Sinking of Gelatinous Zooplankton Biomass Increases I Globally

Global Biogeochemical Cycles 33, 1764-1783 DOI: 10.1029/2019gb006265

Citation Report

#	Article	IF	CITATIONS
1	Microbial Processing of Jellyfish Detritus in the Ocean. Frontiers in Microbiology, 2020, 11, 590995.	1.5	19
2	Gelatinous Zooplanktonâ€Mediated Carbon Flows in the Global Oceans: A Dataâ€Đriven Modeling Study. Global Biogeochemical Cycles, 2020, 34, e2020GB006704.	1.9	66
3	Seasonal variability of the fatty acid composition in Aurelia aurita (Cnidaria: Scyphozoa): implications for gelativore food web studies. Journal of Plankton Research, 2020, 42, 440-452.	0.8	14
5	Impacts of jellyfish on marine cage aquaculture: an overview of existing knowledge and the challenges to finfish health. ICES Journal of Marine Science, 2021, 78, 1557-1573.	1.2	17
6	Selective feeding and linkages to the microbial food web by the doliolid <i>Dolioletta gegenbauri</i> . Limnology and Oceanography, 2021, 66, 1993-2010.	1.6	18
7	Distribution, associations and role in the biological carbon pump of Pyrosoma atlanticum (Tunicata,) Tj ETQq1 I	. 0.784314 1.6	rgβŢ /Over o
8	The importance of jellyfish–microbe interactions for biogeochemical cycles in the ocean. Limnology and Oceanography, 2021, 66, 2011-2032.	1.6	20
9	Review of jellyfish trophic interactions in the Baltic Sea. Marine Biology Research, 2021, 17, 311-326.	0.3	9
10	Microbial response to the presence of invasive ctenophore Mnemiopsis leidyi in the coastal waters of the Northeastern Adriatic. Estuarine, Coastal and Shelf Science, 2021, 259, 107459.	0.9	4
11	Major restructuring of marine plankton assemblages under global warming. Nature Communications, 2021, 12, 5226.	5.8	67
12	Jellyfish degradation in a shallow coastal Mediterranean lagoon. Estuarine, Coastal and Shelf Science, 2021, 261, 107527.	0.9	3
13	DNA metabarcoding reveals the importance of gelatinous zooplankton in the diet of <i>Pandalus borealis</i> , a keystone species in the Arctic. Molecular Ecology, 2022, 31, 1562-1576.	2.0	9
15	Distribution and diversity of gelatinous zooplankton in the southern South China Sea. IOP Conference Series: Earth and Environmental Science, 2021, 944, 012019.	0.2	0
17	Global ecological and biogeochemical impacts of pelagic tunicates. Progress in Oceanography, 2022, 205, 102822.	1.5	24
18	Gelatinous Carbon Impacts Benthic Megafaunal Communities in a Continental Margin. Frontiers in Marine Science, 2022, 9, .	1.2	2
19	Ontogenetic dietary shifts of the medusa Rhizostoma pulmo (Cnidaria: Scyphozoa). Hydrobiologia, 2022, 849, 2933-2948.	1.0	6
20	Oceanic Fronts Shape Biodiversity of Gelatinous Zooplankton in the European Arctic. Frontiers in Marine Science, 0, 9, .	1.2	2
21	Contrasting residence time and scavenging communities of experimental invertebrate food falls in the Arctic deep sea Deep-Sea Research Part I: Oceanographic Research Papers, 2022, 189, 103832	0.6	2

ATION RED

CITATION REPORT

#	Article	IF	CITATIONS
22	Kelp carbon sink potential decreases with warming due to accelerating decomposition. PLoS Biology, 2022, 20, e3001702.	2.6	19
23	A review of zooplankton and deep carbon fixation contributions to carbon cycling in the dark ocean. Journal of Marine Systems, 2022, 236, 103800.	0.9	2
24	The microbiome of the pelagic tunicate <i>Dolioletta gegenbauri</i> : AÂpotential link between the grazing and microbial food web. Molecular Ecology, 2023, 32, 6564-6579.	2.0	2
25	Decomposing medusae as substrata for bacterial growth and their potential contribution to environmental hypoxia. Estuarine, Coastal and Shelf Science, 2022, 276, 108013.	0.9	0
26	Temporal characteristics of plankton indicators in coastal waters: High-frequency data from PlanktonScope. Journal of Sea Research, 2022, 189, 102283.	0.6	7
27	The Outsized Role of Salps in Carbon Export in the Subarctic Northeast Pacific Ocean. Global Biogeochemical Cycles, 2023, 37, .	1.9	16
29	The role of PFAS in unsettling ocean carbon sequestration. Environmental Monitoring and Assessment, 2023, 195, .	1.3	4
30	Quantifying the feeding behavior and trophic impact of a widespread oceanic ctenophore. Scientific Reports, 2023, 13, .	1.6	0
31	Including filter-feeding gelatinous macrozooplankton in a global marine biogeochemical model: model–data comparison and impact on the ocean carbon cycle. Biogeosciences, 2023, 20, 869-895.	1.3	4
32	From ecological functions to ecosystem services: linking coastal lagoons biodiversity with human well-being. Hydrobiologia, 2023, 850, 2611-2653.	1.0	12
34	Marine Invertebrates. , 2023, , 249-269.		0
41	Jellyfish in Coastal Ecosystems: Advances in our Understanding of Population Drivers, Role in Biogeochemical Cycling, and Socio-Economic Impacts. , 2024, , 474-495.		1