Cocatalysts for Selective Photoreduction of CO<sub>2<

Chemical Reviews 119, 3962-4179 DOI: 10.1021/acs.chemrev.8b00400

Citation Report

#	Article	IF	CITATIONS
2	Surface modified C, O co-doped polymeric g-C3N4 as an efficient photocatalyst for visible light assisted CO2 reduction and H2O2 production. Applied Catalysis B: Environmental, 2019, 259, 118054.	20.2	163
3	InVO ₄ /l²-AgVO ₃ Nanocomposite as a Direct Z-Scheme Photocatalyst toward Efficient and Selective Visible-Light-Driven CO ₂ Reduction. ACS Applied Materials & Interfaces, 2019, 11, 32025-32037.	8.0	73
4	Design of cost-efficient and photocatalytically active Zn-based MOFs decorated with Cu ₂ 0 nanoparticles for CO ₂ methanation. Chemical Communications, 2019, 55, 10932-10935.	4.1	34
5	Graphdiyne: A New Photocatalytic CO ₂ Reduction Cocatalyst. Advanced Functional Materials, 2019, 29, 1904256.	14.9	207
6	Synthesis of a well-dispersed CaFe ₂ O ₄ /g-C ₃ N ₄ /CNT composite towards the degradation of toxic water pollutants under visible light. RSC Advances, 2019, 9, 25750-25761.	3.6	29
7	High-quality epitaxial Cu2O films with (111)-terminated plateau grains obtained from single-crystal Cu (111) thin films by rapid thermal oxidation. Journal of Alloys and Compounds, 2019, 801, 536-541.	5.5	15
8	Hybrid poly (3-hexylthiophene) (P3HT) nanomesh/ZnO nanorod p-n junction visible photocatalyst for efficient indoor air purification. Applied Surface Science, 2019, 496, 143641.	6.1	13
9	Recent progress of nanostructured interfacial solar vapor generators. Applied Materials Today, 2019, 17, 45-84.	4.3	70
10	Semi-artificial Photosynthetic CO ₂ Reduction through Purple Membrane Re-engineering with Semiconductor. Journal of the American Chemical Society, 2019, 141, 11811-11815.	13.7	44
11	Self-assembly of Ag2O quantum dots on the surface of ZnIn2S4 nanosheets to fabricate p-n heterojunctions with wonderful bifunctional photocatalytic performance. Applied Surface Science, 2019, 494, 519-531.	6.1	73
12	Photocatalytic Activation and Reduction of CO ₂ to CH ₄ over Single Phase Nano Cu ₃ SnS ₄ : A Combined Experimental and Theoretical Study. ACS Applied Energy Materials, 2019, 2, 5677-5685.	5.1	54
13	Inorganic coordination polymer quantum sheets@graphene oxide composite photocatalysts: Performance and mechanism. Journal of Materials Research, 2019, 34, 3220-3230.	2.6	5
14	Fabrication of a novel carbon quantum Dots-Modified 2D heterojunction for highly efficient sunlight photocatalysis. Journal of Alloys and Compounds, 2019, 806, 761-773.	5.5	24
15	NH4Cl-induced low-temperature formation of nitrogen-rich g-C3N4 nanosheets with improved photocatalytic hydrogen evolution. Carbon, 2019, 153, 757-766.	10.3	132
16	Synergistically effective and highly visible light responsive SnO2-g-C3N4 nanostructures for improved photocatalytic and photoelectrochemical performance. Applied Surface Science, 2019, 495, 143432.	6.1	77
17	Enhancement in photocatalytic activity of CO2 reduction to CH4 by 0D/2D Au/TiO2 plasmon heterojunction. Applied Surface Science, 2019, 493, 1142-1149.	6.1	83
18	Inorganic-organic CdSe-diethylenetriamine nanobelts for enhanced visible photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2019, 555, 166-173.	9.4	44
19	Novel g-C3N4/g-C3N4 S-scheme isotype heterojunction for improved photocatalytic hydrogen generation. Applied Surface Science, 2019, 495, 143555.	6.1	166

#	Article	IF	CITATIONS
20	Direct double Z-scheme O-g-C3N4/Zn2SnO4N/ZnO ternary heterojunction photocatalyst with enhanced visible photocatalytic activity. Applied Surface Science, 2019, 492, 690-702.	6.1	70
21	lodine-vacancy BiOl1-x ultrathin sheets for improved visible-light photooxidation activities. Applied Surface Science, 2019, 493, 657-664.	6.1	16
22	Z-scheme MgFe2O4/Bi2MoO6 heterojunction photocatalyst with enhanced visible light photocatalytic activity for malachite green removal. Applied Surface Science, 2019, 492, 527-539.	6.1	75
23	Precise fabrication of porous one-dimensional gC3N4 nanotubes doped with Pd and Cu atoms for efficient CO oxidation and CO2 reduction. Inorganic Chemistry Communication, 2019, 107, 107460.	3.9	49
24	The Chemistry of CO2 and TiO2. Springer Briefs in Molecular Science, 2019, , .	0.1	3
25	Biomass-derived Carbon Quantum Dots for Visible-Light-Induced Photocatalysis and Label-Free Detection of Fe(III) and Ascorbic acid. Scientific Reports, 2019, 9, 15084.	3.3	161
26	NH2-UiO-66/ <i>g</i> -C3N4/CdTe composites for photocatalytic CO2 reduction under visible light. APL Materials, 2019, 7, .	5.1	14
27	Catalytic CO ₂ Reduction with Boron―and Aluminum Hydrides. ChemCatChem, 2019, 11, 5275-5281.	3.7	46
28	Facile in-situ growth of Ag/TiO2 nanoparticles on polydopamine modified bamboo with excellent mildew-proofing. Scientific Reports, 2019, 9, 16496.	3.3	15
29	Multi-Layered Mesoporous TiO2 Thin Films: Photoelectrodes with Improved Activity and Stability. Coatings, 2019, 9, 625.	2.6	6
30	Ultrathin porous g-CN nanosheets fabricated by direct calcination of pre-treated melamine for enhanced photocatalytic performance. Journal of Materials Research, 2019, 34, 3462-3473.	2.6	9
31	Shifts in the skin microbiome associated with diaper dermatitis and emollient treatment amongst infants and toddlers in China. Experimental Dermatology, 2019, 28, 1289-1297.	2.9	15
32	Dispensing Technology of 3D Printing Optical Lens with Its Applications. Energies, 2019, 12, 3118.	3.1	2
33	<i>In-Situ</i> Synthesis of Highly Efficient Direct Z-Scheme Cu ₃ P/g-C ₃ N ₄ Heterojunction Photocatalyst for N ₂ Photofixation. Nano, 2019, 14, 1950083.	1.0	6
34	In situ synthesis of adsorptive β-Bi ₂ O ₃ /BiOBr photocatalyst with enhanced degradation efficiency. Journal of Materials Research, 2019, 34, 3450-3461.	2.6	12
35	Construction of CoP/B doped g-C3N4 nanodots/g-C3N4 nanosheets ternary catalysts for enhanced photocatalytic hydrogen production performance. Applied Surface Science, 2019, 496, 143738.	6.1	44
36	Mesoporous double-perovskite LaAMnNiO ₆ (A = La, Pr, Sm) photothermal synergistic degradation of gaseous toluene. Journal of Materials Research, 2019, 34, 3439-3449.	2.6	12
37	Catalytic Conversion of Atmospheric CO ₂ into Organic Carbonates by Nickel(II) Complexes of Diazepane-Based N ₄ Ligands. Inorganic Chemistry, 2019, 58, 12975-12985.	4.0	21

#	Article	IF	CITATIONS
38	One-pot synthesis of step-scheme Bi2S3/porous g-C3N4 heterostructure for enhanced photocatalytic performance. Materials Letters, 2019, 257, 126740.	2.6	66
39	Enhanced photocatalytic H2 evolution of ultrathin g-C3N4 nanosheets via surface shuttle redox. Journal of Alloys and Compounds, 2019, 810, 151918.	5.5	31
40	Photocatalytic H2 evolution on graphdiyne/g-C3N4 hybrid nanocomposites. Applied Catalysis B: Environmental, 2019, 255, 117770.	20.2	284
41	Construction of Ag SPR-promoted step-scheme porous g-C3N4/Ag3VO4 heterojunction for improving photocatalytic activity. Applied Surface Science, 2019, 488, 151-160.	6.1	146
42	Photo-assisted methanol steam reforming on solid solution of Cu-Zn-Ti oxide. Chemical Engineering Journal, 2019, 375, 121909.	12.7	50
43	Graphitied carbon-coated bimetallic FeCu nanoparticles as original g-C3N4 cocatalysts for improving photocatalystic activity. Applied Surface Science, 2019, 492, 571-578.	6.1	34
44	Novel phosphidated MoS2 nanosheets modified CdS semiconductor for an efficient photocatalytic H2 evolution. Chemical Engineering Journal, 2019, 375, 122053.	12.7	94
45	An Old Dog with New Tricks: Enjoin Wolff–Kishner Reduction for Alcohol Deoxygenation and C–C Bond Formations. Synlett, 2019, 30, 1508-1524.	1.8	38
46	Role of Bicarbonate Ions in Aqueous Solution as a Carbon Source for Photocatalytic Conversion of CO ₂ into CO. ACS Applied Energy Materials, 2019, 2, 5397-5405.	5.1	16
47	Förster Resonance Energy Transfer Mediated Charge Separation in Plasmonic 2D/1D Hybrid Heterojunctions of Ag–C ₃ N ₄ /ZnO for Enhanced Photodetection. ACS Applied Nano Materials, 2019, 2, 3848-3856.	5.0	22
48	Dual Cocatalysts in TiO ₂ Photocatalysis. Advanced Materials, 2019, 31, e1807660.	21.0	796
49	Stability of amine-functionalized CO ₂ adsorbents: a multifaceted puzzle. Chemical Society Reviews, 2019, 48, 3320-3405.	38.1	260
50	Polyoxometalate-Based Catalysts for CO2 Conversion. Molecules, 2019, 24, 2069.	3.8	48
51	Tuning the visible-light photocatalytic degradation activity of thin nanosheets constructed porous g-C ₃ N ₄ microspheres by decorating ionic liquid modified carbon dots: roles of heterojunctions and surface charges. New Journal of Chemistry, 2019, 43, 10141-10150.	2.8	18
52	Hybrids of TiO2 nanobelts modified by graphene: Preparation, characterization, and photocatalytic performance. Applied Surface Science, 2019, 490, 546-555.	6.1	17
53	Improved CO2 photocatalytic reduction using a novel 3-component heterojunction. Nano Energy, 2019, 62, 426-433.	16.0	52
54	In situ synthesis of TiO2 nanosheets@CdSe nanocomposites and the improved photocatalytic performance on removal of methylene blue. Applied Surface Science, 2019, 487, 91-100.	6.1	24
55	Critical Aspects and Recent Advances in Structural Engineering of Photocatalysts for Sunlightâ€Driven Photocatalytic Reduction of CO ₂ into Fuels. Advanced Functional Materials, 2019, 29, 1901825.	14.9	315

#	Article	IF	Citations
56	G-C3N4 Nanosheets Coupled with TiO2 Nanosheets as 2D/2D Heterojunction Photocatalysts Toward High Photocatalytic Activity for Hydrogen Production. Catalysis Letters, 2019, 149, 2930-2939.	2.6	21
57	Photoconversion of CO2 over Fe-N-Ti@xSBA nanocomposite to produce hydrocarbon fuels. Journal of CO2 Utilization, 2019, 33, 21-30.	6.8	11
58	Novel visible-light-driven direct Z-scheme Zn3V2O8/Ag3PO4 heterojunctions for enhanced photocatalytic performance. Journal of Alloys and Compounds, 2019, 799, 113-123.	5.5	34
59	La- and Mn-Codoped Bismuth Ferrite/Ti ₃ C ₂ MXene Composites for Efficient Photocatalytic Degradation of Congo Red Dye. ACS Omega, 2019, 4, 8661-8668.	3.5	121
60	Efficient photocatalytic overall water splitting over a core-shell GaInZnON@GaInON homojunction. Applied Catalysis B: Environmental, 2019, 255, 117741.	20.2	20
61	Preparation and characterization of mesoporous g-C3N4/SiO2 material with enhanced photocatalytic activity. Journal of Materials Research, 2019, 34, 1785-1794.	2.6	21
62	Ferroelectric Oxide Nanocomposites with Trimodal Pore Structure for High Photocatalytic Performance. Nano-Micro Letters, 2019, 11, 37.	27.0	39
63	Photocatalytic Hydrogen Production over CdS Nanomaterials: An Interdisciplinary Experiment for Introducing Undergraduate Students to Photocatalysis and Analytical Chemistry. Journal of Chemical Education, 2019, 96, 1224-1229.	2.3	30
64	Cu-NPs embedded 1D/2D CNTs/pCN heterojunction composite towards enhanced and continuous photocatalytic CO2 reduction to fuels. Applied Surface Science, 2019, 485, 450-461.	6.1	77
65	Understanding the Roadmap for Electrochemical Reduction of CO ₂ to Multi-Carbon Oxygenates and Hydrocarbons on Copper-Based Catalysts. Journal of the American Chemical Society, 2019, 141, 7646-7659.	13.7	711
66	A Covalent Organic Framework Bearing Single Ni Sites as a Synergistic Photocatalyst for Selective Photoreduction of CO ₂ to CO. Journal of the American Chemical Society, 2019, 141, 7615-7621.	13.7	525
67	Dual-Functional Photocatalysis for Simultaneous Hydrogen Production and Oxidation of Organic Substances. ACS Catalysis, 2019, 9, 4247-4270.	11.2	209
68	Hydrogenation of Carbon Dioxide to Value-Added Chemicals by Heterogeneous Catalysis and Plasma Catalysis. Catalysts, 2019, 9, 275.	3.5	116
69	Engineering MPx (M = Fe, Co or Ni) interface electron transfer channels for boosting photocatalytic H2 evolution over g-C3N4/MoS2 layered heterojunctions. Applied Catalysis B: Environmental, 2019, 252, 250-259.	20.2	188
70	<i>N</i> , <i>N</i> -Dimethylformamide assisted hydrothermal introduction of MoS ₂ on ultrathin g-C ₃ N ₄ layers with enhanced visible light photocatalytic hydrogen evolution activity. Sustainable Energy and Fuels, 2019, 3, 1461-1467.	4.9	21
71	Carbon nitride nested tubes with graphene as a dual electron mediator in Z-scheme photocatalytic deoxynivalenol degradation. Catalysis Science and Technology, 2019, 9, 1680-1690.	4.1	28
72	High-efficiency visible-light-driven Ag3PO4 photocatalysts modified by conjugated polyvinyl alcohol derivatives. Materials Research Express, 2019, 6, 125558.	1.6	4
73	Molekulare Halbleiterâ€Tenside mit Fullerenolâ€Kopfgruppe und Farbstoffketten für die photokatalytische Umwandlung von Kohlenstoffdioxid. Angewandte Chemie, 2019, 131, 15766-15771.	2.0	1

#	Article	IF	CITATIONS
74	2020 Roadmap on gas-involved photo- and electro- catalysis. Chinese Chemical Letters, 2019, 30, 2089-2109.	9.0	71
75	Facile fabrication and enhanced photocatalytic performance of visible light responsive UiO-66-NH2/Ag2CO3 composite. Chinese Journal of Catalysis, 2019, 40, 1912-1923.	14.0	70
76	Fabrication of a Cu2-xSe/rGO heterojunction photocatalyst to achieve efficient photocatalytic H2 generation. International Journal of Hydrogen Energy, 2019, 44, 32042-32053.	7.1	19
77	pH-Controlled photocatalytic abatement of RhB by an FeWO ₄ /BiPO ₄ p–n heterojunction under visible light irradiation. New Journal of Chemistry, 2019, 43, 17241-17250.	2.8	11
78	Pt nanoparticles embedded in flowerlike NH ₂ -UiO-68 for enhanced photocatalytic carbon dioxide reduction. Journal of Materials Chemistry A, 2019, 7, 26490-26495.	10.3	76
79	Ordered colloidal clusters constructed by nanocrystals with valence for efficient CO ₂ photoreduction. Science Advances, 2019, 5, eaax5095.	10.3	62
80	Carbon nitride as a heterogeneous visible-light photocatalyst for the Minisci reaction and coupling to H ₂ production. Chemical Communications, 2019, 55, 14007-14010.	4.1	62
81	A local hydrophobic environment in a metal–organic framework for boosting photocatalytic CO ₂ reduction in the presence of water. Chemical Communications, 2019, 55, 14781-14784.	4.1	38
82	Vacancy engineering of AuCu cocatalysts for improving the photocatalytic conversion of CO ₂ to CH ₄ . Journal of Materials Chemistry A, 2019, 7, 27007-27015.	10.3	39
83	CoNi Bimetal Cocatalyst Modifying a Hierarchical ZnIn ₂ S ₄ Nanosheet-Based Microsphere Noble-Metal-Free Photocatalyst for Efficient Visible-Light-Driven Photocatalytic Hydrogen Production. ACS Sustainable Chemistry and Engineering, 2019, 7, 20190-20201.	6.7	98
84	Ti ₃ C ₂ -MXene/Bismuth Ferrite Nanohybrids for Efficient Degradation of Organic Dyes and Colorless Pollutants. ACS Omega, 2019, 4, 20530-20539.	3.5	119
85	Solvent effect on the structure and photocatalytic behavior of TiO ₂ -RGO nanocomposites. Journal of Materials Research, 2019, 34, 3918-3930.	2.6	19
86	High Photothermally Active Fe ₂ O ₃ Film for CO ₂ Photoreduction with H ₂ O Driven by Solar Light. ACS Applied Energy Materials, 2019, 2, 8376-8380.	5.1	25
87	An Efficient Metal-Free Photocatalytic System with Enhanced Activity for NADH Regeneration. Industrial & Engineering Chemistry Research, 2019, 58, 23567-23573.	3.7	20
88	New Insight into the Role of Electron Transfer to O ₂ in Photocatalytic Oxidations of Acetone over TiO ₂ and the Effect of Au Cocatalyst. Journal of Physical Chemistry C, 2019, 123, 30958-30971.	3.1	16
89	Surface strategies for catalytic CO ₂ reduction: from two-dimensional materials to nanoclusters to single atoms. Chemical Society Reviews, 2019, 48, 5310-5349.	38.1	607
90	Engineering a CsPbBr ₃ -based nanocomposite for efficient photocatalytic CO ₂ reduction: improved charge separation concomitant with increased activity sites. RSC Advances, 2019, 9, 34342-34348.	3.6	49
91	Challenges and opportunities for using formate to store, transport, and use hydrogen. Journal of Energy Chemistry, 2020, 41, 216-224.	12.9	65

#	Article	IF	CITATIONS
92	Methylene blue decomposition on TiO2/reduced graphene oxide hybrid photocatalysts obtained by a two-step hydrothermal and calcination synthesis. Catalysis Today, 2020, 357, 630-637.	4.4	52
93	Cobalt nanoparticle with tunable size supported on nitrogen-deficient graphitic carbon nitride for efficient visible light driven H2 evolution reaction. Chemical Engineering Journal, 2020, 381, 122576.	12.7	32
94	Electrostatic charge transfer for boosting the photocatalytic CO2 reduction on metal centers of 2D MOF/rGO heterostructure. Applied Catalysis B: Environmental, 2020, 262, 118144.	20.2	175
95	Activation of molecular oxygen in selectively photocatalytic organic conversion upon defective TiO2 nanosheets with boosted separation of charge carriers. Applied Catalysis B: Environmental, 2020, 262, 118258.	20.2	96
96	Photocatalytic reduction of CO2 using Pt/C3N4 photocatalyts. Applied Surface Science, 2020, 503, 144426.	6.1	45
97	Inter-plane heterojunctions within 2D/2D FeSe2/g-C3N4 nanosheet semiconductors for photocatalytic hydrogen generation. Applied Catalysis B: Environmental, 2020, 261, 118249.	20.2	192
98	Oxidized impurity in transition metal nitride for improving the hydrogen evolution efficiency of transition metal nitride-based catalyst. Applied Materials Today, 2020, 18, 100476.	4.3	19
99	Nanostructured Carbon Nitrides for CO ₂ Capture and Conversion. Advanced Materials, 2020, 32, e1904635.	21.0	188
100	Template free synthesis of graphitic carbon nitride nanotubes mediated by lanthanum (La/g-CNT) for selective photocatalytic CO2 reduction via dry reforming of methane (DRM) to fuels. Applied Surface Science, 2020, 504, 144177.	6.1	83
101	Ti3C2 MXene-modified Bi2WO6 nanoplates for efficient photodegradation of volatile organic compounds. Applied Surface Science, 2020, 503, 144183.	6.1	81
102	3D porous Cu-NPs/g-C3N4 foam with excellent CO2 adsorption and Schottky junction effect for photocatalytic CO2 reduction. Applied Surface Science, 2020, 504, 144347.	6.1	76
103	Construction of flourinated-TiO2 nanosheets with exposed {001} facets/CdSe-DETA nanojunction for enhancing visible-light-driven photocatalytic H2 evolution. Ceramics International, 2020, 46, 866-876.	4.8	19
104	Facile one-step "polymerization-exfoliation―route to crystalline graphitic carbon nitride nanosheets for increased photocatalytic hydrogen evolution. Applied Surface Science, 2020, 501, 144259.	6.1	18
105	Recent developments on AgI based heterojunction photocatalytic systems in photocatalytic application. Chemical Engineering Journal, 2020, 383, 123083.	12.7	147
106	Z-scheme SnFe2O4-graphitic carbon nitride: Reusable, magnetic catalysts for enhanced photocatalytic CO2 reduction. Chemical Engineering Journal, 2020, 383, 123172.	12.7	66
107	Particulate Photocatalysts for Light-Driven Water Splitting: Mechanisms, Challenges, and Design Strategies. Chemical Reviews, 2020, 120, 919-985.	47.7	1,605
108	RuO2-loaded TiO2–MXene as a high performance photocatalyst for nitrogen fixation. Journal of Physics and Chemistry of Solids, 2020, 136, 109141.	4.0	54
109	Product selectivity of photocatalytic CO2 reduction reactions. Materials Today, 2020, 32, 222-243.	14.2	719

