Palaeodrainage evolution of the large rivers of East Asia

Earth-Science Reviews 192, 601-630

DOI: 10.1016/j.earscirev.2019.02.003

Citation Report

#	Article	IF	CITATIONS
1	The Ancestral Lhasa River: A Late Cretaceous trans-arc river that drained the proto–Tibetan Plateau. Geology, 2019, 47, 1029-1033.	4.4	26
2	Provenance and Drainage Evolution of the Red River Revealed by Pb Isotopic Analysis of Detrital Kâ€Feldspar. Geophysical Research Letters, 2019, 46, 6415-6424.	4.0	12
3	Coupled Zircon-Rutile U-Pb Chronology: LA ICP-MS Dating, Geological Significance and Applications to Sediment Provenance in the Eastern Himalayan-Indo-Burman Region. Geosciences (Switzerland), 2019, 9, 467.	2.2	9
4	Geochemistry and detrital zircon U–Pb dating of Pliocene-Pleistocene sandstones of the Chittagong Tripura Fold Belt (Bangladesh): Implications for provenance. Gondwana Research, 2020, 78, 278-290.	6.0	22
5	Quaternary drainage evolution of the Datong River, Qilian Mountains, northeastern Tibetan Plateau, China. Geomorphology, 2020, 353, 107021.	2.6	11
6	Early Pleistocene drainage pattern changes in Eastern Tibet: Constraints from provenance analysis, thermochronometry, and numerical modeling. Earth and Planetary Science Letters, 2020, 531, 115955.	4.4	52
7	The exhumation of the Indo-Burman Ranges, Myanmar. Earth and Planetary Science Letters, 2020, 530, 115948.	4.4	26
8	Burma Terrane Collision and Northward Indentation in the Eastern Himalayas Recorded in the Eoceneâ€Miocene Chindwin Basin (Myanmar). Tectonics, 2020, 39, e2020TC006413.	2.8	36
9	Provenance discrimination of upper Yangtze River basin sediments: New insights from heavy mineral signatures and detrital magnetite geochemistry. Quaternary International, 2020, 568, 79-89.	1.5	5
10	Oligocene Deformation of the Chuandian Terrane in the SE Margin of the Tibetan Plateau Related to the Extrusion of Indochina. Tectonics, 2020, 39, e2019TC005974.	2.8	36
11	Geodynamic model and tectono-structural framework of the Bengal Basin and its surroundings. Journal of Maps, 2020, 16, 445-458.	2.0	27
12	Evolution of the Yangtze River network, southeastern Tibet: Insights from thermochronology and sedimentology. Lithosphere, 2020, 12, 3-18.	1.4	22
13	Evolution of the paleo-Mekong River in the Early Cretaceous: Insights from the provenance of sandstones in the Vientiane Basin, central Laos. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 545, 109651.	2.3	13
14	New freshwater mussel taxa discoveries clarify biogeographic division of Southeast Asia. Scientific Reports, 2020, 10, 6616.	3.3	31
15	Late Cenozoic drainage reorganization of the paleo-Yangtze river constrained by multi-proxy provenance analysis of the Paleo-lake Xigeda. Bulletin of the Geological Society of America, 2021, 133, 199-211.	3.3	21
16	Constraining the links between the Himalayan belt and the Central Myanmar Basins during the Cenozoic: An integrated multi-proxy detrital geochronology and trace-element geochemistry study. Geoscience Frontiers, 2021, 12, 657-676.	8.4	15
17	Reconstructing the incision of the Lancang River (Upper Mekong) in southeastern Tibet below its prominent knickzone using fluvial terraces and transient tributary profiles. Geomorphology, 2021, 376, 107551.	2.6	15
19	Role of Groundwater in Sustaining Northern Himalayan Rivers. Geophysical Research Letters, 2021, 48, e2020GL092354.	4.0	32

