Highly crystalline Ni-doped FeP/carbon hollow nanorod hydrogen evolving electrocatalysts

Science Advances 5, eaav6009

DOI: 10.1126/sciadv.aav6009

Citation Report

#	Article	IF	CITATIONS
1	Construction of CoP/NiCoP Nanotadpoles Heterojunction Interface for Wide pH Hydrogen Evolution Electrocatalysis and Supercapacitor. Advanced Energy Materials, 2019, 9, 1901213.	10.2	275
2	Hierarchical Nickel Clusters Encapsulated in Ultrathin N-doped Graphitic Nanocarbon Hybrids for Effective Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 15127-15136.	3.2	20
3	Morphological and Electronic Tuning of Ni ₂ P through Iron Doping toward Highly Efficient Water Splitting. ACS Catalysis, 2019, 9, 8882-8892.	5.5	227
4	Bimetallic phosphides embedded in hierarchical P-doped carbon for sodium ion battery and hydrogen evolution reaction applications. Science China Materials, 2019, 62, 1857-1867.	3. 5	23
5	Carbon-incorporated porous honeycomb NiCoFe phosphide nanospheres derived from a MOF precursor for overall water splitting. Chemical Communications, 2019, 55, 10896-10899.	2.2	82
6	Micropore-Boosted Layered Double Hydroxide Catalysts: EIS Analysis in Structure and Activity for Effective Oxygen Evolution Reactions. ACS Applied Materials & Samp; Interfaces, 2019, 11, 30887-30893.	4.0	26
7	Molybdenum-Doped Porous Cobalt Phosphide Nanosheets for Efficient Alkaline Hydrogen Evolution. ACS Applied Energy Materials, 2019, 2, 6302-6310.	2.5	22
8	Construction of Hierarchical Co–Fe Oxyphosphide Microtubes for Electrocatalytic Overall Water Splitting. Advanced Science, 2019, 6, 1900576.	5.6	208
9	Controllable synthesized CoP-MP (M=Fe, Mn) as efficient and stable electrocatalyst for hydrogen evolution reaction at all pH values. International Journal of Hydrogen Energy, 2019, 44, 19978-19985.	3.8	34
10	Defect-rich one-dimensional MoS2 hierarchical architecture for efficient hydrogen evolution: Coupling of multiple advantages into one catalyst. Applied Catalysis B: Environmental, 2019, 258, 117964.	10.8	77
11	Interfacing Manganese Oxide and Cobalt in Porous Graphitic Carbon Polyhedrons Boosts Oxygen Electrocatalysis for Zn–Air Batteries. Advanced Materials, 2019, 31, e1902339.	11.1	363
12	Engineering Multifunctional Collaborative Catalytic Interface Enabling Efficient Hydrogen Evolution in All pH Range and Seawater. Advanced Energy Materials, 2019, 9, 1901333.	10.2	196
13	Hierarchically Porous Wâ€Doped CoP Nanoflake Arrays as Highly Efficient and Stable Electrocatalyst for pHâ€Universal Hydrogen Evolution. Small, 2019, 15, e1902613.	5.2	124
14	Visualizing spatial potential and charge distribution in Ru/N-doped carbon electrocatalysts for superior hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 18072-18080.	5.2	41
15	Harnessing Native Iron Ore as an Efficient Electrocatalyst for Overall Water Splitting. ChemElectroChem, 2019, 6, 3667-3673.	1.7	13
16	An interfacial electron transfer relay center for accelerating the hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 18304-18310.	5.2	19
17	Bi-Doped SnO Nanosheets Supported on Cu Foam for Electrochemical Reduction of CO ₂ to HCOOH. ACS Applied Materials & Interfaces, 2019, 11, 42114-42122.	4.0	85
18	Pore Surface Engineering of Covalent Triazine Frameworks@MoS ₂ Electrocatalyst for the Hydrogen Evolution Reaction. ChemSusChem, 2019, 12, 5032-5040.	3.6	38

#	ARTICLE	IF	CITATIONS
19	Current Status of Selfâ€Supported Catalysts for Robust and Efficient Water Splitting for Commercial Electrolyzer. ChemCatChem, 2019, 11, 5898-5912.	1.8	47
20	Solid‧tate Conversion Synthesis of Advanced Electrocatalysts for Water Splitting. Chemistry - A European Journal, 2020, 26, 3961-3972.	1.7	8
21	Triple-Shelled Co-VSe <i></i> Hollow Nanocages as Superior Bifunctional Electrode Materials for Efficient Pt-Free Dye-Sensitized Solar Cells and Hydrogen Evolution Reactions. ACS Applied Materials & Description (1997), 11, 43278-43286.	4.0	32
22	Modulation of Inverse Spinel Fe ₃ O ₄ by Phosphorus Doping as an Industrially Promising Electrocatalyst for Hydrogen Evolution. Advanced Materials, 2019, 31, e1905107.	11.1	225
23	Augmenting Intrinsic Fenton-Like Activities of MOF-Derived Catalysts via N-Molecule-Assisted Self-catalyzed Carbonization. Nano-Micro Letters, 2019, 11, 87.	14.4	59
24	Cobalt/titanium nitride@N-doped carbon hybrids for enhanced electrocatalytic hydrogen evolution and supercapacitance. New Journal of Chemistry, 2019, 43, 14518-14526.	1.4	17
25	Self-supported tripod-like nickel phosphide nanowire arrays for hydrogen evolution. Journal of Materials Chemistry A, 2019, 7, 22412-22419.	5.2	59
26	Callistemon-like Zn and S codoped CoP nanorod clusters as highly efficient electrocatalysts for neutral-pH overall water splitting. Journal of Materials Chemistry A, 2019, 7, 22453-22462.	5.2	76
27	Cerium and nitrogen doped CoP nanorod arrays for hydrogen evolution in all pH conditions. Sustainable Energy and Fuels, 2019, 3, 3344-3351.	2.5	9
28	2D metal-organic frameworks-derived preparation of layered CuS@C as an efficient and stable electrocatalyst for hydrogen evolution reaction. Electrochimica Acta, 2019, 323, 134856.	2.6	21
29	Neutral-pH overall water splitting catalyzed efficiently by a hollow and porous structured ternary nickel sulfoselenide electrocatalyst. Journal of Materials Chemistry A, 2019, 7, 16793-16802.	5.2	60
30	Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting. Energy and Environmental Science, 2019, 12, 2620-2645.	15.6	1,052
31	Rational construction of macroporous CoFeP triangular plate arrays from bimetal–organic frameworks as high-performance overall water-splitting catalysts. Journal of Materials Chemistry A, 2019, 7, 17529-17535.	5.2	102
32	Highâ€Performance Hydrogen Evolution by Ru Single Atoms and Nitridedâ€Ru Nanoparticles Implanted on Nâ€Doped Graphitic Sheet. Advanced Energy Materials, 2019, 9, 1900931.	10.2	224
33	Chemical and morphological transformation of MOF-derived bimetallic phosphide for efficient oxygen evolution. Nano Energy, 2019, 62, 745-753.	8.2	189
34	Ultrastable and efficient H ₂ production <i>via</i> membrane-free hybrid water electrolysis over a bifunctional catalyst of hierarchical Mo–Ni alloy nanoparticles. Journal of Materials Chemistry A, 2019, 7, 16501-16507.	5.2	49
35	Enhanced the Hydrogen Evolution Performance by Ruthenium Nanoparticles Doped into Cobalt Phosphide Nanocages. ACS Sustainable Chemistry and Engineering, 2019, 7, 9737-9742.	3.2	33
36	Chestnut-like copper cobalt phosphide catalyst for all-pH hydrogen evolution reaction and alkaline water electrolysis. Journal of Materials Chemistry A, 2019, 7, 14271-14279.	5.2	67

3

#	ARTICLE	IF	CITATIONS
37	Porous amorphous NiFeOx/NiFeP framework with dual electrocatalytic functions for water electrolysis. Journal of Power Sources, 2019, 428, 76-81.	4.0	40
38	Ambient Fast Synthesis and Active Sites Deciphering of Hierarchical Foamâ€Like Trimetal–Organic Framework Nanostructures as a Platform for Highly Efficient Oxygen Evolution Electrocatalysis. Advanced Materials, 2019, 31, e1901139.	11.1	374
39	Copper–Nickel Nitride Nanosheets as Efficient Bifunctional Catalysts for Hydrazineâ€Assisted Electrolytic Hydrogen Production. Advanced Energy Materials, 2019, 9, 1900390.	10.2	243
40	Carbon Nanotubeâ€Based Nonâ€Precious Metal Electrode Catalysts for Fuel Cells, Water Splitting and Zincâ€Air Batteries. ChemCatChem, 2019, 11, 5929-5944.	1.8	32
41	Confined carburization-engineered synthesis of ultrathin nickel oxide/nickel heterostructured nanosheets for enhanced oxygen evolution reaction. Nanoscale, 2019, 11, 22261-22269.	2.8	18
42	NiCoFe alloy multishell hollow spheres with lattice distortion to trigger efficient hydrogen evolution in acidic medium. Sustainable Energy and Fuels, 2019, 3, 3310-3317.	2.5	4
43	Simple synthesis of a vacancy-rich NiO 2D/3D dendritic self-supported electrode for efficient overall water splitting. Nanoscale, 2019, 11, 22734-22742.	2.8	20
44	Metallic state two-dimensional holey-structured Co ₃ FeN nanosheets as stable and bifunctional electrocatalysts for zinc–air batteries. Journal of Materials Chemistry A, 2019, 7, 26549-26556.	5.2	30
45	A silver catalyst activated by stacking faults for the hydrogen evolution reaction. Nature Catalysis, 2019, 2, 1107-1114.	16.1	245
46	CoO-Mo2N hollow heterostructure for high-efficiency electrocatalytic hydrogen evolution reaction. NPG Asia Materials, 2019, 11 , .	3.8	65
47	Preparation of an Fe ₂ Ni MOF on nickel foam as an efficient and stable electrocatalyst for the oxygen evolution reaction. RSC Advances, 2019, 9, 33558-33562.	1.7	40
48	Multiple modulations of pyrite nickel sulfides <i>via</i> metal heteroatom doping engineering for boosting alkaline and neutral hydrogen evolution. Journal of Materials Chemistry A, 2019, 7, 25628-25640.	5.2	69
49	Facile fabrication of a hierarchical NiCoFeP hollow nanoprism for efficient oxygen evolution in the Zn–air battery. Journal of Materials Chemistry A, 2019, 7, 24964-24972.	5.2	65
50	Elucidating the sources of activity and stability of FeP electrocatalyst for hydrogen evolution reactions in acidic and alkaline media. Applied Catalysis B: Environmental, 2020, 260, 118156.	10.8	74
51	Metal–Organic Frameworks Based Electrocatalysts for the Oxygen Reduction Reaction. Angewandte Chemie, 2020, 132, 4662-4678.	1.6	114
52	Metal–Organic Frameworks Based Electrocatalysts for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2020, 59, 4634-4650.	7.2	457
53	Redox bifunctional activities with optical gain of Ni3S2 nanosheets edged with MoS2 for overall water splitting. Applied Catalysis B: Environmental, 2020, 268, 118435.	10.8	118
54	Highly efficient hydrogen evolution reaction of Co3O4 supports on N-doped carbon nanotubes in an alkaline solution. Ionics, 2020, 26, 3437-3446.	1.2	14

