Skin-integrated wireless haptic interfaces for virtual an

Nature 575, 473-479

DOI: 10.1038/s41586-019-1687-0

Citation Report

#	Article	IF	CITATIONS
1	Untethered Feelâ€Through Haptics Using 18â€Âµm Thick Dielectric Elastomer Actuators. Advanced Functional Materials, 2021, 31, 2006639.	14.9	97
2	Ultra-high drivability, high-mobility, low-voltage and high-integration intrinsically stretchable transistors. Nanoscale, 2020, 12, 23546-23555.	5.6	21
3	Technologically Altered Realities: A Realm for New Emotions Research, Training, and Management Possibilities. Research on Emotion in Organizations, 2020, , 19-26.	0.1	0
4	Recent Advances in Wearable Sensors and Integrated Functional Devices for Virtual and Augmented Reality Applications. Advanced Functional Materials, 2021, 31, 2005692.	14.9	58
5	Scalable Production of Wearable Solidâ€State Liâ€Ion Capacitors from Nâ€Doped Hierarchical Carbon. Advanced Materials, 2020, 32, e2005531.	21.0	57
6	A Skinâ€Inspired Substrate with Spaghettiâ€Like Multiâ€Nanofiber Network of Stiff and Elastic Components for Stretchable Electronics. Advanced Functional Materials, 2020, 30, 2003540.	14.9	25
7	Progress in wearable electronics/photonics—Moving toward the era of artificial intelligence and internet of things. InformaÄnÃ-Materiály, 2020, 2, 1131-1162.	17.3	343
8	Flexible Carbon Nanotube Synaptic Transistor for Neurological Electronic Skin Applications. ACS Nano, 2020, 14, 10402-10412.	14.6	86
9	Biodegradable, flexible silicon nanomembrane-based NOx gas sensor system with record-high performance for transient environmental monitors and medical implants. NPG Asia Materials, 2020, 12,	7.9	32
10	Thermoâ€Haptic Materials and Devices for Wearable Virtual and Augmented Reality. Advanced Functional Materials, 2021, 31, 2007376.	14.9	28
11	Textile Electronics for VR/AR Applications. Advanced Functional Materials, 2021, 31, 2007254.	14.9	50
12	Printable, Highly Sensitive Flexible Temperature Sensors for Human Body Temperature Monitoring: A Review. Nanoscale Research Letters, 2020, 15, 200.	5.7	116
13	Al's role in deep space. Journal of Medical Artificial Intelligence, 0, 3, 11-11.	1.1	4
14	Stretchable transparent conductive elastomers for skin-integrated electronics. Journal of Materials Chemistry C, 2020, 8, 15105-15111.	5. 5	18
15	Advances in chemical sensing technology for enabling the next-generation self-sustainable integrated wearable system in the IoT era. Nano Energy, 2020, 78, 105155.	16.0	105
16	Skin-Like Strain Sensors Enabled by Elastomer Composites for Human–Machine Interfaces. Coatings, 2020, 10, 711.	2.6	15
17	A metal-electrode-free, fully integrated, soft triboelectric sensor array for self-powered tactile sensing. Microsystems and Nanoengineering, 2020, 6, 59.	7.0	45
18	Encoding schemes in somatosensation: From micro- to meta-topography. Neurolmage, 2020, 223, 117255.	4.2	15

#	Article	IF	CITATIONS
19	A Framework of Smart-Home Service for Elderly's Biophilic Experience. Sustainability, 2020, 12, 8572.	3.2	14
20	Deep learning-enabled triboelectric smart socks for IoT-based gait analysis and VR applications. Npj Flexible Electronics, 2020, 4, .	10.7	213
21	Stretchable Triboelectric Nanogenerators for Energy Harvesting and Motion Monitoring. IEEE Open Journal of Nanotechnology, 2020, $1,109-116$.	2.0	11
22	Flexible and Stretchable Photonics: The Next Stretch of Opportunities. ACS Photonics, 2020, 7, 2618-2635.	6.6	49
23	\hat{l}^2 -Phase-Preferential blow-spun fabrics for wearable triboelectric nanogenerators and textile interactive interface. Nano Energy, 2020, 77, 105262.	16.0	55
24	Hydroprinted Liquidâ€Alloyâ€Based Morphing Electronics for Fastâ€Growing/Tender Plants: From Physiology Monitoring to Habit Manipulation. Small, 2020, 16, e2003833.	10.0	41
25	Reprogrammable shape morphing of magnetic soft machines. Science Advances, 2020, 6, .	10.3	224
26	Skin-inspired quadruple tactile sensors integrated on a robot hand enable object recognition. Science Robotics, 2020, 5, .	17.6	216
27	An Ultrahigh Sensitive Paper-Based Pressure Sensor with Intelligent Thermotherapy for Skin-Integrated Electronics. Nanomaterials, 2020, 10, 2536.	4.1	12
28	A Haptic Feedback Actuator Suitable for the Soft Wearable Device. Applied Sciences (Switzerland), 2020, 10, 8827.	2.5	6
29	Flexible Hybrid Sensor Systems with Feedback Functions. Advanced Functional Materials, 2021, 31, 2007436.	14.9	80
30	Wearable Biosensors for Body Computing. Advanced Functional Materials, 2021, 31, 2008087.	14.9	56
31	Ultra-stretchable supercapacitors based on biaxially pre-strained super-aligned carbon nanotube films. Nanoscale, 2020, 12, 24259-24265.	5.6	9
32	Skinâ€Integrated Vibrohaptic Interfaces for Virtual and Augmented Reality. Advanced Functional Materials, 2021, 31, 2008805.	14.9	61
33	Self-powered wearable electronics. Wearable Technologies, 2020, 1, .	3.1	36
34	Heterogeneous integration of rigid, soft, and liquid materials for self-healable, recyclable, and reconfigurable wearable electronics. Science Advances, 2020, 6, .	10.3	118
35	Bioinspired Selfâ€Healing Human–Machine Interactive Touch Pad with Pressureâ€Sensitive Adhesiveness on Targeted Substrates. Advanced Materials, 2020, 32, e2004290.	21.0	210
36	Haptic-feedback smart glove as a creative human-machine interface (HMI) for virtual/augmented reality applications. Science Advances, 2020, 6, eaaz8693.	10.3	419

#	Article	IF	Citations
37	Social VR: A New Form of Social Communication in the Future or a Beautiful Illusion?. Journal of Physics: Conference Series, 2020, 1518, 012032.	0.4	11
38	Living with I-Fabric: Smart Living Powered by Intelligent Fabric and Deep Analytics. IEEE Network, 2020, 34, 156-163.	6.9	61
39	Shape adaptable and highly resilient 3D braided triboelectric nanogenerators as e-textiles for power and sensing. Nature Communications, 2020, 11 , 2868.	12.8	285
40	High-Performance n-Type Polymer Semiconductors: Applications, Recent Development, and Challenges. CheM, 2020, 6, 1310-1326.	11.7	229
41	Tactile electronic skin to simultaneously detect and distinguish between temperature and pressure based on a triboelectric nanogenerator. Nano Energy, 2020, 75, 105073.	16.0	85
42	A Manually Reconfigurable Reflective Spatial Sound Modulator for Ultrasonic Waves in Air. Advanced Materials Technologies, 2020, 5, 2000041.	5.8	18
43	A Flexible Spiralingâ€Metasurface as a Versatile Haptic Interface. Advanced Materials Technologies, 2020, 5, 2000181.	5.8	19
44	Graphene-Enabled Adaptive Infrared Textiles. Nano Letters, 2020, 20, 5346-5352.	9.1	98
45	Evolution of 3D Printing Methods and Materials for Electrochemical Energy Storage. Advanced Materials, 2020, 32, e2000556.	21.0	134
46	Emerging Modalities and Implantable Technologies for Neuromodulation. Cell, 2020, 181, 115-135.	28.9	152
47	Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nature Electronics, 2020, 3, 571-578.	26.0	513
48	Smart Thermally Actuating Textiles. Advanced Materials Technologies, 2020, 5, 2000383.	5.8	35
49	Mechanics designs-performance relationships in epidermal triboelectric nanogenerators. Nano Energy, 2020, 76, 105017.	16.0	24
50	Energy-efficient, fully flexible, high-performance tactile sensor based on piezotronic effect: Piezoelectric signal amplified with organic field-effect transistors. Nano Energy, 2020, 76, 105050.	16.0	68
51	A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators. Science Advances, 2020, 6, eaba9624.	10.3	589
52	Conformal Devices for Thermal Sensing and Heating in Biomedical and Human–Machine Interaction Applications. Advanced Intelligent Systems, 2020, 2, 2000005.	6.1	11
53	Virtual Texture Generated Using Elastomeric Conductive Block Copolymer in a Wireless Multimodal Haptic Glove. Advanced Intelligent Systems, 2020, 2, 2000018.	6.1	29
54	Epidermal electronics for respiration monitoring via thermo-sensitive measuring. Materials Today Physics, 2020, 13, 100199.	6.0	55

#	Article	IF	CITATIONS
55	Recent progress on flexible nanogenerators toward selfâ€powered systems. InformaÄnÃ-Materiály, 2020, 2, 318-340.	17.3	85
56	Ultra-stretchable triboelectric nanogenerator as high-sensitive and self-powered electronic skins for energy harvesting and tactile sensing. Nano Energy, 2020, 70, 104546.	16.0	171
57	The Ethics of Realism in Virtual and Augmented Reality. Frontiers in Virtual Reality, 2020, 1 , .	3.7	186
58	Fully Untethered Battery-free Biomonitoring Electronic Tattoo with Wireless Energy Harvesting. Scientific Reports, 2020, 10, 5539.	3.3	64
59	Soft–Hard Composites for Bioelectric Interfaces. Trends in Chemistry, 2020, 2, 519-534.	8.5	21
60	3D Printed, Customizable, and Multifunctional Smart Electronic Eyeglasses for Wearable Healthcare Systems and Human–Machine Interfaces. ACS Applied Materials & Diterfaces, 2020, 12, 21424-21432.	8.0	68
61	Programming electronic skin with diverse skin-like properties. Journal of Materials Chemistry A, 2021, 9, 963-973.	10.3	20
62	Technology evolution from self-powered sensors to AloT enabled smart homes. Nano Energy, 2021, 79, 105414.	16.0	177
63	Material innovation and mechanics design for substrates and encapsulation of flexible electronics: a review. Materials Horizons, 2021, 8, 383-400.	12.2	91
64	Solutionâ€Processed Ti ₃ C ₂ T <i>>_x</i> MXene Antennas for Radioâ€Frequency Communication. Advanced Materials, 2021, 33, e2003225.	21.0	109
65	A Deltaâ€Parallelâ€Inspired Human Machine Interface by Using Selfâ€Powered Triboelectric Nanogenerator Toward 3D and VR/AR Manipulations. Advanced Materials Technologies, 2021, 6, .	5.8	20
66	Smart Stretchable Electronics for Advanced Human–Machine Interface. Advanced Intelligent Systems, 2021, 3, 2000157.	6.1	38
67	Trampoline inspired stretchable triboelectric nanogenerators as tactile sensors for epidermal electronics. Nano Energy, 2021, 81, 105590.	16.0	57
68	A highly stretchable and deformation-insensitive bionic electronic exteroceptive neural sensor for human-machine interfaces. Nano Energy, 2021, 80, 105548.	16.0	33
69	Printing Multiâ€Material Organic Haptic Actuators. Advanced Materials, 2021, 33, e2002541.	21.0	35
70	A Survey of Mid-Air Ultrasound Haptics and Its Applications. IEEE Transactions on Haptics, 2021, 14, 2-19.	2.7	91
71	Artificial Skin Perception. Advanced Materials, 2021, 33, e2003014.	21.0	203
72	Finger Pad Topography beyond Fingerprints: Understanding the Heterogeneity Effect of Finger Topography for Human–Machine Interface Modeling. ACS Applied Materials & Samp; Interfaces, 2021, 13, 3303-3310.	8.0	10

