System complexity and policy integration challenges: T Nexus

Renewable and Sustainable Energy Reviews 105, 230-243

DOI: 10.1016/j.rser.2019.01.045

Citation Report

#	Article	IF	CITATIONS
1	Vegetative growth enhancement of organic fertilizer from anaerobically-treated palm oil mill effluent (POME) supplemented with chicken manure in food-energy-water nexus challenge. Food and Bioproducts Processing, 2019, 117, 95-104.	3.6	21
2	â€~Aha' moments in the water-energy-food nexus: A new morphological scenario method to accelerate sustainable transformation. Technological Forecasting and Social Change, 2019, 148, 119712.	11.6	36
3	The scope and understanding of the water–electricity nexus. Resources, Conservation and Recycling, 2019, 150, 104453.	10.8	23
4	System complexity and policy integration challenges: The Brazilian Energy- Water-Food Nexus. Renewable and Sustainable Energy Reviews, 2019, 105, 230-243.	16.4	110
5	A Literature Review to Propose a Systematic Procedure to Develop "Nexus Thinking―Considering the Water–Energy–Food Nexus. Sustainability, 2019, 11, 7205.	3.2	34
6	Hydro energy potential considering environmental variables and water availability in Paran $ ilde{A}_i$ Hydrographic Basin 3. Journal of Hydrology, 2020, 580, 124183.	5.4	8
7	The water–energy–food nexus: bridging the science–policy divide. Current Opinion in Environmental Science and Health, 2020, 13, 6-10.	4.1	47
8	Inter-regional carbon flows embodied in electricity transmission: network simulation for energy-carbon nexus. Renewable and Sustainable Energy Reviews, 2020, 118, 109511.	16.4	74
9	Water-energy-food security: A Nexus perspective of the current situation in Latin America and the Caribbean. Energy, 2020, 194, 116824.	8.8	114
10	Mainstreaming the Water-Energy-Food Nexus through nationally determined contributions (NDCs): the case of Brazil. Climate Policy, 2020, 20, 163-178.	5.1	11
11	Sustainability metrics of pretreatment processes in a waste derived lignocellulosic biomass biorefinery. Bioresource Technology, 2020, 298, 122558.	9.6	98
12	Planning water-energy-food nexus system management under multi-level and uncertainty. Journal of Cleaner Production, 2020, 251, 119658.	9.3	62
13	Land-water-food nexus of biofuels: Discourse and policy debates in Brazil. Environmental Development, 2020, 33, 100491.	4.1	52
14	Land and water footprints associated with rice and maize losses in Brazil. Land Use Policy, 2020, 99, 105106.	5.6	17
15	â€~Opening up' the governance of water-energy-food nexus: Towards a science-policy-society interface based on hybridity and humility. Science of the Total Environment, 2020, 744, 140945.	8.0	33
16	Representing driver-response complexity in ecosystems using an improved conceptual model. Ecological Modelling, 2020, 437, 109320.	2.5	3
17	Assessing River Basin Development Given Waterâ€Energyâ€Foodâ€Environment Interdependencies. Earth's Future, 2020, 8, e2019EF001464.	6.3	30
18	A Stakeholder Analysis for a Water-Energy-Food Nexus Evaluation in an Atlantic Forest Area: Implications for an Integrated Assessment and a Participatory Approach. Water (Switzerland), 2020, 12, 1977.	2.7	13