#	ARTICLE	IF	CITATIONS
55	Metal-organic frameworks-derived hollow-structured iron-cobalt bimetallic phosphide electrocatalysts for efficient oxygen evolution reaction. Journal of Alloys and Compounds, 2020, 821, 153463.	2.8	37
56	Synthesis of Fe ₃ C@porous carbon nanorods <i>via</i> carbonizing Fe complexes for oxygen reduction reaction and Zn–air battery. Inorganic Chemistry Frontiers, 2020, 7, 889-896.	3.0	9
57	Tailoring the composition of a one-step electrodeposited Co,Ni/Co,Ni(OH) ₂ composite coating for a highly active hydrogen evolution electrode. Sustainable Energy and Fuels, 2020, 4, 369-379.	2.5	9
58	Ordered porous Ni <i>in situ</i> decorated by thin-layer amorphous nickel–phosphorus <i>via</i> mild electrochemical-phosphorization for enhancing the hydrogen evolution performance. Chemical Communications, 2020, 56, 611-614.	2.2	20
59	N-doped FeP nanorods derived from Fe-MOFs as bifunctional electrocatalysts for overall water splitting. Applied Surface Science, 2020, 507, 145096.	3.1	57
60	Electronic engineering of transition metal Zn-doped InGaN nanorods arrays for photoelectrochemical water splitting. Journal of Power Sources, 2020, 450, 227578.	4.0	25
61	Stacked Co6W6C nanocrystals anchored on N-doping carbon nanofibers with excellent electrocatalytic performance for HER in wide-range pH. International Journal of Hydrogen Energy, 2020, 45, 1901-1910.	3.8	14
62	Hydrogen Evolution by Ni ₂ P Catalysts Derived from Phosphine MOFs. ACS Applied Energy Materials, 2020, 3, 176-183.	2.5	31
63	Ruthenium Nanoparticles Anchored on Graphene Hollow Nanospheres Superior to Platinum for the Hydrogen Evolution Reaction in Alkaline Media. Inorganic Chemistry, 2020, 59, 930-936.	1.9	24
64	In-situ X-ray techniques for non-noble electrocatalysts. Pure and Applied Chemistry, 2020, 92, 733-749.	0.9	19
65	Kineticâ€Oriented Construction of MoS ₂ Synergistic Interface to Boost pHâ€Universal Hydrogen Evolution. Advanced Functional Materials, 2020, 30, 1908520.	7.8	59
66	Efficient and stable Ni–Co–Fe–P nanosheet arrays on Ni foam for alkaline and neutral hydrogen evolution. International Journal of Hydrogen Energy, 2020, 45, 2504-2512.	3.8	35
67	Transition Metal Selenides for Electrocatalytic Hydrogen Evolution Reaction. ChemElectroChem, 2020, 7, 31-54.	1.7	103
68	Vertically aligned NiS2/CoS2/MoS2 nanosheet array as an efficient and low-cost electrocatalyst for hydrogen evolution reaction in alkaline media. Science Bulletin, 2020, 65, 359-366.	4.3	45
69	Core–shell-structured MOF-derived 2D hierarchical nanocatalysts with enhanced Fenton-like activities. Journal of Materials Chemistry A, 2020, 8, 3168-3179.	5.2	88
70	High-density nickel phosphide nanoparticles loaded reduced graphene oxide on nickel foam for enhanced alkaline and neutral water splitting. Electrochimica Acta, 2020, 362, 137172.	2.6	18
71	Hostâ€"Guest Thin Films by Confining Ultrafine Pt/C QDs into Metalâ€Organic Frameworks for Highly Efficient Hydrogen Evolution. Small, 2020, 16, e2005111.	5.2	39
72	Electrodeposition of iron phosphide film for hydrogen evolution reaction. Electrochimica Acta, 2020, 363, 137167.	2.6	25

#	ARTICLE	IF	CITATIONS
73	Recent progress of Ni–Fe layered double hydroxide and beyond towards electrochemical water splitting. Nanoscale Advances, 2020, 2, 5555-5566.	2.2	52
74	Orbital-regulated interfacial electronic coupling endows Ni3N with superior catalytic surface for hydrogen evolution reaction. Science China Chemistry, 2020, 63, 1563-1569.	4.2	22
75	Nitrogenâ€Doped Cobalt Pyrite Yolk–Shell Hollow Spheres for Longâ€Life Rechargeable Zn–Air Batteries. Advanced Science, 2020, 7, 2001178.	5.6	206
76	Porous cobalt/tungsten nitride polyhedra as efficient bifunctional electrocatalysts for overall water splitting. Journal of Materials Chemistry A, 2020, 8, 22938-22946.	5.2	56
77	Dynamic evolution of isolated Ru–FeP atomic interface sites for promoting the electrochemical hydrogen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 22607-22612.	5.2	36
78	Coralline-like CoP ₃ @Cu as an efficient electrocatalyst for the hydrogen evolution reaction in acidic and alkaline solutions. New Journal of Chemistry, 2020, 44, 18601-18607.	1.4	6
79	Delineating the role of crystallinity in the electrocatalytic activity of colloidally synthesized MoP nanocrystals. New Journal of Chemistry, 2020, 44, 14041-14049.	1.4	8
80	Co ₃ O ₄ Hollow Nanoparticles Embedded in Mesoporous Walls of Carbon Nanoboxes for Efficient Lithium Storage. Angewandte Chemie - International Edition, 2020, 59, 19914-19918.	7.2	177
81	Interface Engineering of Binderâ€Free Earthâ€Abundant Electrocatalysts for Efficient Advanced Energy Conversion. ChemSusChem, 2020, 13, 4795-4811.	3.6	28
82	Trends in Alkaline Hydrogen Evolution Activity on Cobalt Phosphide Electrocatalysts Doped with Transition Metals. Cell Reports Physical Science, 2020, 1, 100136.	2.8	46
83	Synergistically engineering ultralow Pt doped FeNi alloy/FeNi phosphide nanoparticles for advanced hydrogen evolution reaction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 604, 125313.	2.3	21
84	Ultrafine Mo ₂ C nanoparticle decorated N-doped carbon nanofibers for efficient hydrogen production. Sustainable Energy and Fuels, 2020, 4, 4800-4806.	2.5	8
85	A review of the electrocatalysts on hydrogen evolution reaction with an emphasis on Fe, Co and Ni-based phosphides. Journal of Materials Science, 2020, 55, 14081-14104.	1.7	80
86	CoP and Ni ₂ P implanted in a hollow porous N-doped carbon polyhedron for pH universal hydrogen evolution reaction and alkaline overall water splitting. Nanoscale, 2020, 12, 23851-23858.	2.8	52
87	Co ₃ O ₄ Hollow Nanoparticles Embedded in Mesoporous Walls of Carbon Nanoboxes for Efficient Lithium Storage. Angewandte Chemie, 2020, 132, 20086-20090.	1.6	29
88	Synthesis of Sizeâ€Controllable NiCo ₂ S ₄ Hollow Nanospheres Toward Enhanced Electrochemical Performance. Energy and Environmental Materials, 2020, 3, 421-428.	7.3	23
89	Ni foil supported FeNiP nanosheet coupled with NiS as highly efficient electrocatalysts for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2020, 45, 24818-24827.	3.8	13
90	A multi-interfacial FeOOH@NiCo ₂ O ₄ heterojunction as a highly efficient bifunctional electrocatalyst for overall water splitting. Nanoscale, 2020, 12, 19404-19412.	2.8	38

#	Article	IF	Citations
91	Realizing electronic modulation on Mo sites for efficient hydrogen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 18180-18187.	5.2	26
92	Construction of three-dimensionally ordered macroporous bimetal phosphides as bifunctional electrocatalysts for highly efficient water splitting. Journal of Materials Chemistry A, 2020, 8, 24572-24578.	5.2	19
93	Metal–Organicâ€Frameworkâ€Engineered Enzymeâ€Mimetic Catalysts. Advanced Materials, 2020, 32, e20030	06 5 1.1	183
94	Partially exposed RuP ₂ surface in hybrid structure endows its bifunctionality for hydrazine oxidation and hydrogen evolution catalysis. Science Advances, 2020, 6, .	4.7	168
95	Understanding and Optimizing Ultraâ€Thin Coordination Polymer Derivatives with High Oxygen Evolution Performance. Advanced Energy Materials, 2020, 10, 2002228.	10.2	28
96	Size effects of platinum particles@CNT on HER and ORR performance. Science China Materials, 2020, 63, 2517-2529.	3.5	52
97	Iron-based phosphides as electrocatalysts for the hydrogen evolution reaction: recent advances and future prospects. Journal of Materials Chemistry A, 2020, 8, 19729-19745.	5.2	295
98	<i>In situ</i> X-ray diffraction and X-ray absorption spectroscopy of electrocatalysts for energy conversion reactions. Journal of Materials Chemistry A, 2020, 8, 19079-19112.	5.2	98
99	Metal–organic framework-derived hierarchical ultrathin CoP nanosheets for overall water splitting. Journal of Materials Chemistry A, 2020, 8, 19254-19261.	5.2	111
100	Modulating Surface/Interface Structure of Emerging InGaN Nanowires for Efficient Photoelectrochemical Water Splitting. Advanced Functional Materials, 2020, 30, 2005677.	7.8	51
101	Synergistic Tuning of the Electronic Structure of Mo ₂ C by P and Ni Codoping for Optimizing Electrocatalytic Hydrogen Evolution. Inorganic Chemistry, 2020, 59, 13741-13748.	1.9	28
102	Nickel-doped pyrrhotite iron sulfide nanosheets as a highly efficient electrocatalyst for water splitting. Journal of Materials Chemistry A, 2020, 8, 20323-20330.	5.2	55
103	Transitionâ€Metal Phosphides: Activity Origin, Energyâ€Related Electrocatalysis Applications, and Synthetic Strategies. Advanced Functional Materials, 2020, 30, 2004009.	7.8	309
104	Single-Atom Tungsten-Doped CoP Nanoarrays as a High-Efficiency pH-Universal Catalyst for Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2020, 8, 14825-14832.	3.2	73
105	Growth of Highly Active Amorphous RuCu Nanosheets on Cu Nanotubes for the Hydrogen Evolution Reaction in Wide pH Values. Small, 2020, 16, e2000924.	5. 2	69
106	Investigation of polymer-derived Si–(B)–C–N ceramic/reduced graphene oxide composite systems as active catalysts towards the hydrogen evolution reaction. Scientific Reports, 2020, 10, 22003.	1.6	24
107	The rational doping of P and W in multi-stage catalysts to trigger Pt-like electrocatalytic performance. Journal of Materials Chemistry A, 2020, 8, 25165-25172.	5.2	17
108	Fe/Fe ₃ C-NC Nanosheet/Carbon Nanotube Composite Electrocatalysts for Oxygen Reduction Reaction. ACS Applied Nano Materials, 2020, 3, 11574-11580.	2.4	25