#	ARTICLE	IF	CITATIONS
73	Fully integrated pressure-controlled electrochromic E-skins. Journal of Materials Chemistry A, 2021, 9, 9134-9144.	10.3	18
74	Functionalized Elastomers for Intrinsically Soft and Biointegrated Electronics. Advanced Healthcare Materials, 2021, 10, e2002105.	7.6	36
75	Recent progress of skin-integrated electronics for intelligent sensing. Light Advanced Manufacturing, 2021, 2, 39.	5.1	18
76	Unconventional Imageâ€Sensing and Lightâ€Emitting Devices for Extended Reality. Advanced Functional Materials, 2021, 31, 2009281.	14.9	23
77	Triboelectric Sensors for IoT and Wearable Applications. , 2023, , 235-257.		6
78	High-Mechanical-Resolution Pressure Sensor Based on Melt-Blown Fibers in Integrated Wearable Mask for Respiratory Monitoring. IEEE Transactions on Electron Devices, 2021, 68, 5765-5772.	3.0	3
79	Supplementary feedback for upper-limb prostheses using noninvasive stimulation: methods, encoding, estimation-prediction processes, and assessment. , 2021, , 179-206.		2
80	Wearable Haptic Array of Flexible Electrostatic Transducers. Lecture Notes in Computer Science, 2021, , 369-385.	1.3	2
81	Hydrogen-doped viscoplastic liquid metal microparticles for stretchable printed metal lines. Nature Materials, 2021, 20, 533-540.	27.5	111
82	Emerging Wearable Interfaces and Algorithms for Hand Gesture Recognition: A Survey. IEEE Reviews in Biomedical Engineering, 2022, 15, 85-102.	18.0	81
83	Magnetic Printing of Liquid Metal for Perceptive Soft Actuators with Embodied Intelligence. ACS Applied Materials & Samp; Interfaces, 2021, 13, 5574-5582.	8.0	50
84	An Application-Based Review of Haptics Technology. Robotics, 2021, 10, 29.	3.5	35
85	Ultrathin MXene-aramid nanofiber electromagnetic interference shielding films with tactile sensing ability withstanding harsh temperatures. Nano Research, 2021, 14, 2837-2845.	10.4	55
86	Self-powered electro-tactile system for virtual tactile experiences. Science Advances, 2021, 7, .	10.3	161
87	Wireless, implantable catheter-type oximeter designed for cardiac oxygen saturation. Science Advances, 2021, 7 , .	10.3	45
88	A cutaneous mechanoneural interface for neuroprosthetic feedback. Nature Biomedical Engineering, 2022, 6, 731-740.	22.5	16
89	Haptic Perception, Mechanics, and Material Technologies for Virtual Reality. Advanced Functional Materials, 2021, 31, 2008186.	14.9	27
90	Emerging Thermal Technology Enabled Augmented Reality. Advanced Functional Materials, 2021, 31, 2007952.	14.9	35

#	Article	IF	CITATIONS
91	Skin Electronics: Nextâ€Generation Device Platform for Virtual and Augmented Reality. Advanced Functional Materials, 2021, 31, 2009602.	14.9	100
92	Nanowireâ€Based Soft Wearable Human–Machine Interfaces for Future Virtual and Augmented Reality Applications. Advanced Functional Materials, 2021, 31, 2008347.	14.9	80
93	Programmable Stimulation and Actuation in Flexible and Stretchable Electronics. Advanced Intelligent Systems, 2021, 3, 2000228.	6.1	11
94	Wearable Carbon-Based Resistive Sensors for Strain Detection: A Review. IEEE Sensors Journal, 2021, 21, 4030-4043.	4.7	40
95	Bioinspired Ultrathin Piecewise Controllable Soft Robots. Advanced Materials Technologies, 2021, 6, 2001095.	5.8	27
96	Wireless and battery-free technologies for neuroengineering. Nature Biomedical Engineering, 2023, 7, 405-423.	22.5	141
97	Recent Advances and Opportunities of Active Materials for Haptic Technologies in Virtual and Augmented Reality. Advanced Functional Materials, 2021, 31, 2008831.	14.9	63
98	Origami-Based Bionic Reactor. Industrial & Engineering Chemistry Research, 2021, 60, 4279-4289.	3.7	7
99	Microstructure control of organic semiconductors via UV-ozone for high-sensitivity NO2 detection. Science China Technological Sciences, 2021, 64, 1057-1064.	4.0	2
100	Wearable sensors: At the frontier of personalised health monitoring, smart prosthetics and assistive technologies. Biosensors and Bioelectronics, 2021, 176, 112946.	10.1	100
101	Skin-deep experiences. Nature Materials, 2021, 20, 450-450.	27. 5	0
102	Soft, wireless and subdermally implantable recording and neuromodulation tools. Journal of Neural Engineering, 2021, 18, 041001.	3.5	13
103	Fusing Stretchable Sensing Technology with Machine Learning for Human–Machine Interfaces. Advanced Functional Materials, 2021, 31, 2008807.	14.9	84
104	A Wearable Body Condition Sensor System with Wireless Feedback Alarm Functions. Advanced Materials, 2021, 33, e2008701.	21.0	104
105	Biodegradable Molybdenum/Polybutylene Adipate Terephthalate Conductive Paste for Flexible and Stretchable Transient Electronics. Advanced Materials Technologies, 2022, 7, 2001297.	5.8	22
106	Self-Powered Intelligent Human-Machine Interaction for Handwriting Recognition. Research, 2021, 2021, 4689869.	5.7	21
107	Recent Progress in Flexible Tactile Sensors for Humanâ€Interactive Systems: From Sensors to Advanced Applications. Advanced Materials, 2021, 33, e2005902.	21.0	216
108	MXene based mechanically and electrically enhanced film for triboelectric nanogenerator. Nano Research, 2021, 14, 4833-4840.	10.4	51

#	Article	IF	CITATIONS
109	Metachronal $\hat{1}\frac{1}{4}$ -Cilia for On-Chip Integrated Pumps and Climbing Robots. ACS Applied Materials & Interfaces, 2021, 13, 20845-20857.	8.0	34
110	Energy Harvesting Untethered Soft Electronic Devices. Advanced Healthcare Materials, 2021, 10, e2002286.	7.6	16
111	Wireless and battery-free platforms for collection of biosignals. Biosensors and Bioelectronics, 2021, 178, 113007.	10.1	40
112	The Use of Virtual Reality in Pharmacy Education in Hong Kong: Lessons Learnt. Frontiers in Education, 2021, 6, .	2.1	3
113	Research Progress of Liquid Crystal Polymer Composites in Augmented and Virtual Reality. Science of Advanced Materials, 2021, 13, 522-529.	0.7	4
114	Low cost exoskeleton manipulator using bidirectional triboelectric sensors enhanced multiple degree of freedom sensory system. Nature Communications, 2021, 12, 2692.	12.8	107
115	Nacreâ€Inspired, Liquid Metalâ€Based Ultrasensitive Electronic Skin by Spatially Regulated Cracking Strategy. Advanced Functional Materials, 2021, 31, 2102359.	14.9	67
116	Materials and Fabrication Strategies for Biocompatible and Biodegradable Conductive Polymer Composites toward Bioâ€Integrated Electronic Systems. Advanced Sustainable Systems, 2022, 6, 2100075.	5.3	20
117	Miniaturized electromechanical devices for the characterization of the biomechanics of deep tissue. Nature Biomedical Engineering, 2021, 5, 759-771.	22.5	65
118	Nanoscale engineering of conducting polymers for emerging applications in soft electronics. Nano Research, 2021, 14, 3112-3125.	10.4	12
119	Development of a Tactile Actuator with Non-Contact and Trans-Object Characteristics Using a Time-Varying Magnetic Field. Actuators, 2021, 10, 106.	2.3	1
120	Elastomeric Haptic Devices for Virtual and Augmented Reality. Advanced Functional Materials, 2021, 31, 2009364.	14.9	39
121	Thin, soft, <scp>garmentâ€integrated </scp> triboelectric nanogenerators for energy harvesting and human machine interfaces. EcoMat, 2021, 3, e12123.	11.9	15
122	Paper-based wearable electronics. IScience, 2021, 24, 102736.	4.1	48
123	The Challenges and Perspectives of the Integration Between Virtual and Augmented Reality and Manual Therapies. Frontiers in Neurology, 2021, 12, 700211.	2.4	20
124	Mechanics of encapsulated three-dimensional structures for simultaneous sensing of pressure and shear stress. Journal of the Mechanics and Physics of Solids, 2021, 151, 104400.	4.8	10
125	Highly Sensitive Pseudocapacitive Iontronic Pressure Sensor with Broad Sensing Range. Nano-Micro Letters, 2021, 13, 140.	27.0	69
126	Advanced Flexible Skin-Like Pressure and Strain Sensors for Human Health Monitoring. Micromachines, 2021, 12, 695.	2.9	53

#	Article	IF	CITATIONS
127	Thin, soft, skin-integrated foam-based triboelectric nanogenerators for tactile sensing and energy harvesting. Materials Today Energy, 2021, 20, 100657.	4.7	47
128	Haptic-Feedback Ring Enabled Human-Machine Interface (HMI) Aiming at Immersive Virtual Reality Experience. , 2021, , .		3
129	Bio-inspired flexible electronics for smart E-skin. Acta Biomaterialia, 2022, 139, 280-295.	8.3	48
130	Hierarchically Microstructure-Bioinspired Flexible Piezoresistive Bioelectronics. ACS Nano, 2021, 15, 11555-11563.	14.6	163
131	Spiderâ€Web and Antâ€Tentacle Doubly Bioâ€Inspired Multifunctional Selfâ€Powered Electronic Skin with Hierarchical Nanostructure. Advanced Science, 2021, 8, e2004377.	11.2	81
132	Soft Actuator Materials for Electrically Driven Haptic Interfaces. Advanced Intelligent Systems, 2022, 4, 2100061.	6.1	29
133	Flexible Ultrasonic Patch for Accelerating Chronic Wound Healing. Advanced Healthcare Materials, 2021, 10, e2100785.	7.6	31
134	Physically transient electronic materials and devices. Materials Science and Engineering Reports, 2021, 145, 100624.	31.8	46
135	Epidermal Systems and Virtual Reality: Emerging Disruptive Technology for Military Applications. Key Engineering Materials, 0, 893, 93-101.	0.4	0
136	Ultraâ€Flexible Visibleâ€Blind Optoelectronics for Wired and Wireless UV Sensing in Harsh Environments. Advanced Materials Technologies, 2021, 6, 2001125.	5.8	5
137	Epidermal self-powered sweat sensors for glucose and lactate monitoring. Bio-Design and Manufacturing, 2022, 5, 201-209.	7.7	53
138	Laser-Induced Corrugated Graphene Films for Integrated Multimodal Sensors. ACS Applied Materials & Laser-Induced Corrugated Graphene Films for Integrated Multimodal Sensors. ACS Applied Materials & Laser-Induced Corrugated Graphene Films for Integrated Multimodal Sensors. ACS Applied Materials & Laser-Induced Corrugated Graphene Films for Integrated Multimodal Sensors. ACS Applied Materials & Laser-Induced Corrugated Graphene Films for Integrated Multimodal Sensors. ACS Applied Materials & Laser-Induced Graphene Films for Integrated Multimodal Sensors. ACS Applied Materials & Laser-Induced Graphene Films for Integrated Multimodal Sensors. ACS Applied Materials & Laser-Induced Graphene Films for Integrated Multimodal Sensors. ACS Applied Materials & Laser-Induced Graphene Films for Integrated Multimodal Sensors. ACS Applied Materials & Laser-Induced Graphene Films for Integrated Multimodal Sensors. ACS Applied Materials & Laser-Induced Graphene Films for Integrated Multimodal Sensors. ACS Applied Materials & Laser-Induced Graphene Films for Integrated Graphene Films for	8.0	30
139	Wireless Multiplexing Control Based on Magnetic Coupling Resonance and Its Applications in Robot. Journal of Mechanisms and Robotics, 2022, 14, .	2.2	2
140	Waterproof Mechanically Robust Multifunctional Conformal Sensors for Underwater Interactive Human–Machine Interfaces. Advanced Intelligent Systems, 2021, 3, 2100056.	6.1	27
141	Stretchable, Rehealable, Recyclable, and Reconfigurable Integrated Strain Sensor for Joint Motion and Respiration Monitoring. Research, 2021, 2021, 9846036.	5.7	19
142	Recent Advances in Carbon Materialâ€Based Multifunctional Sensors and Their Applications in Electronic Skin Systems. Advanced Functional Materials, 2021, 31, 2104288.	14.9	116
143	Review: Sensors for Biosignal/Health Monitoring in Electronic Skin. Polymers, 2021, 13, 2478.	4.5	22
144	Photonic skins based on flexible organic microlaser arrays. Science Advances, 2021, 7, .	10.3	42

