Inferring the anthropogenic NO<sub&gt;&lt;i&gt;x&lt; trend over the United States during 2003–2017 from s flattening of the emission trend after the Great Recession

Atmospheric Chemistry and Physics 19, 15339-15352

DOI: 10.5194/acp-19-15339-2019

Citation Report

#	Article	IF	CITATIONS
1	Satellite evidence for changes in the NO2 weekly cycle over large cities. Scientific Reports, 2020, 10, 10066.	1.6	33
2	Variational regional inverse modeling of reactive species emissions with PYVAR-CHIMERE-v2019. Geoscientific Model Development, 2021, 14, 2939-2957.	1.3	8
3	Analysis of the Anthropogenic and Biogenic NO _x Emissions Over 2008–2017: Assessment of the Trends in the 30 Most Populated Urban Areas in Europe. Geophysical Research Letters, 2021, 48, e2020GL092206.	1.5	5
4	Spatiotemporal changes in global nitrogen dioxide emission due to COVID-19 mitigation policies. Science of the Total Environment, 2021, 776, 146027.	3.9	19
5	Summertime Clean-Background Ozone Concentrations Derived from Ozone Precursor Relationships are Lower than Previous Estimates in the Southeast United States. Environmental Science & Emp; Technology, 2021, 55, 12852-12861.	4.6	2
6	Large discrepancy between observed and modeled wintertime tropospheric NO ₂ variabilities due to COVID-19 controls in China. Environmental Research Letters, 2022, 17, 035007.	2.2	4
7	Decadal Variabilities in Tropospheric Nitrogen Oxides Over United States, Europe, and China. Journal of Geophysical Research D: Atmospheres, 2022, 127, e2021JD035872.	1.2	14
8	Deep Learning to Evaluate US NO _x Emissions Using Surface Ozone Predictions. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	6
9	Changes in the ozone chemical regime over the contiguous United States inferred by the inversion of NOx and VOC emissions using satellite observation. Atmospheric Research, 2022, 270, 106076.	1.8	12
10	Inverse modelling of Chinese NO _{<i>x</i>} emissions using deep learning: integrating in situ observations with a satellite-based chemical reanalysis. Atmospheric Chemistry and Physics, 2022, 22, 14059-14074.	1.9	8
11	Inferring and evaluating satellite-based constraints on NO $<$ sub $><$ i $>xi></sub> emissions estimates in air quality simulations. Atmospheric Chemistry and Physics, 2022, 22, 15981-16001.$	1.9	3