#	Article	IF	CITATIONS
109	Stable Rhodium (IV) Oxide for Alkaline Hydrogen Evolution Reaction. Advanced Materials, 2020, 32, e1908521.	11.1	115
110	Modulation engineering of <i>in situ</i> cathodic activation of FeP _x based on W-incorporation for the hydrogen evolution reaction. Nanoscale, 2020, 12, 12364-12373.	2.8	11
111	Advances and Challenges of Fe-MOFs Based Materials as Electrocatalysts for Water Splitting. Applied Materials Today, 2020, 20, 100692.	2.3	35
112	Selective structure transformation for NiFe/NiFe2O4 embedded porous nitrogen-doped carbon nanosphere with improved oxygen evolution reaction activity. Chemical Engineering Journal, 2020, 395, 125170.	6.6	127
113	Accelerating hydrogen evolution at neutral pH by destabilization of water with a conducting oxophilic metal oxide. Journal of Materials Chemistry A, 2020, 8, 12169-12176.	5.2	21
114	Facile synthesis of platinum-rhodium alloy nanodendrites as an advanced electrocatalyst for ethylene glycol oxidation and hydrogen evolution reactions. Journal of Colloid and Interface Science, 2020, 579, 250-257.	5.0	34
115	Ultrasmall Particle Sizes of Walnutâ€Like Mesoporous Silica Nanospheres with Unique Large Pores and Tunable Acidity for Hydrogenating Reaction. Small, 2020, 16, e2002091.	5.2	7
116	Recent Advances in Transition Metal Phosphide Electrocatalysts for Water Splitting under Neutral pH Conditions. ChemElectroChem, 2020, 7, 3578-3589.	1.7	63
117	Heteroatom Doping of Molybdenum Carbide Boosts pH-Universal Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2020, 8, 10284-10291.	3.2	22
118	Fe doped Sb nanoparticles supported on heteroatoms co-doped carbon matrix as efficient electrocatalyst for hydrogen evolution reaction in both acid and alkaline media. Journal of the Taiwan Institute of Chemical Engineers, 2020, 110, 51-57.	2.7	13
119	Robust hydrogen evolution reaction activity catalyzed by ultrasmall Rh–Rh ₂ P nanoparticles. Journal of Materials Chemistry A, 2020, 8, 12378-12384.	5.2	49
120	Recent Studies on Multifunctional Electrocatalysts for Fuel Cell by Various Nanomaterials. Catalysts, 2020, 10, 621.	1.6	4
121	Hydrogen evolution under large-current-density based on fluorine-doped cobalt-iron phosphides. Chemical Engineering Journal, 2020, 399, 125831.	6.6	120
122	FeNiMo trimetallic nanoparticles encapsulated in carbon cages as efficient hydrogen evolution reaction electrocatalysts. Materials Advances, 2020, 1, 54-60.	2.6	16
123	Conductive Metal–Organic Frameworks with Extra Metallic Sites as an Efficient Electrocatalyst for the Hydrogen Evolution Reaction. Advanced Science, 2020, 7, 2000012.	5.6	197
124	Scalable Synthesis of a MoS ₂ /Black Phosphorus Heterostructure for pHâ€Universal Hydrogen Evolution Catalysis. ChemCatChem, 2020, 12, 2840-2848.	1.8	42
125	Ni _x Fe _{1â^'x} B nanoparticle self-modified nanosheets as efficient bifunctional electrocatalysts for water splitting: experiments and theories. Journal of Materials Chemistry A, 2020, 8, 7360-7367.	5.2	28
126	Modulation of an intermediate layer between NiCoP and Ni foam substrate in a microwire array electrode for enhancing the hydrogen-evolution reaction. Chemical Communications, 2020, 56, 4990-4993.	2.2	10

#	Article	IF	CITATIONS
127	Monodispersed Nickel Phosphide Nanocrystals in Situ Grown on Reduced Graphene Oxide with Controllable Size and Composition as a Counter Electrode for Dye-Sensitized Solar Cells. ACS Sustainable Chemistry and Engineering, 2020, 8, 5920-5926.	3.2	27
128	Efficient bifunctional catalysts for overall water splitting: porous Fe–Mo oxide hybrid nanorods. Nanoscale, 2020, 12, 7116-7123.	2.8	28
129	Designed Formation of Doubleâ€Shelled Ni–Fe Layeredâ€Doubleâ€Hydroxide Nanocages for Efficient Oxygen Evolution Reaction. Advanced Materials, 2020, 32, e1906432.	11,1	305
130	Self-template synthesis of hierarchically structured Co3O4@NiO bifunctional electrodes for selective nitrate reduction and tetrahydroisoquinolines semi-dehydrogenation. Science China Materials, 2020, 63, 2530-2538.	3.5	54
131	Emerging Multifunctional Single-Atom Catalysts/Nanozymes. ACS Central Science, 2020, 6, 1288-1301.	5.3	159
132	Surface nitridation of Ta powder by molten-salt electrolysis of Ta ₂ O ₅ under N ₂ atmosphere. Functional Materials Letters, 2020, 13, 2050032.	0.7	1
133	Ambient Temperature Synthesis of Iron-Doped Porous Nickel Pyrophosphate Nanoparticles with Long-Term Chemical Stability for High-Performance Oxygen Evolution Reaction Catalysis and Supercapacitors. ACS Sustainable Chemistry and Engineering, 2020, 8, 2843-2853.	3.2	46
134	Thermoelectrochemical formation of Fe/Fe ₃ C@hollow N-doped carbon in molten salts for enhanced catalysis. Journal of Materials Chemistry A, 2020, 8, 4800-4806.	5.2	43
135	Phosphorus Vacancies that Boost Electrocatalytic Hydrogen Evolution by Two Orders of Magnitude. Angewandte Chemie, 2020, 132, 8258-8263.	1.6	28
136	<i>In Situ</i> Growth of Porous Ultrathin Ni(OH) ₂ Nanostructures on Nickel Foam: An Efficient and Durable Catalysts for Urea Electrolysis. ACS Applied Energy Materials, 2020, 3, 2996-3004.	2.5	46
137	In situ electrochemical conversion of CO ₂ in molten salts to advanced energy materials with reduced carbon emissions. Science Advances, 2020, 6, eaay9278.	4.7	80
138	1D/2D Cobaltâ€Based Nanohybrids as Electrocatalysts for Hydrogen Generation. Advanced Functional Materials, 2020, 30, 1908467.	7.8	25
139	Hydrogen evolution reaction in full pH range on nickel doped tungsten carbide nanocubes as efficient and durable non-precious metal electrocatalysts. International Journal of Hydrogen Energy, 2020, 45, 8695-8702.	3.8	36
140	Multilevel Hollow MXene Tailored Lowâ€Pt Catalyst for Efficient Hydrogen Evolution in Fullâ€pH Range and Seawater. Advanced Functional Materials, 2020, 30, 1910028.	7.8	150
141	Periodically ordered mesoporous iron phosphide for highly efficient electrochemical hydrogen evolution. Journal of Colloid and Interface Science, 2020, 569, 68-75.	5.0	11
142	Simple fabrication of trimetallic platinum-nickel-cobalt hollow alloyed 3D multipods for highly boosted hydrogen evolution reaction. Journal of Colloid and Interface Science, 2020, 570, 205-211.	5.0	78
143	MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chemical Society Reviews, 2020, 49, 1414-1448.	18.7	1,128
144	Fe doped Ni ₅ P ₄ nanosheet arrays with rich P vacancies <i>via</i> phase transformation for efficient overall water splitting. Nanoscale, 2020, 12, 6204-6210.	2.8	47

#	Article	IF	CITATIONS
145	Nonâ€Nobleâ€Metalâ€Based Electrocatalysts toward the Oxygen Evolution Reaction. Advanced Functional Materials, 2020, 30, 1910274.	7.8	760
146	Transition metal-doped FeP nanoparticles for hydrogen evolution reaction catalysis. Applied Surface Science, 2020, 510, 145427.	3.1	43
147	N, Ru Codoped Pellet Drum Bundle-Like Sb ₂ S ₃ : An Efficient Hydrogen Evolution Reaction Electrocatalyst in Alkaline Medium. ACS Applied Materials & Diterraces, 2020, 12, 7057-7070.	4.0	28
148	Facile preparation of self-assembled Ni/Co phosphates composite spheres with highly efficient HER electrocatalytic performances. Applied Surface Science, 2020, 509, 145383.	3.1	65
149	In Situ Induction of Strain in Iron Phosphide (FeP ₂) Catalyst for Enhanced Hydroxide Adsorption and Water Oxidation. Advanced Functional Materials, 2020, 30, 1907791.	7.8	55
150	Electronic modulation of nickel phosphide by iron doping and its assembly on a graphene framework for efficient electrocatalytic water oxidation. Journal of Alloys and Compounds, 2020, 824, 153913.	2.8	15
151	Phosphorus Vacancies that Boost Electrocatalytic Hydrogen Evolution by Two Orders of Magnitude. Angewandte Chemie - International Edition, 2020, 59, 8181-8186.	7.2	183
152	3D flower-like ZnFe-ZIF derived hierarchical Fe, N-Codoped carbon architecture for enhanced oxygen reduction in both alkaline and acidic media, and zinc-air battery performance. Carbon, 2020, 161, 502-509.	5.4	66
153	Interfacial confinement of Ni-V2O3 in molten salts for enhanced electrocatalytic hydrogen evolution. Journal of Energy Chemistry, 2020, 50, 280-285.	7.1	51
154	Multi-channel V-doped CoP hollow nanofibers as high-performance hydrogen evolution reaction electrocatalysts. Nanoscale, 2020, 12, 9144-9151.	2.8	40
155	A Novel Multinary Intermetallic as an Active Electrocatalyst for Hydrogen Evolution. Advanced Materials, 2020, 32, e2000385.	11.1	169
156	Electron-transfer enhanced MoO2-Ni heterostructures as a highly efficient pH-universal catalyst for hydrogen evolution. Science China Chemistry, 2020, 63, 841-849.	4.2	39
157	Puffing quaternary FexCoyNi1-x-yP nanoarray via kinetically controlled alkaline etching for robust overall water splitting. Science China Materials, 2020, 63, 1054-1064.	3.5	35
158	Hollow molybdenum oxide-graphene oxide spheres as a binder-free electrocatalyst membrane with enhanced hydrogen evolution efficiency. Materials Letters, 2020, 272, 127872.	1.3	11
159	Bimetallic metal–organic frameworks and their derivatives. Chemical Science, 2020, 11, 5369-5403.	3.7	285
160	A Single Molecular Stoichiometric Pâ€Source for Phaseâ€Selective Synthesis of Crystalline and Amorphous Iron Phosphide Nanocatalysts. ChemNanoMat, 2020, 6, 1208-1219.	1.5	6
161	Morphological and Electronic Dual Regulation of Cobalt–Nickel Bimetal Phosphide Heterostructures Inducing High Water-Splitting Performance. Journal of Physical Chemistry Letters, 2020, 11, 3911-3919.	2.1	33
162	P–Fe bond oxygen reduction catalysts toward high-efficiency metal–air batteries and fuel cells. Journal of Materials Chemistry A, 2020, 8, 9121-9127.	5. 2	52