#	Article	IF	CITATIONS
110	Mesostructured cellular foam silica materials for laccase immobilization and tetracycline removal: A comprehensive study. Microporous and Mesoporous Materials, 2020, 291, 109688.	4.4	21
111	Synthesis of novel and environmental sustainable AgI-Ag2S nanospheres impregnated g-C3N4 photocatalyst for efficient degradation of aqueous pollutants. Applied Surface Science, 2020, 500, 143991.	6.1	59
112	Build-in electric field induced step-scheme TiO2/W18O49 heterojunction for enhanced photocatalytic activity under visible-light irradiation. Ceramics International, 2020, 46, 23-30.	4.8	99
113	Enhanced photocatalytic H2-production activity of WO3/TiO2 step-scheme heterojunction by graphene modification. Chinese Journal of Catalysis, 2020, 41, 9-20.	14.0	458
114	Renewable methanol and formate as microbial feedstocks. Current Opinion in Biotechnology, 2020, 62, 168-180.	6.6	200
115	Photocatalytic CO2 reduction over platinum modified hexagonal tungsten oxide: Effects of platinum on forward and back reactions. Applied Catalysis B: Environmental, 2020, 263, 118331.	20.2	38
116	The Z-scheme Ag2CO3@g-C3N4 core-shell structure for increased photoinduced charge separation and stable photocatalytic degradation. Applied Surface Science, 2020, 504, 144345.	6.1	53
117	Probability Langmuir-Hinshelwood based CO2 photoreduction kinetic models. Chemical Engineering Journal, 2020, 384, 123356.	12.7	36
118	In Situ Fabrication of Robust Cocatalystâ€Free CdS/gâ€C ₃ N ₄ 2D–2D Stepâ€Scheme Heterojunctions for Highly Active H ₂ Evolution. Solar Rrl, 2020, 4, 1900423.	5.8	176
119	One-pot hydrothermal preparation of PbO-decorated brookite/anatase TiO2 composites with remarkably enhanced CO2 photoreduction activity. Applied Catalysis B: Environmental, 2020, 263, 118353.	20.2	40
120	Construction of two-dimensionally relative p-n heterojunction for efficient photocatalytic redox reactions under visible light. Applied Surface Science, 2020, 505, 144638.	6.1	37
121	Addressing the Reproducibility of Photocatalytic Carbon Dioxide Reduction. ChemCatChem, 2020, 12, 1603-1608.	3.7	13
122	Metallic MoO ₂ â€Modified Graphitic Carbon Nitride Boosting Photocatalytic CO ₂ Reduction via Schottky Junction. Solar Rrl, 2020, 4, 1900416.	5.8	59
123	Near-infrared absorbing 2D/3D ZnIn2S4/N-doped graphene photocatalyst for highly efficient CO2 capture and photocatalytic reduction. Science China Materials, 2020, 63, 552-565.	6.3	159
124	Integrating 2D/2D CdS/α-Fe2O3 ultrathin bilayer Z-scheme heterojunction with metallic β-NiS nanosheet-based ohmic-junction for efficient photocatalytic H2 evolution. Applied Catalysis B: Environmental, 2020, 266, 118619.	20.2	199
125	Highly Selective Electrochemical Reduction of CO ₂ to CH ₄ over Vacancy–Metal–Nitrogen Sites in an Artificial Photosynthetic Cell. ACS Sustainable Chemistry and Engineering, 2020, 8, 1679-1686.	6.7	16
126	Highly efficient nanostructured metal-decorated hybrid semiconductors for solar conversion of CO2 with almost complete CO selectivity. Materials Today, 2020, 35, 25-33.	14.2	44
127	Conjugated polymers for visible-light-driven photocatalysis. Energy and Environmental Science, 2020, 13, 24-52.	30.8	452

#	Article	IF	CITATIONS
128	Photo/electrocatalysis and photosensitization using metal nanoclusters for green energy and medical applications. Nanoscale Advances, 2020, 2, 17-36.	4.6	79
129	Boosting visible-light driven solar-fuel production over g-C3N4/tetra(4-carboxyphenyl)porphyrin iron(III) chloride hybrid photocatalyst via incorporation with carbon dots. Applied Catalysis B: Environmental, 2020, 265, 118595.	20.2	31
130	A CO ₂ -induced ROCO ₂ Na/ROCO ₂ H buffer solution promoted the carboxylative cyclization of propargyl alcohol to synthesize cyclic carbonates. Catalysis Science and Technology, 2020, 10, 736-741.	4.1	8
131	Immobilization of catalytic sites on quantum dots by ligand bridging for photocatalytic CO ₂ reduction. Nanoscale, 2020, 12, 2507-2514.	5.6	24
132	Defect Engineering of Photocatalysts for Solar Energy Conversion. Solar Rrl, 2020, 4, 1900487.	5.8	85
133	Visible light-enhanced photothermal CO2 hydrogenation over Pt/Al2O3 catalyst. Chinese Journal of Catalysis, 2020, 41, 286-293.	14.0	19
134	Significant improvement in activity, durability, and light-to-fuel efficiency of Ni nanoparticles by La2O3 cluster modification for photothermocatalytic CO2 reduction. Applied Catalysis B: Environmental, 2020, 264, 118544.	20.2	46
135	Facile in situ fabrication of Cu2O@Cu metal-semiconductor heterostructured nanorods for efficient visible-light driven CO2 reduction. Chemical Engineering Journal, 2020, 385, 123940.	12.7	71
136	Decorating g-C3N4 with alkalinized Ti3C2 MXene for promoted photocatalytic CO2 reduction performance. Journal of Colloid and Interface Science, 2020, 564, 406-417.	9.4	208
137	Apparent Potential Difference Boosting Directional Electron Transfer for Full Solar Spectrumâ€Irradiated Catalytic H ₂ Evolution. Advanced Functional Materials, 2020, 30, 1908797.	14.9	64
138	In situ fabrication of CdMoO4/g-C3N4 composites with improved charge separation and photocatalytic activity under visible light irradiation. Chinese Journal of Catalysis, 2020, 41, 170-179.	14.0	64
139	Highly efficient visible-light photocatalytic H2 evolution over 2D–2D CdS/Cu7S4 layered heterojunctions. Chinese Journal of Catalysis, 2020, 41, 31-40.	14.0	177
140	Studies of Z-scheme WO3-TiO2/Cu2ZnSnS4 ternary nanocomposite with enhanced CO2 photoreduction under visible light irradiation. Journal of CO2 Utilization, 2020, 37, 260-271.	6.8	61
141	Engineering ultrafine NiS cocatalysts as active sites to boost photocatalytic hydrogen production of MgAl layered double hydroxide. Applied Surface Science, 2020, 506, 144999.	6.1	47
142	Lead bismuth oxybromide/graphene oxide: Synthesis, characterization, and photocatalytic activity for removal of carbon dioxide, crystal violet dye, and 2-hydroxybenzoic acid. Journal of Colloid and Interface Science, 2020, 562, 112-124.	9.4	71
143	Design of metallic cocatalysts in heterostructured nanoparticles for photocatalytic CO ₂ -to-hydrocarbon conversion. Journal Physics D: Applied Physics, 2020, 53, 123001.	2.8	4
144	Ternary g ₃ N ₄ /ZnNCN@ZIFâ€8 Hybrid Photocatalysts with Robust Interfacial Interactions and Enhanced CO ₂ Reduction Performance. Solar Rrl, 2020, 4, 1900440.	5.8	49
145	In situ thermal-assisted loading of monodispersed Pt nanoclusters on CdS nanoflowers for efficient photocatalytic hydrogen evolution. Applied Surface Science, 2020, 506, 144933.	6.1	31

#	Article	IF	CITATIONS
146	Facet-Engineered Surface and Interface Design of Monoclinic Scheelite Bismuth Vanadate for Enhanced Photocatalytic Performance. ACS Catalysis, 2020, 10, 1024-1059.	11.2	105
147	Review on bimetallic-deposited TiO2: preparation methods, charge carrier transfer pathways and photocatalytic applications. Chemical Papers, 2020, 74, 717-756.	2.2	41
148	Solar-heating boosted catalytic reduction of CO2 under full-solar spectrum. Chinese Journal of Catalysis, 2020, 41, 131-139.	14.0	58
149	Sodium dodecyl sulfate-decorated MOF-derived porous Fe2O3 nanoparticles: High performance, recyclable photocatalysts for fuel denitrification. Chinese Journal of Catalysis, 2020, 41, 188-199.	14.0	31
150	Carbon nanotube@silicon carbide coaxial heterojunction nanotubes as metal-free photocatalysts for enhanced hydrogen evolution. Chinese Journal of Catalysis, 2020, 41, 62-71.	14.0	31
151	Nanocages of Polymeric Carbon Nitride from Lowâ€Temperature Supramolecular Preorganization for Photocatalytic CO ₂ Reduction. Solar Rrl, 2020, 4, 1900469.	5.8	38
152	Bifunctional S-scheme g-C3N4/Bi/BiVO4 hybrid photocatalysts toward artificial carbon cycling. Chinese Journal of Catalysis, 2020, 41, 140-153.	14.0	204
153	Graphene-Zn0.5Cd0.5S nanocomposite with enhanced visible-light photocatalytic CO2 reduction activity. Applied Surface Science, 2020, 506, 144683.	6.1	48
154	Step-scheme porous g-C3N4/Zn0.2Cd0.8S-DETA composites for efficient and stable photocatalytic H2 production. Chinese Journal of Catalysis, 2020, 41, 41-49.	14.0	259
155	The embedded CuInS2 into hollow-concave carbon nitride for photocatalytic H2O splitting into H2 with S-scheme principle. Chinese Journal of Catalysis, 2020, 41, 122-130.	14.0	132
156	Nitrate-group-grafting-induced assembly of rutile TiO2 nanobundles for enhanced photocatalytic hydrogen evolution. Chinese Journal of Catalysis, 2020, 41, 95-102.	14.0	42
157	Carbon Encapsulation of Organic–Inorganic Hybrid Perovskite toward Efficient and Stable Photoâ€Electrochemical Carbon Dioxide Reduction. Advanced Energy Materials, 2020, 10, 2002105.	19.5	44
158	Nanostructured CdS for efficient photocatalytic H2 evolution: A review. Science China Materials, 2020, 63, 2153-2188.	6.3	281
159	Formation of NiCo Alloy Nanoparticles on Co Doped Al ₂ O ₃ Leads to High Fuel Production Rate, Large Lightâ€ŧoâ€Fuel Efficiency, and Excellent Durability for Photothermocatalytic CO ₂ Reduction. Advanced Energy Materials, 2020, 10, 2002602.	19.5	67
160	One-pot microwave-assisted synthesis of Cu-Ce0.8Zr0.2O2 with flower-like morphology: Enhanced stability for ethanol dry reforming. Advanced Powder Technology, 2020, 31, 3874-3881.	4.1	16
161	Defect in reduced graphene oxide tailored selectivity of photocatalytic CO2 reduction on Cs4PbBr6 pervoskite hole-in-microdisk structure. Nano Energy, 2020, 78, 105388.	16.0	64
162	Highly stable 3D/2D WO3/g-C3N4 Z-scheme heterojunction for stimulating photocatalytic CO2 reduction by H2O/H2 to CO and CH4 under visible light. Journal of CO2 Utilization, 2020, 41, 101270.	6.8	56
163	Quantitative Electro-Reduction of CO ₂ to Liquid Fuel over Electro-Synthesized Metal–Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 17384-17392.	13.7	73

# 164	ARTICLE Efficient photocatalytic CO ₂ reduction mediated by transitional metal borides: metal site-dependent activity and selectivity. Journal of Materials Chemistry A, 2020, 8, 21833-21841.	IF 10.3	CITATIONS 23
165	Nanohybrid Crystals with Heteroepitaxial Junctions for Solar-to-Chemical Transformations. Journal of Physical Chemistry C, 2020, 124, 25657-25666.	3.1	7
166	Controlled Growth of Edgeâ€Enriched ReS ₂ Nanoflowers on Carbon Cloth Using Chemical Vapor Deposition for Hydrogen Evolution. Advanced Materials Interfaces, 2020, 7, 2001196.	3.7	13
167	Multidimensional (0D-3D) functional nanocarbon: Promising material to strengthen the photocatalytic activity of graphitic carbon nitride. Green Energy and Environment, 2021, 6, 823-845.	8.7	40
168	MXenes as co-catalysts for the solar-driven photocatalytic reduction of CO ₂ . Journal of Materials Chemistry C, 2020, 8, 16258-16281.	5.5	61
169	Emerging Chemical Functionalization of g-C ₃ N ₄ : Covalent/Noncovalent Modifications and Applications. ACS Nano, 2020, 14, 12390-12469.	14.6	258
171	Rationally designed transition metal hydroxide nanosheet arrays on graphene for artificial CO2 reduction. Nature Communications, 2020, 11, 5181.	12.8	205
172	What is the better choice for Pd cocatalysts for photocatalytic reduction of CO ₂ to renewable fuels: high-crystallinity or amorphous?. Journal of Materials Chemistry A, 2020, 8, 21208-21218.	10.3	23
173	Photocatalytic CO2 Reduction and Electrocatalytic H2 Evolution over Pt(0,II,IV)-Loaded Oxidized Ti Sheets. Nanomaterials, 2020, 10, 1909.	4.1	9
174	Mechanistic Understanding on the Role of Cu Species over the CuO <i>_x</i> /TiO ₂ Catalyst for CO ₂ Photoreduction. ACS Omega, 2020, 5, 18050-18063.	3.5	14
175	Plasma-induced defect engineering: Boosted the reverse water gas shift reaction performance with electron trap. Journal of Colloid and Interface Science, 2020, 580, 814-821.	9.4	29
176	Tuning W ₁₈ O ₄₉ /Cu ₂ O{111} Interfaces for the Highly Selective CO ₂ Photocatalytic Conversion to CH ₄ . ACS Applied Materials & Interfaces, 2020, 12, 35113-35119.	8.0	44
177	Composition-tunable ZnS1–Se nanobelt solid solutions for efficient solar-fuel production. Chinese Journal of Catalysis, 2020, 41, 1663-1673.	14.0	6
178	Robust route to highly porous graphitic carbon nitride microtubes with preferred adsorption ability via rational design of one-dimension supramolecular precursors for efficient photocatalytic CO2 conversion. Nano Energy, 2020, 77, 105104.	16.0	71
179	å‰å,¬åŒ−ä,二氧åŒ−çj基纳米结构的ç"ç©¶èį›å±•. Science China Materials, 2020, 63, 2189-2205.	6.3	19
180	Enhancing visible-light photocatalytic activity for overall water splitting in UiO-66 by controlling metal node composition. Applied Catalysis B: Environmental, 2020, 278, 119345.	20.2	104
181	Hybrid cocatalysts in semiconductor-based photocatalysis and photoelectrocatalysis. Journal of Materials Chemistry A, 2020, 8, 14863-14894.	10.3	115
182	A Mini Review on Bismuth-Based Z-Scheme Photocatalysts. Materials, 2020, 13, 5057.	2.9	28

#	Article	IF	CITATIONS
183	A Robust Titanium Isophthalate Metal-Organic Framework for Visible-Light Photocatalytic CO2 Methanation. CheM, 2020, 6, 3409-3427.	11.7	41
184	Lattice disorders of TiO2 and their significance in the photocatalytic conversion of CO2. Advances in Catalysis, 2020, , 109-233.	0.2	7
185	Structure-dependent iron-based metal–organic frameworks for selective CO ₂ -to-CH ₄ photocatalytic reduction. Journal of Materials Chemistry A, 2020, 8, 25850-25856.	10.3	64
186	Well-Designed 3D/2D/2D WO ₃ /Bt/g-C ₃ N ₄ Z-Scheme Heterojunction for Tailoring Photocatalytic CO ₂ Methanation with 2D-Layered Bentonite-Clay as the Electron Moderator under Visible Light. Energy & Fuels, 2020, 34, 14400-14418.	5.1	40
187	Selective Photocatalytic Reduction of CO ₂ to CH ₄ Modulated by Chloride Modification on Bi ₂ WO ₆ Nanosheets. ACS Applied Materials & Interfaces, 2020, 12, 54507-54516.	8.0	62
188	Construction of In ₂ S ₃ @NH ₂ -MIL-68(In)@In ₂ S ₃ Sandwich Homologous Heterojunction for Efficient CO ₂ Photoreduction. Industrial & Engineering Chemistry Research. 2020. 59. 20711-20718.	3.7	29
189	Bioinspired metal complexes for energy-related photocatalytic small molecule transformation. Chemical Communications, 2020, 56, 15496-15512.	4.1	22
190	High-Performance, Scalable, and Low-Cost Copper Hydroxyapatite for Photothermal CO2 Reduction. ACS Catalysis, 2020, 10, 13668-13681.	11.2	55
191	Effect of Zn precursor concentration in the synthesis of rGO/ZnO composites and their photocatalytic activity. New Journal of Chemistry, 2020, 44, 19858-19867.	2.8	12
192	Advancing Applications of Black Phosphorus and BPâ€Analog Materials in Photo/Electrocatalysis through Structure Engineering and Surface Modulation. Advanced Science, 2020, 7, 2001431.	11.2	51
193	Photocatalytic CO ₂ conversion: What can we learn from conventional CO _x hydrogenation?. Chemical Society Reviews, 2020, 49, 6579-6591.	38.1	268
194	Induced C C coupling in CO2 photocatalytic reduction via carbothermally reduced nonstoichiometric tungsten oxide. Applied Surface Science, 2020, 526, 146578.	6.1	11
195	Efficient bi-directional OER/ORR catalysis of metal-free C6H4NO2/g-C3N4: Density functional theory approaches. Applied Surface Science, 2020, 531, 147292.	6.1	18
196	Crystalline Carbon Nitride Supported Copper Single Atoms for Photocatalytic CO ₂ Reduction with Nearly 100% CO Selectivity. ACS Nano, 2020, 14, 10552-10561.	14.6	417
197	Controllably Engineering Mesoporous Surface and Dimensionality of SnO ₂ toward Highâ€Performance CO ₂ Electroreduction. Advanced Functional Materials, 2020, 30, 2002092.	14.9	76
198	Tailoring the CdS surface structure for photocatalytic applications. Journal of Environmental Chemical Engineering, 2020, 8, 104313.	6.7	35
199	Tale of Two Layered Semiconductor Catalysts toward Artificial Photosynthesis. ACS Applied Materials & Interfaces, 2020, 12, 37811-37833.	8.0	17
200	Fundamentals and challenges of ultrathin 2D photocatalysts in boosting CO ₂ photoreduction. Chemical Society Reviews, 2020, 49, 6592-6604.	38.1	220

#	Article	IF	CITATIONS
201	2D PbS Nanosheets with Zigzag Edges for Efficient CO 2 Photoconversion. Chemistry - A European Journal, 2020, 26, 13601-13605.	3.3	6
202	Spherical Mesoporous SBAâ€15â€Supported CoP Nanoparticles as Robust Selective CO 2 Reduction and H 2 â€Generating Catalyst under Visible Light. ChemCatChem, 2020, 12, 5504-5510.	3.7	6
203	Photocatalytic CO ₂ Reduction to CO over Ni Single Atoms Supported on Defectâ€Rich Zirconia. Advanced Energy Materials, 2020, 10, 2002928.	19.5	263
204	Electrochemical Approaches toward CO ₂ Capture and Concentration. ACS Catalysis, 2020, 10, 13058-13074.	11.2	100
205	Direct growth of nanostructural MoS2 over the h-BN nanoplatelets: An efficient heterostructure for visible light photoreduction of CO2 to methanol. Journal of CO2 Utilization, 2020, 42, 101345.	6.8	33
206	Blue ordered/disordered Janus-type TiO ₂ nanoparticles for enhanced photocatalytic hydrogen generation. Journal of Materials Chemistry A, 2020, 8, 22828-22839.	10.3	24
207	Facile Top-Down Strategy for Direct Metal Atomization and Coordination Achieving a High Turnover Number in CO ₂ Photoreduction. Journal of the American Chemical Society, 2020, 142, 19259-19267.	13.7	128
208	Rational design and fabrication of TiO2 nano heterostructure with multi-junctions for efficient photocatalysis. International Journal of Hydrogen Energy, 2020, 45, 28640-28650.	7.1	21
209	Recent advances in process and catalyst for CO2 reforming of methane. Renewable and Sustainable Energy Reviews, 2020, 134, 110312.	16.4	116
210	Synthesis and Characterization of p-n Junction Ternary Mixed Oxides for Photocatalytic Coprocessing of CO2 and H2O. Catalysts, 2020, 10, 980.	3.5	9
211	Defect engineering in photocatalysis: formation, chemistry, optoelectronics, and interface studies. Journal of Materials Chemistry A, 2020, 8, 18560-18604.	10.3	116
212	Photocatalysts Based on Organic Semiconductors with Tunable Energy Levels for Solar Fuel Applications. Advanced Energy Materials, 2020, 10, 2001935.	19.5	92
213	Applications of Sensitized Semiconductors as Heterogeneous Visible-Light Photocatalysts in Organic Synthesis. ACS Sustainable Chemistry and Engineering, 2020, 8, 15405-15429.	6.7	59
214	Methods with Nanoarchitectonics for Small Molecules and Nanostructures to Regulate Living Cells. Small Methods, 2020, 4, 2000500.	8.6	23
215	Enhanced Photocatalytic Activity of TiO ₂ /SnO ₂ Binary Nanocomposites. Journal of Nanomaterials, 2020, 2020, 1-13.	2.7	25
216	Construction of Thiazolo[5,4- <i>d</i>]thiazole-based Two-Dimensional Network for Efficient Photocatalytic CO ₂ Reduction. ACS Applied Materials & Interfaces, 2020, 12, 46483-46489.	8.0	43
217	Relating surface defect energetics with reactant gas adsorption during the photo-catalytic reduction of CO ₂ by partially hydrolyzed In ₂ O ₃ nanorods. Physical Chemistry Chemical Physics, 2020, 22, 23686-23698.	2.8	3
218	Sacrificing nothing to reduce CO2. Nature Energy, 2020, 5, 642-643.	39.5	22

#	Article	IF	CITATIONS
219	Molecularly engineered photocatalyst sheet for scalable solar formate production from carbon dioxide and water. Nature Energy, 2020, 5, 703-710.	39.5	156
220	Visible-light-driven photocatalytic selective organic oxidation reactions. Journal of Materials Chemistry A, 2020, 8, 20897-20924.	10.3	60
221	Activity and selectivity of CO ₂ photoreduction on catalytic materials. Dalton Transactions, 2020, 49, 12918-12928.	3.3	13
222	Ag/AgBr coupled low crystalline Nb ₂ O ₅ as an effective photocatalyst for the degradation of rhodamine B. Journal of Materials Research, 2020, 35, 1692-1702.	2.6	6
223	Enhanced Charge Separation of α-Bi2O3-BiOI Hollow Nanotube for Photodegradation Antibiotic Under Visible Light. Chemical Research in Chinese Universities, 2020, 36, 1227-1233.	2.6	14
224	Carbon Nanomaterials From Metal-Organic Frameworks: A New Material Horizon for CO2 Reduction. Frontiers in Chemistry, 2020, 8, 573797.	3.6	17
225	Recent Progress on Nanostructured Layered Double Hydroxides for Visibleâ€Lightâ€Induced Photoreduction of CO ₂ . Chemistry - an Asian Journal, 2020, 15, 3380-3389.	3.3	28
226	Towards developing efficient metalloporphyrin-based hybrid photocatalysts for CO2reduction; anab initiostudy. Physical Chemistry Chemical Physics, 2020, 22, 23128-23140.	2.8	5
227	Recent advances in two-dimensional nanomaterials for photocatalytic reduction of CO ₂ : insights into performance, theories and perspective. Journal of Materials Chemistry A, 2020, 8, 19156-19195.	10.3	101
228	Polypyrrole-Promoted rGO–MoS ₂ Nanocomposites for Enhanced Photocatalytic Conversion of CO ₂ and H ₂ O to CO, CH ₄ , and H ₂ Products. ACS Applied Energy Materials, 2020, 3, 9897-9909.	5.1	61
229	Perylene diimide self-assembly: From electronic structural modulation to photocatalytic applications. Journal of Semiconductors, 2020, 41, 091708.	3.7	11
230	Tunable Syngas Synthesis from Photocatalytic CO2 Reduction Under Visible-Light Irradiation by Interfacial Engineering. Transactions of Tianjin University, 2020, 26, 352-361.	6.4	33
231	Understanding the enhanced catalytic activity of bimetallic AuCu/TiO ₂ in CO ₂ adsorption and activation: a density functional theory study. New Journal of Chemistry, 2020, 44, 14662-14669.	2.8	7
232	Construction of a multi-interfacial-electron transfer scheme for efficient CO ₂ photoreduction: a case study using Cdln ₂ S ₄ micro-flower spheres modified with Au nanoparticles and reduced graphene oxide. Journal of Materials Chemistry A, 2020, 8, 18707-18714.	10.3	86
233	Efficient Ni(OH) ₂ /WO ₃ Photoanode for Photoelectrocatalytic Water Splitting at Low Bias. Journal of Physical Chemistry C, 2020, 124, 19447-19456.	3.1	13
234	Highly Efficient and Selective Visible-Light Driven CO ₂ Reduction by Two Co-Based Catalysts in Aqueous Solution. Inorganic Chemistry, 2020, 59, 17464-17472.	4.0	18
235	3D structured materials and devices for artificial photosynthesis. Nanotechnology, 2020, 31, 282001.	2.6	10
236	Investigation of reaction condition effects on photocatalytic methane production over P25â€TiO 2 /Pt with CO 2 and H 2 O gas. Applied and mechanistic implications. ChemPhotoChem, 2020, 4, 526-534.	3.0	3