#	Article	IF	Citations
21	Paleoenvironmental evolution of South Asia and its link to Himalayan uplift and climatic change since the late Eocene. Global and Planetary Change, 2021, 200, 103459.	3.5	14
22	Two Stages of Accelerated Exhumation in the Middle Reach of the Yarlung River, Southern Tibet Since the Midâ€Miocene. Tectonics, 2021, 40, e2020TC006618.	2.8	21
23	The rate and extent of wind-gap migration regulated by tributary confluences and avulsions. Earth Surface Dynamics, 2021, 9, 687-700.	2.4	6
24	No connection between the Yangtze and Red rivers since the late Eocene. Marine and Petroleum Geology, 2021, 129, 105115.	3.3	9
25	Erosion and sedimentation in SE Tibet and Myanmar during the evolution of the Burmese continental margin from the Late Cretaceous to Early Neogene. Gondwana Research, 2021, 95, 149-175.	6.0	7
26	A multi-proxy provenance study of Eocene to Oligocene sandstones in the Salin Sub-basin, Myanmar. Journal of Asian Earth Sciences, 2021, 216, 104825.	2.3	3
27	The finalization of the modern drainage pattern of the Tarim Basin: Insights from petrology and detrital zircon geochronology of sediments from Lop Nur. Catena, 2021, 205, 105473.	5.0	4
28	Timing of river capture in major Yangtze River tributaries: Insights from sediment provenance and morphometric indices. Geomorphology, 2021, 392, 107915.	2.6	14
29	Tectonic Development of the Bengal Basin in Relation to Fold-Thrust Belt to the East and to the North. Society of Earth Scientists Series, 2020, , 91-109.	0.3	7
30	Post-glacial entrenchment and knickpoint migration of the Yarlung Tsangpo Gorge, southeastern Tibetan Plateau. Journal of Asian Earth Sciences, 2020, 195, 104337.	2.3	11
31	Molecular phylogeny reveals a new genus of freshwater mussels from the Mekong River Basin (Bivalvia: Unionidae). European Journal of Taxonomy, 0, 775, 119-142.	0.6	6
32	Tracing the Sources and Depositional Pathways for the Oligocene Sediments in the Andaman Forearc. Society of Earth Scientists Series, 2020, , 93-106.	0.3	1
33	Landform response of tectonic activity in the Parlung Tsangpo River basin: evidence from digital elevation model-based morphometric analysis in the southeastern margin of the Tibetan Plateau. Arabian Journal of Geosciences, 2021, 14, 1.	1.3	0
34	Implications for sedimentary transport processes in southwestern Africa: a combined zircon morphology and age study including extensive geochronology databases. International Journal of Earth Sciences, 2022, 111, 767-788.	1.8	4
35	Using Species Groups to Approach the Large and Taxonomically Unresolved Freshwater Fish Family Nemacheilidae (Teleostei: Cypriniformes). Biology, 2022, 11, 175.	2.8	5
36	The provenance of Danubian loess. Earth-Science Reviews, 2022, 226, 103920.	9.1	17
38	No modern Irrawaddy River until the late Miocene-Pliocene. Earth and Planetary Science Letters, 2022, 584, 117516.	4.4	1
39	Detrital zircon U–Pb ages of Tertiary sequences (<scp>Palaeoceneâ€Miocene</scp>): Inner Fold Belt and Belt of Schuppen, <scp>Indoâ€Myanmar</scp> Ranges, India. Geological Journal, 2022, 57, 5191-5206.	1.3	5