#	Article	IF	CITATIONS
145	Wearable Actuators: An Overview. Textiles, 2021, 1, 283-321.	4.1	27
146	Evolvable Skin Electronics by In Situ and In Operando Adaptation. Advanced Functional Materials, 2022, 32, 2106329.	14.9	21
147	An Antiâ€Fatigue Design Strategy for 3D Ribbonâ€Shaped Flexible Electronics. Advanced Materials, 2021, 33, e2102684.	21.0	27
148	Cutaneous Ionogel Mechanoreceptors for Soft Machines, Physiological Sensing, and Amputee Prostheses. Advanced Materials, 2021, 33, e2102069.	21.0	142
149	Dynamic stability analysis of stiff films by element-free method with strain-rotation decomposition. Applied Mathematical Modelling, 2021, 96, 431-444.	4.2	0
150	Haptically Quantifying Young's Modulus of Soft Materials Using a Self‣ocked Stretchable Strain Sensor. Advanced Materials, 2022, 34, e2104078.	21.0	39
151	Lowâ€Cost Paperâ€Based Conducting Polymerâ€Hydrogel Flexible Bioâ€Radar Sensor for Detecting Biological Objects. Macromolecular Materials and Engineering, 0, , 2100447.	3.6	3
152	Review of Robot Skin: A Potential Enabler for Safe Collaboration, Immersive Teleoperation, and Affective Interaction of Future Collaborative Robots. IEEE Transactions on Medical Robotics and Bionics, 2021, 3, 681-700.	3.2	29
153	Onâ€Skin Stimulation Devices for Haptic Feedback and Human–Machine Interfaces. Advanced Materials Technologies, 2022, 7, 2100452.	5.8	7
154	A tactile skin based on the piezoelectric effect of PVDF and room temperature vulcanised silicone rubber. Materials Technology, 2022, 37, 2123-2131.	3.0	2
155	A Motion Capturing and Energy Harvesting Hybridized Lowerâ€Limb System for Rehabilitation and Sports Applications. Advanced Science, 2021, 8, e2101834.	11.2	72
156	Harnessing the wide-range strain sensitivity of bilayered PEDOT:PSS films for wearable health monitoring. Matter, 2021, 4, 2886-2901.	10.0	59
157	Ubiquitous conformable systems for imperceptible computing. Foresight, 2022, 24, 75-98.	2.1	7
158	Valveless microliter combustion for densely packed arrays of powerful soft actuators. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	19
159	A tuned mass amplifier for enhanced haptic feedback. Mechanics of Materials, 2021, 160, 103979.	3.2	0
160	Self-powered skin electronics for energy harvesting and healthcare monitoring. Materials Today Energy, 2021, 21, 100786.	4.7	36
161	Progress in the Triboelectric Human–Machine Interfaces (HMIs)-Moving from Smart Gloves to AI/Haptic Enabled HMI in the 5G/IoT Era. Nanoenergy Advances, 2021, 1, 81-121.	7.7	59
162	Magnetized Micropillar-Enabled Wearable Sensors for Touchless and Intelligent Information Communication. Nano-Micro Letters, 2021, 13, 197.	27.0	19

#	ARTICLE	IF	CITATIONS
163	Al enabled sign language recognition and VR space bidirectional communication using triboelectric smart glove. Nature Communications, 2021, 12, 5378.	12.8	208
164	A Skin-Inspired Artificial Mechanoreceptor for Tactile Enhancement and Integration. ACS Nano, 2021, 15, 16422-16431.	14.6	66
165	Scalable fabrication of in-plane microscale self-powered integrated systems for fast-response and highly selective dual-channel gas detection. Nano Energy, 2021, 88, 106253.	16.0	13
166	Wearable sign language translation system using strain sensors. Sensors and Actuators A: Physical, 2021, 331, 113010.	4.1	10
167	Accurate recognition of object contour based on flexible piezoelectric and piezoresistive dual mode strain sensors. Sensors and Actuators A: Physical, 2021, 332, 113121.	4.1	23
168	An Event-Triggered Low-Cost Tactile Perception System for Social Robot's Whole Body Interaction. IEEE Access, 2021, 9, 80986-80995.	4.2	4
169	Being an Avatar "for Real†A Survey on Virtual Embodiment in Augmented Reality. IEEE Transactions on Visualization and Computer Graphics, 2022, 28, 5071-5090.	4.4	31
170	Conformable on-skin devices for thermo-electro-tactile stimulation: materials, design, and fabrication. Materials Advances, 2021, 2, 1787-1820.	5.4	13
171	Wearable Soft Technologies for Haptic Sensing and Feedback. Advanced Functional Materials, 2021, 31, 2007428.	14.9	126
172	Wearable Sensorsâ€Enabled Human–Machine Interaction Systems: From Design to Application. Advanced Functional Materials, 2021, 31, 2008936.	14.9	322
173	Skin‣ike Electronics for Perception and Interaction: Materials, Structural Designs, and Applications. Advanced Intelligent Systems, 2021, 3, 2000108.	6.1	10
174	Augmented, Virtual, and Mixed Reality in Tourism., 2020, , 1-25.		6
175	Visualizing Landscapes by Geospatial Techniques. RaumFragen: Stadt - Region - Landschaft, 2020, , 47-78.	1.1	10
176	A graphite nanoplatelet-based highly sensitive flexible strain sensor. Carbon, 2020, 166, 316-327.	10.3	34
177	Mechanics of Buckled Kirigami Membranes for Stretchable Interconnects in Island-Bridge Structures. Journal of Applied Mechanics, Transactions ASME, 2020, 87, .	2.2	14
178	A Nonlinear Mechanics Model of Zigzag Cellular Substrates for Stretchable Electronics. Journal of Applied Mechanics, Transactions ASME, 2020, 87, .	2.2	11
179	HapBead: On-Skin Microfluidic Haptic Interface using Tunable Bead. , 2020, , .		12
180	Electronic Skin from High-Throughput Fabrication of Intrinsically Stretchable Lead Zirconate Titanate Elastomer. Research, 2020, 2020, 1085417.	5.7	33

#	Article	IF	CITATIONS
181	Highly Selective Biomimetic Flexible Tactile Sensor for Neuroprosthetics. Research, 2020, 2020, 8910692.	5.7	26
182	MRS-Tex: A Magnetically Responsive Soft Tactile Device for Texture Display. IEEE Transactions on Industrial Electronics, 2022, 69, 11531-11540.	7.9	2
183	Electrotactile and Vibrotactile Feedback Enable Similar Performance in Psychometric Tests and Closed-Loop Control. IEEE Transactions on Haptics, 2022, 15, 222-231.	2.7	6
184	Tactile glove-decode and classify the human grasping process. , 2021, , .		4
185	Solvent-free adhesive ionic elastomer for multifunctional stretchable electronics. Nano Energy, 2022, 91, 106611.	16.0	54
186	Student's Perspectives on Augmented Reality in Pharmacy Education in Hong Kong. Frontiers in Education, 2021, 6, .	2.1	2
187	Manifesto for Digital Social Touch in Crisis. Frontiers in Computer Science, 2021, 3, .	2.8	19
188	Biosymbiotic, personalized, and digitally manufactured wireless devices for indefinite collection of high-fidelity biosignals. Science Advances, 2021, 7, eabj3269.	10.3	22
189	Miniaturization of mechanical actuators in skin-integrated electronics for haptic interfaces. Microsystems and Nanoengineering, 2021, 7, 85.	7.0	24
190	Meta-Aerogels: Auxetic Shape-Memory Polyurethane Aerogels. ACS Applied Polymer Materials, 2021, 3, 5727-5738.	4.4	15
191	Omnidirectional Tactile Profiling Using a Deformable Pressure Sensor Array Based on Localized Piezoresistivity. Advanced Materials Technologies, 2022, 7, 2100688.	5.8	6
192	Anti-freezing organohydrogel triboelectric nanogenerator toward highly efficient and flexible human-machine interaction at â^'Â30°C. Nano Energy, 2021, 90, 106614.	16.0	74
193	FLECTILE., 2020,,.		4
194	A Thermal and Vibrational Feedback Glove Based on the Tactile Characteristics of Human Hand Skin. IEEE Access, 2020, 8, 226671-226684.	4.2	5
195	Stretchable self-powered epidermal electronics from piezoelectric rubber for tactile sensing. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 178701.	0.5	3
196	Research progress of self-powered flexible biomedical sensors. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 178704.	0.5	7
197	Trends in Human-Computer Interaction in the 5G Era: Emerging Life Scenarios with 5G Networks. Lecture Notes in Computer Science, 2020, , 699-710.	1.3	0
198	Dissecting Biological and Synthetic Soft–Hard Interfaces for Tissue-Like Systems. Chemical Reviews, 2022, 122, 5233-5276.	47.7	32

#	Article	IF	CITATIONS
199	High Channel Temperature Mapping Electronics in a Thin, Soft, Wireless Format for Non-Invasive Body Thermal Analysis. Biosensors, 2021, 11, 435.	4.7	2
200	Robotic Manipulation under Harsh Conditions Using Selfâ€Healing Silkâ€Based Iontronics. Advanced Science, 2021, 9, 2102596.	11.2	9
201	Human joint enabled flexible self-sustainable sweat sensors. Nano Energy, 2022, 92, 106786.	16.0	45
202	Biomimetic integration of tough polymer elastomer with conductive hydrogel for highly stretchable, flexible electronic. Nano Energy, 2022, 92, 106735.	16.0	43
203	Bandage based energy generators activated by sweat in wireless skin electronics for continuous physiological monitoring. Nano Energy, 2022, 92, 106755.	16.0	19
204	Flexible electronics with dynamic interfaces for biomedical monitoring, stimulation, and characterization. International Journal of Mechanical System Dynamics, 2021, 1, 52-70.	2.8	6
205	<scp>Highâ€performance</scp> optical noncontact controlling system based on broadband <scp>PtTe_{<i>x</i>}</scp> /Si heterojunction photodetectors for <scp>human–machine</scp> interaction. InformaÄnÃ-Materiály, 2022, 4, .	17.3	13
206	Highly Sensitive Flexible Tactile Sensors in Wide Sensing Range Enabled by Hierarchical Topography of Biaxially Strained and Capillaryâ€Densified Carbon Nanotube Bundles. Small, 2021, 17, e2105334.	10.0	16
207	Frequency selective surface based on Ti ₃ C ₂ T _x MXene for dual band Wi-Fi applications. Journal of Electromagnetic Waves and Applications, 2022, 36, 1130-1140.	1.6	3
208	A Biomimetic Drosera Capensis with Adaptive Decisionâ€Predation Behavior Based on Multifunctional Sensing and Fast Actuating Capability. Advanced Functional Materials, 2022, 32, 2110296.	14.9	30
211	Postbuckling Analysis of Ultra-Low Rigidity Serpentine Structures. Journal of Applied Mechanics, Transactions ASME, 2022, 89, .	2.2	4
212	The Impact of Size and Position of Reference Electrode on the Localization of Biphasic Electrotactile Stimulation on the Fingertips. IEEE Transactions on Haptics, 2022, 15, 255-266.	2.7	6
213	Magnetoâ€∮ electroâ€responsive polymers toward manufacturing, characterization, and biomedical/ soft robotic applications. Applied Materials Today, 2022, 26, 101306.	4.3	70
214	Fabric-rebound triboelectric nanogenerators with loops and layered structures for energy harvesting and intelligent wireless monitoring of human motions. Nano Energy, 2022, 93, 106807.	16.0	28
215	Augmenting Sensor Performance with Machine Learning Towards Smart Wearable Sensing Electronic Systems. Advanced Intelligent Systems, 2022, 4, .	6.1	20
216	Programmability of ultrathin metasurfaces through curvature. Extreme Mechanics Letters, 2022, 52, 101620.	4.1	6
217	Electronic skin as wireless human-machine interfaces for robotic VR. Science Advances, 2022, 8, eabl6700.	10.3	88
219	Stretchable Sweatâ€Activated Battery in Skinâ€Integrated Electronics for Continuous Wireless Sweat Monitoring. Advanced Science, 2022, 9, e2104635.	11.2	29