#	Article	IF	CITATIONS
237	Efficient CO2 conversion to formic acid in a novel microbial photoelectrochemical cell using a visible-light responsive Co3O4 nanorod-arrayed photocathode. Applied Catalysis B: Environmental, 2020, 276, 119102.	20.2	33
238	Recent Progress in Engineering Metal Halide Perovskites for Efficient Visibleâ€Lightâ€Driven Photocatalysis. ChemSusChem, 2020, 13, 4005-4025.	6.8	79
239	A bimetallic-MOF catalyst for efficient CO ₂ photoreduction from simulated flue gas to value-added formate. Journal of Materials Chemistry A, 2020, 8, 11712-11718.	10.3	61
240	Cobalt Plasmonic Superstructures Enable Almost 100% Broadband Photon Efficient CO ₂ Photocatalysis. Advanced Materials, 2020, 32, e2000014.	21.0	109
241	Recent advances in engineering active sites for photocatalytic CO ₂ reduction. Nanoscale, 2020, 12, 12196-12209.	5.6	93
242	Synergetic catalysis of a cobalt-based coordination polymer for selective visible-light driven CO ₂ -to-CO conversion. RSC Advances, 2020, 10, 17951-17954.	3.6	6
243	Photoreduction and Removal of Cadmium Ions over Bentonite Clay-Supported Zinc Oxide Microcubes in an Aqueous Solution. ACS Omega, 2020, 5, 13176-13184.	3.5	17
244	Hybrid photo-catalyst of Sb2S3 NRs wrapped with rGO by C–S bonding: Ultra-high photo-catalysis effect under visible light. Applied Surface Science, 2020, 526, 146742.	6.1	18
245	Significant role of carbonate radicals in tetracycline hydrochloride degradation based on solar light-driven TiO2-seashell composites: Removal and transformation pathways. Chinese Journal of Catalysis, 2020, 41, 1511-1521.	14.0	26
246	Allyl functionalized UiO-66 metal-organic framework as a catalyst for the synthesis of cyclic carbonates by CO2 cycloaddition. Journal of Industrial and Engineering Chemistry, 2020, 89, 104-110.	5.8	47
247	Sustainable synthesis of supported metal nanocatalysts for electrochemical hydrogen evolution. Chinese Journal of Catalysis, 2020, 41, 1791-1811.	14.0	80
248	Core–shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO ₂ . Chemical Society Reviews, 2020, 49, 2937-3004.	38.1	479
249	Ni0.85Co0.15WO4 for Photocatalytic Reduction of CO2 Under Mild Conditions with High Activity and Selectivity. Catalysis Letters, 2020, 150, 3071-3078.	2.6	6
250	Constructing electron delocalization channels in covalent organic frameworks powering CO2 photoreduction in water. Applied Catalysis B: Environmental, 2020, 274, 119096.	20.2	113
251	Two-dimensional gersiloxenes with tunable band gap as new photocatalysts. Rare Metals, 2020, 39, 610-612.	7.1	14
252	Solid-state synthesis of ultrathin MoS2 as a cocatalyst on mesoporous g-C3N4 for excellent enhancement of visible light photoactivity. Journal of Alloys and Compounds, 2020, 836, 155401.	5.5	28
253	Design and application of active sites in g-C3N4-based photocatalysts. Journal of Materials Science and Technology, 2020, 56, 69-88.	10.7	211
254	Construction 0D TiO2 nanoparticles/2D CoP nanosheets heterojunctions for enhanced photocatalytic H2 evolution activity. Journal of Materials Science and Technology, 2020, 56, 196-205.	10.7	126

#	Article	IF	CITATIONS
255	Carbon Dots in Porous Materials: Host–Guest Synergy for Enhanced Performance. Angewandte Chemie, 2020, 132, 19558-19570.	2.0	12
256	Amorphous CoO coupled carbon dots as a spongy porous bifunctional catalyst for efficient photocatalytic water oxidation and CO2 reduction. Chinese Journal of Catalysis, 2020, 41, 1826-1836.	14.0	76
257	Revealing the role of oxygen vacancies in bimetallic PbBiO2Br atomic layers for boosting photocatalytic CO2 conversion. Applied Catalysis B: Environmental, 2020, 277, 119170.	20.2	77
258	Nickel-decorated g-C ₃ N ₄ hollow spheres as an efficient photocatalyst for hydrogen evolution and oxidation of amines to imines. New Journal of Chemistry, 2020, 44, 11710-11719.	2.8	13
259	Improving photosensitization for photochemical CO2-to-CO conversion. National Science Review, 2020, 7, 1459-1467.	9.5	44
260	Plasmonic Photocatalysts for Sunlightâ€Driven Reduction of CO ₂ : Details, Developments, and Perspectives. ChemSusChem, 2020, 13, 3967-3991.	6.8	59
261	2D/2D Heterostructured Photocatalysts: An Emerging Platform for Artificial Photosynthesis. Solar Rrl, 2020, 4, 2000132.	5.8	94
262	Efficient photocatalysis triggered by thin carbon layers coating on photocatalysts: recent progress and future perspectives. Science China Chemistry, 2020, 63, 1416-1427.	8.2	31
263	Immobilizing perovskite CsPbBr3 nanocrystals on Black phosphorus nanosheets for boosting charge separation and photocatalytic CO2 reduction. Applied Catalysis B: Environmental, 2020, 277, 119230.	20.2	132
264	2D/2D/2D O-C3N4/Bt/Ti3C2Tx heterojunction with novel MXene/clay multi-electron mediator for stimulating photo-induced CO2 reforming to CO and CH4. Chemical Engineering Journal, 2020, 400, 125868.	12.7	131
265	New Insights into the Fundamental Principle of Semiconductor Photocatalysis. ACS Omega, 2020, 5, 14847-14856.	3.5	44
266	Semi-biological approaches to solar-to-chemical conversion. Chemical Society Reviews, 2020, 49, 4926-4952.	38.1	157
267	An oriented built-in electric field induced by cobalt surface gradient diffused doping in MgIn ₂ S ₄ for enhanced photocatalytic CH ₄ evolution. Dalton Transactions, 2020, 49, 9213-9217.	3.3	29
268	Catalytic conversion of CO ₂ to chemicals and fuels: the collective thermocatalytic/photocatalytic/electrocatalytic approach with graphitic carbon nitride. Materials Advances, 2020, 1, 1506-1545.	5.4	96
269	Targeted removal of interfacial adventitious carbon towards directional charge delivery to isolated metal sites for efficient photocatalytic H2 production. Nano Energy, 2020, 76, 105077.	16.0	24
270	Black Phosphorus and Carbon Nitride Hybrid Photocatalysts for Photoredox Reactions. Advanced Functional Materials, 2020, 30, 2002021.	14.9	75
271	Calcium zirconate photocatalyst and silver cocatalyst for reduction of carbon dioxide with water. Applied Catalysis B: Environmental, 2020, 277, 119192.	20.2	28
272	A review on 2D MoS2 cocatalysts in photocatalytic H2 production. Journal of Materials Science and Technology, 2020, 56, 89-121.	10.7	364

#	Article	IF	CITATIONS
273	Influence of doped silver nanoparticles on the photocatalytic performance of ZnMn2O4 in the production of methanol from CO2 photocatalytic reduction. Applied Nanoscience (Switzerland), 2020, 10, 3865-3874.	3.1	16
274	Preparation of hierarchical g-C3N4@TiO2 hollow spheres for enhanced visible-light induced catalytic CO2 reduction. Solar Energy, 2020, 205, 465-473.	6.1	59
275	Recycling heavy metals from wastewater for photocatalytic CO2 reduction. Chemical Engineering Journal, 2020, 402, 125922.	12.7	44
276	Constructing subtle grain boundaries on Au sheets for enhanced CO2 photoreduction. Science China Chemistry, 2020, 63, 1705-1710.	8.2	5
277	Rational Design of Carbonâ€Based 2D Nanostructures for Enhanced Photocatalytic CO ₂ Reduction: A Dimensionality Perspective. Chemistry - A European Journal, 2020, 26, 9710-9748.	3.3	125
278	Ultrathin and Small‣ize Graphene Oxide as an Electron Mediator for Perovskiteâ€Based Z‣cheme System to Significantly Enhance Photocatalytic CO ₂ Reduction. Small, 2020, 16, e2002140.	10.0	73
279	Integrating single Ni sites into biomimetic networks of covalent organic frameworks for selective photoreduction of CO ₂ . Chemical Science, 2020, 11, 6915-6922.	7.4	78
280	Single Ni Atoms Anchored on Porous Few‣ayer gâ€C ₃ N ₄ for Photocatalytic CO ₂ Reduction: The Role of Edge Confinement. Small, 2020, 16, e2002411.	10.0	175
281	Heterogeneous Single-Atom Photocatalysts: Fundamentals and Applications. Chemical Reviews, 2020, 120, 12175-12216.	47.7	620
282	BiVO4 /Bi4Ti3O12 heterojunction enabling efficient photocatalytic reduction of CO2 with H2O to CH3OH and CO. Applied Catalysis B: Environmental, 2020, 270, 118876.	20.2	179
283	Reaction: Rational Design of Highly Active Photocatalysts for CO2 Conversion. CheM, 2020, 6, 1039-1040.	11.7	97
284	Phosphonium-Based Porous Ionic Polymer with Hydroxyl Groups: A Bifunctional and Robust Catalyst for Cycloaddition of CO2 into Cyclic Carbonates. Polymers, 2020, 12, 596.	4.5	15
285	Photocatalytic CO2 reduction over metal-organic framework-based materials. Coordination Chemistry Reviews, 2020, 412, 213262.	18.8	401
286	Architecting a Double Charge-Transfer Dynamics In ₂ S ₃ /BiVO ₄ n–n Isotype Heterojunction for Superior Photocatalytic Oxytetracycline Hydrochloride Degradation and Water Oxidation Reaction: Unveiling the Association of Physicochemical, Electrochemical, and Photocatalytic Properties. ACS Omega, 2020, 5, 5270-5284.	3.5	46
287	One-step fabrication of TiO2/graphene hybrid mesoporous film with enhanced photocatalytic activity and photovoltaic performance. Chinese Journal of Catalysis, 2020, 41, 1208-1216.	14.0	16
288	Vacancy enriched ultrathin TiMgAl-layered double hydroxide/graphene oxides composites as highly efficient visible-light catalysts for CO2 reduction. Applied Catalysis B: Environmental, 2020, 270, 118878.	20.2	53
289	Synergism of surface strain and interfacial polarization on Pd@Au core–shell cocatalysts for highly efficient photocatalytic CO ₂ reduction over TiO ₂ . Journal of Materials Chemistry A, 2020, 8, 7350-7359.	10.3	47
290	A halide perovskite as a catalyst to simultaneously achieve efficient photocatalytic CO ₂ reduction and methanol oxidation. Chemical Communications, 2020, 56, 4664-4667.	4.1	47

#	Article	IF	CITATIONS
291	Zeolitic Imidazolate Framework-67-Derived CoP/Co@N,P-Doped Carbon Nanoparticle Composites with Graphitic Carbon Nitride for Enhanced Photocatalytic Production of H ₂ and H ₂ O ₂ . ACS Applied Nano Materials, 2020, 3, 3558-3567.	5.0	29
292	Enhanced photochemical CO ₂ reduction in the gas phase by graphdiyne. Journal of Materials Chemistry A, 2020, 8, 7671-7676.	10.3	52
293	In Situ Growth of MAPbBr ₃ Nanocrystals on Few‣ayer MXene Nanosheets with Efficient Energy Transfer. Small, 2020, 16, e1905896.	10.0	38
294	Stabilizing CuGaS ₂ by crystalline CdS through an interfacial Z-scheme charge transfer for enhanced photocatalytic CO ₂ reduction under visible light. Nanoscale, 2020, 12, 8693-8700.	5.6	39
295	Enhanced optical absorption and pollutant adsorption for photocatalytic performance of three-dimensional porous cellulose aerogel with BiVO ₄ and PANI. Journal of Materials Research, 2020, 35, 1316-1328.	2.6	10
296	Photoelectrochemical solar fuels from carbon dioxide, water and sunlight. Catalysis Science and Technology, 2020, 10, 1967-1974.	4.1	28
297	Carbon Capture and Conversion. Journal of the American Chemical Society, 2020, 142, 4955-4957.	13.7	85
298	Enhanced photocatalytic CO2 reduction with suppressing H2 evolution via Pt cocatalyst and surface SiO2 coating. Applied Catalysis B: Environmental, 2020, 278, 119267.	20.2	54
299	S-Scheme Heterojunction Photocatalyst. CheM, 2020, 6, 1543-1559.	11.7	1,993
300	In-situ polymerization induced atomically dispersed manganese sites as cocatalyst for CO2 photoreduction into synthesis gas. Nano Energy, 2020, 76, 105059.	16.0	60
301	An efficient visible-light photocatalyst for CO2 reduction fabricated by cobalt porphyrin and graphitic carbon nitride via covalent bonding. Nano Research, 2020, 13, 2665-2672.	10.4	52
302	Two-dimensional materials for photocatalytic water splitting and CO2 reduction. , 2020, , 173-227.		7
303	Surface plasmon resonance and defects on tungsten oxides synergistically boost high-selective CO2 reduction for ethylene. Applied Materials Today, 2020, 20, 100744.	4.3	23
304	Polyimide-based photocatalysts: rational design for energy and environmental applications. Journal of Materials Chemistry A, 2020, 8, 14441-14462.	10.3	38
305	Facile polyol-triggered anatase–rutile heterophase TiO2-x nanoparticles for enhancing photocatalytic CO2 reduction. Journal of Colloid and Interface Science, 2020, 579, 872-877.	9.4	34
306	Standalone Solar Carbon-Based Fuel Production Based on Semiconductors. Cell Reports Physical Science, 2020, 1, 100101.	5.6	18
307	Towards artificial photosynthesis: Sustainable hydrogen utilization for photocatalytic reduction of CO2 to high-value renewable fuels. Chemical Engineering Journal, 2020, 402, 126184.	12.7	123
308	Plasmonic Heterostructure Functionalized with a Carbene-Linked Molecular Catalyst for Sustainable	8.0	13

#	Article	IF	CITATIONS
309	Visible light-promoted synthesis of organic carbamates from carbon dioxide under catalyst- and additive-free conditions. Green Chemistry, 2020, 22, 4890-4895.	9.0	61
310	Z‑scheme SnFe2O4/α-Fe2O3 micro-octahedron with intimated interface for photocatalytic CO2 reduction. Chemical Engineering Journal, 2020, 402, 126193.	12.7	65
311	Facile synthesis and photoelectrochemical properties of novel TiN/C3N4/CdS nanotube core/shell arrays. Chinese Journal of Catalysis, 2020, 41, 1645-1653.	14.0	11
312	Facile construction of novel Bi2WO6/Ta3N5 Z-scheme heterojunction nanofibers for efficient degradation of harmful pharmaceutical pollutants. Chemical Engineering Journal, 2020, 402, 126165.	12.7	277
313	Facile fabrication of a NiO/Ag ₃ PO ₄ Z-scheme photocatalyst with enhanced visible-light-driven photocatalytic activity. New Journal of Chemistry, 2020, 44, 12806-12814.	2.8	27
314	Constructing Hierarchical Porous Carbons With Interconnected Micro-mesopores for Enhanced CO2 Adsorption. Frontiers in Chemistry, 2019, 7, 919.	3.6	16
315	Ni(acac)2/Mo-MOF-derived difunctional MoNi@MoO2cocatalyst to enhance the photocatalytic H2evolution activity of g-C3N4. Applied Catalysis B: Environmental, 2020, 268, 118739.	20.2	36
316	Bioinspired artificial photosynthesis systems. Tetrahedron, 2020, 76, 131024.	1.9	21
317	Materials synthesis, characterization and DFT calculations of the visible-light-active perovskite-like barium bismuthate Ba _{1.264(4)} Bi _{1.971(4)} O ₄ photocatalyst. Journal of Materials Chemistry C, 2020, 8, 3509-3519.	5.5	12
318	Interfacial Solar Vapor Generation: Introducing Students to Experimental Procedures and Analysis for Efficiently Harvesting Energy and Generating Vapor at the Air–Water Interface. Journal of Chemical Education, 2020, 97, 1093-1100.	2.3	8
319	Porous honeycomb-like NiSe ₂ /red phosphorus heteroarchitectures for photocatalytic hydrogen production. Nanoscale, 2020, 12, 5636-5651.	5.6	39
320	Recent advances in visible-light-driven conversion of CO2 by photocatalysts into fuels or value-added chemicals. Carbon Resources Conversion, 2020, 3, 46-59.	5.9	64
321	Noble-Metal-Free CdS Nanoparticle-Coated Graphene Oxide Nanosheets Favoring Electron Transfer for Efficient Photoreduction of CO ₂ . ACS Applied Materials & Interfaces, 2020, 12, 12892-12900.	8.0	29
322	Intermolecular cascaded ï€-conjugation channels for electron delivery powering CO2 photoreduction. Nature Communications, 2020, 11, 1149.	12.8	147
323	Metal/semiconductor interfaces in nanoscale objects: synthesis, emerging properties and applications of hybrid nanostructures. Nanoscale Advances, 2020, 2, 930-961.	4.6	42
324	<i>In situ</i> self-assembly of zirconium metal–organic frameworks onto ultrathin carbon nitride for enhanced visible light-driven conversion of CO ₂ to CO. Journal of Materials Chemistry A, 2020, 8, 6034-6040.	10.3	45
325	Dynamism of Supramolecular DNA/RNA Nanoarchitectonics: From Interlocked Structures to Molecular Machines. Bulletin of the Chemical Society of Japan, 2020, 93, 581-603.	3.2	75
326	All-Solid-State Z-Scheme α-Fe2O3/Amine-RGO/CsPbBr3 Hybrids for Visible-Light-Driven Photocatalytic CO2 Reduction. CheM, 2020, 6, 766-780.	11.7	280

		CITATION REPORT		
#	Article		IF	Citations
327	Bridge engineering in photocatalysis and photoelectrocatalysis. Nanoscale, 2020, 12, 576	4-5791.	5.6	77
328	Recent Progress in Self‣upported Catalysts for CO ₂ Electrochemical Redu Methods, 2020, 4, 1900826.	ction. Small	8.6	48
329	Recent Advances in TiO2-Based Photocatalysts for Reduction of CO2 to Fuels. Nanomater 337.	ials, 2020, 10,	4.1	133
330	Non-precious molybdenum nanospheres as a novel cocatalyst for full-spectrum-driven pho CO2 reforming to CH4. Journal of Hazardous Materials, 2020, 393, 122324.	tocatalytic	12.4	39
331	Cooperation of oxygen vacancies and 2D ultrathin structure promoting CO2 photoreducti performance of Bi4Ti3O12. Science Bulletin, 2020, 65, 934-943.	on	9.0	151
332	CO ₂ photoreduction to CO/CH ₄ over Bi ₂ W _{0.5} Mo _{0.5} O ₆ solid solution nano visible light. RSC Advances, 2020, 10, 8821-8824.	otubes under	3.6	19
333	SrTiO3/BiOI heterostructure: Interfacial charge separation, enhanced photocatalytic activitive reaction mechanism. Chinese Journal of Catalysis, 2020, 41, 710-718.	ty, and	14.0	32
334	Ag-Bi/BiVO4 chain-like hollow microstructures with enhanced photocatalytic activity for Co conversion. Applied Catalysis A: General, 2020, 594, 117459.	02	4.3	48
335	Recent advances on photocatalytic nanomaterials for hydrogen energy evolution in sustai environment. International Journal of Environmental Analytical Chemistry, 0, , 1-19.	nable	3.3	12
336	g-C ₃ N ₄ /Uio-66-NH ₂ nanocomposites with enhance photocatalytic activity for hydrogen evolution and oxidation of amines to imines. New Jour Chemistry, 2020, 44, 3052-3061.		2.8	40
337	NiSâ€Decorated ZnO/ZnS Nanorod Heterostructures for Enhanced Photocatalytic Hydrog Production: Insight into the Role of NiS. Solar Rrl, 2020, 4, 1900568.	en	5.8	35
338	Sunlight assisted degradation of a pollutant dye in water by a WO ₃ @g-C ₃ N ₄ nanocomposite catalyst. New Journ 2020, 44, 2947-2960.	nal of Chemistry,	2.8	36
339	Highly efficient binary copperâ~'iron catalyst for photoelectrochemical carbon dioxide redu toward methane. Proceedings of the National Academy of Sciences of the United States o 2020, 117, 1330-1338.	iction f America,	7.1	93
340	One-step synthesis of 2D/2D-3D NiS/Zn3In2S6 hierarchical structure toward solar-to-chem transformation of biomass-relevant alcohols. Applied Catalysis B: Environmental, 2020, 26		20.2	115
341	Improving Artificial Photosynthesis over Carbon Nitride by Gas–Liquid–Solid Interface for Full Lightâ€Induced CO ₂ Reduction to C ₁ and C _{2O₂. ChemSusChem, 2020, 13, 1730-1734.}		6.8	59
342	Photocatalytic Reduction of CO ₂ by Metalâ€Freeâ€Based Materials: Recent A Future Perspective. Solar Rrl, 2020, 4, 1900546.	Advances and	5.8	177
343	Separating type I heterojunction of NaBi(MoO4)2/Bi2MoO6 by TiO2 nanofibers for enhance visible-photocatalysis. Chemical Physics, 2020, 533, 110696.	ced	1.9	17
344	Controllable photochemical synthesis of amorphous Ni(OH)2 as hydrogen production coc using inorganic phosphorous acid as sacrificial agent. Chinese Journal of Catalysis, 2020, 4		14.0	16

