Histone hyperacetylation disrupts core gene regulatory rhabdomyosarcoma

Nature Genetics 51, 1714-1722

DOI: 10.1038/s41588-019-0534-4

Citation Report

#	Article	IF	CITATIONS
1	Elucidation of Biological Networks across Complex Diseases Using Single-Cell Omics. Trends in Genetics, 2020, 36, 951-966.	6.7	23
2	Sarcoma treatment in the era of molecular medicine. EMBO Molecular Medicine, 2020, 12, e11131.	6.9	154
3	Assessment of Synergistic Contribution of Histone Deacetylases in Prognosis and Therapeutic Management of Sarcoma. Molecular Diagnosis and Therapy, 2020, 24, 557-569.	3.8	5
4	Core regulatory circuitries in defining cancer cell identity across the malignant spectrum. Open Biology, 2020, 10, 200121.	3.6	10
5	Core transcriptional regulatory circuitries in cancer. Oncogene, 2020, 39, 6633-6646.	5.9	41
6	CDK9 as a Valuable Target in Cancer: From Natural Compounds Inhibitors to Current Treatment in Pediatric Soft Tissue Sarcomas. Frontiers in Pharmacology, 2020, 11, 1230.	3.5	20
7	Miswired Enhancer Logic Drives a Cancer of the Muscle Lineage. IScience, 2020, 23, 101103.	4.1	26
8	Using Chemical Epigenetics to Target Cancer. Molecular Cell, 2020, 78, 1086-1095.	9.7	40
9	TP63, SOX2, and KLF5 Establish a Core Regulatory Circuitry That Controls Epigenetic and Transcription Patterns in Esophageal Squamous Cell Carcinoma Cell Lines. Gastroenterology, 2020, 159, 1311-1327.e19.	1.3	92
10	Measurement of differential chromatin interactions with absolute quantification of architecture (AQuA-HiChIP). Nature Protocols, 2020, 15, 1209-1236.	12.0	19
11	The CRISP(Y) Future of Pediatric Soft Tissue Sarcomas. Frontiers in Chemistry, 2020, 8, 178.	3.6	3
12	HDAC inhibition results in widespread alteration of the histone acetylation landscape and BRD4 targeting to gene bodies. Cell Reports, 2021, 34, 108638.	6.4	60
13	Relapsed Rhabdomyosarcoma. Journal of Clinical Medicine, 2021, 10, 804.	2.4	30
14	Targeting MYCN in Pediatric and Adult Cancers. Frontiers in Oncology, 2020, 10, 623679.	2.8	42
15	FOXF1 is required for the oncogenic properties of PAX3-FOXO1 in rhabdomyosarcoma. Oncogene, 2021, 40, 2182-2199.	5.9	15
16	Epigenetic regulator BMI1 promotes alveolar rhabdomyosarcoma proliferation and constitutes a novel therapeutic target. Molecular Oncology, 2021, 15, 2156-2171.	4.6	11
17	Microbial colonization induces histone acetylation critical for inherited gut-germline-neural signaling. PLoS Biology, 2021, 19, e3001169.	5.6	16
18	A first-generation pediatric cancer dependency map. Nature Genetics, 2021, 53, 529-538.	21.4	76