#	ARTICLE	IF	CITATIONS
220	High-resolution <i>in situ</i> patterning of perovskite quantum dots <i>via</i> femtosecond laser direct writing. Nanoscale, 2022, 14, 1174-1178.	5.6	11
221	Developing sensor materials for screening intestinal diseases. Materials Futures, 2022, 1, 022401.	8.4	5
222	Heteroâ€Integration of Silicon Nanomembranes with 2D Materials for Bioresorbable, Wireless Neurochemical System. Advanced Materials, 2022, 34, e2108203.	21.0	28
223	Highly Sensitive Flexible Temperature Sensor Made Using PEDOT:PSS/PANI. ACS Applied Polymer Materials, 2022, 4, 766-772.	4.4	16
224	Adhesive Ionohydrogels Based on Ionic Liquid/Water Binary Solvents with Freezing Tolerance for Flexible Ionotronic Devices. Chemistry of Materials, 2022, 34, 1065-1077.	6.7	66
225	Wearable Technology and Visual Reality Application for Healthcare Systems. Electronics (Switzerland), 2022, 11, 178.	3.1	2
226	Acrylic resins with oxetane pendant groups for free radical and cationic dual-curing photoresists. Materials and Design, 2022, 213, 110370.	7.0	16
227	Flexible Pyroresistive Graphene Composites for Artificial Thermosensation Differentiating Materials and Solvent Types. ACS Nano, 2022, 16, 1208-1219.	14.6	11
228	Advances in Highâ∈Performance Autonomous Energy and Selfâ∈Powered Sensing Textiles with Novel 3D Fabric Structures. Advanced Materials, 2022, 34, e2109355.	21.0	118
229	A Flexible Triboelectric Nanogenerator Based on Celluloseâ€Reinforced MXene Composite Film. Advanced Materials Interfaces, 2022, 9, 2102124.	3.7	24
230	A highly transparent haptic device with an extremely low driving voltage based on piezoelectric PZT films on glass. Sensors and Actuators A: Physical, 2022, 335, 113396.	4.1	12
231	Recent advances in multi-mode haptic feedback technologies towards wearable interfaces. Materials Today Physics, 2022, 22, 100602.	6.0	19
232	Garment embedded sweat-activated batteries in wearable electronics for continuous sweat monitoring. Npj Flexible Electronics, 2022, 6, .	10.7	24
233	An Artificial Reflex Arc That Perceives Afferent Visual and Tactile Information and Controls Efferent Muscular Actions. Research, 2022, 2022, 9851843.	5.7	30
234	Evaluation of simulation models in neurosurgical training according to face, content, and construct validity: a systematic review. Acta Neurochirurgica, 2022, 164, 947-966.	1.7	23
235	Advances in Biosensing and Environmental Monitoring Based on Electrospun Nanofibers. Advanced Fiber Materials, 2022, 4, 404-435.	16.1	73
236	Bio-inspired ultra-thin microfluidics for soft sweat-activated batteries and skin electronics. Journal of Materials Chemistry A, 2022, 10, 19662-19670.	10.3	5
237	Stretchable interfaces with conformal contact. Materials Express, 2022, 12, 149-154.	0.5	0

#	Article	IF	CITATIONS
238	Piezoelectric nanogenerators for personalized healthcare. Chemical Society Reviews, 2022, 51, 3380-3435.	38.1	145
239	Soft stretchable conductive nanocomposites for biointegrated electronics., 2023,, 306-321.		1
240	Control Strategies for Soft Robot Systems. Advanced Intelligent Systems, 2022, 4, .	6.1	64
241	Surface haptic rendering of virtual shapes through change in surface temperature. Science Robotics, 2022, 7, eabl4543.	17.6	11
242	Flexible Electronics and Devices as Human–Machine Interfaces for Medical Robotics. Advanced Materials, 2022, 34, e2107902.	21.0	211
243	Noncontact human-machine interaction based on hand-responsive infrared structural color. Nature Communications, 2022, 13, 1446.	12.8	33
244	Challenges in Materials and Devices of Electronic Skin. , 2022, 4, 577-599.		20
245	A high-accuracy, real-time, intelligent material perception system with a machine-learning-motivated pressure-sensitive electronic skin. Matter, 2022, 5, 1481-1501.	10.0	104
246	Wetâ€Adhesive Elastomer for Liquid Metalâ€Based Conformal Epidermal Electronics. Advanced Functional Materials, 2022, 32, .	14.9	59
247	Recent Progress in Bioâ€Integrated Intelligent Sensing System. Advanced Intelligent Systems, 2022, 4, .	6.1	12
248	Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics. Science, 2022, 375, 1411-1417.	12.6	230
249	A Soft Electro-Hydraulic Pneumatic Actuator with Self-Sensing Capability toward Multi-Modal Haptic Feedback. Actuators, 2022, 11, 74.	2.3	2
250	Highly-integrated, miniaturized, stretchable electronic systems based on stacked multilayer network materials. Science Advances, 2022, 8, eabm3785.	10.3	89
251	Low-cost gastrointestinal manometry via silicone–liquid-metal pressure transducers resembling a quipu. Nature Biomedical Engineering, 2022, 6, 1092-1104.	22.5	30
252	Artificial Intelligenceâ€Enabled Sensing Technologies in the 5G/Internet of Things Era: From Virtual Reality/Augmented Reality to the Digital Twin. Advanced Intelligent Systems, 2022, 4, .	6.1	146
253	Soft wearable devices for deep-tissue sensing. Nature Reviews Materials, 2022, 7, 850-869.	48.7	103
254	Origami-inspired folding assembly of dielectric elastomers for programmable soft robots. Microsystems and Nanoengineering, 2022, 8, 37.	7.0	14
255	Bioinspired sensor system for health care and humanâ€machine interaction. EcoMat, 2022, 4, .	11.9	54

#	Article	IF	CITATIONS
256	Stretchable conductive yarn with extreme electrical stability pushes fabrication of versatile textile stretchable electronics. Composites Communications, 2022, 31, 101131.	6.3	2
257	Electrooculography and Tactile Perception Collaborative Interface for 3D Human–Machine Interaction. ACS Nano, 2022, 16, 6687-6699.	14.6	44
258	Investigation of stretchable strain sensor based on CNT/AgNW applied in smart wearable devices. Nanotechnology, 2022, 33, 255501.	2.6	23
259	Transparent Optoelectronic Synapse Based on a Cul Electrode for Arithmetic Operation. ACS Applied Electronic Materials, 2022, 4, 1989-1996.	4.3	1
260	A touch-based multimodal and cryptographic bio-human–machine interface. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2201937119.	7.1	11
261	Wearable triboelectric devices for haptic perception and VR/AR applications. Nano Energy, 2022, 96, 107112.	16.0	39
262	Skin-inspired textile-based tactile sensors enable multifunctional sensing of wearables and soft robots. Nano Energy, 2022, 96, 107137.	16.0	112
263	Triboelectric Nanogenerator Tattoos Enabled by Epidermal Electronic Technologies. Advanced Functional Materials, 2022, 32, .	14.9	25
264	Technologies for Multimodal Interaction in Extended Reality—A Scoping Review. Multimodal Technologies and Interaction, 2021, 5, 81.	2.5	19
265	Investigation of self-oscillation piezoelectric energy harvesting mechanics for lower-limb motion. , 2021, , .		0
266	Touchable cell biophysics property recognition platforms enable multifunctional blood smart health care. Microsystems and Nanoengineering, 2021, 7, 103.	7.0	18
267	Recent Advances in 1D Nanomaterialâ€Based Bioelectronics for Healthcare Applications. Advanced NanoBiomed Research, 2022, 2, .	3.6	8
268	Highly Sensitive Multifunctional Electronic Skin Based on Nanocellulose/MXene Composite Films with Good Electromagnetic Shielding Biocompatible Antibacterial Properties. Biomacromolecules, 2022, 23, 182-195.	5.4	41
269	Stretchable and Dynamically Tunable Attenuator Based on Graphene. IEEE Transactions on Microwave Theory and Techniques, 2022, 70, 2999-3008.	4.6	4
270	Toward a Wireless Wearable System for Bidirectional Human-Machine Interface With Gesture Recognition and Vibration Feedback. IEEE Sensors Journal, 2022, 22, 9462-9472.	4.7	2
271	å•臰è´e,ড়š"è¶…è—"è;¨çš®ç"μ生çţç"μæžçš"å^¶å‡åŠåº"甓. Scientia Sinica Chimica, 2022, , .	0.4	1
272	Skin-inspired tactile sensor based on gradient pore structure enable broad range response and ultrahigh pressure resolution. Chemical Engineering Journal, 2022, 443, 136446.	12.7	19
273	The future of early cancer detection. Nature Medicine, 2022, 28, 666-677.	30.7	92

#	Article	IF	CITATIONS
274	Transient, Implantable, Ultrathin Biofuel Cells Enabled by Laser-Induced Graphene and Gold Nanoparticles Composite. Nano Letters, 2022, 22, 3447-3456.	9.1	19
275	Laser-Sculptured Hierarchical Spinous Structures for Ultra-High-Sensitivity Iontronic Sensors with a Broad Operation Range. ACS Applied Materials & Samp; Interfaces, 2022, 14, 19672-19682.	8.0	18
276	Stiffness Engineering of Ti ₃ C ₂ T <i>>_X</i> MXeneâ€Based Skinâ€Inspired Pressure Sensor with Broadâ€Range Ultrasensitivity, Low Detection Limit, and Gas Permeability. Advanced Materials Interfaces, 2022, 9, .	3.7	15
277	Piezoelectric flexible haptic interface development. , 2022, , .		1
278	Flexible microstructured pressure sensors: design, fabrication and applications. Nanotechnology, 2022, 33, 322002.	2.6	27
279	Wearable devices for continuous monitoring of biosignals: Challenges and opportunities. APL Bioengineering, 2022, 6, 021502.	6.2	36
280	Skin-Inspired Textile-Based Tactile Sensors Enable Multifunctional Sensing of Wearables and Soft Robots. SSRN Electronic Journal, 0, , .	0.4	1
281	Stretchable, sensitive, flexible strain sensor incorporated with patterned liquid metal on hydrogel for human motion monitoring and human–machine interaction. Journal of Materials Chemistry C, 2022, 10, 8206-8217.	5 . 5	28
282	Current Trens in the Development of Cyber-physical Interfaces Linkning Virtual Reality and Physical System. , 2022, , .		0
283	Next Steps in Epidermal Computing: Opportunities and Challenges for Soft On-Skin Devices. , 2022, , .		9
284	Highâ€Performance nâ€Channel Printed Transistors on Biodegradable Substrate for Transient Electronics. Advanced Electronic Materials, 2022, 8, .	5.1	10
285	Recent trends in additive manufacturing of electronics devices. Materials Today: Proceedings, 2022, 66, 928-941.	1.8	5
286	Virtual Digital Communication Feature Fusion Based on Virtual Augmented Reality. Security and Communication Networks, 2022, 2022, 1-7.	1.5	5
287	Self-Powered Multifunctional Electronic Skin Based on Carbon Nanotubes/Poly(dimethylsiloxane) for Health Monitoring. ACS Applied Materials & Samp; Interfaces, 2022, 14, 21406-21417.	8.0	20
288	Flexible self-charging power sources. Nature Reviews Materials, 2022, 7, 870-886.	48.7	159
289	Rotating triboelectric-electromagnetic nanogenerator driven by tires for self-powered MXene-based flexible wearable electronics. Chemical Engineering Journal, 2022, 446, 136914.	12.7	49
290	Printable and Highly Stretchable Viscoelastic Conductors with Kinematically Reconstructed Conductive Pathways. Advanced Materials, 2022, 34, e2202418.	21.0	17
291	Multifunctional Tactile Feedbacks Towards Compliant Robot Manipulations via 3D-Shaped Electronic Skin. IEEE Sensors Journal, 2022, 22, 9046-9056.	4.7	10