#	Article	IF	Citations
345	Design of an alkaline pyridyl acceptor-based calix[4]arene dye and synthesis of stable calixarene–TiO ₂ porous hybrid materials for efficient photocatalysis. Journal of Materials Chemistry A, 2020, 8, 8883-8891.	10.3	24
346	CO2 transformation to multicarbon products by photocatalysis and electrocatalysis. Materials Today Advances, 2020, 6, 100071.	5.2	55
347	Step-scheme CdS/TiO2 nanocomposite hollow microsphere with enhanced photocatalytic CO2 reduction activity. Journal of Materials Science and Technology, 2020, 56, 143-150.	10.7	249
348	Defect Engineering of Photocatalysts for Solar Energy Conversion. Solar Rrl, 2020, 4, 2070045.	5.8	4
349	Effects of fluorine on photocatalysis. Chinese Journal of Catalysis, 2020, 41, 1451-1467.	14.0	96
350	Multilevel polarization-fields enhanced capture and photocatalytic conversion of particulate matter over flexible schottky-junction nanofiber membranes. Journal of Hazardous Materials, 2020, 395, 122639.	12.4	38
351	500 nm induced tunable syngas synthesis from CO ₂ photoreduction by controlling heterojunction concentration. Chemical Communications, 2020, 56, 5354-5357.	4.1	40
352	Carbon Gels-Modified TiO2: Promising Materials for Photocatalysis Applications. Materials, 2020, 13, 1734.	2.9	22
353	Hollow Structure for Photocatalytic CO ₂ Reduction. ChemNanoMat, 2020, 6, 881-888.	2.8	39
354	Highly Selective Photoreduction of CO ₂ with Suppressing H ₂ Evolution by Plasmonic Au/CdSe–Cu ₂ O Hierarchical Nanostructures under Visible Light. Small, 2020, 16, e2000426.	10.0	53
355	Tungsten bronze Cs0.33WO3 nanorods modified by molybdenum for improved photocatalytic CO2 reduction directly from air. Science China Materials, 2020, 63, 2206-2214.	6.3	32
356	Tunable localized surface plasmon resonances in MoO3â^'-TiO2 nanocomposites with enhanced catalytic activity for CO2 photoreduction under visible light. Chinese Journal of Catalysis, 2020, 41, 1125-1131.	14.0	43
357	Dependence of the photocatalytic reduction of bicarbonate to formic acid by Au–TiO2 on Au morphology and its plasmonic vibrational mode. Materials Chemistry and Physics, 2020, 249, 123018.	4.0	9
358	Photocathode engineering for efficient photoelectrochemical CO2 reduction. Materials Today Nano, 2020, 10, 100077.	4.6	52
359	Molecular Tuning Nanoarchitectonics for Molecular Recognition and Molecular Manipulation. ChemNanoMat, 2020, 6, 870-880.	2.8	25
360	Broad-Spectral-Response Photocatalysts for CO ₂ Reduction. ACS Central Science, 2020, 6, 653-660.	11.3	79
361	Simple synthesis of hierarchically porous Sn/TiO2/graphitic carbon microspheres for CO2 reduction with H2O under simulated solar irradiation. Environmental Science and Pollution Research, 2020, 27, 22631-22638.	5.3	2
362	Mo Promotes Interfacial Interaction and Induces Oxygen Vacancies in 2D/2D of Mo-g-C ₃ N ₄ and Bi ₂ O ₂ CO ₃ Photocatalyst for Enhanced NO Oxidation. Industrial & Engineering Chemistry Research, 2020, 59, 9509-9518.	3.7	20

#	Article	IF	CITATIONS
363	Catalytic Conversion of Carbon Oxides in Confined Spaces: Status and Prospects. ChemCatChem, 2020, 12, 3960-3981.	3.7	10
364	A review of recent progress in gas phase CO2 reduction and suggestions on future advancement. Materials Today Chemistry, 2020, 16, 100264.	3.5	27
365	Modulating charge separation and transfer kinetics in carbon nanodots for photoredox catalysis. Journal of Energy Chemistry, 2020, 50, 365-377.	12.9	15
366	Bio-inspired honeycomb-like graphitic carbon nitride for enhanced visible light photocatalytic CO2 reduction activity. Environmental Science and Pollution Research, 2020, 27, 22604-22618.	5.3	23
367	2D/2D Mt/m-CN composite with enriched interface charge transfer for boosting photocatalytic CO2 hydrogenation by H2 to CH4 under visible light. Applied Surface Science, 2020, 520, 146296.	6.1	31
368	CO ₂ conversion into methanol under ambient conditions using efficient nanocomposite photocatalyst/solar-energy materials in aqueous medium. RSC Advances, 2020, 10, 15072-15078.	3.6	23
369	DFT study on Ag loaded 2H-MoS ₂ for understanding the mechanism of improved photocatalytic reduction of CO ₂ . Physical Chemistry Chemical Physics, 2020, 22, 10305-10313.	2.8	29
370	Controlling defects in crystalline carbon nitride to optimize photocatalytic CO ₂ reduction. Chemical Communications, 2020, 56, 5641-5644.	4.1	83
371	Insight into the CO2 photoreduction mechanism over 9-hydroxyphenal-1-one (HPHN) carbon quantum dots. Journal of Energy Chemistry, 2021, 52, 269-276.	12.9	9
372	A novel step-scheme BiVO4/Ag3VO4 photocatalyst for enhanced photocatalytic degradation activity under visible light irradiation. Chinese Journal of Catalysis, 2021, 42, 46-55.	14.0	234
373	Encapsulation of Co single sites in covalent triazine frameworks for photocatalytic production of syngas. Chinese Journal of Catalysis, 2021, 42, 123-130.	14.0	39
374	Recent advances in metal halide perovskite photocatalysts: Properties, synthesis and applications. Journal of Energy Chemistry, 2021, 54, 770-785.	12.9	75
375	Glycineâ€Functionalized CsPbBr ₃ Nanocrystals for Efficient Visible‣ight Photocatalysis of CO ₂ Reduction. Chemistry - A European Journal, 2021, 27, 2305-2309.	3.3	32
376	Visible light active LaFeO3 nano perovskite-RGO-NiO composite for efficient H2 evolution by photocatalytic water splitting and textile dye degradation. Journal of Environmental Chemical Engineering, 2021, 9, 104675.	6.7	44
377	Construction of CuO quantum Dots/WO3 nanosheets 0D/2D Z-scheme heterojunction with enhanced photocatalytic CO2 reduction activity under visible-light. Journal of Alloys and Compounds, 2021, 858, 157668.	5.5	51
378	Porous Metal-Organic Frameworks for Advanced Applications. , 2021, , 590-616.		5
379	Photocatalytic syngas synthesis from CO2 and H2O using ultrafine CeO2-decorated layered double hydroxide nanosheets under visible-light up to 600 nm. Frontiers of Chemical Science and Engineering, 2021, 15, 99-108.	4.4	22
380	Design of p-n homojunctions in metal-free carbon nitride photocatalyst for overall water splitting. Chinese Journal of Catalysis, 2021, 42, 501-509.	14.0	61

#	Article	IF	CITATIONS
381	Insideâ€∎ndâ€Out Semiconductor Engineering for CO ₂ Photoreduction: From Recent Advances to New Trends. Small Structures, 2021, 2, 2000061.	12.0	346
382	Cobalt nitride as a novel cocatalyst to boost photocatalytic CO2 reduction. Nano Energy, 2021, 79, 105429.	16.0	117
383	Conjugated Polymers for Photon-to-Electron and Photon-to-Fuel Conversions. ACS Applied Polymer Materials, 2021, 3, 60-92.	4.4	43
384	Construction of highly efficient Z-scheme ZnxCd1-xS/Au@g-C3N4 ternary heterojunction composite for visible-light-driven photocatalytic reduction of CO2 to solar fuel. Applied Catalysis B: Environmental, 2021, 282, 119600.	20.2	129
385	Thermally-assisted photocatalytic CO2 reduction to fuels. Chemical Engineering Journal, 2021, 408, 127280.	12.7	90
386	La-Doped ZnO/g-C3N4 Heterojunction for Efficient Degradation of Organic Contamination Under Visible Light Irradiation. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 375-383.	3.7	4
387	The Active Sites Engineering of Catalysts for CO 2 Activation and Conversion. Solar Rrl, 2021, 5, 2000443.	5.8	7
388	Oxygen Vacancies Engineering–Mediated BiOBr Atomic Layers for Boosting Visible Lightâ€Đriven Photocatalytic CO ₂ Reduction. Solar Rrl, 2021, 5, 2000480.	5.8	42
389	Interfacial facet engineering on the Schottky barrier between plasmonic Au and TiO2 in boosting the photocatalytic CO2 reduction under ultraviolet and visible light irradiation. Chemical Engineering Journal, 2021, 404, 127145.	12.7	127
390	Novel 2D SnNb2O6/Ag3VO4 S-scheme heterojunction with enhanced visible-light photocatalytic activity. Ceramics International, 2021, 47, 7169-7176.	4.8	24
391	An unprecedent hydride transfer pathway for selective photocatalytic reduction of CO2 to formic acid on TiO2. Applied Catalysis B: Environmental, 2021, 284, 119692.	20.2	56
392	Lightâ€Driven Syngas Production over Defective ZnIn ₂ S ₄ Nanosheets. Chemistry - A European Journal, 2021, 27, 3786-3792.	3.3	37
393	Nitrogenase inspired artificial photosynthetic nitrogen fixation. CheM, 2021, 7, 1431-1450.	11.7	43
394	Bimetallic nanoparticles as cocatalysts for versatile photoredox catalysis. EnergyChem, 2021, 3, 100047.	19.1	103
395	Recent advances in and comprehensive consideration of the oxidation half reaction in photocatalytic CO ₂ conversion. Journal of Materials Chemistry A, 2021, 9, 87-110.	10.3	30
396	Carbon–Graphitic Carbon Nitride Hybrids for Heterogeneous Photocatalysis. Small, 2021, 17, e2005231.	10.0	96
397	MgO and Au nanoparticle Co-modified g-C3N4 photocatalysts for enhanced photoreduction of CO2 with H2O. Chinese Journal of Catalysis, 2021, 42, 781-794.	14.0	34
398	Reveal the nature of particle size effect for CO2 reduction over Pd and Au. Chinese Journal of Catalysis, 2021, 42, 817-823.	14.0	12

#	Article	IF	Citations
	Advances in designing heterojunction photocatalytic materials. Chinese Journal of Catalysis, 2021, 42,		
399	710-730.	14.0	182
400	Boosting charge spatial separation efficiency for catalytic H2 bubble evolution under macroscopic spontaneous polarization electric field. Chemical Engineering Journal, 2021, 421, 127812.	12.7	4
401	Synergistic effect of surface coated and bulk doped carbon on enhancing photocatalytic CO2 reduction for MgIn2S4 microflowers. Applied Surface Science, 2021, 542, 148686.	6.1	26
402	Polarized heterogeneous CuO-CN for peroxymonosulfate nonradical activation: An enhancement mechanism of mediated electron transfer. Chemical Engineering Journal, 2021, 420, 127619.	12.7	57
403	Emerging material engineering strategies for amplifying photothermal heterogeneous CO2 catalysis. Journal of Energy Chemistry, 2021, 59, 108-125.	12.9	46
404	Mechanism of formaldehyde and formic acid formation on (101)-TiO ₂ @Cu ₄ systems through CO ₂ hydrogenation. Sustainable Energy and Fuels, 2021, 5, 564-574.	4.9	4
405	Nanoarchitectonics Revolution and Evolution: From Small Science to Big Technology. Small Science, 2021, 1, 2000032.	9.9	58
406	CsPbBr3 perovskite nanocrystals anchoring on monolayer MoS2 nanosheets for efficient photocatalytic CO2 reduction. Chemical Engineering Journal, 2021, 416, 128077.	12.7	73
407	Recent developments in organocatalysed transformations of epoxides and carbon dioxide into cyclic carbonates. Green Chemistry, 2021, 23, 77-118.	9.0	284
408	Synergistic Modulation at Atomically Dispersed Fe/Au Interface for Selective CO ₂ Electroreduction. Nano Letters, 2021, 21, 686-692.	9.1	41
409	Interface engineering in low-dimensional bismuth-based materials for photoreduction reactions. Journal of Materials Chemistry A, 2021, 9, 2662-2677.	10.3	32
410	Why the hydrothermal fluorinated method can improve photocatalytic activity of carbon nitride. Chinese Chemical Letters, 2021, 32, 277-281.	9.0	9
411	The synergistic photocatalytic effects of surface-modified g-C ₃ N ₄ in simple and complex pollution systems based on a macro-thermodynamic model. Environmental Science: Nano, 2021, 8, 217-232.	4.3	11
412	Engineering Layered Double Hydroxide–Based Photocatalysts Toward Artificial Photosynthesis: Stateâ€ofâ€theâ€Art Progress and Prospects. Solar Rrl, 2021, 5, 2000535.	5.8	53
413	Carbonized polymer dots modified ultrathin Bi12O17Cl2 nanosheets Z-scheme heterojunction for robust CO2 photoreduction. Chemical Engineering Science, 2021, 232, 116338.	3.8	48
414	Recent advances in visible-light-driven carbon dioxide reduction by metal-organic frameworks. Science of the Total Environment, 2021, 762, 144101.	8.0	35
415	Quantum Photoinitiators: Toward Emerging Photocuring Applications. Journal of the American Chemical Society, 2021, 143, 577-587.	13.7	28
416	Visible Light–Initiated Synergistic/Cascade Reactions over Metal–Organic Frameworks. Solar Rrl, 2021, 5, 2000454.	5.8	24

#	Article	IF	CITATIONS
417	Twoâ€Dimensional Covalentâ€Organic Frameworks for Photocatalysis: The Critical Roles of Building Block and Linkage. Solar Rrl, 2021, 5, 2000458.	5.8	40
418	Photocatalytic and electrocatalytic transformations of C1 molecules involving C–C coupling. Energy and Environmental Science, 2021, 14, 37-89.	30.8	110
419	Efficient interfacial charge transfer of 2D/2D porous carbon nitride/bismuth oxychloride step-scheme heterojunction for boosted solar-driven CO2 reduction. Journal of Colloid and Interface Science, 2021, 585, 684-693.	9.4	85
420	An overview on polymeric carbon nitride assisted photocatalytic CO2 reduction: Strategically manoeuvring solar to fuel conversion efficiency. Chemical Engineering Science, 2021, 230, 116219.	3.8	72
421	Precise fabrication of single-atom alloy co-catalyst with optimal charge state for enhanced photocatalysis. National Science Review, 2021, 8, nwaa224.	9.5	125
422	A hierarchical heterostructure of CdS QDs confined on 3D ZnIn2S4 with boosted charge transfer for photocatalytic CO2 reduction. Nano Research, 2021, 14, 81-90.	10.4	84
423	Photocatalytic membrane reactor for simultaneous separation and photoreduction of <scp> CO ₂ </scp> to methanol. International Journal of Energy Research, 2021, 45, 2353-2366.	4.5	20
424	Shedding light on <scp>CO₂</scp> : Catalytic synthesis of solar methanol. EcoMat, 2021, 3, e12078.	11.9	13
425	Photoelectrochemical processes for energy applications. , 2021, , 169-194.		0
426	Selective visible-light driven highly efficient photocatalytic reduction of CO ₂ to C ₂ H ₅ OH by two-dimensional Cu ₂ S monolayers. Nanoscale Horizons, 2021, 6, 661-668.	8.0	15
427	Artificial Photosynthesis by 3D Graphene-based Composite Photocatalysts. Chemistry in the Environment, 2021, , 396-431.	0.4	0
428	Eosin-Y and sulfur-codoped g-C ₃ N ₄ composite for photocatalytic applications: the regeneration of NADH/NADPH and the oxidation of sulfide to sulfoxide. Catalysis Science and Technology, 2021, 11, 6401-6410.	4.1	29
429	Crystal facet and surface defect engineered low dimensional CeO ₂ (0D, 1D, 2D) based photocatalytic materials towards energy generation and pollution abatement. Materials Advances, 2021, 2, 6942-6983.	5.4	18
430	Hydrothermal synthesis of star-shaped Bi5O7Br catalysts with strong visible light catalytic performance. Journal of Materials Research, 2021, 36, 628-636.	2.6	8
431	Polymeric carbon nitride-based photocatalysts for photoreforming of biomass derivatives. Green Chemistry, 2021, 23, 7435-7457.	9.0	39
432	Coupling CsPbBr ₃ Quantum Dots with Covalent Triazine Frameworks for Visibleâ€Lightâ€Driven CO ₂ Reduction. ChemSusChem, 2021, 14, 1131-1139.	6.8	52
433	Copper iodide decorated graphitic carbon nitride sheets with enhanced visible-light response for photocatalytic organic pollutant removal and antibacterial activities. Ecotoxicology and Environmental Safety, 2021, 208, 111712.	6.0	77
434	Well-defined Cu ₂ 0 photocatalysts for solar fuels and chemicals. Journal of Materials Chemistry A, 2021, 9, 5915-5951.	10.3	101

#	Article	IF	CITATIONS
435	An iron–nitrogen doped carbon and CdS hybrid catalytic system for efficient CO ₂ photochemical reduction. Chemical Communications, 2021, 57, 2033-2036.	4.1	16
436	Preparation of a ZnIn ₂ S ₄ –ZnAlO _x nanocomposite for photoreduction of CO ₂ to CO. Catalysis Science and Technology, 2021, 11, 3422-3427.	4.1	16
437	Modified metal-organic frameworks as photocatalysts. , 2021, , 231-270.		3
438	In-situ preparation of MOFs/SiC/PVA-Co-PE nanofiber membranes for efficient photocatalytic reduction of CO2. E3S Web of Conferences, 2021, 252, 02056.	0.5	0
439	Application of metal–organic frameworks as an alternative to metal oxide-based photocatalysts for the production of industrially important organic chemicals. Green Chemistry, 2021, 23, 6172-6204.	9.0	46
440	LED-driven controlled deposition of Ni onto TiO2 for visible-light expanded conversion of carbon dioxide into C1–C2 alkanes. Nanoscale Advances, 2021, 3, 3788-3798.	4.6	6
441	Highly efficient proton-assisted photocatalytic CO ₂ reduction over 3-mercaptopropionic acid-capped quantums dots. Sustainable Energy and Fuels, 2021, 5, 4015-4022.	4.9	4
442	Mechanistic insight into photocatalytic CO ₂ reduction by a Z-scheme g-C ₃ N ₄ /TiO ₂ heterostructure. New Journal of Chemistry, 2021, 45, 11474-11480.	2.8	16
443	Integration of redox cocatalysts for artificial photosynthesis. Energy and Environmental Science, 2021, 14, 5260-5288.	30.8	105
444	Copper-catalyzed four-component reaction of alkenes, Togni's reagent, amines and CO ₂ : stereoselective synthesis of (<i>Z</i>)-enol carbamates. Organic Chemistry Frontiers, 2021, 8, 1851-1857.	4.5	5
445	Facile modulation of different vacancies in ZnS nanoplates for efficient solar fuel production. Journal of Materials Chemistry A, 2021, 9, 7977-7990.	10.3	21
446	Metal halide perovskites as an emergent catalyst for CO ₂ photoreduction: a minireview. Reaction Chemistry and Engineering, 2021, 6, 828-838.	3.7	13
447	Stereodivergent synthesis of β-iodoenol carbamates with CO ₂ <i>via</i> photocatalysis. Chemical Science, 2021, 12, 11821-11830.	7.4	16
448	An amorphous NiS _x film as a robust cocatalyst for boosting photocatalytic hydrogen generation over ultrafine ZnCdS nanoparticles. Materials Advances, 2021, 2, 3881-3891.	5.4	14
449	Strategic design and evaluation of metal oxides for photocatalytic CO2 reduction. , 2021, , 255-265.		0
450	Photocatalysis by metal-organic frameworks. , 2021, , 543-559.		1
451	Vanadium doped titania nanoparticles for photocatalytic removal of heavy metals from aqueous solutions. Journal of Experimental Nanoscience, 2021, 16, 51-61.	2.4	7
452	MoC/MAPbI ₃ hybrid composites for efficient photocatalytic hydrogen evolution. Dalton Transactions, 2021, 50, 10860-10866.	3.3	10

#	Article	IF	CITATIONS
453	Controlled Synthesis of Cu ⁰ /Cu ₂ O for Efficient Photothermal Catalytic Conversion of CO ₂ and H ₂ O. ACS Sustainable Chemistry and Engineering, 2021, 9, 1754-1761.	6.7	53
454	Photoredox catalysis over semiconductors for light-driven hydrogen peroxide production. Green Chemistry, 2021, 23, 1466-1494.	9.0	166
455	The simultaneous adsorption, activation and <i>in situ</i> reduction of carbon dioxide over Au-loading BiOCl with rich oxygen vacancies. Nanoscale, 2021, 13, 2585-2592.	5.6	41
456	Bi–MO bimetallic Co-catalyst modified Bi2MoO6 for enhancing photocatalytic performance. Journal of Materials Research, 2021, 36, 646-656.	2.6	5
457	Fixation of atmospheric CO ₂ as C1-feedstock by nickel(<scp>ii</scp>) complexes. Dalton Transactions, 2021, 50, 7984-7994.	3.3	9
458	MOFâ€Based Hybrids for Solar Fuel Production. Advanced Energy Materials, 2021, 11, 2003052.	19.5	58
459	Nanostructured metal nitrides for photocatalysts. Journal of Materials Chemistry C, 2021, 9, 5323-5342.	5.5	14
460	CuO/ZnO Composite Electrocatalyst: Preparation and Reduction of CO ₂ to Syngas. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2021, 36, 1145.	1.3	0
461	Bi3O4Br nanoplates as an efficient piezo-photocatalyst for organic dye degradation. Modern Physics Letters B, 2021, 35, 2150119.	1.9	3
462	Construction of a Z-scheme heterojunction for high-efficiency visible-light-driven photocatalytic CO ₂ reduction. Nanoscale, 2021, 13, 4359-4389.	5.6	107
463	Reversed selectivity of photocatalytic CO ₂ reduction over metallic Pt and Pt(<scp>ii</scp>) oxide cocatalysts. Physical Chemistry Chemical Physics, 2021, 23, 9407-9417.	2.8	8
464	Co(OH) ₂ water oxidation cocatalyst-decorated CdS nanowires for enhanced photocatalytic CO ₂ reduction performance. Dalton Transactions, 2021, 50, 10159-10167.	3.3	4
465	Plasmonic photocatalysis: an extraordinary way to harvest visible light. , 2021, , 187-216.		1
466	Achieving selective photocatalytic CO ₂ reduction to CO on bismuth tantalum oxyhalogen nanoplates. Journal of Materials Chemistry A, 2021, 9, 19631-19636.	10.3	41
467	On the mechanism of photocatalytic reactions on Cu _x O@TiO ₂ core–shell photocatalysts. Journal of Materials Chemistry A, 2021, 9, 10135-10145.	10.3	35
468	Application of Ce–Eu/TiO2 phase change material as the wall material to improve the indoor environment. Journal of Materials Research, 2021, 36, 615-627.	2.6	4
469	Fundamental aspects of CO2 transformation into C/H/O based fuels/chemicals. , 2021, , 283-305.		2
470	Identification of Photoexcited Electron Relaxation in a Cobalt Phosphide Modified Carbon Nitride Photocatalyst. ChemPhotoChem, 2021, 5, 330-334.	3.0	8