3

#	Article	IF	CITATIONS
40	Deep and surface driving forces to shape the Earth: Insights from the evolution of the northern South China Sea margin. Gondwana Research, 2022, , .	6.0	4
41	Late Oligocene-early Miocene Origin of the First Bend of the Yangtze River explained by thrusting-induced river reorganization. Geomorphology, 2022, 411, 108303.	2.6	5
42	Geospatial Technology for Geomorphology Mapping and Its Applications. Water Science and Technology Library, 2022, , 1-47.	0.3	2
43	Spatial-temporal evolution of the source-to-sink system in the northwestern South China Sea from the Eocene to the Miocene. Global and Planetary Change, 2022, 214, 103851.	3.5	1
44	Provenance of Oligocene–Miocene sedimentary rocks in the Cuu Long and Nam Con Son basins, Vietnam and early history of the Mekong River. International Journal of Earth Sciences, 2022, 111, 1773-1804.	1.8	7
45	Sedimentary provenance perspectives on the evolution of the major rivers draining the eastern Tibetan Plateau. Earth-Science Reviews, 2022, 232, 104151.	9.1	15
46	Source-to-sink analysis of deepwater systems: Principles, applications and case studies. , 2022, , 407-441.		0
47	Reorganization of continentâ€scale sediment routing based on detrital zircon and rutile multiâ€proxy analysis. Basin Research, 2023, 35, 363-386.	2.7	3
49	ä,œå–œé©¬æ‹‰é›…æž"é€ç»"快速隆å≰时期: æ¥è‡ªç⅓…ç",ä,å₽盆地沉积å┤è¯æ®. Diqiu Kexue Geosciences, 2022, 47, 2573.	- Zhonggu	o Dizhi Daxue
50	Geochemical characteristics and provenance of the detrital sediments in the junction area of Yinggehai and Qiongdongnan basins, South China Sea. Scientific Reports, 2023, 13, .	3.3	1
51	A climate-driven transcontinental drainage system in the southeast Tibetan Plateau during the Early Cretaceous. Journal of Asian Earth Sciences, 2023, 248, 105615.	2.3	2
52	Landform evolution in Asia during the Cenozoic revealed by formation of drainages of Wei River and Indus River. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 619, 111516.	2.3	4
53	Multiple genetic lineages of anadromous migratory Mekong catfish <i>Pangasius krempfi</i> revealed by mtDNA control region and cytochrome <i>b</i> . Ecology and Evolution, 2023, 13, .	1.9	1
54	Limits of oxygen isotope palaeoaltimetry in Tibet. Earth and Planetary Science Letters, 2023, 606, 118040.	4.4	5
55	Age, depositional history and tectonics of the Indo-Myanmar Ranges, Myanmar. Journal of the Geological Society, 2023, 180, .	2.1	2
56	Tectonic and climate forcing of exhumation in the SE Tibetan Plateau over the past 7ÂMa: Insights from the deltaic-submarine fan system in the Andaman Sea, northeastern Indian Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 620, 111573.	2.3	0
57	Petrology of Bengal Fan turbidites (IODP Expeditions 353 and 354): provenance <i>versus</i> diagenetic control. Journal of Sedimentary Research, 2023, 93, 256-272.	1.6	5
58	Quaternary sediment datasets for spatial distribution and accumulation on the Yarlung Tsangpo River Basin based on remote sensing and field onâ€site measurements. Geoscience Data Journal, 0, , .	4.4	0

#	Article	IF	CITATIONS
59	Geochemistry of the Lancang River (Upper Mekong River) overbank sediments: Implications for provenance, weathering and sedimentary characteristics. Applied Geochemistry, 2023, 156, 105747.	3.0	1
60	Evolution of eastern Asia river systems reconstructed by the mineralogy and detrital-zircon geochronology of modern Red River and coastal Vietnam river sand. Earth-Science Reviews, 2023, 245, 104572.	9.1	0
61	Petrography, geochemistry and detrital zircon U–Pb dating of the <scp>Plioceneâ€Pleistocene</scp> Dupi Tila Formation from the Lalmai Anticline, Bengal Basin: Regional tectonic implications. Geological Journal, 2024, 59, 1239-1261.	1.3	0
62	A Critical Appraisal of the Sensitivity of Detrital Zircon U–Pb Provenance Data to Constrain Drainage Network Evolution in Southeast Tibet. Journal of Geophysical Research F: Earth Surface, 2024, 129, .	2.8	0