#	Article	IF	CITATIONS
292	Fully nano/micro-fibrous triboelectric on-skin patch with high breathability and hydrophobicity for physiological status monitoring. Nano Energy, 2022, 98, 107311.	16.0	20
293	Chest-scale self-compensated epidermal electronics for standard 6-precordial-lead ECG. Npj Flexible Electronics, 2022, 6, .	10.7	5
294	A Scalable Laserâ€Centric Fabrication of an Epidermal Cardiopulmonary Patch. Advanced Materials Technologies, 2022, 7, .	5.8	6
295	Soft, stretchable, wireless intelligent threeâ€ead electrocardiograph monitors with feedback functions for warning of potential heart attack. SmartMat, 2022, 3, 668-684.	10.7	5
297	A wireless haptic interface for programmable patterns of touch across large areas of the skin. Nature Electronics, 2022, 5, 374-385.	26.0	83
298	A transient, closed-loop network of wireless, body-integrated devices for autonomous electrotherapy. Science, 2022, 376, 1006-1012.	12.6	90
299	Ultrasensitive Capacitive Tactile Sensor with Heterostructured Active Layers for Tiny Signal Perception. SSRN Electronic Journal, 0, , .	0.4	0
300	Octopus-Like Carbon Nanomaterial for Double High Stretchable Conductor. SSRN Electronic Journal, 0, , .	0.4	0
301	Wearable EEG electronics for a Brain–Al Closed-Loop System to enhance autonomous machine decision-making. Npj Flexible Electronics, 2022, 6, .	10.7	29
302	Bioinspired soft electroreceptors for artificial precontact somatosensation. Science Advances, 2022, 8, .	10.3	56
303	High-Performance Flexible Piezoresistive Sensor Based on Ti3C2Tx MXene with a Honeycomb-like Structure for Human Activity Monitoring. Micromachines, 2022, 13, 821.	2.9	7
304	Stress concentration-relocating interposer in electronic textile packaging using thermoplastic elastic polyurethane film with via holes for bearing textile stretch. Scientific Reports, 2022, 12, .	3.3	3
305	Skin-integrated, stretchable, transparent triboelectric nanogenerators based on ion-conducting hydrogel for energy harvesting and tactile sensing. Nano Energy, 2022, 99, 107442.	16.0	39
306	An All-In-One Multifunctional Touch Sensor with Carbon-Based Gradient Resistance Elements. Nano-Micro Letters, 2022, 14 , .	27.0	27
307	Multifunctional biomimetic tactile system via a stick-slip sensing strategy for human–machine interactions. Npj Flexible Electronics, 2022, 6, .	10.7	22
308	A Flexible Artificial Sensory Nerve Enabled by Nanoparticleâ€Assembled Synaptic Devices for Neuromorphic Tactile Recognition. Advanced Science, 2022, 9, .	11.2	24
310	Highâ€6tretchability, Ultralowâ€Hysteresis ConductingPolymer Hydrogel Strain Sensors for Soft Machines. Advanced Materials, 2022, 34, .	21.0	209
311	Human body IoT systems based on the triboelectrification effect: energy harvesting, sensing, interfacing and communication. Energy and Environmental Science, 2022, 15, 3688-3721.	30.8	93

#	Article	IF	CITATIONS
312	Analyzing Human Muscle State with Flexible Sensors. Journal of Sensors, 2022, 2022, 1-11.	1.1	2
313	Actuating compact wearable augmented reality devices by multifunctional artificial muscle. Nature Communications, 2022, 13 , .	12.8	24
314	What is Semantic Communication? A View on Conveying Meaning in the Era of Machine Intelligence. Journal of Communications and Information Networks, 2021, 6, 336-371.	5.2	63
315	Selfâ€Powered Allâ€Optical Tactile Sensing Platform for Userâ€Interactive Interface. Advanced Materials Technologies, 2023, 8, .	5.8	12
316	Development of a nail-deformation haptics device fabricated adopting ultra-thin PZT-MEMS technology. Japanese Journal of Applied Physics, 2022, 61, SN1024.	1.5	2
317	Flexible hybrid electronics: Enabling integration techniques and applications. Science China Technological Sciences, 2022, 65, 1995-2006.	4.0	7
318	Multifunctional Flexible Humidity Sensor Systems Towards Noncontact Wearable Electronics. Nano-Micro Letters, 2022, 14, .	27.0	91
319	Nanoscale physical unclonable function labels based on block copolymer self-assembly. Nature Electronics, 2022, 5, 433-442.	26.0	37
320	Patterning at the micro/nano-scale: Polymeric scaffolds for medical diagnostic and cell-surface interaction applications. Colloids and Surfaces B: Biointerfaces, 2022, 218, 112730.	5.0	7
321	A Selfâ€Powered, Singleâ€Mode Tactile Sensor Based on Sensory Adaptation Using Piezoelectricâ€Driven Ion Migration. Advanced Materials Technologies, 2022, 7, .	5.8	6
322	Photonic vitrimer-based electronics with self-healing and ultrastable visual-digital outputs for wireless strain sensing. Chemical Engineering Journal, 2022, 450, 138285.	12.7	16
323	Ultrasensitive capacitive tactile sensor with heterostructured active layers for tiny signal perception. Chemical Engineering Journal, 2022, 450, 138258.	12.7	24
324	Speckle-based high-resolution multimodal soft sensing. Scientific Reports, 2022, 12, .	3.3	6
325	Mechanical Gradients Enable Highly Stretchable Electronics Based on Nanofiber Substrates. ACS Applied Materials & District Substrates. ACS Applied Materials	8.0	17
326	Mechanoreceptor Inspired Electronic Skin for Multiâ∈Modal Tactile Information Decoding. Advanced Materials Technologies, 2023, 8, .	5.8	5
327	A Wearable Textile-Embedded Dielectric Elastomer Actuator Haptic Display. Soft Robotics, 2022, 9, 1186-1197.	8.0	25
328	Fabrication of high sensitivity and stable strain sensors based on composite folded structures via embedded 3D printing. Smart Materials and Structures, 2022, 31, 095027.	3.5	2
329	Emerging Electrochromic Materials and Devices for Future Displays. Chemical Reviews, 2022, 122, 14679-14721.	47.7	175

#	ARTICLE	IF	CITATIONS
330	Wireless Standâ€Alone Trimodal Interactive Display Enabled by Direct Capacitive Coupling. Advanced Materials, 2022, 34, .	21.0	9
331	Engineering Liquid-Vapor Phase Transition for Refreshable Haptic Interfaces. Research, 2022, 2022, .	5.7	1
332	Epidermal piezoresistive structure with deep learning-assisted data translation. Npj Flexible Electronics, 2022, 6, .	10.7	6
333	Intrinsically stretchable neuromorphic devices for on-body processing of health data with artificial intelligence. Matter, 2022, 5, 3375-3390.	10.0	29
334	A wearable and smart actuator for haptic stimulation. Micro and Nano Engineering, 2022, 16, 100161.	2.9	1
335	Mechanical characteristics of laminated film vibrator using an ultra-thin MEMS actuator. Journal of Micromechanics and Microengineering, 2022, 32, 105001.	2.6	3
336	Optically Triggering and Monitoring Single-Cell-Level Metabolism Using Ormosil-Decorated Ultrathin Fibers. Langmuir, 2022, 38, 9844-9852.	3.5	1
337	A Wearable Flexible Acceleration Sensor for Monitoring Human Motion. Biosensors, 2022, 12, 620.	4.7	10
338	Soft Modular Glove with Multimodal Sensing and Augmented Haptic Feedback Enabled by Materials' Multifunctionalities. ACS Nano, 2022, 16, 14097-14110.	14.6	52
339	Liquid Lensâ€Based Optical Tactile Sensor with a Touchâ€Sensing Separable Structure. Advanced Materials Interfaces, 2022, 9, .	3.7	4
340	Octopus-like carbon nanomaterial for double high stretchable conductor. Carbon, 2022, 199, 200-207.	10.3	1
341	Reversible electrical percolation in a stretchable and self-healable silver-gradient nanocomposite bilayer. Nature Communications, 2022, 13 , .	12.8	12
342	Highly pixelated, untethered tactile interfaces for an ultra-flexible on-skin telehaptic system. Npj Flexible Electronics, 2022, 6, .	10.7	17
343	A self-sensing soft pneumatic actuator with closed-Loop control for haptic feedback wearable devices. Materials and Design, 2022, 223, 111149.	7.0	13
344	Shape morphing structures inspired by multi-material topology optimized bi-functional metamaterials. Composite Structures, 2022, 300, 116135.	5.8	11
345	Engineered olfactory system for in vitro artificial nose. Engineered Regeneration, 2022, 3, 427-439.	6.0	3
346	Adaptive wind-evoked power devices for autonomous motor control applications. Journal of Materials Chemistry C, 2022, 10, 11783-11790.	5.5	1
347	Augmented, Virtual, and Mixed Reality in Tourism., 2022, , 317-341.		3

#	Article	IF	CITATIONS
348	Wireless Smart Gloves with Ultra-Stable and All-Recyclable Liquid Metal-Based Sensing Fibers for Hand Gesture Recognition. SSRN Electronic Journal, 0 , , .	0.4	0
349	Skin-Integrated Haptic Interfaces Enabled by Scalable Mechanical Actuators for Virtual Reality. IEEE Internet of Things Journal, 2023, 10, 653-663.	8.7	1
350	Bioinspired conductive structural color hydrogels as a robotic knuckle rehabilitation electrical skin. Nanoscale Horizons, 2022, 7, 1411-1417.	8.0	7
351	Double-Sided Wearable Multifunctional Sensing System with Anti-interference Design for Human–Ambience Interface. ACS Nano, 2022, 16, 14679-14692.	14.6	16
352	Freestanding and Scalable Forceâ€Softness Bimodal Sensor Arrays for Haptic Bodyâ€Feature Identification. Advanced Materials, 2022, 34, .	21.0	18
353	Carbon Nanotubeâ€Based Strain Sensors: Structures, Fabrication, and Applications. Advanced Materials Technologies, 2023, 8, .	5.8	29
354	Graphdiyne-Based Nanofilms for Compliant On-Skin Sensing. ACS Nano, 2022, 16, 16677-16689.	14.6	8
355	Smart soft contact lenses for continuous 24-hour monitoring of intraocular pressure in glaucoma care. Nature Communications, 2022, 13, .	12.8	27
356	A Flexible Triboelectric Nanogenerator Based on Multilayer MXene/Cellulose Nanofibril Composite Film for Patterned Electroluminescence Display. Materials, 2022, 15, 6770.	2.9	4
357	Augmented tactile-perception and haptic-feedback rings as human-machine interfaces aiming for immersive interactions. Nature Communications, 2022, 13 , .	12.8	149
358	Super-resolution wearable electrotactile rendering system. Science Advances, 2022, 8, .	10.3	26
359	Humidity-sensitive chemoelectric flexible sensors based on metal-air redox reaction for health management. Nature Communications, 2022, 13, .	12.8	71
360	A soft haptic interface for programmable patterns of touch. Matter, 2022, 5, 2590-2593.	10.0	2
361	Magnetized Microcilia Arrayâ€Based Selfâ€Powered Electronic Skin for Microâ€Scaled 3D Morphology Recognition and Highâ€capacity Communication. Advanced Functional Materials, 2022, 32, .	14.9	21
362	Wearable Temperature Sensor with High Resolution for Skin Temperature Monitoring. ACS Applied Materials & Samp; Interfaces, 2022, 14, 43844-43852.	8.0	47
363	The role of printed electronics and related technologies in the development of smart connected products. Flexible and Printed Electronics, 2022, 7, 043001.	2.7	12
364	Materials and Biomedical Applications of Implantable Electronic Devices. Advanced Materials Technologies, 2023, 8, .	5.8	6
365	Materials and devices for immersive virtual reality. Nature Reviews Materials, 2022, 7, 841-843.	48.7	36