#	ARTICLE	IF	CITATIONS
19	Prioritization of Novel Agents for Patients with Rhabdomyosarcoma: A Report from the Children's Oncology Group (COG) New Agents for Rhabdomyosarcoma Task Force. Journal of Clinical Medicine, 2021, 10, 1416.	2.4	11
20	Fast-acting chemical tools to delineate causality in transcriptional control. Molecular Cell, 2021, 81, 1617-1630.	9.7	44
22	Advances in targeting â€~undruggable' transcription factors with small molecules. Nature Reviews Drug Discovery, 2021, 20, 669-688.	46.4	152
23	Targeting histone acetylation dynamics and oncogenic transcription by catalytic P300/CBP inhibition. Molecular Cell, 2021, 81, 2183-2200.e13.	9.7	59
24	Small heat-shock protein HSPB3 promotes myogenesis by regulating the lamin B receptor. Cell Death and Disease, 2021, 12, 452.	6.3	16
25	Histone deacetylase‑2: A potential regulator and therapeutic target in liver disease (Review). International Journal of Molecular Medicine, 2021, 48, .	4.0	11
26	Chromatin Mechanisms Driving Cancer. Cold Spring Harbor Perspectives in Biology, 2022, 14, a040956.	5 . 5	9
27	Inducible Protein Degradation to Understand Genome Architecture. Biochemistry, 2021, 60, 2387-2396.	2.5	5
28	Repurposing proscillaridin A in combination with decitabine against embryonal rhabdomyosarcoma RD cells. Cancer Chemotherapy and Pharmacology, 2021, 88, 845-856.	2.3	2
29	Chemical Screen Identifies Diverse and Novel Histone Deacetylase Inhibitors as Repressors of NUT Function: Implications for NUT Carcinoma Pathogenesis and Treatment. Molecular Cancer Research, 2021, 19, 1818-1830.	3.4	12
30	CRISPR/Cas-Based Epigenome Editing: Advances, Applications, and Clinical Utility. Trends in Biotechnology, 2021, 39, 678-691.	9.3	47
31	Evidence of pioneer factor activity of an oncogenic fusion transcription factor. IScience, 2021, 24, 102867.	4.1	22
34	Synthetic essentiality between PTEN and core dependency factor PAX7 dictates rhabdomyosarcoma identity. Nature Communications, 2021, 12, 5520.	12.8	15
35	Pioneer factors in development and cancer. IScience, 2021, 24, 103132.	4.1	15
36	MS-275 (Entinostat) Promotes Radio-Sensitivity in PAX3-FOXO1 Rhabdomyosarcoma Cells. International Journal of Molecular Sciences, 2021, 22, 10671.	4.1	14
41	The PAX-FOXO1s trigger fast trans-differentiation of chick embryonic neural cells into alveolar rhabdomyosarcoma with tissue invasive properties limited by S phase entry inhibition. PLoS Genetics, 2020, 16, e1009164.	3.5	8
42	NuRD subunit CHD4 regulates super-enhancer accessibility in rhabdomyosarcoma and represents a general tumor dependency. ELife, 2020, 9, .	6.0	36
46	BAF complexes drive proliferation and block myogenic differentiation in fusion-positive rhabdomyosarcoma. Nature Communications, 2021, 12, 6924.	12.8	25

#	Article	IF	CITATIONS
47	Predicting master transcription factors from pan-cancer expression data. Science Advances, 2021, 7, eabf6123.	10.3	30
48	Master lineage transcription factors anchor trans mega transcriptional complexes at highly accessible enhancer sites to promote long-range chromatin clustering and transcription of distal target genes. Nucleic Acids Research, 2021, 49, 12196-12210.	14.5	7
49	Deep analysis of neuroblastoma core regulatory circuitries using online databases and integrated bioinformatics shows their pan-cancer roles as prognostic predictors. Discover Oncology, 2021, 12, 56.	2.1	6
50	The perfect PTEN $\hat{a} \in ``transcriptional regulation by PTEN dictates sarcoma identity. Molecular and Cellular Oncology, 2021, 8, 2002120.$	0.7	0
51	Characterization of the MYB-inhibitory potential of the Pan-HDAC inhibitor LAQ824. BBA Advances, 2022, 2, 100034.	1.6	2
52	Transcriptomic and genomic studies classify NKL54 as a histone deacetylase inhibitor with indirect influence on MEF2-dependent transcription. Nucleic Acids Research, 2022, 50, 2566-2586.	14.5	12
53	SIX1 reprograms myogenic transcription factors to maintain the rhabdomyosarcoma undifferentiated state. Cell Reports, 2022, 38, 110323.	6.4	12
54	<i>MYC</i> overexpression leads to increased chromatin interactions at super-enhancers and MYC binding sites. Genome Research, 2022, 32, 629-642.	5.5	24
55	CDK7-dependent transcriptional addiction in bone and soft tissue sarcomas: Present and Future. Biochimica Et Biophysica Acta: Reviews on Cancer, 2022, 1877, 188680.	7.4	4
56	SOX17 and PAX8 constitute an actionable lineage-survival transcriptional complex in ovarian cancer. Oncogene, 2022, 41, 1767-1779.	5.9	11
57	Combinatorial strategies to potentiate the efficacy of HDAC inhibitors in fusion-positive sarcomas. Biochemical Pharmacology, 2022, 198, 114944.	4.4	10
59	Dynamic Opposition of Histone Modifications. ACS Chemical Biology, 2023, 18, 1027-1036.	3.4	10
60	Oncogenic fusion proteins and their role in three-dimensional chromatin structure, phase separation, and cancer. Current Opinion in Genetics and Development, 2022, 74, 101901.	3.3	11
61	Combined inhibition of BET bromodomain and mTORC1/2 provides therapeutic advantage for rhabdomyosarcoma by switching cell death mechanism. Molecular Carcinogenesis, 2022, 61, 737-751.	2.7	6
62	Pediatric Sarcomas: The Next Generation of Molecular Studies. Cancers, 2022, 14, 2515.	3.7	0
63	Selective inhibition of histone deacetylase 3 by novel hydrazide based small molecules as therapeutic intervention for the treatment of cancer. European Journal of Medicinal Chemistry, 2022, 238, 114470.	5.5	8
64	Divergent transcriptional and transforming properties of PAX3-FOXO1 and PAX7-FOXO1 paralogs. PLoS Genetics, 2022, 18, e1009782.	3 . 5	4
66	Targeting KDM4 for treating PAX3-FOXO1–driven alveolar rhabdomyosarcoma. Science Translational Medicine, 2022, 14, .	12.4	16