#	Article	IF	CITATIONS
163	A "trimurti" heterostructured hybrid with an intimate CoO/Co _x P interface as a robust bifunctional air electrode for rechargeable Zn–air batteries. Journal of Materials Chemistry A, 2020, 8, 9177-9184.	5.2	72
164	Tuning electronic configuration of WP2 nanosheet arrays via nickel doping for high-efficiency hydrogen evolution reaction. Journal of Energy Chemistry, 2021, 55, 17-24.	7.1	47
165	Raman spectroscopy: A promising tool for the characterization of transition metal phosphides. Journal of Alloys and Compounds, 2021, 853, 156468.	2.8	15
166	CoP-embedded nitrogen and phosphorus co-doped mesoporous carbon nanotube for efficient hydrogen evolution. Applied Surface Science, 2021, 537, 147834.	3.1	17
167	Design of grain boundary enriched bimetallic borides for enhanced hydrogen evolution reaction. Chemical Engineering Journal, 2021, 405, 126977.	6.6	56
168	Ultrafine multi-metallic carbide nanocrystals encased in a carbon matrix as durable electrocatalysts towards effective alkaline hydrogen evolution reaction. Materials Advances, 2021, 2, 336-344.	2.6	6
169	Template-free fabrication of MoP nanoparticles encapsulated in N-doped hollow carbon spheres for efficient alkaline hydrogen evolution. Chemical Engineering Journal, 2021, 416, 127677.	6.6	56
170	Pt21(C4O4SH5)21 clusters: atomically precise synthesis and enhanced electrocatalytic activity for hydrogen generation. Electrochimica Acta, 2021, 368, 137608.	2.6	14
171	Recent Progress of Vacancy Engineering for Electrochemical Energy Conversion Related Applications. Advanced Functional Materials, 2021, 31, 2009070.	7.8	166
172	Pr-doped NiCoP nanowire arrays for efficient hydrogen evolution in both acidic and alkaline media. Journal of Alloys and Compounds, 2021, 862, 158047.	2.8	13
173	NiMo/Cu-nanosheets/Ni-foam composite as a high performance electrocatalyst for hydrogen evolution over a wide pH range. International Journal of Hydrogen Energy, 2021, 46, 3493-3503.	3.8	21
174	Atomically Dispersed Reactive Centers for Electrocatalytic CO ₂ Reduction and Water Splitting. Angewandte Chemie - International Edition, 2021, 60, 13177-13196.	7.2	143
175	A Fe–Ni ₅ P ₄ /Fe–Ni ₂ P heterojunction electrocatalyst for highly efficient solar-to-hydrogen generation. Journal of Materials Chemistry A, 2021, 9, 1221-1229.	5.2	33
176	The controlled synthesis of V-doped MoS ₂ -Ni _x S _y hollow nanospheres and their electrocatalytic performance in hydrogen evolution reaction. Sustainable Energy and Fuels, 2021, 5, 698-703.	2.5	6
177	Nanoporous Surface Highâ€Entropy Alloys as Highly Efficient Multisite Electrocatalysts for Nonacidic Hydrogen Evolution Reaction. Advanced Functional Materials, 2021, 31, 2009613.	7.8	145
178	(Ni,Co)Se@Ni(OH) ₂ heterojunction nanosheets as an efficient electrocatalyst for the hydrogen evolution reaction. Dalton Transactions, 2021, 50, 391-397.	1.6	21
179	Atomically Dispersed Reactive Centers for Electrocatalytic CO ₂ Reduction and Water Splitting. Angewandte Chemie, 2021, 133, 13285-13304.	1.6	20
180	Design of hollow carbon-based materials derived from metal–organic frameworks for electrocatalysis and electrochemical energy storage. Journal of Materials Chemistry A, 2021, 9, 3880-3917.	5.2	117

#	Article	IF	CITATIONS
181	A branch-like Mo-doped Ni ₃ S ₂ nanoforest as a high-efficiency and durable catalyst for overall urea electrolysis. Journal of Materials Chemistry A, 2021, 9, 3418-3426.	5.2	93
182	A sequential template strategy toward hierarchical hetero-metal phosphide hollow nanoboxes for electrocatalytic oxygen evolution. Journal of Materials Chemistry A, 2021, 9, 3482-3491.	5.2	26
183	High Density and Unit Activity Integrated in Amorphous Catalysts for Electrochemical Water Splitting. Small Structures, 2021, 2, 2000096.	6.9	102
184	Facile electrolytic synthesis of Pt and carbon quantum dots coloaded multiwall carbon nanotube as highly efficient electrocatalyst for hydrogen evolution and ethanol oxidation. Chemical Engineering Journal, 2021, 408, 127271.	6.6	27
185	Facile synthesis of Ni-, Co-, Cu-metal organic frameworks electrocatalyst boosting for hydrogen evolution reaction. Journal of Materials Science and Technology, 2021, 72, 172-179.	5.6	43
186	Ru to W electron donation for boosted HER from acidic to alkaline on Ru/WNO sponges. Nano Energy, 2021, 80, 105531.	8.2	85
187	Vanadium doped cobalt phosphide nanorods array as a bifunctional electrode catalyst for efficient and stable overall water splitting. International Journal of Hydrogen Energy, 2021, 46, 599-608.	3.8	25
188	Dilute molybdenum atoms embedded in hierarchical nanoporous copper accelerate the hydrogen evolution reaction. Scripta Materialia, 2021, 191, 56-61.	2.6	14
189	RuP ₂ -based hybrids derived from MOFs: highly efficient pH-universal electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2021, 9, 12276-12282.	5.2	39
190	Plasma-engineered bifunctional cobalt–metal organic framework derivatives for high-performance complete water electrolysis. Nanoscale, 2021, 13, 6201-6211.	2.8	14
191	Mechanistic insights into interfaces and nitrogen vacancies in cobalt hydroxide/tungsten nitride catalysts to enhance alkaline hydrogen evolution. Journal of Materials Chemistry A, 2021, 9, 11323-11330.	5.2	12
192	Facile synthesis of Fe-doped CoP nanosheet arrays wrapped by graphene for overall water splitting. Dalton Transactions, 2021, 50, 12168-12178.	1.6	20
193	Ultralong NiSe nanowire anchored on graphene nanosheets for enhanced electrocatalytic performance of triiodide reduction. RSC Advances, 2021, 11, 27681-27688.	1.7	6
194	In situ fabrication of mesoporous NiO@ Graphite paper electrode with multilayered nanosheet wall structures for high-performance supercapacitors. IOP Conference Series: Earth and Environmental Science, 0, 639, 012003.	0.2	0
195	Efficient overall water splitting catalyzed by robust FeNi ₃ N nanoparticles with hollow interiors. Journal of Materials Chemistry A, 2021, 9, 7750-7758.	5.2	48
196	Self-assembly of functionalized Echinops-like Rh porous nanostructure electrocatalysts for highly efficient seawater splitting. Journal of Materials Chemistry C, 2021, 9, 8314-8322.	2.7	18
197	Nanostructured metal phosphides: from controllable synthesis to sustainable catalysis. Chemical Society Reviews, 2021, 50, 7539-7586.	18.7	177
198	N-Doped carbon coated NiCo ₂ O ₄ nanorods for efficient electrocatalytic oxygen evolution. Inorganic Chemistry Frontiers, 2021, 8, 3740-3747.	3.0	22

#	Article	IF	Citations
199	Electrocatalytically inactive copper improves the water adsorption/dissociation on Ni ₃ S ₂ for accelerated alkaline and neutral hydrogen evolution. Nanoscale, 2021, 13, 2456-2464.	2.8	25
200	Metalâ€Organic Framework Hybrids Aid Metabolic Profiling for Colorectal Cancer. Small Methods, 2021, 5, e2001001.	4.6	37
201	Accelerating the oxygen evolution reaction kinetics of Co ₃ O ₄ in neutral electrolyte by decorating RuO ₂ . Chemical Communications, 2021, 57, 2907-2910.	2,2	24
202	Doping regulation in transition metal compounds for electrocatalysis. Chemical Society Reviews, 2021, 50, 9817-9844.	18.7	245
203	Bimetallic Metal–Organic Framework-Derived Graphitic Carbon-Coated Small Co/VN Nanoparticles as Advanced Trifunctional Electrocatalysts. ACS Applied Materials & Samp; Interfaces, 2021, 13, 2462-2471.	4.0	27
204	Vanadium Substitution Steering Reaction Kinetics Acceleration for Ni ₃ N Nanosheets Endows Exceptionally Energy-Saving Hydrogen Evolution Coupled with Hydrazine Oxidation. ACS Applied Materials & Diterfaces, 2021, 13, 3881-3890.	4.0	46
205	Shaggy-like Ru-clusters decorated core-shell metal-organic framework-derived CoOx@NPC as high-efficiency catalyst for NaBH4 hydrolysis. International Journal of Hydrogen Energy, 2021, 46, 7772-7781.	3.8	32
206	Selective-etching of MOF toward hierarchical porous Mo-doped CoP/N-doped carbon nanosheet arrays for efficient hydrogen evolution at all pH values. Chemical Engineering Journal, 2021, 405, 126981.	6.6	55
207	Tailoring Electronegativity of Bimetallic Ni/Fe Metal–Organic Framework Nanosheets for Electrocatalytic Water Oxidation. ACS Applied Nano Materials, 2021, 4, 1967-1975.	2.4	30
208	Hollow cobalt sulfide nanocapsules for electrocatalytic selective transfer hydrogenation of cinnamaldehyde with water. Cell Reports Physical Science, 2021, 2, 100337.	2.8	24
209	Templateâ€Free Synthesis of Zinc Cobalt Oxides/Phosphides (Co 2 P/CoO/ZnCo 2 O 4) Hollow Subâ€Micron Boxes as Hydrogen Evolution Reaction Catalysts. ChemistrySelect, 2021, 6, 1685-1691.	0.7	3
210	Metal–Organic Frameworks Derived Functional Materials for Electrochemical Energy Storage and Conversion: A Mini Review. Nano Letters, 2021, 21, 1555-1565.	4.5	351
212	Preparation of Hollow Cobalt–Iron Phosphides Nanospheres by Controllable Atom Migration for Enhanced Water Oxidation and Splitting. Small, 2021, 17, e2007858.	5.2	35
213	Modulating Metal–Organic Frameworks as Advanced Oxygen Electrocatalysts. Advanced Energy Materials, 2021, 11, 2003291.	10.2	105
214	Supersaturation-triggered synthesis of 2D/1D phosphide heterostructures as multi-functional catalysts for water splitting. Applied Physics Letters, 2021, 118 , .	1.5	10
215	Designing MOF Nanoarchitectures for Electrochemical Water Splitting. Advanced Materials, 2021, 33, e2006042.	11.1	267
216	Tuning the Spin Density of Cobalt Single-Atom Catalysts for Efficient Oxygen Evolution. ACS Nano, 2021, 15, 7105-7113.	7.3	90
217	Cobalt tungsten phosphide with tunable W-doping as highly efficient electrocatalysts for hydrogen evolution reaction. Nano Research, 2021, 14, 4073-4078.	5.8	27