#	Article	IF	CITATIONS
366	Transfer printing technologies for soft electronics. Nanoscale, 2022, 14, 16749-16760.	5.6	9
367	Skin-integrated, stretchable triboelectric nanogenerator for energy harvesting and mechanical sensing., 2022, 2, 100012.		2
368	Roles of Lowâ€Dimensional Nanomaterials in Pursuing Human–Machine–Thing Natural Interaction. Advanced Materials, 2023, 35, .	21.0	4
369	Merkel cell-like artificial mechanoreceptor with high sensitivity and high resolution over a wide linear range. Cell Reports Physical Science, 2022, 3, 101101.	5.6	3
370	Stretchable and self-healable spoof plasmonic meta-waveguide for wearable wireless communication system. Light: Science and Applications, 2022, 11 , .	16.6	15
371	Bipolar Electrochemical Stimulation Using Conducting Polymers for Wireless Electroceuticals and Future Directions. ACS Applied Bio Materials, 2022, 5, 5041-5056.	4.6	7
372	An interactive mouthguard based on mechanoluminescence-powered optical fibre sensors for bite-controlled device operation. Nature Electronics, 2022, 5, 682-693.	26.0	57
373	Prolonging VR Haptic Experiences by Harvesting Kinetic Energy from the User. , 2022, , .		9
374	An artificial remote tactile device with 3D depth-of-field sensation. Science Advances, 2022, 8, .	10.3	9
375	Selfâ€powered virtual olfactory generation system based on bionic fibrous membrane and electrostatic field accelerated evaporation. EcoMat, 2023, 5, .	11.9	12
376	Encoding of tactile information in hand via skin-integrated wireless haptic interface. Nature Machine Intelligence, 2022, 4, 893-903.	16.0	49
377	Multimodal Interactions Within Augmented Reality Operational Support Tools for Shipboard Maintenance. Automation, Collaboration, and E-services, 2023, , 329-344.	0.5	0
378	Nonprinted IC Textiles for Wearable Electronics. Accounts of Materials Research, 2022, 3, 1201-1205.	11.7	5
379	Recent Advances in Materials, Designs and Applications of Skin Electronics. IEEE Open Journal of Nanotechnology, 2023, 4, 55-70.	2.0	3
380	Electromagnetic-Actuated Soft Tactile Device Using a Pull–Push Latch Structure. IEEE Transactions on Industrial Electronics, 2023, 70, 10344-10352.	7.9	1
381	Transparent Electronic Skin from the Integration of Strain Sensors and Supercapacitors. Advanced Materials Technologies, 2023, 8, .	5.8	6
382	Body-area sensor network featuring micropyramids for sports healthcare. Nano Research, 2023, 16, 1330-1337.	10.4	26
383	All Digital Light Processingâ€3D Printing of Flexible Sensor. Advanced Materials Technologies, 2023, 8, .	5.8	5

#	Article	IF	CITATIONS
384	Grapheneâ€based dualâ€function acoustic transducers for machine learningâ€assisted human–robot interfaces. InformaÄnÃ-Materiály, 2023, 5, .	17.3	17
385	Soft, wireless electronic dressing system for wound analysis and biophysical therapy. Nano Today, 2022, 47, 101685.	11.9	9
386	Stretchable <scp>magnesium–air</scp> battery based on dual ions conducting hydrogel for intelligent biomedical applications. InformaÄnÃ-MateriÃįly, 2023, 5, .	17.3	10
387	Triboelectric Nanogenerator Enabled Wearable Sensors and Electronics for Sustainable Internet of Things Integrated Green Earth. Advanced Energy Materials, 2023, 13, .	19.5	79
388	Imperceptible, designable, and scalable braided electronic cord. Nature Communications, 2022, 13, .	12.8	34
389	Emerging 4D printing strategies for on-demand local actuation & micro printing of soft materials. European Polymer Journal, 2023, 184, 111778.	5.4	8
390	Flexible corrugated triboelectric nanogenerators for efficient biomechanical energy harvesting and human motion monitoring. Nano Energy, 2023, 106, 108033.	16.0	21
391	Meniscusâ€Guided Microâ€Printing of Prussian Blue for Smart Electrochromic Display. Advanced Science, 2023, 10, .	11.2	13
392	Wearable Perovskiteâ€Based Shadow Recognition Sensor for Ambient and Nonobtrusive Human–Computer Interaction. Advanced Intelligent Systems, 2023, 5, .	6.1	3
393	Touch IoT enabled by wireless self-sensing and haptic-reproducing electronic skin. Science Advances, 2022, 8, .	10.3	27
394	Designing an Attractive Metaverse: Research on Design Factors Influencing Audience Satisfaction with a Virtual Space Based on QCA. Journal of Theoretical and Applied Electronic Commerce Research, 2023, 18, 37-54.	5.7	5
395	Recent advances in electronic skins: material progress and applications. Frontiers in Bioengineering and Biotechnology, 0, 10 , .	4.1	6
396	Ultrathin and highly breathable electronic tattoo for sensing multiple signals imperceptibly on the skin. Nano Energy, 2023, 107, 108092.	16.0	8
397	Optimization of conductive elastomeric composites for directly printed intrinsically stretchable conductors. Japanese Journal of Applied Physics, O, , .	1.5	0
398	Design, Fabrication and Characterisation of Multi-Parameter Optical Sensors Dedicated to E-Skin Applications. Sensors, 2023, 23, 114.	3.8	1
399	Nanobridge Stencil Enabling High Resolution Arbitrarily Shaped Metallic Thin Films on Various Substrates. Advanced Materials Technologies, 0, , 2201119.	5.8	0
400	Air Permeable Vibrotactile Actuators for Wearable Wireless Haptics. Advanced Functional Materials, 2023, 33, .	14.9	8
401	Bioinspired robot skin with mechanically gated electron channels for sliding tactile perception. Science Advances, 2022, 8, .	10.3	26

#	Article	IF	CITATIONS
402	On-skin and tele-haptic application of mechanically decoupled taxel array on dynamically moving and soft surfaces. Npj Flexible Electronics, 2022, 6, .	10.7	5
403	OD to 2D carbon-based materials in flexible strain sensors: recent advances and perspectives. 2D Materials, 2023, 10, 022002.	4.4	7
404	Recent Progresses in Optoelectronic Artificial Synapse Devices. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2022, , 699.	1.3	0
405	Toward immersive communications in 6G. Frontiers in Computer Science, 0, 4, .	2.8	9
406	Self-debonding of adhesive thin films on convex cylindrical surfaces and spherical surfaces. Journal of Applied Mechanics, Transactions ASME, 0 , $1-23$.	2.2	0
407	Stable and Dynamic Multiparameter Monitoring on Chests Using Flexible Skin Patches with Selfâ€Adhesive Electrodes and a Synchronous Correlation Peak Extraction Algorithm. Advanced Healthcare Materials, 2023, 12, .	7.6	5
408	Skin-integrated stretchable actuators toward skin-compatible haptic feedback and closed-loop human-machine interactions. Npj Flexible Electronics, 2023, 7, .	10.7	13
409	Toward a new generation of permeable skin electronics. Nanoscale, 2023, 15, 3051-3078.	5.6	16
410	Immersive interactive technologies and virtual shopping experiences: Differences in consumer perceptions between augmented reality (AR) and virtual reality (VR). Telematics and Informatics, 2023, 77, 101936.	5.8	24
411	Cocklebur-inspired "branch-seed-spininess―3D hierarchical structure bionic electronic skin for intelligent perception. Nano Energy, 2023, 107, 108144.	16.0	10
412	Highly permeable and ultrastretchable E-textiles with EGaIn-superlyophilicity for on-skin health monitoring, joule heating, and electromagnetic shielding. Nano Energy, 2023, 108, 108194.	16.0	35
413	XRtic: A Prototyping Toolkit for XR Applications using Cloth Deformation. , 2022, , .		O
414	3D Printing of Liquid Metals: Recent Advancements and Challenges. Advanced Functional Materials, 2023, 33, .	14.9	18
416	Wrapping Haptic Displays Around Robot Arms to Communicate Learning. IEEE Transactions on Haptics, 2023, 16, 57-72.	2.7	2
417	Designing a 6G Testbed for Location: Use Cases, Challenges, Enablers and Requirements. IEEE Access, 2023, 11, 10053-10091.	4.2	2
418	Wearable Origami Rendering Mechanism Towards Haptic Illusion. Lecture Notes in Bioengineering, 2023, , 379-399.	0.4	0
419	Intrinsically Synchronized Flexible Visuoâ€Haptic Device Operated by Single External Electric Field. Advanced Optical Materials, 2023, 11, .	7.3	1
420	Fully-Flexible Micro-Scale Actuator Array with the Liquid-Gas Phase Change Materials. , 2023, , .		3

#	Article	IF	Citations
421	The growing metaverse sector can reduce greenhouse gas emissions by 10 Gt CO ₂ e in the united states by 2050. Energy and Environmental Science, 2023, 16, 2382-2397.	30.8	10
422	Recent Progress of Tactile and Force Sensors for Human–Machine Interaction. Sensors, 2023, 23, 1868.	3.8	14
423	Extended reality for biomedicine. Nature Reviews Methods Primers, 2023, 3, .	21.2	7
424	Context-aware electromagnetic design for continuously wearable biosymbiotic devices. Biosensors and Bioelectronics, 2023, 228, 115218.	10.1	3
425	Superhydrophobic, stretchable kirigami pencil-on-paper multifunctional device platform. Chemical Engineering Journal, 2023, 465, 142774.	12.7	19
426	Skin-interfaced electronics: A promising and intelligent paradigm for personalized healthcare. Biomaterials, 2023, 296, 122075.	11.4	12
427	Skin-integrated systems for power efficient, programmable thermal sensations across large body areas. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	9
428	Emerging information and communication technologies for smart energy systems and renewable transition. Advances in Applied Energy, 2023, 9, 100125.	13.2	26
429	Wireless smart gloves with ultra-stable and all-recyclable liquid metal-based sensing fibers for hand gesture recognition. Chemical Engineering Journal, 2023, 460, 141777.	12.7	2
430	Fully 3Dâ€Printed, Stretchable, and Conformable Haptic Interfaces. Advanced Functional Materials, 2023, 33, .	14.9	8
431	Stretchable e-skin and transformer enable high-resolution morphological reconstruction for soft robots. Nature Machine Intelligence, 2023, 5, 261-272.	16.0	16
432	Advanced Bioinspired Organic Sensors for Futureâ€Oriented Intelligent Applications. , 0, , 2200066.		2
433	Responsive Liquidâ€Crystal Microlaser Arrays with Tactile Perception. Advanced Optical Materials, 2023, 11, .	7.3	3
434	A Pathway into Metaverse: Gesture Recognition Enabled by Wearable Resistive Sensors. , 2023, 2, .		7
435	Auto-Positioning and Haptic Stimulations via A 35 mm Square Pmut Array., 2023,,.		1
436	Extended reality for biomedicine. Nature Reviews Methods Primers, 2023, 3, .	21.2	0
437	Embedment of sensing elements for robust, highly sensitive, and cross-talk–free iontronic skins for robotics applications. Science Advances, 2023, 9, .	10.3	40
438	High stretchable and self-adhesive dual networks ionic gels and flexible devices application. Polymer, 2023, 272, 125834.	3.8	2

#	Article	IF	CITATIONS
439	Recent Advances in Nanomaterials Used for Wearable Electronics. Micromachines, 2023, 14, 603.	2.9	5
440	Skinâ€Mountable Vibrotactile Stimulator Based on Laterally Multilayered Dielectric Elastomer Actuators. Advanced Functional Materials, 2023, 33, .	14.9	8
441	An Overview of Current technology of Skin-Attachable Haptic Interface. , 2022, , .		0
442	Absence of Inertial Load on Hand Decreases Task Performance in Virtual Reality Interaction. International Journal of Human-Computer Interaction, 0 , , 1 - 15 .	4.8	1
443	Ultrathin Conformable Electronic Tattoo for Tactile Sensations. Advanced Electronic Materials, 2023, 9, .	5.1	2
444	Advances in flexible sensors for intelligent perception system enhanced by artificial intelligence. InformaÄnÄ-MateriÄ¡ly, 2023, 5, .	17.3	20
445	Additively Fabricated Electronic Skin with High Performance in Dynamic Sensing as Human Skin. ACS Applied Electronic Materials, 0, , .	4.3	0
446	Recent Advances in Artificial Intelligence Sensors. , 2023, 2, .		14
447	Fibers/Textiles-Based Flexible Sweat Sensors: A Review. , 2023, 5, 1420-1440.		8
448	Digital touch in sponsorship: Getting closer to the brand through virtual reality. International Journal of Consumer Studies, 2023, 47, 1758-1771.	11.6	1
449	Ultra-stretchable and biodegradable elastomers for soft, transient electronics. Nature Communications, 2023, 14, .	12.8	20
450	How Far for the Electronic Skin: From Multifunctional Material to Advanced Applications. Advanced Materials Technologies, 2023, 8, .	5.8	9
451	Electrically Controllable Materials for Soft, Bioinspired Machines. Annual Review of Materials Research, 2023, 53, 225-251.	9.3	5
452	Multimodal Wearable Ionoskins Enabling Independent Recognition of External Stimuli Without Crosstalk. Small, 2023, 19, .	10.0	2
453	Skin-Integrated Devices and Systems for Haptic Interactions. , 0, 45, 75-80.		0
454	PVA Electrospun Fibers Coated with PPy Nanoparticles for Wearable Strain Sensors. Macromolecular Rapid Communications, 2023, 44, .	3.9	0
455	Soft Robotics Enables Neuroprosthetic Hand Design. ACS Nano, 2023, 17, 9661-9672.	14.6	9
456	A hierarchical sensorimotor control framework for human-in-the-loop robotic hands. Science Robotics, 2023, 8, .	17.6	4

