Cloud-Aerosol Transport System (CATS) 1064 m cali

Atmospheric Measurement Techniques 12, 6241-6258 DOI: 10.5194/amt-12-6241-2019

Citation Report

#	Article	IF	CITATIONS
1	Cloud Occurrence Frequency at Puy de Dôme (France) Deduced from an Automatic Camera Image Analysis: Method, Validation, and Comparisons with Larger Scale Parameters. Atmosphere, 2019, 10, 808.	1.0	8
2	Observation and quantification of aerosol outflow from southern Africa using spaceborne lidar. South African Journal of Science, 2020, 116, .	0.3	4
3	Comparison of ISS–CATS and CALIPSO–CALIOP Characterization of High Clouds in the Tropics. Remote Sensing, 2020, 12, 3946.	1.8	3
4	Sensitivities in Satellite Lidarâ€Derived Estimates of Daytime Topâ€ofâ€theâ€Atmosphere Optically Thin Cirrus Cloud Radiative Forcing: A Case Study. Geophysical Research Letters, 2020, 47, e2020GL088871.	1.5	5
5	The diurnal cycle of the clouds extending above the tropical tropopause observed by spaceborne lidar. Atmospheric Chemistry and Physics, 2020, 20, 3921-3929.	1.9	8
6	Dust Atmospheric Transport Over Long Distances. , 2022, , 259-300.		2
7	A global analysis of diurnal variability in dust and dust mixture using CATS observations. Atmospheric Chemistry and Physics, 2021, 21, 1427-1447.	1.9	19
8	Aerosol and Cloud Detection Using Machine Learning Algorithms and Space-Based Lidar Data. Atmosphere, 2021, 12, 606.	1.0	16
9	Diurnal variations of global clouds observed from the CATS spaceborne lidar and their links to large-scale meteorological factors. Climate Dynamics, 2021, 57, 2637-2651.	1.7	10
10	Assessment and Error Analysis of Terraâ€MODIS and MISR Cloudâ€Top Heights Through Comparison With ISSâ€CATS Lidar. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034281.	1.2	11
11	ICESatâ€2 Atmospheric Channel Description, Data Processing and First Results. Earth and Space Science, 2021, 8, e2020EA001470.	1.1	12
12	Planetary Boundary Layer Height Estimates From ICESat-2 and CATS Backscatter Measurements. Frontiers in Remote Sensing, 2021, 2, .	1.3	11
13	Detection and Height Measurement of Tenuous Clouds and Blowing Snow in ICESatâ€⊋ ATLAS Data. Geophysical Research Letters, 2021, 48, e2021GL093473.	1.5	8
14	Modeling the smoky troposphere of the southeast Atlantic: a comparison to ORACLES airborne observations from September of 2016. Atmospheric Chemistry and Physics, 2020, 20, 11491-11526.	1.9	32
15	Models transport Saharan dust too low in the atmosphere: a comparison of the MetUM and CAMS forecasts with observations. Atmospheric Chemistry and Physics, 2020, 20, 12955-12982.	1.9	24
16	The Aerosol Characterization from Polarimeter and Lidar (ACEPOL) airborne field campaign. Earth System Science Data, 2020, 12, 2183-2208.	3.7	10
19	Distinct Diurnal Cycle of Supercooled Water Cloud Fraction Dominated by Dust Extinction Coefficient. Geophysical Research Letters, 2022, 49, .	1.5	5
20	Constrained Retrievals of Aerosol Optical Properties Using Combined Lidar and Imager Measurements During the FIREX-AQ Campaign. Frontiers in Remote Sensing, 2022, 3, .	1.3	3

#	Article	IF	CITATIONS
21	Locations for the best lidar view of mid-level and high clouds. Atmospheric Measurement Techniques, 2022, 15, 4225-4240.	1.2	0
22	Diurnal cycles of cloud cover and its vertical distribution over the Tibetan Plateau revealed by satellite observations, reanalysis datasets, and CMIP6 outputs. Atmospheric Chemistry and Physics, 2023, 23, 743-769.	1.9	9
23	Spatiotemporal distribution of dust aerosol optical properties from CALIPSO and CATS observations in Xinjiang, China. Journal of Atmospheric and Solar-Terrestrial Physics, 2023, 243, 106006.	0.6	2
24	Tropical Tropopause Layer Cloud Properties from Spaceborne Active Observations. Remote Sensing, 2023, 15, 1223.	1.8	1