#	Article	IF	CITATIONS
19	Governing the energy–water nexus in China: An analysis from the perspective of the science–policy interface. Journal of Environmental Management, 2020, 272, 111119.	7.8	15
20	Geographies of food beyond food: transfiguring nexus-thinking through encounters with young people in Brazil. Social and Cultural Geography, 2020, , 1-24.	2.3	6
21	Confronting governance challenges of the resource nexus through reflexivity: A cross-case comparison of biofuels policies in Germany and Brazil. Energy Research and Social Science, 2020, 65, 101464.	6.4	15
22	Energized water: Evolution of water-energy nexus in the Spanish irrigated agriculture, 1950–2017. Agricultural Water Management, 2020, 233, 106073.	5.6	36
23	GAIA 3.0: Effects of the Coronavirus Disease 2019 (COVID-19) outbreak on sustainable development and future perspectives. Research in Globalization, 2020, 2, 100014.	3.0	25
24	Dynamic analysis of sustainable biogas-combined-cycle plant: Time-varying demand and bioenergy with carbon capture and storage. Renewable and Sustainable Energy Reviews, 2020, 131, 109997.	16.4	20
25	The water-energy-food nexus research in the Brazilian context: What are we missing?. Environmental Science and Policy, 2020, 112, 172-180.	4.9	28
26	Systems thinking on the resource nexus: Modeling and visualisation tools to identify critical interlinkages for resilient and sustainable societies and institutions. Science of the Total Environment, 2020, 717, 137264.	8.0	62
27	Understanding the Implications of Alternative Bioenergy Crops to Support Smallholder Farmers in Brazil. Sustainability, 2020, 12, 2146.	3.2	10
28	A literature-based study on the water–energy–food nexus for sustainable development. Stochastic Environmental Research and Risk Assessment, 2021, 35, 95-116.	4.0	44
29	A proposal of a balanced scorecard to the water, energy and food nexus approach: Brazilian food policies in the context of sustainable development goals. Stochastic Environmental Research and Risk Assessment, 2021, 35, 129-146.	4.0	14
30	Food stability model: A framework to support decisionâ€making in a context of climate change. Sustainable Development, 2021, 29, 13-24.	12.5	15
31	The energy-food-water nexus: Water footprint of Henan-Hubei-Hunan in China. Renewable and Sustainable Energy Reviews, 2021, 135, 110417.	16.4	54
32	Measuring urban food-energy-water nexus sustainability: Finding solutions for cities. Science of the Total Environment, 2021, 752, 141954.	8.0	56
33	Developing a nexus systems thinking test –A qualitative multi- and mixed methods analysis. Renewable and Sustainable Energy Reviews, 2021, 138, 110543.	16.4	16
34	Sustainable assessment of Water-Energy-Food Nexus at regional level through a multi-stakeholder optimization approach. Journal of Cleaner Production, 2021, 290, 125194.	9.3	38
35	Water, waste, energy and food nexus in Brazil: Identifying a resource interlinkage research agenda through a systematic review. Renewable and Sustainable Energy Reviews, 2021, 138, 110554.	16.4	17
36	Decision support system for selecting sectoral data-bases in studies of the water–energy–agricultural–environmental nexus. Brazilian Journal of Environmental Sciences (Online), 2021, 56, 193-208.	0.4	0

#	ARTICLE	IF	CITATIONS
37	A Systems Analysis Approach to Addressing Contemporary Water Challenges: Management Improvements in Brazil and Beyond., 2021,, 99-131.		1
38	Energy-Drinking Water-Health Nexus in Developing Countries. Advanced Sciences and Technologies for Security Applications, 2021, , 411-445.	0.5	3
39	A comparison between the European and the Brazilian models for management and diagnosis of river basins. Water Policy, 2021, 23, 58-76.	1.5	3
40	Large-scale collective action to avoid an Amazon tipping point - key actors and interventions. Current Research in Environmental Sustainability, 2021, 3, 100048.	3 . 5	13
41	Calibration of FEST-EWB hydrological model using remote sensing data in a climate transition region in Brazil. Hydrological Sciences Journal, 2021, 66, 513-524.	2.6	5
42	A bibliometric analysis of the water-energy-food nexus based on the SCIE and SSCI database of the Web of Science. Mitigation and Adaptation Strategies for Global Change, 2021, 26, 1.	2.1	5
43	A method for classifying interrelation between sectoral regulatory laws and the †water-energy-agriculture nexus concept†in Brazil. Water Science and Technology: Water Supply, 2021, 21, 2158-2172.	2.1	3
44	Water-Energy-Food Nexus: Critical Review, Practical Applications, and Prospects for Future Research. Sustainability, 2021, 13, 1919.	3.2	53
45	Thinking Big and Thinking Small: A Conceptual Framework for Best Practices in Community and Stakeholder Engagement in Food, Energy, and Water Systems. Sustainability, 2021, 13, 2160.	3.2	31
46	Water–Food–Energy Nexus Tradeoffs in the São Marcos River Basin. Water (Switzerland), 2021, 13, 817.	2.7	2
47	A bibliometric analysis of food safety governance research from 1999 to 2019. Food Science and Nutrition, 2021, 9, 2316-2334.	3.4	20
48	A copula-based stochastic fractional programming method for optimizing water-food-energy nexus system under uncertainty in the Aral Sea basin. Journal of Cleaner Production, 2021, 292, 126037.	9.3	32
49	The historical footprint and future challenges of water-energy-food nexus research: a bibliometric review towards sustainable development. Environmental Reviews, 2021, 29, 260-276.	4.5	6
50	Optimization of uncertain agricultural management considering the framework of water, energy and food. Agricultural Water Management, 2021, 253, 106907.	5.6	35
51	A Comprehensive Review on Types, Methods and Different Regions Related to Water–Energy–Food Nexus. International Journal of Environmental Research and Public Health, 2021, 18, 8276.	2.6	15
52	Alleviating energy poverty for forest conservation: It seems to work, but what are we missing?. Land Use Policy, 2021, 109, 105625.	5.6	13
53	Policy and governance dynamics in the water-energy-food-land nexus of biofuels: Proposing a qualitative analysis model. Renewable and Sustainable Energy Reviews, 2021, 149, 111384.	16.4	31
54	Locating pressures on water, energy and land resources across global supply chains. Journal of Cleaner Production, 2021, 321, 128701.	9.3	4