#	Article	IF	CITATIONS
457	Soft Wearable Thermal Devices Integrated with Machine Learning. Advanced Materials Technologies, 2023, 8, .	5.8	1
458	Progress in neurorehabilitation research and the support by the National Natural Science Foundation of China from 2010 to 2022. Neural Regeneration Research, 2024, 19, 226-232.	3.0	1
459	Wireless Power Transfer to Electrothermal Liquid Crystal Elastomer Actuators. ACS Applied Materials & Samp; Interfaces, 2023, 15, 27195-27205.	8.0	10
460	Boron nitride-enabled printing of a highly sensitive and flexible iontronic pressure sensing system for spatial mapping. Microsystems and Nanoengineering, 2023, 9, .	7.0	5
461	Self-powered health monitoring with ultrafast response and recovery enabled by nanostructured silicon moisture-electric generator. Chemical Engineering Journal, 2023, 468, 143797.	12.7	4
462	Active mechanical haptics with high-fidelity perceptions for immersive virtual reality. Nature Machine Intelligence, 2023, 5, 643-655.	16.0	6
463	Wafer-patterned, permeable, and stretchable liquid metal microelectrodes for implantable bioelectronics with chronic biocompatibility. Science Advances, 2023, 9, .	10.3	23
464	Soft Conductive Interfacing for Bioelectrical Uses: Adhesion Mechanisms and Structural Approaches. Macromolecules, 2023, 56, 4431-4446.	4.8	3
465	Advanced polymer materialsâ€based electronic skins for tactile and nonâ€contact sensing applications. InformaÄnÃ-Materiály, 2023, 5, .	17.3	9
466	The Future of Vision: A Review of Electronic Contact Lenses Technology. ACS Photonics, 2023, 10, 1671-1686.	6.6	5
467	Nanomaterial-based flexible sensors for metaverse and virtual reality applications. International Journal of Extreme Manufacturing, 2023, 5, 032013.	12.7	2
468	A Review of Epidermal Flexible Pressure Sensing Arrays. Biosensors, 2023, 13, 656.	4.7	5
469	Vibrotactile Alerting to Prevent Accidents in Highway Construction Work Zones: An Exploratory Study. Sensors, 2023, 23, 5651.	3.8	0
470	Soft Electromagnetic Vibrotactile Actuators with Integrated Vibration Amplitude Sensing. ACS Applied Materials & Samp; Interfaces, 2023, 15, 30653-30662.	8.0	5
471	Al-On-Skin: Towards Enabling Fast and Scalable On-body Al Inference for Wearable On-Skin Interfaces. Proceedings of the ACM on Human-Computer Interaction, 2023, 7, 1-34.	3.3	0
472	Development and application of nanogenerators in humanoid robotics., 2023, 3, 100013.		2
473	Recent Advances in Electrically Driven Soft Actuators across Dimensional Scales from 2D to 3D. Advanced Intelligent Systems, 2024, 6, .	6.1	2
474	Model-driven triboelectric sensors for multidimensional tactile perception. Nano Energy, 2023, 114, 108658.	16.0	2

#	Article	IF	CITATIONS
475	Thinâ€Filmâ€Shaped Flexible Actuators. Advanced Intelligent Systems, 2023, 5, .	6.1	6
476	Development and Validation of a Wearable Device to Provide Rich Somatosensory Stimulation for Rehabilitation After Sensorimotor Impairment. IEEE Transactions on Biomedical Circuits and Systems, 2023, 17, 547-557.	4.0	О
477	Soft, miniaturized, wireless olfactory interface for virtual reality. Nature Communications, 2023, 14, .	12.8	17
478	Mechano-luminescence Behavior of Lanthanide-Doped Fluoride Nanocrystals for Three-Dimensional Stress Imaging. ACS Nano, 2023, 17, 9543-9551.	14.6	6
479	Truly form-factor–free industrially scalable system integration for electronic textile architectures with multifunctional fiber devices. Science Advances, 2023, 9, .	10.3	6
480	Bioâ€Mimic, Fastâ€Moving, and Flippable Soft Piezoelectric Robots. Advanced Science, 2023, 10, .	11.2	6
481	A wing-structured sensor with multiple mechanical stimuli differentiation capabilities toward multifunctional applications. Nano Energy, 2023, 113, 108522.	16.0	2
482	A machine learningâ€assisted multifunctional tactile sensor for smart prosthetics. InformaÄnÃ-Materiály, 2023, 5, .	17.3	12
483	Improved Flexible Triboelectric Nanogenerator Based on Tileâ€Nanostructure for Wireless Human Health Monitor. Energy and Environmental Materials, 0, , .	12.8	6
484	Toward Human-in-the-Loop Shared Control for Upper-Limb Prostheses: A Systematic Analysis of State-of-the-Art Technologies. IEEE Transactions on Medical Robotics and Bionics, 2023, 5, 563-579.	3.2	3
485	A Survey on Applications of Cache-Aided NOMA. IEEE Communications Surveys and Tutorials, 2023, 25, 1571-1603.	39.4	7
486	A Review on Highâ€Frequency Dielectric Elastomer Actuators: Materials, Dynamics, and Applications. Advanced Intelligent Systems, 2024, 6, .	6.1	3
487	Fracture patterns formed by tearing adhesive thin films from curved surfaces. International Journal of Solids and Structures, 2023, 281, 112416.	2.7	0
488	Flexible and low-voltage ITO synaptic transistors for biotic tactile sensing. Applied Physics Letters, 2023, 123, .	3.3	0
489	Prospects of soft biopotential interfaces for wearable human-machine interactive devices and applications. , $0, 3, .$		2
490	Superelastic Radiative Cooling Metafabric for Comfortable Epidermal Electrophysiological Monitoring. Nano-Micro Letters, 2023, 15, .	27.0	9
491	A Review on Chemiresistive Hybrid Zinc Oxide and Nanocomposites for Gas Sensing. Industrial & Engineering Chemistry Research, 2023, 62, 11259-11278.	3.7	4
492	Untethered Small-Scale Machines for Microrobotic Manipulation: From Individual and Multiple to Collective Machines. ACS Nano, 2023, 17, 13081-13109.	14.6	11

#	Article	IF	CITATIONS
493	A Bibliometric Analysis of Research in VR and Haptics. Smart Innovation, Systems and Technologies, 2023, , 961-971.	0.6	0
494	Micropatterned Elastomeric Composites for Encapsulation of Transient Electronics. ACS Nano, 2023, 17, 14822-14830.	14.6	5
495	Haptic interface with flexible self-sensing actuators for wireless touch communication. , 2023, , .		0
496	Single-Line Multi-Channel Flexible Stress Sensor Arrays. Micromachines, 2023, 14, 1554.	2.9	O
497	A wearable system for sign language recognition enabled by a convolutional neural network. Nano Energy, 2023, 116, 108767.	16.0	0
498	Flexible pressure sensor enhanced by polydimethylsiloxane and microstructured conductive networks with positive resistance-pressure response and wide working range. Composites Part B: Engineering, 2023, 264, 110931.	12.0	0
499	Wetâ€Adaptive Electronic Skin. Advanced Materials, 2023, 35, .	21.0	9
500	Conformal Human–Machine Integration Using Highly Bending-Insensitive, Unpixelated, and Waterproof Epidermal Electronics Toward Metaverse. Nano-Micro Letters, 2023, 15, .	27.0	2
501	Thin, soft, wearable system for continuous wireless monitoring of artery blood pressure. Nature Communications, 2023, 14, .	12.8	22
502	Recent progress of thermoelectric applications for cooling/heating, power generation, heat flux sensor and potential prospect of their integrated applications. Thermal Science and Engineering Progress, 2023, 45, 102064.	2.7	4
503	Development of human-touch smart armband for tele-haptic communication using a fabric-based soft pneumatic actuator. Fashion and Textiles, 2023, 10, .	2.4	0
504	Bioreceptor-inspired soft sensor arrays: recent progress towards advancing digital healthcare., 0, 3, .		0
505	Perception of Friction-Related Cues Induced by Temperature Variation on a Surface Display. , 2023, , .		0
506	Two-dimensional materials for wireless power transfer. , 2023, 1, 100022.		3
507	Flexible tactile sensors with biomimetic microstructures: Mechanisms, fabrication, and applications. Advances in Colloid and Interface Science, 2023, 320, 102988.	14.7	4
508	Fluidically programmed wearable haptic textiles. , 2023, 1, 100059.		3
509	A Highly Sensitive Iontronic Bimodal Sensor with Pressureâ€Temperature Discriminability for Robot Skin. Advanced Materials Technologies, 2023, 8, .	5.8	1
510	Multifunctional polyimide-based femtosecond laser micro/nanostructured films with triple Janus properties. Nanoscale, 2023, 15, 15708-15716.	5.6	12

#	Article	IF	CITATIONS
511	Transparent Electronics for Wearable Electronics Application. Chemical Reviews, 2023, 123, 9982-10078.	47.7	20
512	Electronic exoneuron based on liquid metal for the quantitative sensing of the augmented somatosensory system. Microsystems and Nanoengineering, 2023, 9, .	7.0	0
513	A Spatially Selective Electroactiveâ€Actuating Adhesive Electronics for Multiâ€Object Manipulation and Adaptive Haptic Interaction. Advanced Functional Materials, 2024, 34, .	14.9	0
514	Room-temperature-processed transparent hemispherical optoelectronic array for electronic eyes. Materials Today, 2023, 69, 31-40.	14.2	1
515	A Hierarchical Theory for the Tensile Stiffness of Non-Buckling Fractal-Inspired Interconnects. Nanomaterials, 2023, 13, 2542.	4.1	0
516	Easyâ€Toâ€Wear Auxetic SMA Knotâ€Architecture for Spatiotemporal and Multimodal Haptic Feedbacks. Advanced Materials, 2023, 35, .	21.0	1
517	Knitting from Nature: Self-Sensing Soft Robotics Enabled by All-in-One Knit Architectures. ACS Applied Materials & Samp; Interfaces, 2023, 15, 44294-44304.	8.0	2
518	Metaverse Wearables for Immersive Digital Healthcare: A Review. Advanced Science, 2023, 10, .	11.2	4
519	Antiâ€Freezing Wearable Tactile Sensors Prepared by Laser Processing of Crumpled Xanthan Gumâ€Based Hydrogels. Advanced Materials Technologies, 2023, 8, .	5.8	0
520	Artificial Vascular Stent-Inspired Bending Sensors Embedded in a Data Glove for Hand Gesture Recognition. IEEE Sensors Journal, 2023, 23, 23388-23398.	4.7	1
521	In situ Simulation of Thermal Reality. Research, 2023, 6, .	5.7	5
522	An Allâ€Stretchable, Ultraviolet Protective, and Electromagneticâ€Interferenceâ€Free Eâ€Textile. Advanced Functional Materials, 2023, 33, .	14.9	4
523	Simplified Closed-Loop Thermal Feedback System in Flexible form Factor for Prosthesis. , 2023, , .		0
524	lonogel based triboelectric nanogenerator textiles for high-precision human fall recognition. Chemical Engineering Journal, 2023, 474, 145686.	12.7	4
525	Enhanced sensitivity of multifunctional wearable sensor based on Mxene-Ag QDs organo-hydrogel for human-machine interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 677, 132389.	4.7	1
526	Progress and prospective of the soft robots with the magnetic response. Composite Structures, 2023, 324, 117568.	5.8	1
527	Inversely engineered biomimetic flexible network scaffolds for soft tissue regeneration. Science Advances, 2023, 9, .	10.3	6
528	Injectionâ€onâ€skin Granular Adhesive for Interactive Humanâ€machine Interface. Advanced Materials, 0, , .	21.0	0