#	Article	IF	CITATIONS
471	Titanium Nitride-Supported Platinum with Metal–Support Interaction for Boosting Photocatalytic H ₂ Evolution of Indium Sulfide. ACS Applied Materials & Interfaces, 2021, 13, 7238-7247.	8.0	40
472	Inorganic Frustrated Lewis Pairs in Photocatalytic CO ₂ Reduction. ChemPhotoChem, 2021, 5, 495-501.	3.0	17
473	Persistent CO2 photocatalysis for solar fuels in the dark. Nature Sustainability, 2021, 4, 466-473.	23.7	74
475	CO2 Reduction to Methanol Using a Conjugated Organic–Inorganic Hybrid TiO2–C3N4 Nano-assembly. , 2021, 6, 395.		8
476	Integrated Sâ€Scheme Heterojunction of Amineâ€Functionalized 1D CdSe Nanorods Anchoring on Ultrathin 2D SnNb ₂ O ₆ Nanosheets for Robust Solarâ€Driven CO ₂ Conversion. Solar Rrl, 2021, 5, 2000805.	5.8	206
477	2D materials and their heterostructures for photocatalytic water splitting and conversion of CO ₂ to value chemicals and fuels. JPhys Energy, 2021, 3, 022003.	5.3	33
478	Anthraceneâ€based <scp> gâ€C ₃ N ₄ </scp> photocatalyst for regeneration of <scp>NAD</scp> (P)H and sulfide oxidation based on Zâ€scheme nature. International Journal of Energy Research, 2021, 45, 13117-13129.	4.5	17
479	Fabrication of Bi-BiOCl/MgIn2S4 heterostructure with step-scheme mechanism for carbon dioxide photoreduction into methane. Journal of CO2 Utilization, 2021, 45, 101453.	6.8	42
480	Charge Carrier Processes and Optical Properties in TiO2 and TiO2-Based Heterojunction Photocatalysts: A Review. Materials, 2021, 14, 1645.	2.9	118
481	Heteropoly Blue/Protonation-Defective Graphitic Carbon Nitride Heterojunction for the Photo-Driven Nitrogen Reduction Reaction. Inorganic Chemistry, 2021, 60, 5829-5839.	4.0	17
482	Cocatalyst Engineering in Piezocatalysis: A Promising Strategy for Boosting Hydrogen Evolution. ACS Applied Materials & Interfaces, 2021, 13, 15305-15314.	8.0	68
483	Copper-Doped ZnS with Internal Phase Junctions for Highly Selective CO Production from CO ₂ Photoreduction. ACS Applied Energy Materials, 2021, 4, 2586-2592.	5.1	13
484	Enhanced Photocatalytic CO ₂ Reduction with Photothermal Effect by Cooperative Effect of Oxygen Vacancy and Au Cocatalyst. ACS Applied Materials & amp; Interfaces, 2021, 13, 14221-14229.	8.0	57
485	Synthesis of Au/UiO-66-NH2/Graphene composites as efficient visible-light photocatalysts to convert CO2. International Journal of Hydrogen Energy, 2021, 46, 11621-11635.	7.1	29
486	Efficient and Selective Interplay Revealed: CO ₂ Reduction to CO over ZrO ₂ by Light with Further Reduction to Methane over Ni ⁰ by Heat Converted from Light. Angewandte Chemie, 2021, 133, 9127-9136.	2.0	6
487	Enhanced Visible-Light-Driven Hydrogen Production through MOF/MOF Heterojunctions. ACS Applied Materials & Materia	8.0	73
488	In-plane heterostructured Ag2S-In2S3 atomic layers enabling boosted CO2 photoreduction into CH4. Nano Research, 2021, 14, 4520-4527.	10.4	24
489	Visible-light-driven heterostructured g-C3N4/Bi-TiO2 floating photocatalyst with enhanced charge carrier separation for photocatalytic inactivation of Microcystis aeruginosa. Frontiers of Environmental Science and Engineering, 2021, 15, 1.	6.0	39

		CITATION REPORT		
#	Article		IF	CITATIONS
490	Semiconductorâ€based nanocomposites for selective organic synthesis. Nano Select,	2021, 2, 1799.	3.7	1
491	Efficient and Selective Interplay Revealed: CO ₂ Reduction to CO over ZrC Light with Further Reduction to Methane over Ni ⁰ by Heat Converted fro Angewandte Chemie - International Edition, 2021, 60, 9045-9054.		13.8	27
492	Photochemical fixation of carbon dioxide for N-formylation of amine using Cu(II) embe nanocomposite under visible light. Journal of CO2 Utilization, 2021, 45, 101402.	dded BiVO4	6.8	21
493	Band Gap Engineering in Solvochromic 2D Covalent Organic Framework Photocatalyst Light-Driven Enhanced Solar Fuel Production from Carbon Dioxide. ACS Applied Mater Interfaces, 2021, 13, 14122-14131.	ts for Visible ials &	8.0	66
494	Nanomaterials for adsorption and conversion of CO2 under gentle conditions. Materia 50, 385-399.	ıls Today, 2021,	14.2	21
495	Ag and Cu Nanoparticles Synergistically Enhance Photocatalytic CO2 Reduction Activi TiO2. Catalysis Letters, 2022, 152, 124-138.	ty of B Phase	2.6	12
496	Tunable Photocatalytic Production of Syngas Using Co@C ₃ N _{4Phosphorus. ChemPhotoChem, 2021, 5, 674-679.}	ıb> and Black	3.0	8
497	From Trash to Treasure: Probing Cycloaddition and Photocatalytic Reduction of CO <su over Cerium-Based Metal–Organic Frameworks. Journal of Physical Chemistry C, 202</su 	ub>2 21, 125, 8497-8507.	3.1	41
498	Rational design of catalysts towards energy-saving formaldehyde oxidation: A review. I Materials Letters, 2021, 14, 2130004.	Functional	1.2	1
499	Synthesis, characterization, and photocatalytic activity of stannum-doped MgIn2S4 m Journal of Alloys and Compounds, 2021, 860, 158446.	icrospheres.	5.5	14
500	Platinumâ€Based Electrocatalysts for Direct Alcohol Fuel Cells: Enhanced Performance Alcohol Oxidation Reactions. ChemPlusChem, 2021, 86, 574-586.	es toward	2.8	28
501	Tuning the turnover frequency and selectivity of photocatalytic CO2 reduction to CO using platinum and palladium nanoparticles on Ti-Beta zeolites. Chemical Engineering 410, 128234.		12.7	17
502	Electrochemical and photochemical CO2 reduction using diamond. Carbon, 2021, 175	5, 440-453.	10.3	24
503	Microstructure and Properties of Ag-Doped ZnO Grown Hydrothermally on a Graphene Polyethylene Terephthalate Bilayer Flexible Substrate. Frontiers in Chemistry, 2021, 9,	2-Coated 661127.	3.6	8
504	Step-scheme heterojunction photocatalysts for solar energy, water splitting, CO2 com bacterial inactivation: a review. Environmental Chemistry Letters, 2021, 19, 2941-296	version, and 6.	16.2	162
505	Recent Advances in TiO2-Based Heterojunctions for Photocatalytic CO2 Reduction Wi Oxidation: A Review. Frontiers in Chemistry, 2021, 9, 637501.	th Water	3.6	26
506	Towards addressing environmental challenges: rational design of metal-organic framev photocatalysts via a microdroplet approach. JPhys Energy, 2021, 3, 032005.	works-based	5.3	2
507	Photocatalytic degradation of propranolol hydrochloride using Nd–TiO2 nanoparticl and visible light. Journal of Materials Research, 2021, 36, 1584-1599.	es under UV	2.6	9

#	Article	IF	CITATIONS
508	Two- and three-dimensional zinc oxide nanostructures and its photocatalytic dye degradation performance study. Journal of Materials Research, 2021, 36, 1573-1583.	2.6	20
509	Sâ€Scheme Photocatalytic Systems. Solar Rrl, 2021, 5, 2100118.	5.8	128
510	Ag/Ultrathin-Layered Double Hydroxide Nanosheets Induced by a Self-Redox Strategy for Highly Selective CO ₂ Reduction. ACS Applied Materials & Interfaces, 2021, 13, 16536-16544.	8.0	40
511	Controlling Radical Intermediates in Photocatalytic Conversion of Low-Carbon-Number Alcohols. ACS Sustainable Chemistry and Engineering, 2021, 9, 6188-6202.	6.7	18
512	Defect engineering of photocatalysts for solar-driven conversion of CO2 into valuable fuels. Materials Today, 2021, 50, 358-384.	14.2	66
513	Transition-Metal-Modified Vanadoborate Clusters as Stable and Efficient Photocatalysts for CO ₂ Reduction. Inorganic Chemistry, 2021, 60, 7364-7371.	4.0	12
514	Stand-Alone CdS Nanocrystals for Photocatalytic CO ₂ Reduction with High Efficiency and Selectivity. ACS Applied Materials & amp; Interfaces, 2021, 13, 26573-26580.	8.0	37
515	Twoâ€Dimensional Metal Halide Perovskite Nanosheets for Efficient Photocatalytic CO ₂ Reduction. Solar Rrl, 2021, 5, 2100263.	5.8	36
516	Composite magnetic photocatalyst Bi24O31Br10/NiFe2O4: Hydrothermal preparation, characterization and photocatalytic mechanism. Materials Science in Semiconductor Processing, 2021, 126, 105669.	4.0	19
517	Interplay Between Charge Accumulation and Oxygen Reduction Catalysis in Nanostructured TiO 2 Electrodes Functionalized with a Molecular Catalyst. ChemElectroChem, 2021, 8, 2640-2648.	3.4	1
518	Insight into the synergy of amine-modified S-scheme Cd0.5Zn0.5Se/porous g-C3N4 and noble-metal-free Ni2P for boosting photocatalytic hydrogen generation. Ceramics International, 2021, 47, 13488-13499.	4.8	18
519	Graphitic Carbon Nitride Modified with Zr-Thiamine Complex for Efficient Photocatalytic CO ₂ Insertion to Epoxide: Comparison with Traditional Thermal Catalysis. ACS Applied Nano Materials, 2021, 4, 6805-6820.	5.0	23
520	Dissecting the interfaces of MOF-coated CdS on synergized charge transfer for enhanced photocatalytic CO2 reduction. Journal of Catalysis, 2021, 397, 128-136.	6.2	61
521	Facile synthesis of C3N4-supported metal catalysts for efficient CO2 photoreduction. Nano Research, 2022, 15, 551-556.	10.4	57
522	Coupling Strategy for CO ₂ Valorization Integrated with Organic Synthesis by Heterogeneous Photocatalysis. Angewandte Chemie - International Edition, 2021, 60, 21150-21172.	13.8	182
523	Ultrathin NiAl-Layered Double Hydroxides Grown on 2D Ti ₃ C ₂ T _{<i>x</i>} MXene to Construct Core–Shell Heterostructures for Enhanced Photocatalytic CO ₂ Reduction. Journal of Physical Chemistry C. 2021, 125, 10207-10218.	3.1	42
524	Halide Perovskite Materials for Photo(Electro)Chemical Applications: Dimensionality, Heterojunction, and Performance. Advanced Energy Materials, 2022, 12, 2004002.	19.5	68
525	Visible-light-driven CO2 reduction to ethylene on CdS: Enabled by structural relaxation-induced intermediate dimerization and enhanced by ZIF-8 coating. Applied Catalysis B: Environmental, 2021, 285, 119834.	20.2	71

#	Article	IF	Citations
526	Metal-organic Framework (MOF) Based Materials for Electrochemical Hydrogen Production: A Mini Review. International Journal of Electrochemical Science, 0, , ArticleID:210530.	1.3	2
527	Z-scheme g-C ₃ N ₄ /Fe ₂ O ₃ for efficient photo-oxidation of benzylamine under mild conditions. Semiconductor Science and Technology, 2021, 36, 075004.	2.0	5
528	Coupling Strategy for CO ₂ Valorization Integrated with Organic Synthesis by Heterogeneous Photocatalysis. Angewandte Chemie, 2021, 133, 21320-21342.	2.0	30
529	Selective CO ₂ â€to H ₄ Photoconversion in Aqueous Solutions Catalyzed by Atomically Dispersed Copper Sites Anchored on Ultrathin Graphdiyne Oxide Nanosheets. Solar Rrl, 2021, 5, 2100200.	5.8	13
530	Regulating Utilization Efficiency of the Photogenerated Charge Carriers by Constructing Donor–l€â€"Acceptor Polymers for Upgrading Photocatalytic CO ₂ Reduction. ChemSusChem, 2021, 14, 2749-2756.	6.8	12
531	Architectural Design for Enhanced C ₂ Product Selectivity in Electrochemical CO ₂ Reduction Using Cu-Based Catalysts: A Review. ACS Nano, 2021, 15, 7975-8000.	14.6	183
532	Chemically Exfoliated Semiconducting Bimetallic Porphyrinylphosphonate Metal–Organic Layers for Photocatalytic CO ₂ Reduction under Visible Light. ACS Applied Energy Materials, 2021, 4, 4319-4326.	5.1	22
533	Sunlight mediated enhanced photocatalytic activity of TiO2 nanoparticles functionalized CuO-Cu2O nanorods for removal of methylene blue and oxytetracycline hydrochloride. Journal of Colloid and Interface Science, 2021, 590, 60-71.	9.4	83
534	Platinum Nanoparticles with Low Content and High Dispersion over Exfoliated Layered Double Hydroxide for Photocatalytic CO ₂ Reduction. Energy & Fuels, 2021, 35, 10820-10831.	5.1	23
535	Highly Efficient Photothermocatalytic CO ₂ Reduction in Ni/Mgâ€Doped Al ₂ O ₃ with High Fuel Production Rate, Large Lightâ€ŧoâ€Fuel Efficiency, and Good Durability. Energy and Environmental Materials, 2022, 5, 582-591.	12.8	24
536	In-situ growth of TiO2 imbedded Ti3C2TA nanosheets to construct PCN/Ti3C2TA MXenes 2D/3D heterojunction for efficient solar driven photocatalytic CO2 reduction towards CO and CH4 production. Journal of Colloid and Interface Science, 2021, 591, 20-37.	9.4	71
537	Light-driven reduction of carbon dioxide: Altering the reaction pathways and designing photocatalysts toward value-added and renewable fuels. Chemical Engineering Science, 2021, 237, 116547.	3.8	26
538	In situ growing graphene on g-C3N4 with barrier-free interface and polarization electric field for strongly boosting solar energy conversion into H2 energy. Applied Catalysis B: Environmental, 2021, 287, 119986.	20.2	38
539	Lead-free halide perovskites, beyond solar cells and LEDs. JPhys Energy, 2021, 3, 032014.	5.3	11
540	A Robust Photocatalytic Hybrid Material Composed of Metalâ€Organic Cages and TiO 2 for Efficient Visibleâ€Lightâ€Driven Hydrogen Evolution. Chemistry - an Asian Journal, 2021, 16, 2055-2062.	3.3	6
541	Artificial Photosynthesis over Metal Halide Perovskites: Achievements, Challenges, and Prospects. Journal of Physical Chemistry Letters, 2021, 12, 5864-5870.	4.6	45
542	A review on electrochemical synthesized copper-based catalysts for electrochemical reduction of CO2 to C2+ products. Chemical Engineering Journal, 2021, 414, 128825.	12.7	114
543	Designing charge transfer route at the interface between WP nanoparticle and g-C3N4 for highly enhanced photocatalytic CO2 reduction reaction. Applied Catalysis B: Environmental, 2021, 286, 119879.	20.2	77

#	Article	IF	Citations
544	Light-facilitated structure reconstruction on self-optimized photocatalyst TiO2@BiOCl for selectively efficient conversion of CO2 to CH4. Applied Catalysis B: Environmental, 2021, 286, 119832.	20.2	87
545	Hydrogenated Oxide as Novel Quasi-metallic Cocatalyst for Efficient Visible-Light Driven Photocatalytic Water Splitting. Journal of Physical Chemistry C, 2021, 125, 12672-12681.	3.1	5
546	(Photo)electrocatalytic Versus Heterogeneous Photocatalytic Carbon Dioxide Reduction. ChemPhotoChem, 2021, 5, 767-791.	3.0	21
547	Cobalt Phosphide Cocatalysts Coated with Porous Nâ€doped Carbon Layers for Photocatalytic CO ₂ Reduction. ChemCatChem, 2021, 13, 3581-3587.	3.7	18
548	Lead-Free Perovskite Cs ₂ AgBiX ₆ Nanocrystals with a Band Gap Funnel Structure for Photocatalytic CO ₂ Reduction under Visible Light. Chemistry of Materials, 2021, 33, 4971-4976.	6.7	60
549	Multifunctional Mulberryâ€like BiVO ₄ â~'Bi ₂ O ₃ pâ€n Heterostructures with Enhanced both Photocatalytic Reduction and Oxidation Activities. ChemCatChem, 2021, 13, 3357-3367.	3.7	10
550	Supported metallic nanoparticles prepared by an organometallic route to boost the electrocatalytic conversion of CO2. Journal of CO2 Utilization, 2021, 50, 101613.	6.8	5
551	Review and prospects of microporous zeolite catalysts for CO2 photoreduction. Applied Materials Today, 2021, 23, 101042.	4.3	17
552	Recent Advances on Porous Materials for Synergetic Adsorption and Photocatalysis. Energy and Environmental Materials, 2022, 5, 711-730.	12.8	30
553	Green synthesis and characterization of RGO/Cu nanocomposites as photocatalytic degradation of organic pollutants in waste-water. International Journal of Hydrogen Energy, 2021, 46, 20534-20546.	7.1	71
554	In-situ synthesis of WO3–x/MoO3–x heterojunction with abundant oxygen vacancies for efficient photocatalytic reduction of CO2. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 621, 126582.	4.7	30
555	Cube <scp> Cu ₂ O </scp> modified <scp>CoALâ€LDH</scp> pâ€n heterojunction for photocatalytic hydrogen evolution. International Journal of Energy Research, 2021, 45, 19014-19027.	4.5	12
556	Photothermal catalytic CO2 reduction over nanomaterials. Chem Catalysis, 2021, 1, 272-297.	6.1	150
557	Simultaneous Manipulation of Bulk Excitons and Surface Defects for Ultrastable and Highly Selective CO ₂ Photoreduction. Advanced Materials, 2021, 33, e2100143.	21.0	151
558	Self‣upporting Electrodes for Gasâ€Involved Key Energy Reactions. Advanced Functional Materials, 2021, 31, 2104620.	14.9	39
559	Simple hydrothermal synthesis of g-C3N4/Ni9S8 composites for efficient photocatalytic H2 evolution. Journal of Materials Science: Materials in Electronics, 2021, 32, 21643-21657.	2.2	2
560	Insights into the Dynamic Interfacial and Bulk Composition of Copper-Modified, Hydrogen-Alloyed, Palladium Nanocubes under Electrocatalytic Conditions. Journal of Physical Chemistry C, 2021, 125, 15487-15495.	3.1	1
561	Dual-phase metal nitrides as highly efficient co-catalysts for photocatalytic hydrogen evolution. Chemical Engineering Journal, 2021, 416, 129116.	12.7	28

#	Article	IF	CITATIONS
562	Selective photocatalytic reduction CO2 to CH4 on ultrathin TiO2 nanosheet via coordination activation. Applied Catalysis B: Environmental, 2021, 288, 120000.	20.2	87
563	Ordered Macroporous Carbonous Frameworks Implanted with CdS Quantum Dots for Efficient Photocatalytic CO ₂ Reduction. Advanced Materials, 2021, 33, e2102690.	21.0	164
564	Achieving simultaneous Cu particles anchoring in meso-porous TiO2 nanofabrication for enhancing photo-catalytic CO2 reduction through rapid charge separation. Chinese Chemical Letters, 2022, 33, 1313-1316.	9.0	48
565	Noble-Metal-Free Multicomponent Nanointegration for Sustainable Energy Conversion. Chemical Reviews, 2021, 121, 10271-10366.	47.7	156
566	Enhanced photocatalytic CO2 reduction with defective TiO2 nanotubes modified by single-atom binary metal components. Environmental Research, 2021, 198, 111176.	7.5	29
567	Photocatalytic and water-splitting properties of TiO2 and Ag–TiO2 films in the visible light region. AIP Advances, 2021, 11, .	1.3	2
568	Synthesis and application of perovskite-based photocatalysts in environmental remediation: A review. Journal of Molecular Liquids, 2021, 334, 116029.	4.9	52
569	Metal-organic framework-derived rodlike AgCl/Ag/In2O3: A plasmonic Z-scheme visible light photocatalyst. Chemical Engineering Journal, 2021, 415, 129010.	12.7	38
570	2D Heterostructure of Amorphous CoFeB Coating Black Phosphorus Nanosheets with Optimal Oxygen Intermediate Absorption for Improved Electrocatalytic Water Oxidation. ACS Nano, 2021, 15, 12418-12428.	14.6	67
571	Improvement of CO2 Photoreduction Efficiency by Process Intensification. Catalysts, 2021, 11, 912.	3.5	9
572	Modulation strategies in titania photocatalyst for energy recovery and environmental remediation. Catalysis Today, 2022, 384-386, 45-69.	4.4	9
573	Plasmonic Bi-enhanced ammoniated α-MnS/Bi2MoO6 S-scheme heterostructure for visible-light-driven CO2 reduction. Journal of Colloid and Interface Science, 2021, 604, 844-855.	9.4	76
574	Recent advances in VOCs and CO removal via photothermal synergistic catalysis. Chinese Journal of Catalysis, 2021, 42, 1078-1095.	14.0	43
575	Filling COFs with bimetallic nanoclusters for CO2-to-alcohols conversion with H2O oxidation. Applied Catalysis B: Environmental, 2021, 288, 120001.	20.2	56
576	Highly Dispersive Ni@C and Co@C Nanoparticles Derived from Metal–Organic Monolayers for Enhanced Photocatalytic CO ₂ Reduction. Inorganic Chemistry, 2021, 60, 10738-10748.	4.0	18
577	A Critical Review on Black Phosphorusâ€Based Photocatalytic CO ₂ Reduction Application. Small, 2021, 17, e2102155.	10.0	60
578	Integrating Single Atoms with Different Microenvironments into One Porous Organic Polymer for Efficient Photocatalytic CO ₂ Reduction. Advanced Materials, 2021, 33, e2101568.	21.0	96
579	Engineering Cocatalysts onto Lowâ€Dimensional Photocatalysts for CO ₂ Reduction. Small Structures, 2021, 2, 2100046.	12.0	40