#	Article	IF	CITATIONS
55	Energy, Water, Food Nexus Decision-Making for Sustainable Food Security. Environmental Footprints and Eco-design of Products and Processes, 2021, , 191-216.	1.1	8
56	The Necessity of a Food–Energy–Water Nexus Approach for Lake Urmia Basin Under the Risks of Climate Change and Environment Degradation. , 2020, , 201-227.		1
57	Análise de projeções das mudanças climáticas sobre precipitação e temperatura nas regiões hidrográficas brasileiras para o século XXI. Brazilian Journal of Environmental Sciences (Online), 2020, 55, 420-436.	0.4	4
58	Systematic Literature Review of the Water-Energy- Food Nexus: An Overview of the Field. , 2020, , .		O
59	The Nexus+ approach applied to studies of Impacts, vulnerability and adaptation to climate change in Brazil. Sustentabilidade Em Debate, 2020, 11, 24-56.	0.2	0
60	Energy, drinking water and health nexus in India and its effects on environment and economy. Journal of Water and Climate Change, 2021, 12, 997-1022.	2.9	7
61	Social media, sustainability, and environmental protection in sustainable education. E3S Web of Conferences, 2020, 208, 09002.	0.5	0
62	Large-Scale Collective Action to Avoid an Amazon Tipping Point – Key Actors and Interventions. SSRN Electronic Journal, 0, , .	0.4	0
63	Integration of Indonesian coffee markets and world coffee markets. Journal of Agricultural Socio-Economics, 2020, 1, 13.	0.1	0
64	Evaluation and obstacle factors of coordination development of regional water-energy-food-ecology system under green development: a case study of Yangtze River Economic Belt, China. Stochastic Environmental Research and Risk Assessment, 2022, 36, 2477-2493.	4.0	16
65	A novel modelling toolkit for unpacking the Water-Energy-Food-Environment (WEFE) nexus of agricultural development. Renewable and Sustainable Energy Reviews, 2022, 159, 112182.	16.4	14
66	Achieving the NDP 2030 agricultural agenda in UMzimkhulu: myth or possibility. South African Journal of Agricultural Extension, 2021, 49, .	0.5	1
67	Characterizing and Defining of Designing Sustainable Product-Service Systems Applied to Distributed Water-Energy-Food Nexus. Frontiers in Environmental Science, 2022, 10, .	3.3	1
68	Meteorological droughts and water resources: Historical and future perspectives for Rio Grande do Norte state, Northeast Brazil. International Journal of Climatology, 2022, 42, 6976-6995.	3.5	6
69	Turning Water Abundance Into Sustainability in Brazil. Frontiers in Environmental Science, 2021, 9, .	3.3	5
70	Water–Energy–Food Nexus in the Agri-Food Sector: Research Trends and Innovating Practices. International Journal of Environmental Research and Public Health, 2021, 18, 12966.	2.6	7
71	The food–energy–water nexus approach. , 2022, , 57-72.		1
72	Space-Time Conglomerates Analysis of the Forest-Based Power Plants in Brazil (2000–2019). Energies, 2022, 15, 4113.	3.1	2