#	ARTICLE	IF	CITATIONS
218	Engineering of nickelâ€cobalt oxide nanostructures based on biomass material for high performance supercapacitor and catalytic water splitting. International Journal of Energy Research, 2021, 45, 12879-12897.	2.2	23
219	Phase-Reversed MoS ₂ Nanosheets Prepared through Femtosecond Laser Exfoliation and Chemical Doping. Journal of Physical Chemistry C, 2021, 125, 8304-8313.	1.5	10
220	Moâ€∤Coâ€N Hybrid Nanosheets Oriented on Hierarchical Nanoporous Cu as Versatile Electrocatalysts for Efficient Water Splitting. Advanced Functional Materials, 2021, 31, 2102285.	7.8	41
221	Exposing unsaturated Cu \cdot sub \cdot 1 \cdot sub \cdot -O \cdot sub \cdot 2 \cdot sub \cdot sites in nanoscale Cu-MOF for efficient electrocatalytic hydrogen evolution. Science Advances, 2021, 7, .	4.7	183
222	General Synthesis of Hierarchically Macro/Mesoporous Fe,Ni-Doped CoSe/N-Doped Carbon Nanoshells for Enhanced Electrocatalytic Oxygen Evolution. Inorganic Chemistry, 2021, 60, 6782-6789.	1.9	13
223	A confinement strategy for stabilizing two-dimensional carbon / CoP hybrids with enhanced hydrogen evolution. Electrochimica Acta, 2021, 375, 137966.	2.6	18
224	Multidimensional Nonstoichiometric Electrode Materials for Electrochemical Energy Conversion and Storage. Advanced Energy Materials, 2022, 12, 2100640.	10.2	25
225	Metalâ€Organic Frameworks Derived Multidimensional CoP/N, Pâ€Doped Carbon Architecture as an Efficient Electrocatalyst for Overall Water Splitting. ChemCatChem, 2021, 13, 3037-3045.	1.8	8
226	Trimetallic Octahedral Ni–Co–W Phosphoxide Sprouted from Plasma-Defect-Engineered Ni–Co Support for Ultrahigh-Performance Electrocatalytic Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2021, 9, 7454-7465.	3.2	21
227	Activation of rhodium selenides for boosted hydrogen evolution reaction via heterostructure construction. Materials Today Physics, 2021, 18, 100401.	2.9	18
228	Electronic Modulation of Nonâ€van der Waals 2D Electrocatalysts for Efficient Energy Conversion. Advanced Materials, 2021, 33, e2008422.	11.1	190
229	Integration of nickel phosphide nanodot-enriched 3D graphene-like carbon with carbon fibers as self-supported sulfur hosts for advanced lithium sulfur batteries. Electrochimica Acta, 2021, 382, 138267.	2.6	17
230	Metal organic frameworks as emergent oxygen-reducing cathode catalysts for microbial fuel cells: a review. International Journal of Environmental Science and Technology, 2022, 19, 11539-11560.	1.8	21
231	Mesoporous manganese cobaltate: Colloid assisted ethylene glycol combustion synthesis and application in efficient water oxidation. Journal of Alloys and Compounds, 2021, 865, 158882.	2.8	6
232	Efficient fish-scale CeO ₂ /NiFeCo composite material as electrocatalyst for oxygen evolution reaction. Nanotechnology, 2021, 32, 365403.	1.3	8
233	Enhanced hydrogen evolution of single-atom Ru sites via geometric and electronic engineering: N and S dual coordination. Applied Surface Science, 2021, 551, 148742.	3.1	21
234	Coupled Co and Ir nanocrystals on graphite as pH-wide and efficient electrocatalyst for hydrogen evolution. Surfaces and Interfaces, 2021, 24, 101049.	1.5	3
235	Direct growth of nickel-doped cobalt phosphide nanowire cluster on carbon cloth for efficient hydrogen evolution reaction. Electrochemistry Communications, 2021, 127, 107051.	2.3	11

#	Article	IF	CITATIONS
236	Design Engineering, Synthesis Protocols, and Energy Applications of MOF-Derived Electrocatalysts. Nano-Micro Letters, 2021, 13, 132.	14.4	134
237	Membrane-free selective oxidation of thioethers with water over a nickel phosphide nanocube electrode. Cell Reports Physical Science, 2021, 2, 100462.	2.8	18
238	Fe-doped NiO.85Se nanospheres interspersed into carbon nanotubes as efficient and stable electrocatalyst for overall water splitting. Electrochimica Acta, 2021, 385, 138452.	2.6	26
239	Direct Solar Hydrogen Generation at 20% Efficiency Using Lowâ€Cost Materials. Advanced Energy Materials, 2021, 11, 2101053.	10.2	35
240	NiCo2S4 microspheres grown on N, S co-doped reduced graphene oxide as an efficient bifunctional electrocatalyst for overall water splitting in alkaline and neutral pH. Nano Research, 2022, 15, 950-958.	5.8	75
241	Fe3C-porous carbon derived from Fe2O3 loaded MOF-74(Zn) for the removal of high concentration BPA: The integrations of adsorptive/catalytic synergies and radical/non-radical mechanisms. Journal of Hazardous Materials, 2021, 413, 125305.	6.5	64
242	MOF-derived hollow heterostructures for advanced electrocatalysis. Coordination Chemistry Reviews, 2021, 439, 213946.	9.5	142
243	Ultrafast Laser-Induced Atomic Structure Transformation of Au Nanoparticles with Improved Surface Activity. ACS Nano, 2021, 15, 13140-13147.	7.3	20
244	The rational adjusting of proton-feeding by Pt-doped FeP/C hollow nanorod for promoting nitrogen reduction kinetics. Applied Catalysis B: Environmental, 2021, 291, 120047.	10.8	43
245	A General Synthesis Strategy for Hollow Metal Oxide Microspheres Enabled by Gelâ€Assisted Precipitation. Angewandte Chemie, 2021, 133, 21547-21553.	1.6	0
246	A General Synthesis Strategy for Hollow Metal Oxide Microspheres Enabled by Gelâ€Assisted Precipitation. Angewandte Chemie - International Edition, 2021, 60, 21377-21383.	7.2	3
247	Costâ€Efficient Photovoltaicâ€Water Electrolysis over Ultrathin Nanosheets of Cobalt/Iron–Molybdenum Oxides for Potential Largeâ€Scale Hydrogen Production. Small, 2021, 17, e2102222.	5. 2	16
248	Controlling the coordination environment of Co atoms derived from Co/ZIF-8 for boosting photocatalytic H2 evolution of CdS. Journal of Colloid and Interface Science, 2021, 596, 139-147.	5.0	17
249	Activating Metal Oxides Nanocatalysts for Electrocatalytic Water Oxidation by Quenching-Induced Near-Surface Metal Atom Functionality. Journal of the American Chemical Society, 2021, 143, 14169-14177.	6.6	101
250	Facile fabrication of molybdenum compounds (Mo2C, MoP and MoS2) nanoclusters supported on N-doped reduced graphene oxide for highly efficient hydrogen evolution reaction over broad pH range. Chemical Engineering Journal, 2021, 417, 129233.	6.6	112
251	Morphology control of Ni doped rod like MIL-88A derived FeS2 embedded in nitrogen-rich carbon as an efficient electrocatalyst for the oxygen reduction reaction. Journal of Molecular Structure, 2021, 1237, 130329.	1.8	5
252	Amorphous-crystalline catalytic interface of CoFeOH/CoFeP with double sites based on ultrafast hydrolysis for hydrogen evolution at high current density. Journal of Power Sources, 2021, 507, 230279.	4.0	24
253	Phosphorized CoNi ₂ S ₄ Yolkâ€Shell Spheres for Highly Efficient Hydrogen Production via Water and Urea Electrolysis. Angewandte Chemie, 2021, 133, 23067-23073.	1.6	14

#	Article	IF	CITATIONS
254	Self-supported N-Doped Carbon@NiXCo2-XP core-shell nanorod arrays on 3D Ni foam for boosted hydrogen evolution reaction. International Journal of Hydrogen Energy, 2021, 46, 36046-36055.	3.8	16
255	Uniform W-NiCoP microneedles by molten salt decomposition as bifunctional electrocatalyst for alkaline water splitting. Applied Materials Today, 2021, 24, 101154.	2.3	12
256	FeNi2P three-dimensional oriented nanosheet array bifunctional catalysts with better full water splitting performance than the full noble metal catalysts. Journal of Colloid and Interface Science, 2022, 608, 2192-2202.	5.0	20
257	Ni-doped CoP/Co2P nanospheres as highly efficient and stable hydrogen evolution catalysts in acidic and alkaline mediums. Journal of Solid State Chemistry, 2021, 301, 122299.	1.4	11
258	Bifunctional Catalyst Derived from Sulfur-Doped VMoO _{<i>x</i>} Nanolayer Shelled Co Nanosheets for Efficient Water Splitting. ACS Applied Materials & Samp; Interfaces, 2021, 13, 42944-42956.	4.0	26
259	Single-atom Zn for boosting supercapacitor performance. Nano Research, 2022, 15, 1715-1724.	5.8	26
260	Confinement of transition metal phosphides in N, P-doped electrospun carbon fibers for enhanced electrocatalytic hydrogen evolution. Journal of Alloys and Compounds, 2021, 875, 159934.	2.8	16
261	Simultaneous hydrogen evolution and ethanol oxidation in alkaline medium via a self-supported bifunctional electrocatalyst of Ni-Fe phosphide/Ni foam. Applied Surface Science, 2021, 561, 150080.	3.1	27
262	Ditungsten carbide nanoparticles homogeneously embedded in carbon nanofibers for efficient hydrogen production. Chemical Engineering Journal, 2021, 420, 130480.	6.6	19
263	Fe2P nanoparticles embedded on Ni2P nanosheets as highly efficient and stable bifunctional electrocatalysts for water splitting. Journal of Materials Science and Technology, 2022, 105, 266-273.	5.6	29
264	Regulating electronic structure of <scp>twoâ€dimensional </scp> porous Ni/ <scp>Ni₃N</scp> nanosheets architecture by Co atomic incorporation boosts alkaline water splitting. InformaÄnÃ-Materiály, 2022, 4, .	8.5	63
265	Manipulating metal oxidation state over ultrastable metal-organic frameworks for boosting photocatalysis. Applied Catalysis B: Environmental, 2021, 292, 120156.	10.8	55
266	Phosphorized CoNi ₂ S ₄ Yolkâ€Shell Spheres for Highly Efficient Hydrogen Production via Water and Urea Electrolysis. Angewandte Chemie - International Edition, 2021, 60, 22885-22891.	7.2	191
267	The cutting-edge phosphorus-rich metal phosphides for energy storage and conversion. Nano Today, 2021, 40, 101245.	6.2	39
268	Fe-incorporated cobalt-based metal-organic framework ultrathin nanosheets for electrocatalytic oxygen evolution. Chemical Engineering Journal, 2021, 422, 130055.	6.6	19
269	Recent progress in CoP-based materials for electrochemical water splitting. International Journal of Hydrogen Energy, 2021, 46, 34194-34215.	3.8	38
270	Carbon nanotubes-interconnected heterostructural FeP/Ni2P nanospindles as efficient and stable electrocatalysts for oxygen evolution reaction. Journal of Alloys and Compounds, 2021, 883, 160926.	2.8	20
271	Three-dimensional FeP nanotube arrays fabricated through electrostatic-repulsion-limited-nucleation strategy for high-efficiency hydrogen evolution. Chemical Engineering Journal, 2021, 423, 130240.	6.6	23