#	Article	IF	CITATIONS
580	Photocatalytic degradation of antibiotics using a novel Ag/Ag2S/Bi2MoO6 plasmonic p-n heterojunction photocatalyst: Mineralization activity, degradation pathways and boosted charge separation mechanism. Chemical Engineering Journal, 2021, 415, 128991.	12.7	253
581	Efficient Photocatalytic Reduction of CO ₂ to CO Using NiFe ₂ O ₄ @N/C/SnO ₂ Derived from FeNi Metal–Organic Framework. ACS Applied Materials & Interfaces, 2021, 13, 40571-40581.	8.0	36
582	Self-adaptive dual-metal-site pairs in metal-organic frameworks for selective CO2 photoreduction to CH4. Nature Catalysis, 2021, 4, 719-729.	34.4	406
583	Structural and Morphological Engineering of Benzothiadiazole-Based Covalent Organic Frameworks for Visible Light-Driven Oxidative Coupling of Amines. ACS Applied Materials & Interfaces, 2021, 13, 39291-39303.	8.0	55
584	A novel synergetic effect between Ru and Cu nanoparticles for Ru-Cu/Al2O3 causes highly efficient photothermocatalytic CO2 reduction with good durability. Applied Surface Science, 2021, 556, 149821.	6.1	14
585	Spatial distribution of ZnIn2S4 nanosheets on g-C3N4 microtubes promotes photocatalytic CO2 reduction. Chemical Engineering Journal, 2021, 418, 129476.	12.7	84
586	Ethanol Dry Reforming over Mn-Doped Co/CeO ₂ Catalysts with Enhanced Activity and Stability. Energy & Fuels, 2021, 35, 13945-13954.	5.1	5
587	Fabrication of oxygen vacancy rich ultrafine ceria nanocubes decorated one dimensional CdS heteronanostructures for efficient visible light driven hydrogen evolution reaction. Applied Surface Science, 2021, 556, 149731.	6.1	35
588	Cl-doped carbon nitride nanostrips for remarkably improving visible-light photocatalytic hydrogen production. International Journal of Hydrogen Energy, 2021, 46, 28591-28601.	7.1	15
589	Role of transition-metal electrocatalysts for oxygen evolution with Si-based photoanodes. Chinese Journal of Catalysis, 2021, 42, 1387-1394.	14.0	8
590	Combination of Cu-Pt-Pd nanoparticles supported on graphene nanoribbons decorating the surface of TiO2 nanotube applied for CO2 photoelectrochemical reduction. Journal of Environmental Chemical Engineering, 2021, 9, 105803.	6.7	12
591	Construction of Core–Shell MOF@COF Hybrids with Controllable Morphology Adjustment of COF Shell as a Novel Platform for Photocatalytic Cascade Reactions. Advanced Science, 2021, 8, e2101884.	11.2	79
592	Irradiance-Controlled Photoassisted Synthesis of Sub-Nanometre Sized Ruthenium Nanoparticles as Co-Catalyst for TiO2 in Photocatalytic Reactions. Materials, 2021, 14, 4799.	2.9	1
593	Constructing van der Waals Heterogeneous Photocatalysts Based on Atomically Thin Carbon Nitride Sheets and Graphdiyne for Highly Efficient Photocatalytic Conversion of CO ₂ into CO. ACS Applied Materials & Interfaces, 2021, 13, 40629-40637.	8.0	51
594	Efficient Photocatalytic CO ₂ Reduction by the Construction of Ti ₃ C ₂ /CsPbBr ₃ QD Composites. ACS Applied Energy Materials, 2021, 4, 9154-9165.	5.1	19
595	On the Roles of Electron Transfer in Catalysis by Nanoclusters and Nanoparticles. Chemistry - A European Journal, 2021, 27, 16291-16308.	3.3	8
596	Unique Dualâ€6ites Boosting Overall CO ₂ Photoconversion by Hierarchical Electron Harvesters. Small, 2021, 17, e2103796.	10.0	38
597	In-situ construction of metallic Ni3C@Ni core–shell cocatalysts over g-C3N4 nanosheets for shell-thickness-dependent photocatalytic H2 production. Applied Catalysis B: Environmental, 2021, 291, 120104.	20.2	258

#	Article	IF	CITATIONS
598	MoS ₂ –Nanosheets-Based Catalysts for Photocatalytic CO ₂ Reduction: A Review. ACS Applied Nano Materials, 2021, 4, 8644-8667.	5.0	63
599	"Responsive―ionic liquids to catalyze the transformation of carbon dioxide under atmospheric pressure. Applied Catalysis A: General, 2021, 623, 118241.	4.3	19
600	Sustained CO2-photoreduction activity and high selectivity over Mn, C-codoped ZnO core-triple shell hollow spheres. Nature Communications, 2021, 12, 4936.	12.8	159
601	Visible-light assisted production of hydrocarbon fuels from carbon dioxide using Cu2O@MnCo2O4 heterojunction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 623, 126707.	4.7	9
602	Covalent Triazine Framework as an Efficient Photocatalyst for Regeneration of NAD(P)H and Selective Oxidation of Organic Sulfide. Photochemistry and Photobiology, 2022, 98, 150-159.	2.5	10
603	Acetate-assistant efficient cation-exchange of halide perovskite nanocrystals to boost the photocatalytic CO2 reduction. Nano Research, 2022, 15, 1845-1852.	10.4	27
604	Acceptorless Photocatalytic Dehydrogenation of Furfuryl Alcohol (FOL) to Furfural (FAL) and Furoic Acid (FA) over Ti 3 C 2 T x /CdS under Visible Light. Chemistry - an Asian Journal, 2021, 16, 2932-2938.	3.3	6
605	Dye-sensitized photoanode decorated with pyridine additives for efficient solar water oxidation. Chinese Journal of Catalysis, 2021, 42, 1352-1359.	14.0	8
606	Photothermocatalytic Dry Reforming of Methane for Efficient CO ₂ Reduction and Solar Energy Storage. ACS Sustainable Chemistry and Engineering, 2021, 9, 11635-11651.	6.7	25
607	Accelerated Photoreduction of CO ₂ to CO over a Stable Heterostructure with a Seamless Interface. ACS Applied Materials & Interfaces, 2021, 13, 39523-39532.	8.0	47
608	Significantly Enhanced Photocatalytic CO ₂ Reduction by Surface Amorphization of Cocatalysts. Small, 2021, 17, e2102105.	10.0	34
609	Advances and recent trends in cobalt-based cocatalysts for solar-to-fuel conversion. Applied Materials Today, 2021, 24, 101074.	4.3	23
610	Remarkable CO2 photoreduction activity using TiO2 nanotube arrays under favorable photothermal conditions driven by concentrated solar light. Applied Physics Letters, 2021, 119, .	3.3	6
611	CsPbBr3 perovskite quantum dots anchored on multiwalled carbon nanotube for efficient CO2 photoreduction. Carbon, 2021, 182, 454-462.	10.3	40
612	Spontaneous polarization enhanced bismuth ferrate photoelectrode: fabrication and boosted photoelectrochemical water splitting property. Frontiers in Energy, 2021, 15, 781-790.	2.3	4
613	Encapsulation of Pd Nanoparticles in Covalent Triazine Frameworks for Enhanced Photocatalytic CO ₂ Conversion. ACS Sustainable Chemistry and Engineering, 2021, 9, 12646-12654.	6.7	28
614	Controlling metallic Co0 in ZIF-67-derived N-C/Co composite catalysts for efficient photocatalytic CO2 reduction. Science China Materials, 2022, 65, 413-421.	6.3	23
615	Solar chimney power plant integrated with a photocatalytic reactor to remove atmospheric methane: A numerical analysis. Solar Energy, 2021, 226, 101-111.	6.1	18

#	Article	IF	CITATIONS
616	Semi-chemical interaction between graphitic carbon nitride and Pt for boosting photocatalytic hydrogen evolution. Chinese Chemical Letters, 2022, 33, 3061-3064.	9.0	12
617	Solar-Driven Glucose Isomerization into Fructose via Transient Lewis Acid–Base Active Sites. ACS Catalysis, 2021, 11, 12170-12178.	11.2	36
618	Chiroplasmon-active optical fiber probe for environment chirality estimation. Sensors and Actuators B: Chemical, 2021, 343, 130122.	7.8	7
619	Self-doped TiO2 nanotube array photoanode for microfluidic all-vanadium photoelectrochemical flow battery. Journal of Electroanalytical Chemistry, 2021, 897, 115598.	3.8	8
620	Low Temperature Sunlightâ€Powered Reduction of CO ₂ to CO Using a Plasmonic Au/TiO ₂ Nanocatalyst. ChemCatChem, 2021, 13, 4507-4513.	3.7	15
621	Study of Re(I) Carbene Complexes for Photocatalytic Reduction of Carbon Dioxide. Energy & Fuels, 2021, 35, 19170-19177.	5.1	6
622	Long-ranged surface plasmon polaritons and their coupling with upconversion emissions in indium-tin-oxide-coated erbium and iron codoped LiNbO3. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 2984.	2.1	0
623	Unique Z-scheme carbonized polymer dots/Bi4O5Br2 hybrids for efficiently boosting photocatalytic CO2 reduction. Applied Catalysis B: Environmental, 2021, 293, 120182.	20.2	110
624	A roadmap towards the development of superior photocatalysts for solar- driven CO2-to-fuels production. Renewable and Sustainable Energy Reviews, 2021, 148, 111298.	16.4	31
625	Atomically Dispersed Highâ€Density Al–N ₄ Sites in Porous Carbon for Efficient Photodriven CO ₂ Cycloaddition. Advanced Materials, 2021, 33, e2103186.	21.0	69
626	(Photo)electrocatalytic Versus Heterogeneous Photocatalytic Carbon Dioxide Reduction. ChemPhotoChem, 2021, 5, 766-766.	3.0	0
627	Recent advances on Bi2WO6-based photocatalysts for environmental and energy applications. Chinese Journal of Catalysis, 2021, 42, 1413-1438.	14.0	208
628	A TiO ₂ â€Co(terpyridine) ₂ Photocatalyst for the Selective Oxidation of Cellulose to Formate Coupled to the Reduction of CO ₂ to Syngas. Angewandte Chemie - International Edition, 2021, 60, 23306-23312.	13.8	45
629	Construction of Sixâ€Oxygenâ€Coordinated Single Ni Sites on gâ€C ₃ N ₄ with Boronâ€Oxo Species for Photocatalytic Waterâ€Activationâ€Induced CO ₂ Reduction. Advanced Materials, 2021, 33, e2105482.	21.0	128
630	Effective visibleâ€light CO ₂ photoreduction over (metallo)porphyrinâ€based metal–organic frameworks to achieve useful hydrocarbons. Applied Organometallic Chemistry, 2021, 35, e6422.	3.5	14
631	A TiO ₂ â€Co(terpyridine) ₂ Photocatalyst for the Selective Oxidation of Cellulose to Formate Coupled to the Reduction of CO ₂ to Syngas. Angewandte Chemie, 2021, 133, 23494-23500.	2.0	11
632	Shining photocatalysis by gold-based nanomaterials. Nano Energy, 2021, 88, 106306.	16.0	64
633	Selective liquid chemicals on CO2 reduction by energy level tuned rGO/TiO2 dark cathode with BiVO4 photoanode. Applied Catalysis B: Environmental, 2021, 295, 120267.	20.2	11

ARTICLE IF CITATIONS Insights into enhancement of photocatalytic properties of g-C3N4 by local electric field induced by 634 6.7 13 polarization of MgO(111). Journal of Environmental Chemical Engineering, 2021, 9, 105922. Photoenhanced CO2 methanation over La2O3 promoted Co/TiO2 catalysts. Applied Catalysis B: 20.2 Environmental, 2021, 294, 120248. "Environmental phosphorylation―boosting photocatalytic CO2 reduction over polymeric carbon nitride grown on carbon paper at air-liquid-solid joint interfaces. Chinese Journal of Catalysis, 2021, 636 14.0 33 42, 1667-1676. Oxygen migration triggering molybdenum exposure in oxygen vacancy-rich ultra-thin Bi2MoO6 nanoflakes: Dual binding sites governing selective CO2 reduction into liquid hydrocarbons. Journal of Energy Chemistry, 2021, 61, 281-289. Black phosphorus coupled black titania nanocomposites with enhanced sunlight absorption properties for efficient photocatalytic CO2 reduction. Applied Catalysis B: Environmental, 2021, 295, 638 20.2 47 120211. Effect of S vacancy in Cu3SnS4 on high selectivity and activity of photocatalytic CO2 reduction. Applied Catalysis B: Environmental, 2021, 297, 120498. 20.2 Hollow and substrate-supported Prussian blue, its analogs, and their derivatives for green water 640 14.0 19 splitting. Chinese Journal of Catalysis, 2021, 42, 1843-1864. display="inline" id="d1e2116" altimg="si20.svg"><mml:mrow><mml:msub><mml:mrow /><mml:mrow><mml:mn>3</mml:mrow></mml:msub><mml:msub><mml:mrow></mml:mi 641 mathvariant="normal">N</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msub>⁶/mml:mrow></m mediated all-solid-state (ASS) Z-scheme photocatalysts towards sustainable energy and environmental Constructing oxide/sulfide in-plane heterojunctions with enlarged internal electric field for 642 20.2 41 efficient CO2 photoreduction. Applied Catalysis B: Environmental, 2021, 297, 120394. Visible-light-driven photocatalysis of carbon dioxide and organic pollutants by MFeO2 (MÂ=ÂLi, Na, or K). 643 9.4 39 Journal of Colloid and Interface Science, 2021, 601, 758-772. CoNi bimetallic alloy cocatalyst-modified g-C3N4 nanosheets for eï¬f cient photocatalytic hydrogen 644 4.023 production. Journal of Physics and Chemistry of Solids, 2021, 158, 110228. Aspect ratio dependent photocatalytic enhancement of CsPbBr3 in CO2 reduction with two-dimensional metal organic framework as a cocatalyst. Applied Catalysis B: Environmental, 2021, 74 297, 120411. Mesoporous SmMnO3/CuMnO catalyst for photothermal synergistic degradation of gaseous toluene. 646 4.8 7 Ceramics International, 2021, 47, 31485-31496. Oxygen vacancy dependent photocatalytic CO2 reduction activity in liquid-exfoliated atomically thin BiOCl nanosheets. Applied Catalysis B: Environmental, 2021, 297, 120426. 647 20.2 The emerging covalent organic frameworks (COFs) for solar-driven fuels production. Coordination 648 18.8 79 Chemistry Reviews, 2021, 446, 214117. Influence of the calcination of TiO2-reduced graphite hybrid for the photocatalytic reduction of carbon dioxide. Catalysis Today, 2021, 380, 32-40. 649 4.4 Insight into the significantly enhanced photocatalytic CO2 reduction performance of Pt/MnO dual 650 cocatalysts on sea-urchin-like anatase TiO2 microspheres. Chemical Engineering Journal, 2021, 425, 12.7 22 13162Ź. Hierarchical Z-scheme Bi2S3/CdS heterojunction: Controllable morphology and excellent 651 6.1 24 photocatalytic antibacterial. Applied Surface Science, 2021, 568, 150923

#	Article	IF	CITATIONS
652	Highly efficient CO2 reduction under visible-light on non-covalent Ruâ⊄Re assembled photocatalyst: Evidence on the electron transfer mechanism. Journal of Catalysis, 2021, 404, 46-55.	6.2	6
653	Photocarriers-enhanced photothermocatalysis of water-gas shift reaction under H2-rich and low-temperature condition over CeO2/Cu1.5Mn1.5O4 catalyst. Applied Catalysis B: Environmental, 2021, 298, 120551.	20.2	26
654	Enhanced CH4 yields by interfacial heating-induced hot water steam during photocatalytic CO2 reduction. Applied Catalysis B: Environmental, 2021, 298, 120635.	20.2	30
655	Octahedron-shaped SnFe2O4 for boosting photocatalytic degradation and CO2 reduction. Journal of Alloys and Compounds, 2021, 889, 161737.	5.5	11
656	Mo-O-Bi Bonds as interfacial electron transport bridges to fuel CO2 photoreduction via in-situ reconstruction of black Bi2MoO6/BiO2-x heterojunction. Chemical Engineering Journal, 2022, 429, 132204.	12.7	83
657	Thermo-photo coupled catalytic CO2 reforming of methane: A review. Chemical Engineering Journal, 2022, 428, 131222.	12.7	24
658	Enhanced photocatalytic H2 evolution based on a Ti3C2/Zn0.7Cd0.3S/Fe2O3 Ohmic/S-scheme hybrid heterojunction with cascade 2D coupling interfaces. Chemical Engineering Journal, 2022, 429, 132587.	12.7	121
659	Emerging cocatalysts in TiO2-based photocatalysts for light-driven catalytic hydrogen evolution: Progress and perspectives. Fuel, 2022, 307, 121745.	6.4	68
660	A State-of-the-art review on action mechanism of photothermal catalytic reduction of CO2 in full solar spectrum. Chemical Engineering Journal, 2022, 429, 132322.	12.7	56
661	Directionally maximizing CO selectivity to near-unity over cupric oxide with indium species for electrochemical CO2 reduction. Chemical Engineering Journal, 2022, 427, 131654.	12.7	18
662	Facile construction of novel organic–inorganic tetra (4-carboxyphenyl) porphyrin/Bi2MoO6 heterojunction for tetracycline degradation: Performance, degradation pathways, intermediate toxicity analysis and mechanism insight. Journal of Colloid and Interface Science, 2022, 605, 727-740.	9.4	176
663	Construction of TiO2-covalent organic framework Z-Scheme hybrid through coordination bond for photocatalytic CO2 conversion. Journal of Energy Chemistry, 2022, 64, 85-92.	12.9	94
664	Facile fabrication of TaON/Bi2MoO6 core–shell S-scheme heterojunction nanofibers for boosting visible-light catalytic levofloxacin degradation and Cr(VI) reduction. Chemical Engineering Journal, 2022, 428, 131158.	12.7	203
665	Photocatalytic degradation of tetracycline antibiotic by a novel Bi2Sn2O7/Bi2MoO6 S-scheme heterojunction: Performance, mechanism insight and toxicity assessment. Chemical Engineering Journal, 2022, 429, 132519.	12.7	279
666	Two-electron transfer mechanism from 3D/3D nickel selenide/MoS2 heterostructure accelerates photocatalytic hydrogen evolution and tetracycline hydrochloride removal. Chemical Engineering Journal, 2022, 429, 132432.	12.7	29
667	Single- and mixed-metal–organic framework photocatalysts for carbon dioxide reduction. Inorganic Chemistry Frontiers, 2021, 8, 3178-3204.	6.0	41
668	Electronic interaction between transition metal single-atoms and anatase TiO ₂ boosts CO ₂ photoreduction with H ₂ O. Energy and Environmental Science, 2022, 15, 601-609.	30.8	88
669	Present and Future of Phase-Selectively Disordered Blue TiO2 for Energy and Society Sustainability. Nano-Micro Letters, 2021, 13, 45.	27.0	8

#	Article	IF	CITATIONS
670	Rapid atmospheric carbon dioxide fixation by nickel(<scp>ii</scp>) complexes: meridionally coordinated diazepane-based 3N ligands facilitate fixation. Dalton Transactions, 2021, 50, 8045-8056.	3.3	3
671	Cobalt-based metal–organic frameworks for the photocatalytic reduction of carbon dioxide. Nanoscale, 2021, 13, 9075-9090.	5.6	15
672	Semiconductor nanocrystal photocatalysis for the production of solar fuels. Journal of Chemical Physics, 2021, 154, 030901.	3.0	32
673	Extending photocatalysis to the visible and NIR: the molecular strategy. Nanoscale, 2021, 13, 9147-9159.	5.6	26
674	Efficacious CO ₂ Photoconversion to C2 and C3 Hydrocarbons on Upright SnS–SnS ₂ Heterojunction Nanosheet Frameworks. ACS Applied Materials & Interfaces, 2021, 13, 4984-4992.	8.0	24
675	Sulfur-doped g-C ₃ N ₄ for efficient photocatalytic CO ₂ reduction: insights by experiment and first-principles calculations. Catalysis Science and Technology, 2021, 11, 1725-1736.	4.1	51
676	Porphyrin and single atom featured reticular materials: recent advances and future perspective of solar-driven CO ₂ reduction. Green Chemistry, 2021, 23, 8332-8360.	9.0	37
677	DFT insight into the effect of Cu atoms on adsorption and dissociation of CO ₂ over a Pd ₈ / TiO ₂ (101) surface. RSC Advances, 2021, 11, 17391-17398.	3.6	4
678	The development, application, and performance of black phosphorus in energy storage and conversion. Materials Advances, 2021, 2, 2483-2509.	5.4	14
679	Photoreduction Mechanism of CO ₂ to CO Catalyzed by a Three-Component Hybrid Construct with a Bimetallic Rhenium Catalyst. ACS Catalysis, 2021, 11, 1495-1504.	11.2	19
680	Heterogeneous photocatalysis. , 2021, , 1-38.		0
682	Lanthanum bismuth oxide photocatalysts for CO ₂ reduction to CO with high selectivity. Sustainable Energy and Fuels, 2021, 5, 2688-2694.	4.9	6
683	Research Progress of Photocatalytic CO2 Reduction Based on Two-dimensional Materials. Acta Chimica Sinica, 2021, 79, 10.	1.4	16
684	Promoted Interfacial Charge Transport and Separation of Size-Uniform Zn, Ni-Doped CdS-1T/2H O-MoS ₂ Nanoassemblies for Efficient Visible-Light Photocatalytic Water Splitting. Crystal Growth and Design, 2021, 21, 1278-1289.	3.0	9
685	Recent advancements and opportunities of decorated graphitic carbon nitride toward solar fuel production and beyond. Sustainable Energy and Fuels, 2021, 5, 4457-4511.	4.9	25
686	Highly Selective Photocatalytic CO ₂ Reduction to CH ₄ by Ball-Milled Cubic Silicon Carbide Nanoparticles under Visible-Light Irradiation. ACS Applied Materials & Interfaces, 2021, 13, 5073-5078.	8.0	24
687	A review of the research status of CO2 photocatalytic conversion technology based on bibliometrics. New Journal of Chemistry, 2021, 45, 2315-2325.	2.8	18
688	Zâ€Schemaâ€Photokatalysesysteme für die Kohlendioxidreduktion: Wo stehen wir heute?. Angewandte Chemie, 2020, 132, 23092-23115.	2.0	30

#	Article	IF	CITATIONS
689	Zâ€Scheme Photocatalytic Systems for Carbon Dioxide Reduction: Where Are We Now?. Angewandte Chemie - International Edition, 2020, 59, 22894-22915.	13.8	435
690	Carbon Dots in Porous Materials: Host–Guest Synergy for Enhanced Performance. Angewandte Chemie - International Edition, 2020, 59, 19390-19402.	13.8	94
691	Unraveling the selectivity puzzle of H2 evolution over CO2 photoreduction using ZnS nanocatalysts with phase junction. Applied Catalysis B: Environmental, 2020, 274, 119115.	20.2	23
692	Crystal phase dependent solar driven hydrogen evolution catalysis over cobalt diselenide. Chemical Engineering Journal, 2020, 396, 125244.	12.7	30
693	Recent advances on TiO2-based photocatalytic CO2 reduction. EnergyChem, 2020, 2, 100044.	19.1	52
694	Surface sites engineering on semiconductors to boost photocatalytic CO2 reduction. Nano Energy, 2020, 75, 104959.	16.0	132
695	Insight of the Influence of Magnetic-Field Direction on Magneto-Plasmonic Interfaces for Tuning Photocatalytical Performance of Semiconductors. Journal of Physical Chemistry Letters, 2020, 11, 9931-9937.	4.6	20
696	Photocatalytic Production of Hypochlorous Acid over Pt/WO ₃ under Simulated Solar Light. ACS Sustainable Chemistry and Engineering, 2020, 8, 8629-8637.	6.7	20
697	Synergetic effect of H ⁺ adsorption and ethylene functional groups of covalent organic frameworks on the CO ₂ photoreduction in aqueous solution. Chemical Communications, 2020, 56, 7261-7264.	4.1	19
698	Industrial carbon dioxide capture and utilization: state of the art and future challenges. Chemical Society Reviews, 2020, 49, 8584-8686.	38.1	610
699	Sn-bridge type-â; PCN/Sn/SnO heterojunction with enhanced photocatalytic activity. Semiconductor Science and Technology, 2020, 35, 115015.	2.0	9
700	Electrochemical reduction of CO ₂ to formic acid on Bi ₂ O ₂ CO ₃ /carbon fiber electrodes. Journal of Materials Research, 2020, 35, 272-280.	2.6	14
702	Synthesis, Characterization, and Photocatalytic Performance of ZnO–Graphene Nanocomposites: A Review. Journal of Composites Science, 2021, 5, 4.	3.0	21
703	Recent Developments in Lead and Lead-Free Halide Perovskite Nanostructures towards Photocatalytic CO2 Reduction. Nanomaterials, 2020, 10, 2569.	4.1	36
704	Recent Progress of Photocatalysis Based on Metal Halide Perovskites. Acta Chimica Sinica, 2019, 77, 1075.	1.4	8
705	Ordered mesoporous photocatalysts for CO ₂ photoreduction. Journal of Materials Chemistry A, 2021, 9, 26430-26453.	10.3	27
706	Stepping toward the carbon circular economy (CCE): Integration of solar chemistry and biosystems for an effective CO2 conversion into added value chemicals and fuels. Advances in Inorganic Chemistry, 2021, 78, 289-351.	1.0	8
707	Photocatalytic reduction of CO ₂ by halide perovskites: recent advances and future perspectives. Materials Advances, 2021, 2, 7187-7209.	5.4	27

