CITATIONS
19	Agent-based modelling approach for autonomous vehicle influence on countries' welfare. Journal of Cleaner Production, 2022, 374, 134008.	9.3	0
20	Environmental Analyses of Delayed-Feedback Control Effects in Continuum-Traffic Flow of Autonomous Vehicles. Sustainability, 2022, 14, 11292.	3.2	2
21	Assessing the influence of connected and automated mobility on the liveability of cities. Journal of Urban Mobility, 2022, 2, 100034.	2.6	O
22	Adoption of autonomous and electric vehicles in private and shared mobility systems. Transportation Research, Part D: Transport and Environment, 2023, 115, 103561.	6.8	6
23	Simulating long-term emissions from private automated vehicles under climate policies. Transportation Research, Part D: Transport and Environment, 2023, 118, 103665.	6.8	3
24	A Microscopic Traffic Flow Data Generation Method Based on an Improved DCGAN. Applied Sciences (Switzerland), 2023, 13, 7192.	2.5	1
25	Policy Efforts to Promote the Adoption of Autonomous Vehicles: Subsidy and AV Lanes. Journal of Advanced Transportation, 2023, 2023, 1-17.	1.7	0
26	Assessing the impacts of connected-and-autonomous vehicle management strategy on the environmental sustainability of urban expressway system. Sustainable Cities and Society, 2023, 99, 104904.	10.4	3
27	Assessing Trust Level of Autonomous Vehicle Based on Inception-LSTM. , 2023, , .		0
28	A new control strategy of CAVs platoon for mitigating traffic oscillation in a two-lane highway. Physica A: Statistical Mechanics and Its Applications, 2023, 630, 129289.	2.6	2
30	A National Innovation System Concept-Based Analysis of Autonomous Vehicles' Potential in Reaching Zero-Emission Fleets. Technologies, 2024, 12, 26.	5.1	0