#	Article	IF	CITATIONS
272	Atomically dispersed Ni on Mo2C embedded in N, P co-doped carbon derived from polyoxometalate supramolecule for high-efficiency hydrogen evolution electrocatalysis. Applied Catalysis B: Environmental, 2021, 296, 120336.	10.8	58
273	Self-optimizing iron phosphorus oxide for stable hydrogen evolution at high current. Applied Catalysis B: Environmental, 2021, 298, 120559.	10.8	14
274	Advances in metal–organic framework-based nanozymes and their applications. Coordination Chemistry Reviews, 2021, 449, 214216.	9.5	122
275	Multifunctional electrocatalyst of NiCo-NiCoP nanoparticles embedded into P-doped carbon nanotubes for Energy-Saving hydrogen production and upgraded conversion of formaldehyde. Chemical Engineering Journal, 2021, 426, 129214.	6.6	25
276	Three-dimensional self-supporting catalyst with NiFe alloy/oxyhydroxide supported on high-surface cobalt hydroxide nanosheet array for overall water splitting. Journal of Colloid and Interface Science, 2022, 606, 873-883.	5.0	26
277	N, P-doped carbon supported ruthenium doped Rhenium phosphide with porous nanostructure for hydrogen evolution reaction using sustainable energies. Journal of Colloid and Interface Science, 2022, 606, 1874-1881.	5.0	24
278	Fe–Co–P multi-heterostructure arrays for efficient electrocatalytic water splitting. Journal of Materials Chemistry A, 2021, 9, 24677-24685.	5 . 2	64
279	Ni ₂ P Interlayer and Mn Doping Synergistically Expedite the Hydrogen Evolution Reaction Kinetics of Co ₂ P. Chemistry - A European Journal, 2021, 27, 3536-3541.	1.7	10
280	HERs in an acidic medium over MoS ₂ nanosheets: from fundamentals to synthesis and the recent progress. Sustainable Energy and Fuels, 2021, 5, 1952-1987.	2.5	30
281	Bimetal–Organic Frameworks from In Situ-Activated NiFe Foam for Highly Efficient Water Splitting. ACS Sustainable Chemistry and Engineering, 2021, 9, 1826-1836.	3.2	38
282	Selfâ€Antiâ€Stacking 2D Metal Phosphide Loopâ€Sheet Heterostructures by Edgeâ€Topological Regulation for Highly Efficient Water Oxidation. Small, 2021, 17, e2006860.	5. 2	16
283	Constructing Atomic Heterometallic Sites in Ultrathin Nickel-Incorporated Cobalt Phosphide Nanosheets via a Boron-Assisted Strategy for Highly Efficient Water Splitting. Nano Letters, 2021, 21, 823-832.	4.5	91
284	Transition metal-based bimetallic MOFs and MOF-derived catalysts for electrochemical oxygen evolution reaction. Energy and Environmental Science, 2021, 14, 1897-1927.	15.6	415
285	2D coordination polymer-derived CoSe ₂ â€"NiSe ₂ /CN nanosheets: the dual-phase synergistic effect and ultrathin structure to enhance the hydrogen evolution reaction. Dalton Transactions, 2021, 50, 9934-9941.	1.6	13
286	Fabrication of a porous NiFeP/Ni electrode for highly efficient hydrazine oxidation boosted H ₂ evolution. Nanoscale Advances, 2021, 3, 2280-2286.	2.2	25
287	Phosphorus-modified ruthenium–tellurium dendritic nanotubes outperform platinum for alkaline hydrogen evolution. Journal of Materials Chemistry A, 2021, 9, 5026-5032.	5.2	20
288	Highly dispersed CoP on three-dimensional ordered mesoporous FeP for efficient electrocatalytic hydrogen production. Journal of Materials Chemistry A, 2021, 9, 23574-23581.	5.2	28
289	Electronic Modulation of Hierarchical Spongy Nanosheets toward Efficient and Stable Water Electrolysis. Small, 2021, 17, e2006881.	5.2	35

#	Article	IF	CITATIONS
290	Utilizing in-situ polymerization of pyrrole to fabricate composited hollow nanospindles for boosting oxygen evolution reaction. Applied Catalysis B: Environmental, 2020, 274, 119112.	10.8	23
291	Transformation of stainless steel 316 into a bifunctional water splitting electrocatalyst tolerant to polarity switching. Sustainable Materials and Technologies, 2020, 25, e00177.	1.7	9
292	A crystalline–amorphous Ni–Ni(OH) ₂ core–shell catalyst for the alkaline hydrogen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 23323-23329.	5.2	77
293	A Review of Biohydrogen Productions from Lignocellulosic Precursor via Dark Fermentation: Perspective on Hydrolysate Composition and Electron-Equivalent Balance. Energies, 2020, 13, 2451.	1.6	18
294	Stabilizing oxygen intermediates on redox-flexible active sites in multimetallic Ni–Fe–Al–Co layered double hydroxide anodes for excellent alkaline and seawater electrolysis. Journal of Materials Chemistry A, 2021, 9, 27332-27346.	5.2	33
295	Unlocking the catalytic activities of 2H-phase Mo-based compounds via topological conversion reaction. Materials Today, 2021, 51, 136-144.	8.3	11
296	NiFe-layered double hydroxideÂarrays for oxygen evolution reaction in fresh water and seawater. Materials Today Energy, 2021, 22, 100883.	2.5	26
297	Synergistic Electrocatalysts for Alkaline Hydrogen Oxidation and Evolution Reactions. Advanced Functional Materials, 2022, 32, 2107479.	7.8	66
298	Multicomponent nickel-based phosphide catalyst for overall water splitting. Functional Materials Letters, 2021, 14, .	0.7	5
299	Facile synthesis of bimetallic Ni–Fe phosphide as robust electrocatalyst for oxygen evolution reaction in alkaline media. International Journal of Hydrogen Energy, 2021, 46, 39844-39854.	3.8	24
300	Synergetic Cobaltâ€Copperâ€Based Bimetal–Organic Framework Nanoboxes toward Efficient Electrochemical Oxygen Evolution. Angewandte Chemie, 2021, 133, 26601-26606.	1.6	14
301	Synergetic Cobaltâ€Copperâ€Based Bimetal–Organic Framework Nanoboxes toward Efficient Electrochemical Oxygen Evolution. Angewandte Chemie - International Edition, 2021, 60, 26397-26402.	7.2	105
302	Compensating Electronic Effect Enables Fast Siteâ€toâ€Site Electron Transfer over Ultrathin RuMn Nanosheet Branches toward Highly Electroactive and Stable Water Splitting. Advanced Materials, 2021, 33, e2105308.	11.1	73
303	Ultrahighâ€Currentâ€Density and Longâ€Termâ€Durability Electrocatalysts for Water Splitting. Small, 2022, 18, e2104513.	5.2	49
304	Natural DNA-assisted ultrafine FeP embedded in N, P-codoped carbons for efficient oxygen reduction, hydrogen evolution and rechargeable zinc-air battery. Carbon, 2022, 186, 171-179.	5.4	28
305	Self-driven dual hydrogen production system based on a bifunctional single-atomic Rh catalyst. Journal of Materials Chemistry A, 2022, 10, 6134-6145.	5. 2	34
306	Surface Reconstruction Enabled Efficient Hydrogen Generation on a Cobalt–Iron Phosphate Electrocatalyst in Neutral Water. ACS Applied Materials & 1, 13, 53798-53809.	4.0	14
307	Interfacial engineering of nickel/iron/ruthenium phosphides for efficient overall water splitting powered by solar energy. Journal of Materials Chemistry A, 2022, 10, 772-778.	5.2	60

#	Article	IF	CITATIONS
308	Hollow Nanosheet Arrays Assembled by Ultrafine Ruthenium–Cobalt Phosphide Nanocrystals for Exceptional pH-Universal Hydrogen Evolution. , 2021, 3, 1695-1701.		22
309	Boosting alkaline hydrogen evolution electrocatalysis through electronic communicating vessels on Co2P/Co4N heterostructure catalyst. Chemical Engineering Journal, 2022, 433, 133831.	6.6	28
310	Activation of inert copper for significantly enhanced hydrogen evolution behaviors by trace ruthenium doping. Nano Energy, 2022, 92, 106763.	8.2	38
311	Hybrid electrocatalyst of CoFe2O4 decorating carbon spheres for alkaline oxygen evolution reaction. Ceramics International, 2022, 48, 5442-5449.	2.3	17
312	In situ activation of Br-confined Ni-based metal-organic framework hollow prisms toward efficient electrochemical oxygen evolution. Science Advances, 2021, 7, eabk0919.	4.7	87
313	Immunostimulatory multi-interfacial bimetallic phosphide nanoparticles as photo-enhanced cascade nanozyme for cancer therapy. Applied Materials Today, 2021, 25, 101255.	2.3	13
314	Rh/RhO _{<i>x</i>} nanosheets as pH-universal bifunctional catalysts for hydrazine oxidation and hydrogen evolution reactions. Journal of Materials Chemistry A, 2022, 10, 1891-1898.	5.2	25
315	Mixture Phases Engineering of PtFe Nanofoams for Efficient Hydrogen Evolution. Small, 2022, 18, e2106947.	5.2	24
316	2D FeP Nanoframe Superlattices via Spaceâ€Confined Topochemical Transformation. Advanced Materials, 2022, 34, e2109145.	11.1	29
317	Plasma-regulated two-dimensional high entropy oxide arrays for synergistic hydrogen evolution: From theoretical prediction to electrocatalytic applications. Journal of Power Sources, 2022, 520, 230873.	4.0	22
318	Flower-like CeO2-supported small-sized Ru nanoparticle hybrids for highly efficient alkaline hydrogen evolution: Roles of interfacial effects. Applied Surface Science, 2022, 581, 152256.	3.1	18
319	Design and Synthesis of Hollow Nanostructures for Electrochemical Water Splitting. Advanced Science, 2022, 9, e2105135.	5.6	110
320	Chemical etching manipulated local electronic structure upheaval of graphdiyne for efficient hydrogen evolution. 2D Materials, 2022, 9, 024001.	2.0	2
321	Vanadium doped FeP nanoflower with optimized electronic structure for efficient hydrogen evolution. Journal of Colloid and Interface Science, 2022, 615, 445-455.	5.0	29
322	Nickel Quantum Dots Anchored in Biomassâ€Derived Nitrogenâ€Doped Carbon as Bifunctional Electrocatalysts for Overall Water Splitting. Advanced Materials Interfaces, 2022, 9, .	1.9	7
323	NiSe ₂ /FeSe ₂ heterostructured nanoparticles supported on rGO for efficient water electrolysis. Inorganic Chemistry Frontiers, 2022, 9, 448-457.	3.0	21
324	Fast acid-leaching strategy treated hollow cobalt–carbon materials as highly efficient electrochemical catalysts for Zn–air batteries. Materials Chemistry Frontiers, 2022, 6, 163-175.	3.2	7
325	Strategies for Electrochemically Sustainable H ₂ Production in Acid. Advanced Science, 2022, 9, e2104916.	5.6	15

#	Article	IF	CITATIONS
326	Engineering Metallic Heterostructure Based on Ni ₃ N and 2Mâ€MoS ₂ for Alkaline Water Electrolysis with Industryâ€Compatible Current Density and Stability. Advanced Materials, 2022, 34, e2108505.	11.1	104
327	Insights into the Effect of Precursors on the FeP-Catalyzed Hydrogen Evolution Reaction. Inorganic Chemistry, 2022, , .	1.9	8
328	Systematic Engineering on Niâ€Based Nanocatalysts Effectively Promote Hydrogen Evolution Reaction. Small, 2022, 18, e2108072.	5.2	25
329	Iron Selenideâ€Based Heterojunction Construction and Defect Engineering for Fast Potassium/Sodium″on Storage. Small, 2022, 18, e2107252.	5.2	46
330	Synthesis of Co2FeAl alloys as highly efficient electrocatalysts for alkaline hydrogen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 13399-13408.	3.8	8
331	Wetâ€Chemistry: A Useful Tool for Deriving Metal–Organic Frameworks toward Supercapacitors and Secondary Batteries. Advanced Materials Interfaces, 2022, 9, .	1.9	9
332	Asymmetric Neutralâ€elkaline Microbial Electrolysis Cells for Hydrogen Production. ChemElectroChem, 2022, 9, .	1.7	2
333	Co2P nanoparticles supported on cobalt-embedded N-doped carbon materials as a bifunctional electrocatalyst for rechargeable Zn-air batteries. International Journal of Hydrogen Energy, 2022, 47, 16518-16527.	3.8	9
334	Interface oxygen vacancy enhanced alkaline hydrogen evolution activity of cobalt-iron phosphide/CeO2 hollow nanorods. Chemical Engineering Journal, 2022, 437, 135376.	6.6	35
335	Metal-organic frameworks template-directed growth of layered double hydroxides: A fantastic conversion of functional materials. Coordination Chemistry Reviews, 2022, 460, 214467.	9.5	60
336	Acidity-responsive nanocages as robust reactive oxygen species generators with butterfly effects for maximizing oxidative damage and enhancing cancer therapy. Journal of Colloid and Interface Science, 2022, 618, 270-282.	5.0	9
337	In-situ fabrication of NixSey/MoSe2 hollow rod array for enhanced catalysts for efficient hydrogen evolution reaction. Journal of Colloid and Interface Science, 2022, 617, 611-619.	5.0	14
338	PEO-PPO-PEO induced holey NiFe-LDH nanosheets on Ni foam for efficient overall water-splitting and urea electrolysis. Journal of Colloid and Interface Science, 2022, 618, 141-148.	5.0	21
339	Strong ion interaction inducing ultrahigh activity of NiCoP nanowires for overall water splitting at large current density. Applied Surface Science, 2022, 589, 152837.	3.1	11
340	Oneâ€Step Construction of Ordered Sulfurâ€Terminated Tantalum Carbide MXene for Efficient Overall Water Splitting. Small Structures, 2022, 3, .	6.9	33
341	Zeolitic imidazolate framework-derived composites with SnO ₂ and ZnO phase components for electrocatalytic carbon dioxide reduction. Dalton Transactions, 2022, 51, 7274-7283.	1.6	8
342	Petal-like Fe _{<i>x</i>} S _{<i>y</i>} /WS ₂ Heterojunction Nanosheets as an Electrocatalyst for Highly Effective Hydrogen Evolution Reaction. Energy &	2.5	9
343	Rational Design of Better Hydrogen Evolution Electrocatalysts for Water Splitting: A Review. Advanced Science, 2022, 9, e2200307.	5.6	121