#	ARTICLE	IF	CITATIONS
708	MoP@MoO ₃ S-scheme heterojunction <i>in situ</i> construction with phosphating MoO ₃ for high-efficient photocatalytic hydrogen production. Nanoscale, 2021, 13, 18507-18519.	5.6	22
709	Facet Junction Engineering for Photocatalysis: A Comprehensive Review on Elementary Knowledge, Facet‧ynergistic Mechanisms, Functional Modifications, and Future Perspectives. Advanced Functional Materials, 2022, 32, 2106982.	14.9	51
710	Atomic-level insights into surface engineering of semiconductors for photocatalytic CO2 reduction. Journal of Energy Chemistry, 2022, 67, 309-341.	12.9	67
711	Organic semiconductor nanostructures: optoelectronic properties, modification strategies, and photocatalytic applications. Journal of Materials Science and Technology, 2022, 113, 175-198.	10.7	15
712	Discovering Catalytic Reaction Networks Using Deep Reinforcement Learning from First-Principles. Journal of the American Chemical Society, 2021, 143, 16804-16812.	13.7	17
713	Surface-coordinated metal-organic framework thin films (SURMOFs): From fabrication to energy applications. EnergyChem, 2021, 3, 100065.	19.1	25
714	Photocatalytic H ₂ O Overall Splitting into H ₂ Bubbles by Single Atomic Sulfur Vacancy CdS with Spin Polarization Electric Field. ACS Nano, 2021, 15, 18006-18013.	14.6	100
715	Tunable Selectivity in CO ₂ Photoâ€Thermal Reduction by Perovskiteâ€Supported Pd Nanoparticles. ChemSusChem, 2021, 14, 5525-5533.	6.8	15
716	Photothermocatalytic CO ₂ Reduction on Magnesium Oxideâ€Clusterâ€Modified Ni Nanoparticles with High Fuel Production Rate, Large Lightâ€toâ€Fuel Efficiency and Excellent Durability. Solar Rrl, 2021, 5, .	5.8	9
717	Construction of Low ost Zâ€Scheme Heterostructure Cu ₂ 0/PCN for Highly Selective CO ₂ Photoreduction to Methanol with Water Oxidation. Small, 2021, 17, e2103558.	10.0	23
718	Advances and Promises of 2D MXenes as Cocatalysts for Artificial Photosynthesis. Solar Rrl, 2021, 5, 2100603.	5.8	22
719	Preparation of TiO2/Black Talc Composite Photocatalyst and the Research on Its Adsorption-Degradation Coupling Effects. Materials, 2021, 14, 6038.	2.9	1
720	Photocatalytic conversion of CO2 into beneficial fuels and chemicals – a new horizon in atmospheric CO2 mitigation. Chemical Engineering Research and Design, 2021, 156, 256-287.	5.6	6
723	Black Talc-Based TiO2/ZnO Composite for Enhanced UV-Vis Photocatalysis Performance. Materials, 2021, 14, 6474.	2.9	6
724	Increased solar absorption and promoted photocarrier separation in atomically thin 2D carbon nitride sheets for enhanced visible-light photocatalysis. Chemical Engineering Journal, 2022, 431, 133219.	12.7	7
725	Boosting visible light photocatalysis in an Au@TiO2 yolk-in-shell nanohybrid. Applied Catalysis B: Environmental, 2022, 303, 120869.	20.2	39
726	Photoactivated materials and sensors for NO ₂ monitoring. Journal of Materials Chemistry C, 2021, 9, 16804-16827.	5.5	16
727	Role of Photocatalysis in Green Energy Production. , 2022, , 590-596.		1

#	Article	IF	CITATIONS
728	Non-peripheral octamethyl-substituted cobalt phthalocyanine nanorods supported on N-doped reduced graphene oxide achieve efficient electrocatalytic CO2 reduction to CO. Chemical Engineering Journal, 2022, 430, 133050.	12.7	29
729	Cu+–Ti3+ interface interaction mediated CO2 coordination model for controlling the selectivity of photocatalytic reduction CO2. Applied Catalysis B: Environmental, 2022, 301, 120803.	20.2	29
730	Constructing S-scheme 2D/0D g-C3N4/TiO2 NPs/MPs heterojunction with 2D-Ti3AlC2 MAX cocatalyst for photocatalytic CO2 reduction to CO/CH4 in fixed-bed and monolith photoreactors. Journal of Materials Science and Technology, 2022, 106, 195-210.	10.7	82
731	Immobilizing CsPbBr ₃ perovskite nanocrystals on nanoporous carbon powder for visible-light-driven CO ₂ photoreduction. Dalton Transactions, 2021, 50, 16711-16719.	3.3	5
732	Anodic TiO2 nanotube arrays for photocatalytic CO2 conversion: comparative photocatalysis and EPR study. Nanotechnology, 2021, 33, .	2.6	11
733	Closing the Anthropogenic Chemical Carbon Cycle toward a Sustainable Future via CO ₂ Valorization. Advanced Energy Materials, 2021, 11, 2102767.	19.5	35
734	Synergy between Confined Cobalt Centers and Oxygen Defects on αâ€Fe ₂ O ₃ Platelets for Efficient Photocatalytic CO ₂ Reduction. Solar Rrl, 2022, 6, 2100833.	5.8	6
735	Oxygen vacancy configuration in confined BiVO4-Bi2S3 heterostructures promotes photocatalytic oxidation of NO. Journal of Environmental Chemical Engineering, 2021, 9, 106586.	6.7	10
736	Regulating the *OCCHO intermediate pathway towards highly selective photocatalytic CO ₂ reduction to CH ₃ CHO over locally crystallized carbon nitride. Energy and Environmental Science, 2022, 15, 225-233.	30.8	63
737	Pyrochlore oxides as visible light-responsive photocatalysts. New Journal of Chemistry, 2021, 45, 22531-22558.	2.8	22
738	Recent advances of nickel hydroxide-based cocatalysts in heterogeneous photocatalysis. Catalysis Communications, 2022, 162, 106371.	3.3	18
739	Efficient strategies for boosting the performance of 2D graphitic carbon nitride nanomaterials during photoreduction of carbon dioxide to energy-rich chemicals. Materials Today Chemistry, 2022, 23, 100605.	3.5	13
740	Synergetic modulation of surface alkali and oxygen vacancy over SrTiO3 for the CO2 photodissociation. Nanotechnology, 2022, 33, 085401.	2.6	3
741	Cocatalyst Modification of AgTaO ₃ Photocatalyst for Conversion of Carbon Dioxide with Water. Journal of Physical Chemistry C, 2021, 125, 26389-26397.	3.1	7
742	Application of Graphdiyne and Its Analogues in Photocatalysis and Photoelectrochemistry. Chemical Research in Chinese Universities, 2021, 37, 1195-1212.	2.6	10
743	A Highly Durable, Self-Photosensitized Mononuclear Ruthenium Catalyst for CO2 Reduction. Synlett, 2022, 33, 1137-1141.	1.8	8
744	Insight into reaction pathways of CO2 photoreduction into CH4 over hollow microsphere Bi2MoO6-supported Au catalysts. Chemical Engineering Journal, 2022, 433, 133540.	12.7	33
745	Internal Electric Field on Steering Charge Migration: Modulations, Determinations and Energyâ€Related Applications. Advanced Functional Materials, 2022, 32, .	14.9	63

#	Article	IF	CITATIONS
746	The chemistry of MIL-125 based materials: Structure, synthesis, modification strategies and photocatalytic applications. Journal of Environmental Chemical Engineering, 2022, 10, 106883.	6.7	21
747	Slow Auger Recombination of Trapped Excitons Enables Efficient Multiple Electron Transfer in CdS–Pt Nanorod Heterostructures. Journal of the American Chemical Society, 2021, 143, 20264-20273.	13.7	16
748	Pivotal Role of Holes in Photocatalytic CO 2 Reduction on TiO 2. Chemistry - A European Journal, 2021, 27, 17213-17219.	3.3	5
749	Photocatalytic Reduction of CO2 over Iron-Modified g-C3N4 Photocatalysts. Photochem, 2021, 1, 462-476.	2.2	4
750	Grafting Hypercrosslinked Polymers on TiO ₂ Surface for Anchoring Ultrafine Pd Nanoparticles: Dramatically Enhanced Efficiency and Selectivity toward Photocatalytic Reduction of CO ₂ to CH ₄ . Small, 2022, 18, e2105083.	10.0	30
751	Edgeâ€Siteâ€Rich Ordered Macroporous BiOCl Triggers CO Activation for Efficient CO ₂ Photoreduction. Small, 2022, 18, e2105228.	10.0	27
752	Soluble Complexes of Cobalt Oxide Fragments Bring the Unique CO ₂ Photoreduction Activity of a Bulk Material into the Flexible Domain of Molecular Science. Journal of the American Chemical Society, 2021, 143, 20769-20778.	13.7	30
753	Influence of Ag Clusters on the Electronic Structures of β-Ga2O3 Photocatalyst Surfaces. ACS Omega, 2021, 6, 33701-33707.	3.5	0
754	2D/2D BiVO4/CsPbBr3 S-scheme heterojunction for photocatalytic CO2 reduction: Insights into structure regulation and Fermi level modulation. Applied Catalysis B: Environmental, 2022, 304, 120979.	20.2	163
755	Photocatalytic reaction mechanisms at the gas–solid interface for environmental and energy applications. Catalysis Science and Technology, 2021, 11, 7807-7839.	4.1	12
756	Developing sustainable, high-performance perovskites in photocatalysis: design strategies and applications. Chemical Society Reviews, 2021, 50, 13692-13729.	38.1	97
757	A molten-salt electrochemical biorefinery for carbon-neutral utilization of biomass. Journal of Materials Chemistry A, 2021, 9, 27442-27447.	10.3	6
758	Pt-GdCrO ₃ -Bi ₂ MoO ₆ Ternary Heterojunction with High Photocatalytic Activities for CO ₂ Reduction and Water Purification. SSRN Electronic Journal, 0, , .	0.4	0
759	Converting CO ₂ into heterocyclic compounds under accelerated performance through Fe ₃ O ₄ -grafted ionic liquid catalysts. New Journal of Chemistry, 2022, 46, 2887-2897.	2.8	6
760	Cadmium-sulfide/gold/graphitic-carbon-nitride sandwich heterojunction photocatalyst with regulated electron transfer for boosting carbon-dioxide reduction to hydrocarbon. Journal of Colloid and Interface Science, 2022, 613, 575-586.	9.4	24
761	Solar fuels: research and development strategies to accelerate photocatalytic CO ₂ conversion into hydrocarbon fuels. Energy and Environmental Science, 2022, 15, 880-937.	30.8	304
762	Regulating photocatalysis by the oxidation state of titanium in TiO2/TiO. Journal of Colloid and Interface Science, 2022, 613, 616-624.	9.4	8
763	Synthesis of formaldehyde from CO2 catalyzed by the coupled photo-enzyme system. Separation and Purification Technology, 2022, 286, 120480.	7.9	20

ARTICLE IF CITATIONS A critical review on graphitic carbon nitride (g-C3N4)-based materials: Preparation, modification and 18.8 279 764 environmental application. Coordination Chemistry Reviews, 2022, 453, 214338. Increased photocatalytic activity and selectivity towards methane of trimetallic NiTiAl-LDH. Journal 5.5 9 of Alloys and Compounds, 2022, 897, 163124. Photo-assisted self-assembly synthesis of all 2D-layered heterojunction photocatalysts with 766 long-range spatial separation of charge-carriers toward photocatalytic redox reactions. Chemical 12.7 51 Engineering Journal, 2022, 431, 134001. Carbon Dioxide Emissions, Capture, Storage and Utilization: Review of Materials, Processes and 31.2 200 Technologies. Progress in Energy and Combustion Science, 2022, 89, 100965. PtCu thickness-modulated interfacial charge transfer and surface reactivity in stacked graphene/Pd@PtCu heterostructures for highly efficient visible-light reduction of CO2 to CH4. 768 20.2 29 Applied Catalysis B: Environmental, 2022, 305, 121069. Regulating interfacial morphology and charge-carrier utilization of Ti3C2 modified all-sulfide CdS/ZnIn2S4 S-scheme heterojunctions for effective photocatalytic H2 evolution. Journal of Materials Science and Technology, 2022, 112, 85-95. Adenine-Functionalized Graphene Oxide as a Charge Transfer Layer to Enhance Activity and Stability of 770 Cu <sub>2</sub>O Photocathode for CO <sub>2</sub> Reduction Reaction. SSRN 0.4 1 Electronic Journal, 0, , . Superparamagnetic Iron Oxide Decorated Indium Hydroxide Nanocomposite: Synthesis, Characterization and Its Photocatalytic Activity. Bulletin of Chemical Reaction Éngineering and 771 1.1 Catalysis, 2022, 17, 113-126. 772 Toward solar-driven carbon recycling. Joule, 2022, 6, 294-314. 24.0 143 Self-template-oriented synthesis of lead-free perovskite Cs3Bi2I9 nanosheets for boosting photocatalysis of CO2 reduction over Z-scheme heterojunction Cs3Bi2l9/CeO2. Journal of Energy Chemistry, 2022, 69, 348-355. Non-noble metal-based cocatalysts for photocatalytic CO2 reduction. Journal of CO2 Utilization, 774 6.8 25 2022, 55, 101817. Challenges and prospects in the selective photoreduction of CO₂ to C1 and C2 products 12.2 46 with nanostructured materials: a review. Materials Horizons, 2022, 9, 607-639. A Novel Synergetic Effect Between Ru and CeO₂ Nanoparticles Leads to Highly Efficient Photothermocatalytic CO₂ Reduction by CH₄ with Excellent Coking 776 5.8 9 Resistance. Solar Ŕrl, 2022, 6, 2101064. Large π-Conjugated Metal–Organic Frameworks for Infrared-Light-Driven CO₂ Reduction. Journal of the American Chemical Society, 2022, 144, 1218-1231. 13.7 777 63 Synthesis of mesoporous zirconium manganese mixed metal oxide nanowires for photocatalytic 778 0 2.6 reduction of CO2. Journal of Materials Research, 2022, 37, 522-532. Visible light responsive metalloporphyrin-sensitized TiO₂ nanotube arrays for artificial 779 photosynthesis of methane. Reaction Chemistry and Engineering, 2022, 7, 917-928. Recent Advances in Porous Materials for Photocatalytic CO₂ Reduction. Journal of 780 4.6 30 Physical Chemistry Letters, 2022, 13, 1272-1282. Single-atom catalysts for photocatalytic energy conversion. Joule, 2022, 6, 92-133. 24.0 229

#	Article	IF	CITATIONS
782	Electric Field Coupling in the S-Scheme CdS/BiOCl Heterojunction for Boosted Charge Transport toward Photocatalytic CO ₂ Reduction. ACS Applied Energy Materials, 2022, 5, 1149-1158.	5.1	34
783	Recent Advances of Photocatalytic Hydrogenation of CO2 to Methanol. Catalysts, 2022, 12, 94.	3.5	22
785	Coordination Polymers with 2,2′:6′,2″-Terpyridine Earth-Abundant Metal Complex Units for Selective CO ₂ Photoreduction. Inorganic Chemistry, 2022, 61, 1590-1596.	4.0	11
786	Epitaxial Growth of Flower-Like MoS2 on One-Dimensional Nickel Titanate Nanofibers: A "Sweet Spot― for Efficient Photoreduction of Carbon Dioxide. Frontiers in Chemistry, 2022, 10, 837915.	3.6	6
787	Replacing Ru complex with carbon dots over MOF-derived Co ₃ O ₄ /In ₂ O ₃ catalyst for efficient solar-driven CO ₂ reduction. Journal of Materials Chemistry A, 2022, 10, 4279-4287.	10.3	25
788	Solarâ€powered chemistry: Engineering lowâ€dimensional carbon nitrideâ€based nanostructures for selective <scp>CO₂</scp> conversion to <scp>C₁C₂</scp> products. InformaÄnÃ-Materiály, 2022, 4, .	17.3	53
789	Facile construction of self-assembled Cu@polyaniline nanocomposite as an efficient noble-metal free cocatalyst for boosting photocatalytic hydrogen production. International Journal of Hydrogen Energy, 2022, 47, 6011-6028.	7.1	15
790	Atom manufacturing of photocatalyst towards solar CO ₂ reduction. Reports on Progress in Physics, 2022, 85, 026501.	20.1	8
791	Postsynthetic Modification of Metalâ^'Organic Frameworks for Photocatalytic Applications. Small Structures, 2022, 3, .	12.0	30
792	Acetylene/Vinyleneâ€Bridged Ï€â€Conjugated Covalent Triazine Polymers for Photocatalytic Aerobic Oxidation Reactions under Visible Light Irradiation. ChemSusChem, 2022, 15, .	6.8	9
793	Integration of 2D layered CdS/WO3 S-scheme heterojunctions and metallic Ti3C2 MXene-based Ohmic junctions for effective photocatalytic H2 generation. Chinese Journal of Catalysis, 2022, 43, 359-369.	14.0	246
794	UV-VIS-NIR-induced extraordinary H2 evolution over W18O49/Cd0.5Zn0.5S: Surface plasmon effect coupled with S-scheme charge transfer. Chinese Journal of Catalysis, 2022, 43, 234-245.	14.0	82
795	Promoting photocarriers separation in S-scheme system with Ni2P electron bridge: The case study of BiOBr/Ni2P/g-C3N4. Chinese Journal of Catalysis, 2022, 43, 276-287.	14.0	33
796	Remediation of Fouling on Painted Steel Roofing via Solar Energy Assisted Photocatalytic Selfâ€cleaning Technology: Recent Developments and Future Perspectives. Advanced Engineering Materials, 0, , .	3.5	5
797	Recent progress on two-dimensional materials confining single atoms for CO2 photoreduction. Chinese Chemical Letters, 2022, 33, 5023-5029.	9.0	28
798	Electric-field promoted C–C coupling over Cu nanoneedles for CO2 electroreduction to C2 products. Chinese Journal of Catalysis, 2022, 43, 519-525.	14.0	34
799	Efficient charge transfer in cadmium sulfide quantum dot-decorated hierarchical zinc sulfide-coated tin disulfide cages for carbon dioxide photoreduction. Journal of Colloid and Interface Science, 2022, 615, 606-616.	9.4	5
800	Rod-like Bi4O5I2/Bi4O5Br2 step-scheme heterostructure with oxygen vacancies synthesized by calcining the solid solution containing organic group. Chinese Journal of Catalysis, 2022, 43, 288-302.	14.0	29

#	Article	IF	CITATIONS
801	Water-Stable Nickel Metal–Organic Framework Nanobelts for Cocatalyst-Free Photocatalytic Water Splitting to Produce Hydrogen. Journal of the American Chemical Society, 2022, 144, 2747-2754.	13.7	109
802	Ti3C2 MXene co-catalyst assembled with mesoporous TiO2 for boosting photocatalytic activity of methyl orange degradation and hydrogen production. Chinese Journal of Catalysis, 2022, 43, 461-471.	14.0	112
803	A novel electric-assisted photocatalytic technique using self-doped TiO2 nanotube films. Applied Catalysis B: Environmental, 2022, 307, 121174.	20.2	33
804	Hierarchical CuS@ZnIn ₂ S ₄ Hollow Double-Shelled p–n Heterojunction Octahedra Decorated with Fullerene C ₆₀ for Remarkable Selectivity and Activity of CO ₂ Photoreduction into CH ₄ . ACS Applied Materials & amp; Interfaces, 2022, 14. 7888-7899.	8.0	34
805	Titanosilicates enhance carbon dioxide photocatalytic reduction. Applied Materials Today, 2022, 26, 101392.	4.3	5
806	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e1189" altimg="si391.svg"> <mml:msub><mml:mrow><mml:mtext>CO</mml:mtext></mml:mrow><mml:mrow><mml:m photo-catalytic activity of<mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline" id="d1e1199"</mml:math></mml:m </mml:mrow></mml:msub>	n <u>، 2</u> ج/mn 12.7	זו:mn>44
807	altimg="si11.svg"> <mml:mrow><mml:msub><mml:mrow><mml:mtext>MoS</mml:mtext></mml:mrow><mml:m Porous metal oxide electrocatalytic nanomaterials for energy conversion: Oxygen defects and selection techniques. Coordination Chemistry Reviews, 2022, 457, 214389.</mml:m </mml:msub></mml:mrow>	18.8	46
808	Construction of 2D-coal-based graphene/2D-bismuth vanadate compound for effective photocatalytic CO2 reduction to CH3OH. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 639, 128321.	4.7	13
809	Boosting visible-light hydrogen evolution on CdS hollow nanospheres with CoN as cocatalyst. Fuel, 2022, 316, 123307.	6.4	21
810	Covalent triazine-based frameworks confining cobalt single atoms for photocatalytic CO2 reduction and hydrogen production. Journal of Materials Science and Technology, 2022, 116, 41-49.	10.7	41
811	Modular assembly of electron transfer pathways in bimetallic MOFs for photocatalytic ammonia synthesis. Catalysis Science and Technology, 2022, 12, 2015-2022.	4.1	10
812	Preparation of muscovite/tungsten-doped TiO2 composites for the efficient photocatalytic degradation of methyl orange under simulated solar light irradiation. Inorganic Chemistry Communication, 2022, 138, 109285.	3.9	11
813	Enhanced visibleÂlight photocatalytic CO2 reduction over direct Z-scheme heterojunction Cu/P co-doped g-C3N4@TiO2 photocatalyst. Chemical Papers, 2022, 76, 3459-3469.	2.2	7
814	Step-Scheme Photocatalyst of CsPbBr ₃ Quantum Dots/BiOBr Nanosheets for Efficient CO ₂ Photoreduction. Inorganic Chemistry, 2022, 61, 3351-3360.	4.0	52
815	Porphyrin Coordination Polymer with Dual Photocatalytic Sites for Efficient Carbon Dioxide Reduction. ACS Applied Materials & Interfaces, 2022, 14, 8048-8057.	8.0	36
816	TiO2-Based Nanostructures, Composites and Hybrid Photocatalysts. Materials, 2022, 15, 1271.	2.9	6
817	Stacking Engineering of Semiconductor Heterojunctions on Hollow Carbon Spheres for Boosting Photocatalytic CO ₂ Reduction. ACS Catalysis, 2022, 12, 2569-2580.	11.2	86
818	Bi4TaO8Cl/Bi heterojunction enables high-selectivity photothermal catalytic conversion of CO2-H2O flow to liquid alcohol. Chemical Engineering Journal, 2022, 435, 135133.	12.7	27