#	Article	IF	CITATIONS
67	Molecular testing of rhabdomyosarcoma in clinical trials to improve risk stratification and outcome: A consensus view from European paediatric Soft tissue sarcoma Study Group, Children's Oncology Group and Cooperative Weichteilsarkom-Studiengruppe. European Journal of Cancer, 2022, 172, 367-386.	2.8	19
68	Chromatin structure in cancer. BMC Molecular and Cell Biology, 2022, 23, .	2.0	10
70	Novel antimyeloma therapeutic option with inhibition of the HDAC1-IRF4 axis and PIM kinase. Blood Advances, 2023, 7, 1019-1032.	5.2	2
71	Translational Implications for Radiosensitizing Strategies in Rhabdomyosarcoma. International Journal of Molecular Sciences, 2022, 23, 13281.	4.1	2
72	PAX3-FOXO1 coordinates enhancer architecture, eRNA transcription, and RNA polymerase pause release at select gene targets. Molecular Cell, 2022, 82, 4428-4442.e7.	9.7	12
76	Structural insights into p 300 regulation and acetylation-dependent genome organisation. Nature Communications, $2022,13,.$	12.8	21
77	HAND2 Assists MYCN Enhancer Invasion to Regulate a Noradrenergic Neuroblastoma Phenotype. Cancer Research, 2023, 83, 686-699.	0.9	4
78	The ETS transcription factor ETV6 constrains the transcriptional activity of EWS–FLI to promote Ewing sarcoma. Nature Cell Biology, 0, , .	10.3	6
79	ETV6 dependency in Ewing sarcoma by antagonism of EWS-FLI1-mediated enhancer activation. Nature Cell Biology, 0, , .	10.3	4
80	The epigenetic factor CHD4 contributes to metastasis by regulating the EZH2/ \hat{l}^2 -catenin axis and acts as a therapeutic target in ovarian cancer. Journal of Translational Medicine, 2023, 21, .	4.4	6
81	Tumor-suppressive disruption of cancer subtype-associated super enhancer circuits by small molecule treatment. NAR Cancer, 2023, 5, .	3.1	1
82	Super-enhancer landscape rewiring in cancer: The epigenetic control at distal sites. International Review of Cell and Molecular Biology, 2023, , 97-148.	3.2	0
84	BET Bromodomain Degradation Disrupts Function but Not 3D Formation of RNA Pol2 Clusters. Pharmaceuticals, 2023, 16, 199.	3.8	1
85	Landscape and significance of human super enhancer-driven core transcription regulatory circuitry. Molecular Therapy - Nucleic Acids, 2023, 32, 385-401.	5.1	5
87	Experimental Validation and Prediction of Super-Enhancers: Advances and Challenges. Cells, 2023, 12, 1191.	4.1	1
88	High-throughput approaches to uncover synergistic drug combinations in leukemia. SLAS Discovery, 2023, 28, 193-201.	2.7	6
89	Targeting intracellular proteins with cell type-specific functions for cancer immunotherapy. , 2023, 2,		1
90	The 3D chromatin landscape of rhabdomyosarcoma. NAR Cancer, 2023, 5, .	3.1	3