#	Article	IF	CITATIONS
344	RuCo Alloy Nanoparticles Embedded into N-Doped Carbon for High Efficiency Hydrogen Evolution Electrocatalyst. Energies, 2022, 15, 2908.	1.6	3
345	Peroxymonosulfate activation via CoP nanoparticles confined in nitrogen-doped porous carbon for enhanced degradation of sulfamethoxazole in wastewater with high salinity. Journal of Environmental Chemical Engineering, 2022, 10, 107734.	3.3	26
346	Ultralight Magnetic and Dielectric Aerogels Achieved by Metal–Organic Framework Initiated Gelation of Graphene Oxide for Enhanced Microwave Absorption. Nano-Micro Letters, 2022, 14, 107.	14.4	110
347	Heterointerface and Defect Dual Engineering in a Superhydrophilic Ni ₂ P/WO _{2.83} Microsphere for Boosting Alkaline Hydrogen Evolution Reaction at High Current Density. ACS Applied Materials & Description and High Current Density. ACS Applied Materials & Decoration at High Current Density. ACS Applied Materials & Decoration at High Current Density. ACS Applied Materials & Decoration at High Current Density. ACS Applied Materials & Decoration at High Current Density.	4.0	24
348	Superiorly-hydrophilic chrysalis-like carbon-shell supported metallic Ni nanoparticles toward efficient oxygen reduction electrocatalysis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 646, 128997.	2.3	5
349	Highly dispersed ruthenium nanoparticles on nitrogen doped carbon toward efficient hydrogen evolution in both alkaline and acidic electrolytes. RSC Advances, 2022, 12, 13932-13937.	1.7	2
350	Efficient Modulation of Electrocatalyst Interfaces by Atomic Layer Deposition: Fundamentals to Application. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	5
351	Interfacial engineering of carbon-based materials for efficient electrocatalysis: Recent advances and future. EnergyChem, 2022, 4, 100074.	10.1	20
352	A Tandem Interfaced (Ni ₃ S ₂ â€MoS ₂)@TiO ₂ Composite Fabricated by Atomic Layer Deposition as Efficient HER Electrocatalyst. Small, 2022, 18, e2201896.	5.2	16
353	CoP Nanoparticle Confined in P, N Coâ€Doped Porous Carbon Anchored on Pâ€Doped Carbonized Wood Fibers with Tailored Electronic Structure for Efficient Urea Electroâ€Oxidation. Small, 2022, 18, e2200950.	5.2	48
354	First-row transition metal-based materials derived from bimetallic metal–organic frameworks as highly efficient electrocatalysts for electrochemical water splitting. Energy and Environmental Science, 2022, 15, 3119-3151.	15.6	125
355	Ultrafine PtCoRh nanorods for highly efficient hydrogen evolution reaction in acid. Chemical Communications, 2022, 58, 7309-7312.	2.2	4
356	Surface conversion derived core-shell nanostructures of Co particles@RuCo alloy for superior hydrogen evolution in alkali and seawater. Applied Catalysis B: Environmental, 2022, 315, 121554.	10.8	29
357	Metal-rich heterostructure of Ag-doped FeS/Fe2P for robust hydrogen evolution. International Journal of Hydrogen Energy, 2022, 47, 20518-20528.	3.8	8
358	Exposure of active sites in Mn–SnS2 nanosheets to boost hydrogen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 21942-21951.	3.8	5
359	In-situ porous flake heterostructured NiCoP/Ni foam as electrocatalyst for hydrogen evolution reaction. Electrochimica Acta, 2022, 423, 140578.	2.6	16
360	Mn boosted the electrocatalytic hydrogen evolution of N, P co-doped Mo ₂ C <i>via</i> synergistically tuning the electronic structures. Sustainable Energy and Fuels, 2022, 6, 3363-3370.	2.5	3
361	Self-supported and defect-rich CoP nanowire arrays with abundant catalytic sites as a highly efficient bifunctional electrocatalyst for water splitting. New Journal of Chemistry, 2022, 46, 13117-13121.	1.4	1

#	Article	IF	CITATIONS
362	Direct Growth of Carbon Nitride (C ₃ N ₃) Nanosheets on Copper Foam as an Efficient Catalytic Electrode for Electrochemical Hydrogen Evolution. ChemElectroChem, 2022, 9, .	1.7	1
363	Ru, B Co-doped hollow structured iron phosphide as highly efficient electrocatalyst toward hydrogen generation in wide pH range. Journal of Materials Chemistry A, 2022, 10, 15155-15160.	5.2	16
364	Sub-1 nm Pt nanoclusters on N and P co-doped carbon nanotubes for the electrocatalytic hydrogen evolution reaction. Journal of Materials Chemistry A, 2022, 10, 16403-16408.	5.2	12
365	Pt doping and strong metal–support interaction as a strategy for NiMo-based electrocatalysts to boost the hydrogen evolution reaction in alkaline solution. Journal of Materials Chemistry A, 2022, 10, 15395-15401.	5.2	19
366	A self-supported heterogeneous bimetallic phosphide array electrode enables efficient hydrogen evolution from saline water splitting. Nano Research, 2023, 16, 3658-3664.	5.8	17
367	Designing, synthesizing, and modeling active fluids. Physics of Fluids, 2022, 34, .	1.6	6
368	Protrusionâ€Rich Cu@NiRu Core@shell Nanotubes for Efficient Alkaline Hydrogen Evolution Electrocatalysis. Small, 2022, 18, .	5.2	10
369	Synergistically enhancing electrocatalytic activity of Co2P by Cr doping and P vacancies for overall water splitting. Applied Surface Science, 2022, 600, 154099.	3.1	13
370	Construction of NiS/Ni3S4 heteronanorod arrays in graphitized carbonized wood frameworks as versatile catalysts for efficient urea-assisted water splitting. Journal of Colloid and Interface Science, 2022, 626, 848-857.	5.0	21
371	Formation of hollow frameworks of dual-sided Fe/Fe3C@N-doped carbon nanotubes as bifunctional oxygen electrocatalyst for Zn-air batteries. Applied Catalysis B: Environmental, 2022, 317, 121760.	10.8	17
372	Surface reconstruction through cathodic activation of first-row transition metal phosphides for enhanced hydrogen evolution. Journal of Materials Chemistry A, 2022, 10, 17477-17487.	5.2	9
373	Tunable dâ€Band Centers of Ni ₅ P ₄ Ultraâ€Thin Nanosheets for Highlyâ€Efficient Hydrogen Evolution Reaction. Advanced Materials Interfaces, 2022, 9, .	1.9	7
374	Amorphous/2H-MoS2 nanoflowers with P doping and S vacancies to achieve efficient pH-universal hydrogen evolution at high current density. Science China Chemistry, 2022, 65, 1829-1837.	4.2	13
375	Dense Heterointerfaces and Unsaturated Coordination Synergistically Accelerate Electrocatalysis in Pt/Pt ₅ P ₂ Porous Nanocages. Advanced Functional Materials, 2022, 32, .	7.8	23
376	Three-Dimensional Graphene-Supported CoP-RuP ₂ with Artificial Heterointerfaces for an Enhanced Universal-pH Hydrogen Evolution Reaction. Crystal Growth and Design, 2022, 22, 5607-5615.	1.4	5
377	In situ encapsulation hollow FeP spheres into high yield 3D N, P-codoped graphenic framework as advanced anode material for high-performance supercapacitors. Journal of Alloys and Compounds, 2022, 924, 166603.	2.8	3
378	A systematic review on recent advances of metal–organic frameworks-based nanomaterials for electrochemical energy storage and conversion. Coordination Chemistry Reviews, 2022, 471, 214741.	9.5	24
379	Heterogeneous cobalt-iron phosphide nanosheets formed by in situ phosphating of hydroxide for efficient overall water splitting. Journal of Alloys and Compounds, 2022, 926, 166930.	2.8	7

#	Article	IF	CITATIONS
380	The facile synthesis of FeP/CoP confined in N, P co-doped carbon derived from MOFs for an efficient pH-universal hydrogen evolution reaction. Dalton Transactions, 2022, 51, 12307-12313.	1.6	3
381	Tailoring charge reconfiguration in dodecahedral Co ₂ P@carbon nanohybrids by triple-doping engineering for promoted reversible oxygen catalysis. Journal of Materials Chemistry A, 2022, 10, 21659-21671.	5.2	15
382	Electronic structure modulation of MnO $<$ sub $>$ 2 $<$ /sub $>$ by Ru and F incorporation for efficient proton exchange membrane water electrolysis. Journal of Materials Chemistry A, 0, , .	5.2	0
383	Metal–organic framework derived Os-doped Ni _{<i>x</i>} P/N-doped carbon composite nanosheet arrays toward boosting methanol oxidation into value-added chemicals coupled with hydrogen production. Journal of Materials Chemistry A, 2022, 10, 18126-18131.	5.2	8
384	Metal-organic framework in fuel cell technology: Fundamentals and application. , 2022, , 135-189.		1
385	Manipulating the d-band centers of transition metal phosphides through dual metal doping towards robust overall water splitting. Journal of Materials Chemistry A, 2022, 10, 22125-22134.	5.2	38
386	Modulating coordination structures and metal environments of MOFs-Engineered electrocatalysts for water electrolysis. Chemical Engineering Journal, 2023, 452, 139475.	6.6	19
387	Yttrium- and Cerium-Codoped Ultrathin Metal–Organic Framework Nanosheet Arrays for High-Efficiency Electrocatalytic Overall Water Splitting. Nano Letters, 2022, 22, 7238-7245.	4.5	48
388	ZIF-67-Derived (NiCo)S ₂ @NC Nanosheet Arrays Hybrid for Efficient Overall Water Splitting. Inorganic Chemistry, 2022, 61, 14436-14446.	1.9	17
389	Surfaceâ€Exposed Singleâ€Ni Atoms with Potentialâ€Driven Dynamic Behaviors for Highly Efficient Electrocatalytic Oxygen Evolution. Angewandte Chemie - International Edition, 2022, 61, .	7.2	30
390	Gradient Heating Epitaxial Growth Well Latticeâ€Matched Mo2Câ€Mo2N Heterointerfaces Boost Both Electrocatalytic Hydrogen Evolution and Water Vapor Splitting. Angewandte Chemie, 0, , .	1.6	0
391	Gradient Heating Epitaxial Growth Gives Well Latticeâ€Matched Mo ₂ Câ^Mo ₂ N Heterointerfaces that Boost Both Electrocatalytic Hydrogen Evolution and Water Vapor Splitting. Angewandte Chemie - International Edition, 2022, 61, .	7.2	17
392	Unraveling the Role of Defects in Electrocatalysts for Water Splitting: Recent Advances and Perspectives. Energy & Energ	2.5	15
393	Surfaceâ€Exposed Singleâ€Ni Atoms with Potentialâ€Driven Dynamic Behaviors for Highly Efficient Electrocatalytic Oxygen Evolution. Angewandte Chemie, 0, , .	1.6	0
394	Ïf-Alkynyl Adsorption Enables Electrocatalytic Semihydrogenation of Terminal Alkynes with Easy-Reducible/Passivated Groups over Amorphous PdS <i>_x</i> Nanocapsules. Journal of the American Chemical Society, 2022, 144, 19456-19465.	6.6	25
395	Modulating Hydrogen Adsorption via Charge Transfer at the Semiconductor–Metal HeterointerfaceÂfor Highly Efficient Hydrogen Evolution Catalysis. Advanced Materials, 2023, 35, .	11.1	53
396	Well-controlled 3D flower-like CoP3/CeO2/C heterostructures as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries. Applied Catalysis B: Environmental, 2023, 321, 122029.	10.8	33
397	A Janus heteroatom-doped carbon electrocatalyst for hydrazine oxidation. National Science Review, 2023, 10, .	4.6	16