#	ARTICLE	IF	Citations
73	Spatio-Temporal Matching and Nexus of Water–Energy–Food in the Yellow River Basin over the Last Two Decades. Water (Switzerland), 2022, 14, 1859.	2.7	2
74	A Systematic Literature Review of Water-Migration-Gender Nexus Toward Integrated Governance Strategies for (Non) Migrants. Frontiers in Water, 0, 4, .	2.3	2
75	Shaping cities: A proposal for an integrative FEW nexus model. Environmental Science and Policy, 2022, 136, 326-336.	4.9	1
76	Degrowth in Practice: Developing an Ecological Habitus within Permaculture Entrepreneurship. Sustainability, 2022, 14, 8938.	3.2	4
77	Plant Prioritization for Updating Maintenance Policies: A Power Sector Case Study., 2022,,.		1
78	Evaluation of global techno-socio-economic policies for the FEW nexus with an optimal control based approach. Frontiers in Sustainability, 0, 3, .	2.6	1
80	Coupling Relationship and Influencing Factors of the Water–Energy–Cotton System in Tarim River Basin. Agronomy, 2022, 12, 2333.	3.0	3
81	A copula-based security risk evaluation and probability calculation for water-energy-food nexus. Science of the Total Environment, 2023, 856, 159236.	8.0	9
82	Energy transition or energy diversification? Critical thoughts from Argentina and Brazil. Energy Policy, 2022, 171, 113246.	8.8	8
83	A novel Water-Food-Energy nexus approach integrating Analytic Hierarchy Process and Google Earth Engine using global datasets for photovoltaic energy generation. Renewable Energy Focus, 2022, 43, 210-227.	4.5	2
84	Coupling coordination and spatiotemporal dynamic evolution of the water-energy-food-land (WEFL) nexus in the Yangtze River Economic Belt, China. Environmental Science and Pollution Research, 2023, 30, 34978-34995.	5.3	7
85	Forest Bioelectricity in Brazil: Distribution and Spatial-Time Dependence. IEEE Access, 2022, 10, 132822-132835.	4.2	1
86	Biofuel Economy, Development, and Food Security. , 2022, , 17-30.		1
87	Sustainability of an economy from the water-energy-food nexus perspective. Environment, Development and Sustainability, 2024, 26, 2811-2835.	5.0	1
88	Challenges and opportunities of knowledge co-creation for the water-energy-land nexus. Climate Services, 2023, 30, 100340.	2.5	3
89	Overcoming Resource Nexus Conflicts With a Normative-Institutional Approach: A Case Study of Brazil. Frontiers in Water, 0, 3, .	2.3	0
90	Mapping social impacts of agricultural commodity trade onto the sustainable development goals. Sustainable Development, 2023, 31, 2363-2385.	12.5	3
91	Future Research Trends on the Water-Energy-Food Nexus Approach. , 2023, , 1-20.		0

#	Article	IF	CITATIONS
92	Evaluation of Water-Energy-Food-Ecology System Development in Beijing-Tianjin-Hebei Region from a Symbiotic Perspective and Analysis of Influencing Factors. Sustainability, 2023, 15, 5138.	3.2	3
93	A Comprehensive Evaluation Framework of Water-Energy-Food System Coupling Coordination in the Yellow River Basin, China. Chinese Geographical Science, 2023, 33, 333-350.	3.0	6
95	Geochemical and isotopic tracers to define the aquifer's vulnerability: the case study of the alluvial multi-aquifer system of the Friulian plain. Environmental Monitoring and Assessment, 2023, 195, .	2.7	0
96	Abordagem FEW Nexus (nexo água-energia-alimento) para o desenvolvimento sustentável através dos ODS da ONU. Revista De Administração Da UFSM, 2023, 16, e2.	0.4	0
97	Assessing the sustainability of bioenergy pathways through a land-water-energy nexus approach. Renewable and Sustainable Energy Reviews, 2023, 184, 113539.	16.4	4
98	The water–energy–food–land–climate nexus: Policy coherence for sustainable resource management in Sweden. Environmental Policy and Governance, 0, , .	3.7	1
99	Water-energy-food nexus and business excellence models for a sustainability maturity evaluation of ten agri-food companies from Brazil and Kenya. Journal of Cleaner Production, 2023, 420, 138429.	9.3	0
100	Effects of Restoration and Conservation of Riparian Vegetation on Sediment Retention in the Catchment Area of Corumb \tilde{A}_i IV Hydroelectric Power Plant, Brazil. World, 2023, 4, 637-652.	2.2	0
101	Optimizing the utilization of biochar from waste: an energyâ€"waterâ€"food nexus assessment approach considering water treatment and soil application scenarios. Frontiers in Environmental Science, 0, 11,	3.3	0
102	Role of water-energy-food nexus in environmental management and climate action. Energy Nexus, 2023, 11, 100230.	7.7	6
103	Future Research Trends on the Water-Energy-Food Nexus Approach., 2023,, 1709-1728.		0
104	Water-energy-food-land nexus challenges and contributions to the biofuel supply chain: Systematic review and meta-synthesis. Environmental Development, 2023, 48, 100927.	4.1	0
105	Climate-Resilient Technology for Maize Production. , 2023, , 157-188.		1
106	Bridging the gap between the water-energy-food nexus and compound risks. Environmental Research Letters, 2024, 19, 024004.	5.2	0
107	Multi-objective optimization of the first and second-generation ethanol supply chain in Brazil using the water-energy-food-land nexus approach. Renewable and Sustainable Energy Reviews, 2024, 193, 114299.	16.4	0
108	Sustainable assessment of water–energy–food nexus through a multistakeholder optimization approach. Developments in Environmental Modelling, 2024, , 261-332.	0.3	0
109	Crop-Livestock-Forest System as Nature-Based Solutions to Combating Climate Change, and Achieving SDGs in Brazil., 2024, , 1-30.		0
110	Water, Energy and Food (WEF) Nexus in the Changing Arctic: An International Law Review and Analysis. Water (Switzerland), 2024, 16, 835.	2.7	0