#	Article	IF	Citations
529	Electric Eelâ€Inspired Soft Electrocytes for Solidâ€State Power Systems. Advanced Functional Materials, 0, , .	14.9	0
530	Liquid metal-based strain-sensing glove for human-machine interaction. , 0, 3, .		0
531	Extensional Analysis of an Axially Loaded Functionally Graded Piezoelectric Semiconductor Rod with Electrical Nonlinearity. Mechanics of Solids, 0, , .	0.7	0
532	Mechanochromic and ionic conductive cholesteric liquid crystal elastomers for biomechanical monitoring and human–machine interaction. Materials Horizons, 2024, 11, 217-226.	12.2	5
533	Bioinspired soft robots for deep-sea exploration. Nature Communications, 2023, 14, .	12.8	4
534	A Review of Carbon Nanotubes, Graphene and Nanodiamond Based Strain Sensor in Harsh Environments. Journal of Carbon Research, 2023, 9, 108.	2.7	0
535	Machine Learning-Enabled Intelligent Gesture Recognition and Communication System Using Printed Strain Sensors. ACS Applied Materials & Strain Sensors.	8.0	0
536	Smart Textile Optoelectronics for Humanâ€Interfaced Logic Systems. Advanced Functional Materials, 2024, 34, .	14.9	0
537	Advances in advanced <scp>solutionâ€synthesisâ€based</scp> structural materials for tactile sensors and their intelligent applications. InformaÄnÃ-Materiály, 2024, 6, .	17.3	0
538	Highâ€Resolution Intaglio Transfer Printing of Silver Nanowires for Wearable Electrophysiological Sensors. Advanced Materials Technologies, 2024, 9, .	5.8	0
539	Magnetic haptic device using miniature SmFeN powder magnets in PCB-on-MEMS system. Sensors and Actuators A: Physical, 2023, 364, 114792.	4.1	0
540	An ultrasmall organic synapse for neuromorphic computing. Nature Communications, 2023, 14, .	12.8	1
541	Perovskite-based photodetector for real-time and quantitative monitoring of sports motion. IScience, 2023, 26, 108298.	4.1	0
542	Contactless human–computer interaction system based on three-dimensional holographic display and gesture recognition. Applied Physics B: Lasers and Optics, 2023, 129, .	2.2	0
543	Structure driven piezoresistive performance design for rubbery composites-based sensors and application prospect: a review. Acta Mechanica Sinica/Lixue Xuebao, 2024, 40, .	3.4	1
544	Multimodal Human–Robot Interaction for Humanâ€Centric Smart Manufacturing: A Survey. Advanced Intelligent Systems, 0, , .	6.1	0
545	Recent Advances in Flexible Multifunctional Sensors. Micromachines, 2023, 14, 2116.	2.9	1
546	A skin-integrated device for neck posture monitoring and correction. Microsystems and Nanoengineering, 2023, 9, .	7.0	0

#	Article	IF	CITATIONS
547	A tutorial of characterization methods on flexible pressure sensors: fundamental and applications. Journal Physics D: Applied Physics, 2024, 57, 093002.	2.8	0
548	Skin-Integrated Wireless Odor Message Delivery Electronics for the Deaf-blind. ACS Nano, 2023, 17, 21947-21961.	14.6	0
549	Biomimetic Wearable Sensors: Emerging Combination of Intelligence and Electronics. Advanced Science, 2024, 11 , .	11.2	4
550	A Texture Display Device Based on Multi-coil Superposition Driving Method. Lecture Notes in Computer Science, 2023, , 97-104.	1.3	0
551	A monolithically integrated in-textile wristband for wireless epidermal biosensing. Science Advances, 2023, 9, .	10.3	1
552	Tactile features of human finger contact motor primitives. IEEE Transactions on Haptics, 2023, , 1-13.	2.7	0
554	All-in-one multifunctional and deformation-insensitive carbon nanotube nerve patches enabling on-demand interactions. Nano Energy, 2024, 120, 109104.	16.0	0
555	Fully addressable textile sensor array for self-powered haptic interfacing. Matter, 2024, 7, 82-94.	10.0	1
556	Increasing Sensitivity of Magnetic Tactile Sensors by Optimizing Arrangement of PM Array., 2023,,.		0
557	Micropyramid Array Bimodal Electronic Skin for Intelligent Material and Surface Shape Perception Based on Capacitive Sensing. Advanced Science, 0, , .	11.2	3
558	Anisotropic Electronic Skin for Neurofeedback. Advanced Functional Materials, 0, , .	14.9	0
559	Stretchable Electronics with Strainâ€Resistive Performance. Small, 0, , .	10.0	0
560	Aqueous battery fiber with high volumetric and areal power density for flexible electronics. , 2024, 2, 100179.		0
561	Artificial intelligence-powered electronic skin. Nature Machine Intelligence, 2023, 5, 1344-1355.	16.0	4
562	Microstructured Polyelectrolyte Elastomerâ€Based Ionotronic Sensors with High Sensitivities and Excellent Stability for Artificial Skins. Advanced Materials, 0, , .	21.0	1
563	A Reversible, Versatile Skinâ€Attached Haptic Interface Platform with Bioinspired Interconnection Architectures Capable of Resisting Sweat and Vibration. Advanced Functional Materials, 0, , .	14.9	0
564	Advances in Machineâ€Learning Enhanced Nanosensors: From Cloud Artificial Intelligence Toward Future Edge Computing at Chip Level. Small Structures, 0, , .	12.0	4
565	Wearable, epidermal devices for assessment of swallowing function. Npj Flexible Electronics, 2023, 7, .	10.7	O

#	Article	IF	CITATIONS
566	Optimal Design of Robust Wireless Power Transfer Links for Human-machine Interface [*] ., 2023, , .		0
567	Ferroelectric-controlled graphene plasmonic surfaces for all-optical neuromorphic vision. Science China Technological Sciences, 0, , .	4.0	0
568	A Learningâ€Based Sensor Array for Untethered Soft Prosthetic Hand Aiming at Restoring Tactile Sensation. Advanced Intelligent Systems, 0, , .	6.1	1
569	Low-dimensional nanostructures for monolithic 3D-integrated flexible and stretchable electronics. Chemical Society Reviews, 2024, 53, 1316-1353.	38.1	3
570	Hybrid materials approaches for bioelectronics. MRS Bulletin, 2023, 48, 1125-1139.	3.5	0
571	Simultaneously enhancing sensitivity and operation range of flexible pressure sensor by constructing a magnetic-guided microstructure in laser-induced graphene composite. Chemical Engineering Journal, 2024, 481, 148639.	12.7	1
572	A skin-integrated multimodal haptic interface for immersive tactile feedback. Nature Electronics, 0, , .	26.0	1
573	Materials-Driven Soft Wearable Bioelectronics for Connected Healthcare. Chemical Reviews, 2024, 124, 455-553.	47.7	2
574	Selfâ€Mixed Biphasic Liquid Metal Composite with Ultraâ€High Stretchability and Strainâ€Insensitivity for Neuromorphic Circuits. Advanced Materials, 2024, 36, .	21.0	0
575	A Continuous Pressure Positioning Sensor with Flexible Multilayer Structures Based on a Combinatorial Bionic Strategy. Advanced Functional Materials, 2024, 34, .	14.9	2
576	Laser fabrication of epidermal paper-based graphene sensors. Applied Materials Today, 2024, 36, 102051.	4. 3	0
577	Stretchable silicon array with stretchability at 66.1% ± 2.9% and silicon areal coverage of 71.5% enabled by wafer-level microfabrication strategy. Applied Physics Letters, 2024, 124, .	3.3	0
578	NdFeB/PDMS Flexible Electromagnetic Actuator with Vibration and Nonvibration Dual Modes Based on Three-Dimensional Coils. ACS Applied Electronic Materials, 2024, 6, 310-318.	4.3	0
579	Battery-free, wireless, and electricity-driven soft swimmer for water quality and virus monitoring. Science Advances, 2024, 10 , .	10.3	0
580	Mechanically Robust and Linearly Sensitive Soft Piezoresistive Pressure Sensor for a Wearable Humanâ€"Robot Interaction System. ACS Nano, 2024, 18, 3151-3160.	14.6	1
581	Trends and emerging opportunities for smart wearables. , 2024, , 511-557.		0
582	Softâ∈Hard Janus Nanoparticles Triggered Hierarchical Conductors with Large Stretchability, High Sensitivity, and Superior Mechanical Properties. Advanced Materials, 2024, 36, .	21.0	0
583	Soft electronic skin for self-deployable tape-spring hinges. , 2024, 3, .		0

#	Article	IF	CITATIONS
584	Adaptive tactile interaction transfer via digitally embroidered smart gloves. Nature Communications, $2024, 15, .$	12.8	1
585	Fusion of Sensory and Motor Performance Toward a Sophisticated Prosthetic Hand., 2023, , .		0
586	Well-defined in-textile photolithography towards permeable textile electronics. Nature Communications, 2024, 15 , .	12.8	0
587	Single Channel Based Interferenceâ€Free and Selfâ€Powered Human–Machine Interactive Interface Using Eigenfrequencyâ€Dominant Mechanism. Advanced Science, 2024, 11, .	11.2	0
588	Two-Stage Micropyramids Enhanced Flexible Piezoresistive Sensor for Health Monitoring and Human–Computer Interaction. ACS Applied Materials & Samp; Interfaces, 2024, 16, 7640-7649.	8.0	0
589	Flexible dual-mode sensor with accurate contact pressure sensing and contactless distance detection functions for robotic perception. Journal of Intelligent Manufacturing, 0, , .	7.3	0
590	Soft Sensors and Actuators for Wearable Human–Machine Interfaces. Chemical Reviews, 2024, 124, 1464-1534.	47.7	0
591	Highâ€Resolution Fullâ€Color Quantum Dots Patterning for Display Applications Based on Femtosecond Laserâ€induced Forward Transfer. Laser and Photonics Reviews, 2024, 18, .	8.7	0
592	A Comprehensive Examination of Mobile Augmented Reality in Tourism (MART) Adoption. Advances in Marketing, Customer Relationship Management, and E-services Book Series, 2024, , 241-262.	0.8	0
593	Porous Conductive Textiles for Wearable Electronics. Chemical Reviews, 2024, 124, 1535-1648.	47.7	0
594	A Seamless, Largeâ€Area Silkâ€based Interface for Immersive Onâ€Palm Tactile Feedback. Advanced Materials Technologies, 2024, 9, .	5.8	0
595	Coupled mechanics in skin-interfaced electronics via computer vision methods. , 0, 4, .		0
596	Multimodal 5â€ĐOF Stretchable Electromagnetic Actuators toward Haptic Information Delivery. Advanced Functional Materials, 2024, 34, .	14.9	0
597	Shaping high-performance wearable robots for human motor and sensory reconstruction and enhancement. Nature Communications, 2024, 15, .	12.8	0
598	Towards high performance and durable soft tactile actuators. Chemical Society Reviews, 2024, 53, 3485-3535.	38.1	0
599	Human-Centered Interaction in Virtual Worlds: A New Era of Generative Artificial Intelligence and Metaverse. International Journal of Human-Computer Interaction, 0, , 1-43.	4.8	0
600	Lego-Like Reconfigurable Soft Haptic Array Via Self-Healing Sensor/Actuator Modules. , 2024, , .		0
601	Wrinkled Membrane-Integrated Flexible Actuator with Large Operating Displacement for Wearable Tactile Display., 2024,,.		0

#	Article	IF	CITATIONS
602	Neural interfaces: Bridging the brain to the world beyond healthcare. Exploration, 0, , .	11.0	0
604	Shape-adaptive and recyclable radio-frequency devices based on polymer with variable stiffness. Cell Reports Physical Science, 2024, 5, 101882.	5.6	O
605	SORI: A softness-rendering interface to unravel the nature of softness perception. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121, .	7.1	0
606	æ¿€å‰èžå•å^¶é€åŠåœ¨æŸ"æ€§å¾®çº³ä¼æ"Ÿå™¨çš"应用ï¼^特é,€ï¼‰. Zhongguo Jiguang/Chinese Jour	nal. ø f Lase	erso2024, 5 <mark>1</mark>
607	High-speed and large-scale intrinsically stretchable integrated circuits. Nature, 2024, 627, 313-320.	27.8	0
608	Recent advances in wireless energy transfer technologies for body-interfaced electronics. Nano Energy, 2024, 124, 109496.	16.0	O
609	Breathable and Durable Tactile e-Skin Based on S-Shaped Nanofiber Networks by Patterned Additive Manufacturing. ACS Applied Nano Materials, 2024, 7, 7154-7161.	5.0	0
610	The Nonlinear Mechanical Constitutive Model and Deep Learning Method to Inverse Design Dualâ€Featureâ€Integrated Lattice Metamaterial. Advanced Engineering Materials, 0, , .	3.5	0