#	Article	IF	CITATIONS
398	Modular design in metal-organic frameworks for oxygen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 39443-39469.	3.8	6
399	Construction of Niâ€Coâ€Fe Hydr(oxy)oxide@Niâ€Co Layered Double Hydroxide Yolkâ€Shelled Microrods for Enhanced Oxygen Evolution. Angewandte Chemie - International Edition, 2022, 61, .	7.2	57
400	Activity engineering to transition metal phosphides as bifunctional electrocatalysts for efficient water-splitting. International Journal of Hydrogen Energy, 2022, 47, 38983-39000.	3.8	21
401	Construction of Niâ€Coâ€Fe Hydr(oxy)oxide@Niâ€Co Layered Double Hydroxide Yolkâ€Shelled Microrods for Enhanced Oxygen Evolution. Angewandte Chemie, 2022, 134, .	1.6	3
402	CoP@Ni2P microcrystals in situ grown on carbon fiber as counter electrode catalysts for high-efficiency dye-sensitized solar cells. Materials Today Sustainability, 2022, 20, 100262.	1.9	3
403	Facile electrochemical preparation of NiFeP submicron-spheres as an efficient electrocatalyst for the electrochemical hydrogenation of 4-nitrophenol at neutral pH. Journal of Environmental Chemical Engineering, 2022, 10, 108882.	3.3	4
404	Efficient CoNi-bimetal phosphide embedded carbon matrix derived from a novel phosphonate complex for hydrazine-assisted electrolytic hydrogen production. Electrochimica Acta, 2022, 435, 141406.	2.6	4
405	N doped FeP nanospheres decorated carbon matrix as an efficient electrocatalyst for durable lithium-sulfur batteries. Journal of Colloid and Interface Science, 2023, 630, 70-80.	5.0	7
406	A hybrid electrocatalyst derived from Co-MOF by doping molybdenum for efficient hydrogen generation. Inorganica Chimica Acta, 2023, 545, 121244.	1.2	7
407	Ru monolayer island doped MoS2 catalysts for efficient hydrogen evolution reaction. Chemical Engineering Journal, 2023, 453, 139803.	6.6	19
408	Anion-exchange membrane water electrolyzers and fuel cells. Chemical Society Reviews, 2022, 51, 9620-9693.	18.7	93
409	Dual-metal-organic-framework derived CoP/MoP hybrid as an efficient electrocatalyst for acidic and alkaline hydrogen evolution reaction. Journal of Colloid and Interface Science, 2023, 631, 147-153.	5.0	32
410	Atom Doping Engineering of Transition Metal Phosphides for Hydrogen Evolution Reactions. Electrochemical Energy Reviews, 2022, 5, .	13.1	43
411	IrPt Alloy Nanoparticles with Controllable Compositions as Catalysts for Electrochemical Oxygen and Hydrogen Evolution. ACS Applied Nano Materials, 2022, 5, 17152-17158.	2.4	3
412	Unveiling the Metal Incorporation Effect of Steadyâ€Active FeP Hydrogen Evolution Nanocatalysts for Water Electrolyzer. Chemistry - A European Journal, 0, , .	1.7	1
413	Boosting large-current–density water oxidation activity and stability by phytic acid-assisted rapid electrochemical corrosion. Journal of Colloid and Interface Science, 2023, 633, 24-31.	5.0	1
414	Recent advances in understanding and design of efficient hydrogen evolution electrocatalysts for water splitting: A comprehensive review. Advances in Colloid and Interface Science, 2023, 311, 102811.	7.0	17
415	Phosphorus vacancies improve the hydrogen evolution of MoP electrocatalysts. Nanoscale, 2023, 15, 1357-1364.	2.8	13

#	Article	IF	CITATIONS
416	Engineering NiMoP nanosheets on hollow Cu ₃ P nanotube arrays as efficient electrocatalyst for hydrogen evolution reaction. Sustainable Energy and Fuels, 2022, 7, 74-83.	2.5	3
417	High stable photo-Fenton-like catalyst of FeP/Fe single atom-graphene oxide for long-term antibiotic tetracycline removal. Applied Catalysis B: Environmental, 2023, 324, 122243.	10.8	25
418	Ruthenium-Alloyed Iron Phosphide Single Crystal with Increased Fermi Level for Efficient Hydrogen Evolution. ACS Applied Materials & Samp; Interfaces, 2022, 14, 55587-55593.	4.0	5
419	Natural-wood-fiber-assisted synthesis of Ni2P embedded in P-doped porous carbon as highly active catalyst for urea electro-oxidation. International Journal of Hydrogen Energy, 2023, 48, 7644-7654.	3.8	6
420	Engineering active Ni-doped Co2P catalyst for efficient electrooxidation coupled with hydrogen evolution. Nano Research, 2023, 16, 6728-6735.	5.8	7
421	Carbon-quantum-dots-involved Fe/Co/Ni phosphide open nanotubes for high effective seawater electrocatalytic decomposition. Applied Catalysis B: Environmental, 2023, 326, 122403.	10.8	16
422	Efficient coupling of Ga-doped nickel phosphide and Ni(OH)2 for enhanced hydrogen evolution at high temperature. Journal of Alloys and Compounds, 2023, 941, 168883.	2.8	3
423	RE-doped (RE = La, Ce and Er) Ni ₂ P porous nanostructures as promising electrocatalysts for hydrogen evolution reaction. Dalton Transactions, 2023, 52, 1895-1901.	1.6	3
424	Encapsulated Ni nanoparticles in the incomplete graphite layer anchored on NiMo oxides enabling superior hydrogen evolution to Pt. Journal of Materials Chemistry A, 2023, 11, 2452-2459.	5.2	6
425	Principles of Design and Synthesis of Metal Derivatives from MOFs. Advanced Materials, 2023, 35, .	11.1	24
426	Iron-induced lattice distortion generally boots the graphene-supported nickel phosphide nanoparticles catalysis for efficient overall water splitting. Electrochimica Acta, 2023, 441, 141807.	2.6	4
427	Transition metal phosphides: A wonder catalyst for electrocatalytic hydrogen production. Chinese Chemical Letters, 2023, 34, 108156.	4.8	22
428	Ta3N5 Nanobelt-Loaded Ru Nanoparticle Hybrids' Electrocatalysis for Hydrogen Evolution in Alkaline Media. Molecules, 2023, 28, 1100.	1.7	1
429	Rational construction of efficient ZnS quantum dots-supported g-C3N4 with Co3O4 heterostructure composite for bifunctional electrocatalytic hydrogen evolution reaction and environmental pollutant degradation. Journal of Alloys and Compounds, 2023, 942, 169077.	2.8	12
430	Rational nitrogen alloying in nickel–molybdenum nitride can mediate efficient and durable alkaline hydrogen evolution. Journal of Materials Chemistry A, 2023, 11, 7256-7263.	5.2	0
431	NiMOF-derived MoSe2@NiSe2 heterostructure with hollow core-shell for efficient hydrogen evolution reaction. Journal of Alloys and Compounds, 2023, 947, 169513.	2.8	18
432	Microwave-assisted to decorate Ru onto Hollow-structured Fe-P spheres as efficient Electrocatalyst for hydrogen generation in wide pH range. Applied Surface Science, 2023, 623, 157026.	3.1	6
433	Electrocatalytic CO2 conversion on metal-organic frameworks derivative electrocatalysts. Journal of CO2 Utilization, 2023, 69, 102412.	3.3	8

#	Article	IF	Citations
434	Developments in electrocatalysts for electrocatalytic hydrogen evolution reaction with reference to bio-inspired phthalocyanines. International Journal of Hydrogen Energy, 2023, 48, 16569-16592.	3.8	13
435	Ion exchange synthesis of Fe-doped clustered CoP nanowires as superior electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2023, 48, 16715-16724.	3.8	7
436	B, N-co-doped and C-coated Co ₂ P composite derived from phytate derivatives as a high-efficiency HER electrocatalyst. CrystEngComm, 2023, 25, 2717-2727.	1.3	3
437	Boosting hydrogen evolution through hydrogen spillover promoted by Co-based support effect. Journal of Materials Chemistry A, 2023, 11, 6945-6951.	5.2	8
438	High-Density NiCu Bimetallic Phosphide Nanosheet Clusters Constructed by Cu-Induced Effect Boost Total Urea Hydrolysis for Hydrogen Production. Inorganic Chemistry, 2023, 62, 4648-4661.	1.9	5
439	Fabrication of Ru nanoclusters on Co-doped NiSe nanorods with efficient electrocatalytic activity towards alkaline hydrogen evolution <i>via</i> hydrogen spillover effect. Journal of Materials Chemistry A, 2023, 11, 7016-7024.	5.2	7
440	Boosting alkaline hydrogen evolution performance by constructing ultrasmall Ru clusters/Na+, K+-decorated porous carbon composites. Nano Research, 2023, 16, 8836-8844.	5.8	10
441	Supporting Trimetallic Metalâ€Organic Frameworks on S/Nâ€Doped Carbon Macroporous Fibers for Highly Efficient Electrocatalytic Oxygen Evolution. Advanced Materials, 2023, 35, .	11.1	44
442	Chemical Strain Engineering of Copper Atoms on Continuous Three-Dimensional-Nanopatterned Nickel Nitride to Accelerate Alkaline Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2023, 11, 5229-5237.	3.2	4
443	Charge redistribution enhanced oxygen reduction of carbon-based electrocatalyst. Applied Surface Science, 2023, 627, 157303.	3.1	0
457	Recent advances and strategies of electrocatalysts for large current density industrial hydrogen evolution reaction. Inorganic Chemistry Frontiers, 2023, 10, 4632-4649.	3.0	5
484	Construction of 2D heterostructure Fe ₂ P–CoP ₂ /MoO _{<i>x</i>} nanosheets for efficient oxygen evolution reaction. CrystEngComm, 2023, 25, 6246-6251.	1.3	0
501	Enhanced d–π overlap in a graphene supported Ni/PtNi heterojunction for efficient seawater hydrogen evolution. Chemical Communications, 2024, 60, 2176-2179.	2.2	0