#	Article	IF	CITATIONS
91	$TWIST2-mediated\ chromatin\ remodeling\ promotes\ fusion-negative\ rhabdomy osarcoma.\ Science\ Advances,\ 2023,\ 9,\ .$	10.3	6
92	Genomic and Epigenetic Changes Drive Aberrant Skeletal Muscle Differentiation in Rhabdomyosarcoma. Cancers, 2023, 15, 2823.	3.7	0
94	Transcriptional condensates and phase separation: condensing information across scales and mechanisms. Nucleus, 2023, 14, .	2.2	2
95	Etiology of super-enhancer reprogramming and activation in cancer. Epigenetics and Chromatin, 2023, 16, .	3.9	2
96	Collateral lethality between HDAC1 and HDAC2 exploits cancer-specific NuRD complex vulnerabilities. Nature Structural and Molecular Biology, 2023, 30, 1160-1171.	8.2	5
97	A review of the therapeutic potential of histone deacetylase inhibitors in rhabdomyosarcoma. Frontiers in Oncology, 0, 13, .	2.8	2
98	Myo-differentiation reporter screen reveals NF-Y as an activator of PAX3–FOXO1 in rhabdomyosarcoma. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	3
99	HDAC3 and HDAC8 PROTAC dual degrader reveals roles of histone acetylation in gene regulation. Cell Chemical Biology, 2023, , .	5.2	0
100	Preclinical development of a chimeric antigen receptor TÂcell therapy targeting FGFR4 in rhabdomyosarcoma. Cell Reports Medicine, 2023, 4, 101212.	6.5	1
101	Survival outcomes including salvage therapy of adult head and neck para-meningeal rhabdomyosarcoma: a multicenter retrospective study from Japan. BMC Cancer, 2023, 23, .	2.6	0
102	Differentiation-dependent chromosomal organization changes in normal myogenic cells are absent in rhabdomyosarcoma cells. Frontiers in Cell and Developmental Biology, 0, 11 , .	3.7	0
103	PAX3-FOXO1 dictates myogenic reprogramming and rhabdomyosarcoma identity in endothelial progenitors. Nature Communications, 2023, 14, .	12.8	0
104	â€~Enhancing' skeletal muscle and stem cells in three-dimensions: genome regulation of skeletal muscle in development and disease. Current Opinion in Genetics and Development, 2023, 83, 102133.	3.3	0
105	Butyrate functions as a histone deacetylase inhibitor to protect pancreatic beta cells from <scp> L</scp> â€Îβâ€induced dysfunction. FEBS Journal, 2024, 291, 566-583.	4.7	2
106	PAX3-FOXO1 uses its activation domain to recruit CBP/P300 and shape RNA Pol2 cluster distribution. Nature Communications, 2023, 14 , .	12.8	0
107	MYOD-SKP2 axis boosts tumorigenesis in fusion negative rhabdomyosarcoma by preventing differentiation through p57Kip2 targeting. Nature Communications, 2023, 14, .	12.8	0
108	Super-enhancers and the super-enhancer reader BRD4: tumorigenic factors and therapeutic targets. Cell Death Discovery, 2023, 9, .	4.7	1
109	Histone deacetylases maintain expression of the pluripotent gene network via recruitment of RNA polymerase II to coding and noncoding loci. Genome Research, 2024, 34, 34-46.	5. 5	0

#	Article	IF	CITATIONS
110	A phenotypic screening platform for identifying chemical modulators of astrocyte reactivity. Nature Neuroscience, 2024, 27, 656-665.	14.8	0
111	KDM3B inhibitors disrupt the oncogenic activity of PAX3-FOXO1 in fusion-positive rhabdomyosarcoma. Nature Communications, 2024, 15 , .	12.8	0
112	Super-Enhancers and Their Parts: From Prediction Efforts to Pathognomonic Status. International Journal of Molecular Sciences, 2024, 25, 3103.	4.1	0
113	STAT3 couples activated tyrosine kinase signaling to the oncogenic core transcriptional regulatory circuitry of anaplastic large cell lymphoma. Cell Reports Medicine, 2024, 5, 101472.	6.5	0