#	Article	IF	CITATIONS
819	Recent Progress in the Synthesis and Applications of Composite Photocatalysts: A Critical Review. Small Methods, 2022, 6, e2101395.	8.6	69
820	Zn Dopants Synergistic Oxygen Vacancy Boosts Ultrathin CoO Layer for CO ₂ Photoreduction. Advanced Functional Materials, 2022, 32, .	14.9	47
821	Emerging Stacked Photocatalyst Design Enables Spatially Separated Ni(OH) ₂ Redox Cocatalysts for Overall CO ₂ Reduction and H ₂ O Oxidation. Small, 2022, 18, e2104681.	10.0	23
822	Feeding Carbonylation with CO ₂ via the Synergy of Single-Site/Nanocluster Catalysts in a Photosensitizing MOF. Journal of the American Chemical Society, 2021, 143, 20792-20801.	13.7	91
823	Hollow TiO2 Microsphere/Graphene Composite Photocatalyst for CO2 Photoreduction. Catalysts, 2021, 11, 1532.	3.5	6
824	Co ₂ Reduction by Photocatalytic and Photoelectrocatalytic Approaches Over Eu(III)-ZnGa ₂ O ₄ Nanoparticles and Eu(III)-ZnGa ₂ O ₄ /Zno Nanorods. SSRN Electronic Journal, 0, , .	0.4	0
825	MOF-Derived CoCeO _x Nanocomposite Catalyst with Enhanced Anti-Coking Property for Ethanol Dry Reforming. SSRN Electronic Journal, 0, , .	0.4	0
826	Bi4tao8cl/Bi Heterojunction Enables High-Selectivity Photothermal Catalytic Conversion of Co2-H2o Flow to Liquid Alcohol. SSRN Electronic Journal, 0, , .	0.4	0
827	In-Situ Constructing C3n5 Nanosheets/Bi2wo6 Nanodots S-Scheme Heterojunction with Enhanced Structural Defects for Efficiently Photocatalytic Removal of Tetracycline and Cr(Vi). SSRN Electronic Journal, O, , .	0.4	0
828	Constructing a conjugated bridge for efficient electron transport at the interface of an inorganic–organic hetero-junction. Journal of Materials Chemistry A, 2022, 10, 19750-19756.	10.3	7
829	Visible-Light-Driven Solvent-Free Photocatalytic Co2 Reduction to Co by Co-Mof/Cu2o Heterojunction with Superior Selectivity. SSRN Electronic Journal, 0, , .	0.4	0
830	Significantly enhancing the solar fuel production rate and catalytic durability for photothermocatalytic CO ₂ reduction by a synergetic effect between Pt and Co doped Al ₂ O ₃ nanosheets. Journal of Materials Chemistry A, 2022, 10, 7099-7110.	10.3	9
831	Ferroelectric Heterojunction and Bi-Ti-In Trimetallic Sites Mediated Co2 Coordination Model on the Indium-Doped Bi4ti3o12-Cuin5s8 for Controlling the Selectivity of Photoreduction of Co2. SSRN Electronic Journal, 0, , .	0.4	0
832	Ions-Exchange Anchoring Cu7s4 Cocatalyst on K2ti8o17 Nanowires Assembly for Enhanced Co2 Photoreduction Through Efficient Charge Separation. SSRN Electronic Journal, 0, , .	0.4	0
833	PtCu alloy cocatalysts for efficient photocatalytic CO ₂ reduction into CH ₄ with 100% selectivity. Catalysis Science and Technology, 2022, 12, 3454-3463.	4.1	13
834	<i>In situ</i> growth of Ag ₂ S quantum dots on SnS ₂ nanosheets with enhanced charge separation efficiency and CO ₂ reduction performance. Journal of Materials Chemistry A, 2022, 10, 7291-7299.	10.3	13
835	Single-atom catalysts for high-efficiency photocatalytic and photoelectrochemical water splitting: distinctive roles, unique fabrication methods and specific design strategies. Journal of Materials Chemistry A, 2022, 10, 6835-6871.	10.3	63
836	<i>In situ</i> construction of a C ₃ N ₅ nanosheet/Bi ₂ WO ₆ nanodot S-scheme heterojunction with enhanced structural defects for the efficient photocatalytic removal of tetracycline and Cr(<scp>vi</scp>). Inorganic Chemistry Frontiers, 2022, 9, 2479-2497.	6.0	217

#	Article	IF	CITATIONS
837	Cu/ZnV ₂ O ₄ Heterojunction Interface Promoted Methanol and Ethanol Generation from CO ₂ and H ₂ O under UV–Vis Light Irradiation. ACS Omega, 2022, 7, 7278-7286.	3.5	5
838	Recent Progress in Two-Dimensional Materials for Electrocatalytic CO2 Reduction. Catalysts, 2022, 12, 228.	3.5	23
839	Nonmetallic Mineral as the Carrier of TiO2 Photocatalyst: A Review. Frontiers in Catalysis, 2022, 2, .	3.9	1
840	Photoswitchable Chlorine Vacancies in Ultrathin Bi ₄ O ₅ Cl ₂ for Selective CO ₂ Photoreduction. ACS Catalysis, 2022, 12, 3965-3973.	11.2	69
841	Research Progress in Semiconductor Materials with Application in the Photocatalytic Reduction of CO2. Catalysts, 2022, 12, 372.	3.5	13
842	Selective photocatalytic CO2 reduction in aerobic environment by microporous Pd-porphyrin-based polymers coated hollow TiO2. Nature Communications, 2022, 13, 1400.	12.8	131
843	Binary dopant segregation enables hematite-based heterostructures for highly efficient solar H2O2 synthesis. Nature Communications, 2022, 13, 1499.	12.8	24
844	Design of Ruâ€aqua complex possessing potential inversion behavior. Bulletin of the Korean Chemical Society, 0, , .	1.9	1
845	Review of photocatalytic and photo-electrocatalytic reduction of CO2 on carbon supported films. International Journal of Hydrogen Energy, 2022, 47, 30908-30936.	7.1	16
846	Emerging Strategies for CO ₂ Photoreduction to CH ₄ : From Experimental to Dataâ€Đriven Design. Advanced Energy Materials, 2022, 12, .	19.5	68
847	Selective solar-driven CO2 reduction mediated by 2D/2D Bi2O2SiO3/MXene nanosheets heterojunction. Journal of Materials Science and Technology, 2022, 124, 202-208.	10.7	45
848	Challenges and prospects of lithium–CO ₂ batteries. , 2022, 1, e9120001.		99
849	Elaborated Reaction Pathway of Photothermal Catalytic CO ₂ Conversion with H ₂ O on Gallium Oxideâ€Decorated and â€Defective Surfaces. Chemistry - A European Journal, 2022, , .	3.3	1
850	Thermal expansion-quench of nickel metal-organic framework into nanosheets for efficient visible light CO2 reduction. Chinese Chemical Letters, 2023, 34, 107335.	9.0	6
851	Discovered "spring-loaded―mechanism gains insight into CO2 cycloaddition catalysis. Chem Catalysis, 2022, 2, 426-428.	6.1	4
852	Designing Sites in Heterogeneous Catalysis: Are We Reaching Selectivities Competitive With Those of Homogeneous Catalysts?. Chemical Reviews, 2022, 122, 8594-8757.	47.7	118
853	State-of-art modifications of heterogeneous catalysts for CO2 methanation – Active sites, surface basicity and oxygen defects. Catalysis Today, 2022, 402, 88-103.	4.4	32
854	Fabrication of Flexible Mesoporous Black Nb ₂ O ₅ Nanofiber Films for Visibleâ€Lightâ€Driven Photocatalytic CO ₂ Reduction into CH ₄ . Advanced Materials, 2022, 34, e2200756.	21.0	104

#	Article	IF	CITATIONS
856	Mechanistic Insights of Photocatalytic CO ₂ Reduction: Experimental <i>versus</i> Computational Studies. European Journal of Inorganic Chemistry, 2022, 2022, .	2.0	10
857	A Numerical Prediction of 4th-Order Kinetics for Photocatalytic Oxygen Evolution Reactions. Catalysis Letters, 2023, 153, 138-149.	2.6	5
858	COFâ€5/CoAlâ€LDH Nanocomposite Heterojunction for Enhanced Visibleâ€Lightâ€Driven CO ₂ Reduction. ChemSusChem, 2022, 15, .	6.8	10
859	Direct Z-Scheme Heterojunction Catalysts Constructed by Graphitic-C3N4 and Photosensitive Metal-Organic Cages for Efficient Photocatalytic Hydrogen Evolution. Nanomaterials, 2022, 12, 890.	4.1	3
860	Boosted Thermal Storage Performance of LiOH·H2O by Carbon Nanotubes Isolated Multilayered Graphene Oxide Frames. Advances in Materials Science and Engineering, 2022, 2022, 1-11.	1.8	1
861	Synergy between Palladium Single Atoms and Nanoparticles via Hydrogen Spillover for Enhancing CO ₂ Photoreduction to CH ₄ . Advanced Materials, 2022, 34, e2200057.	21.0	162
862	Rationally design and in-situ fabrication of ultrasmall pomegranate-like CdIn2S4/ZnIn2S4 Z-scheme heterojunction with abundant vacancies for improving CO2 reduction and water splitting. Chemical Engineering Journal, 2022, 442, 136309.	12.7	30
863	Transitionâ€Metalâ€Based Cocatalysts for Photocatalytic Water Splitting. Small Structures, 2022, 3, .	12.0	53
864	Metal-organic framework-derived multifunctional photocatalysts. Chinese Journal of Catalysis, 2022, 43, 971-1000.	14.0	64
865	Accelerating photo-thermal CO2 reduction to CO, CH4 or methanol over metal/oxide semiconductor catalysts. IScience, 2022, 25, 104107.	4.1	9
866	Promoting Water Activation by Photogenerated Holes in Monolayer C ₂ N. Journal of Physical Chemistry Letters, 2022, 13, 3332-3337.	4.6	7
867	Nitrogen vacancies in polymeric carbon nitrides promote CO2 photoreduction. Journal of Catalysis, 2022, 409, 12-23.	6.2	23
868	Construction of 2D Zn-MOF/BiVO4 S-scheme heterojunction for efficient photocatalytic CO2 conversion under visible light irradiation. Chinese Journal of Catalysis, 2022, 43, 1331-1340.	14.0	55
869	Nanoarchitectonics of MXene/semiconductor heterojunctions toward artificial photosynthesis via photocatalytic CO2 reduction. Coordination Chemistry Reviews, 2022, 459, 214440.	18.8	97
870	Electrochemical CO2 conversion to fuels on metal-free N-doped carbon-based materials: functionalities, mechanistic, and technoeconomic aspects. Materials Today Chemistry, 2022, 24, 100838.	3.5	5
871	Pt-GdCrO3-Bi2MoO6 ternary heterojunction with high photocatalytic activities for CO2 reduction and water purification. Chemical Engineering Journal, 2022, 437, 135300.	12.7	21
872	Visible-light-driven solvent-free photocatalytic CO2 reduction to CO by Co-MOF/Cu2O heterojunction with superior selectivity. Chemical Engineering Journal, 2022, 438, 135622.	12.7	103
873	Synergy between plasmonic and sites on gold nanoparticle-modified bismuth-rich bismuth oxybromide nanotubes for the efficient photocatalytic C C coupling synthesis of ethane. Journal of Colloid and Interface Science, 2022, 616, 649-658.	9.4	18

#	Article	IF	CITATIONS
874	Carbon material-TiO2 for photocatalytic reduction of CO2 and degradation of VOCs: A critical review. Fuel Processing Technology, 2022, 231, 107261.	7.2	22
875	Electron-coupled enhanced interfacial interaction of Ce-MOF/Bi2MoO6 heterostructure for boosted photoreduction CO2. Journal of Environmental Chemical Engineering, 2022, 10, 107461.	6.7	23
876	Emerging of heterostructured materials in CO2 electroreduction: A perspective. Carbon Capture Science & Technology, 2022, 3, 100043.	10.4	8
877	Toward the understanding of surface phenomena involved in the photocatalytic performance of amorphous TiO2/SiO2 catalyst – A theoretical and experimental study. Applied Surface Science, 2022, 588, 152920.	6.1	9
878	Nanocavity-assisted single-crystalline Ti3+ self-doped blue TiO2(B) as efficient cocatalyst for high selective CO2 photoreduction of g-C3N4. Materials Today Chemistry, 2022, 24, 100827.	3.5	5
879	CO2 reduction by photocatalytic and photoelectrocatalytic approaches over Eu(III)-ZnGa2O4 nanoparticles and Eu(III)-ZnGa2O4/ZnO nanorods. Journal of CO2 Utilization, 2022, 60, 101994.	6.8	16
880	Adenine-functionalized graphene oxide as a charge transfer layer to enhance activity and stability of Cu2O photocathode for CO2 reduction reaction. Applied Surface Science, 2022, 591, 153197.	6.1	7
881	CdS/ethylenediamine nanowires 3D photocatalyst with rich sulfur vacancies for efficient syngas production from CO2 photoreduction. Applied Catalysis B: Environmental, 2022, 308, 121227.	20.2	59
882	Photoreduction of carbon dioxide and photodegradation of organic pollutants using alkali cobalt oxides MCoO2 (M = Li or Na) as catalysts. Journal of Environmental Management, 2022, 313, 114930.	7.8	22
883	Au/MoS2 tips as auxiliary rate aligners for the photocatalytic generation of syngas with a tunable composition. Applied Catalysis B: Environmental, 2022, 308, 121219.	20.2	9
884	lons-exchange anchoring Cu7S4 cocatalyst on K2Ti8O17 nanowires assembly for enhanced CO2 photoreduction through efficient charge separation. Journal of Alloys and Compounds, 2022, 909, 164792.	5.5	11
885	CO2 photoreduction into solar fuels via vacancy engineered bismuth-based photocatalysts: Selectivity and mechanistic insights. Chemical Engineering Journal, 2022, 439, 135563.	12.7	56
886	Engineering unsaturated coordination of conductive TiOx clusters derived from Metal–Organic–Framework incorporated into hollow semiconductor for highly selective CO2 photoreduction. Chemical Engineering Journal, 2022, 440, 135735.	12.7	9
887	Tailoring the crystal forms of the Ni-MOF catalysts for enhanced photocatalytic CO2-to-CO performance. Applied Catalysis B: Environmental, 2022, 309, 121232.	20.2	74
888	Constructing crystalline redox catalyst to achieve efficient CO2 photoreduction reaction in water vapor. Chemical Engineering Journal, 2022, 442, 136157.	12.7	22
889	Space-confined growth of lead-free halide perovskite Cs3Bi2Br9 in MCM-41 molecular sieve as an efficient photocatalyst for CO2 reduction at the gasâ^'solid condition under visible light. Applied Catalysis B: Environmental, 2022, 310, 121375.	20.2	43
890	Enhanced CO2 conversion on highly-strained and oxygen-deficient BiVO4 photocatalyst. Chemical Engineering Journal, 2022, 442, 136209.	12.7	31
891	Rationally designed Ta3N5/BiOCl S-scheme heterojunction with oxygen vacancies for elimination of tetracycline antibiotic and Cr(VI): Performance, toxicity evaluation and mechanism insight. Journal of Materials Science and Technology, 2022, 123, 177-190.	10.7	232

#	Article	IF	Citations
892	Nanocatalysts as potential candidates in transforming CO2 into valuable fuels and chemicals: A review. Environmental Nanotechnology, Monitoring and Management, 2022, 18, 100671.	2.9	1
893	Z-Scheme Cu ₂ O/Bi/BiVO ₄ Nanocomposite Photocatalysts: Synthesis, Characterization, and Application for CO ₂ Photoreduction. Industrial & Engineering Chemistry Research, 2021, 60, 18384-18396.	3.7	24
894	How solar-based renewable energy contributes to CO ₂ emissions abatement? Sustainable environment policy implications for solar industry. Energy and Environment, 2023, 34, 359-378.	4.6	6
895	Recent advances in constructing heterojunctions of binary semiconductor photocatalysts for visible light responsive <scp> CO ₂ </scp> reduction to energy efficient fuels: A review. International Journal of Energy Research, 2022, 46, 5523-5584.	4.5	32
896	Unsaturated Ni ^{II} Centers Mediated the Coordination Activation of Benzylamine for Enhancing Photocatalytic Activity over Ultrathin Ni MOF-74 Nanosheets. ACS Applied Materials & Interfaces, 2021, 13, 61286-61295.	8.0	23
897	Stable and Exclusive Formation of CO from CO ₂ Photoreduction with H ₂ O Facilitated by Linear Fluorene and Naphthalene Diimide-Based Conjugated Polymers. ACS Applied Polymer Materials, 2022, 4, 521-526.	4.4	5
898	Metallic Copperâ€Containing Composite Photocatalysts: Fundamental, Materials Design, and Photoredox Applications. Small Methods, 2022, 6, e2101001.	8.6	18
899	Review of Graphitic Carbon Nitride and Its Composite Catalysts for Selective Reduction of CO ₂ . ACS Applied Nano Materials, 2021, 4, 12845-12890.	5.0	37
900	Tailorâ€Engineered 2D Cocatalysts: Harnessing Electron–Hole Redox Center of 2D gâ€C ₃ N ₄ Photocatalysts toward Solarâ€toâ€Chemical Conversion and Environmental Purification. Advanced Functional Materials, 2022, 32, .	14.9	93
901	Nickel metal–organic frameworks for visible-light CO ₂ reduction under mild reaction conditions. Dalton Transactions, 2022, 51, 7950-7956.	3.3	4
902	Visible-Light-Driven Production of Solar Fuels Catalyzed by Nanosized Porphyrin-Based Metal–Organic Frameworks and Covalent–Organic Frameworks: A Review. ACS Applied Nano Materials, 2022, 5, 6055-6082.	5.0	25
903	Lightâ€Induced Synthesis of Oxygenâ€Vacancyâ€Functionalized Ni(OH) ₂ Nanosheets for Highly Selective CO ₂ Reduction. ChemSusChem, 2022, 15, .	6.8	13
904	Recent advances in wide solar spectrum active W ₁₈ O ₄₉ -based photocatalysts for energy and environmental applications. Catalysis Reviews - Science and Engineering, 2023, 65, 1521-1566.	12.9	18
905	Atomically Surficial Modulation in Two-Dimensional Semiconductor Nanocrystals for Selective Photocatalytic Reactions. Frontiers in Chemistry, 2022, 10, 890287.	3.6	1
906	Interfacial Charge Modulation via in situ Fabrication of 3D Conductive Platform with MOF Nanoparticles for Photocatalytic Reduction of CO ₂ . Chemistry - A European Journal, 2022, 28, .	3.3	2
907	Enhanced spatially coupling heterojunction assembled from CuCo2S4 yolk-shell hollow sphere capsulated by Bi-modified TiO2 for highly efficient CO2 photoreduction. Chemical Engineering Journal, 2022, 444, 136493.	12.7	33
908	Strategies and reaction systems for solar-driven CO2 reduction by water. , 2022, 1, 1.		10
909	Non-Noble Plasmonic Metal-Based Photocatalysts. Chemical Reviews, 2022, 122, 10484-10537.	47.7	268

ARTICLE IF CITATIONS Investigation of the key parameters for gas sensing through comparison of electrospun and sol-gel 910 4.8 7 semiconducting oxides. Ceramics International, 2022, 48, 20948-20960. Enhancing photocatalytic CO2 reduction performance of In(OH)3 via bismuth isomorphic substitution. Journal of Solid State Chemistry, 2022, 311, 123141. 911 Photothermal catalyzed hydrogenation of carbon dioxide over porous nanosheet Co3O4. Journal of 912 6.8 13 CO2 Utilization, 2022, 61, 102003. Influences of the precursor molar ratio in synthesis on the structures and visible-light driven CO2 2.8 reduction into solar fuel of CdS catalyst. New Journal of Chemistry, 0, , . High-Loading Single-Atom Pt/Tio2 Mesoporous Catalysts for Superior Photocatalytic Oxidation of 914 0.4 0 Benzyl Alcohol. SSRN Electronic Journal, 0, , . A critical review on emerging photocatalysts for syngas generation <i>via</i> CO₂ reduction under aqueous media: a sustainable paradigm. Materials Advances, 2022, 3, 5274-5298. 5.4Electrocatalytic CO₂ reduction reaction on dual-metal- and nitrogen-doped graphene: 916 5.4 10 coordination environment effect of active sites. Materials Advances, 2022, 3, 4566-4577. Zif-67-Derived Ultrathin Co-Ni Layered Double Hydroxides Wrapped on 3d G-C3n4 with Enhanced Visible-Light Photocatalytic Perfórmance for Greénhouse Gas Co2 Reduction. SSRN Electronic 0.4 Journal, O, , . A density functional theory study on the strain modulated electronic and photocatalytic properties 918 of a GaSe monolayer for photocatalytic water splitting and artificial photosynthesis. New Journal of 2.8 10 Chemistry, 2022, 46, 11447-11461. BiZn_x/Si Photocathode: Preparation and CO₂ Reduction Performance. Wuji 1.3 Cailiao Xuebao/Journal of Inorganic Materials, 2022, 37, 1093. Siteâ€Specific Electronâ€Driving Observations of CO₂â€toâ€CH₄ Photoreduction on Coâ€Doped CeO₂/Crystalline Carbon Nitride Sâ€Scheme Heterojunctions. Advanced Materials, 920 21.0 90 2022, 34, e2200929. Current dilemma in photocatalytic CO2 reduction: real solar fuel production or false positive outcomings?., 2022, 1, 1. Siteâ€Sensitive Selective CO₂ Photoreduction to CO over Gold Nanoparticles. Angewandte 922 13.8 33 Chemie - International Edition, 2022, 61, e202204563. Challenges of photocatalysis and their coping strategies. Chem Catalysis, 2022, 2, 1315-1345. 6.1 Industrial-current-density CO2-to-formate conversion with low overpotentials enabled by 924 10.4 9 disorder-engineered metal sites. Nano Research, 2022, 15, 6999-7007. Photocatalytic materials applications for sustainable agriculture. Progress in Materials Science, 32.8 2022, 130, 100965. Hierarchical Hollow Zinc Oxide Nanocomposites Derived from Morphologyâ€Tunable Coordination 926 2.0 4 Polymers for Enhanced Solar Hydrogen Production. Angewandte Chemie, 2022, 134, . High-loading single-atom Pt/TiO2 mesoporous catalysts for superior photocatalytic oxidation of 4.4 benzyl alcohol. Microporous and Mesoporous Materials, 2022, 337, 111949.

#	Article	IF	CITATIONS
928	Site‣ensitive Selective CO ₂ Photoreduction to CO over Gold Nanoparticles. Angewandte Chemie, 2022, 134, .	2.0	5
929	Probing dissolved CO ₂ (aq) in aqueous solutions for CO ₂ electroreduction and storage. Science Advances, 2022, 8, eabo0399.	10.3	17
930	Hierarchical Hollow Zinc Oxide Nanocomposites Derived from Morphologyâ€Tunable Coordination Polymers for Enhanced Solar Hydrogen Production. Angewandte Chemie - International Edition, 2022, 61, .	13.8	26
931	Cu/PCN Metal-Semiconductor Heterojunction by Thermal Reduction for Photoreaction of CO ₂ -Aerated H ₂ O to CH ₃ OH and C ₂ H ₅ OH. ACS Omega, 2022, 7, 16817-16826.	3.5	3
932	Ordered mesoporous carbon spheres assisted Ru nanoclusters/RuO2 with redistribution of charge density for efficient CO2 methanation in a novel H2/CO2 fuel cell. Journal of Energy Chemistry, 2022, 72, 116-124.	12.9	11
933	Size controlled Ag decorated TiO2 plasmonic photocatalysts for tetracycline degradation under visible light. Surfaces and Interfaces, 2022, 31, 102018.	3.0	13
934	Oxygen vacancies-induced photoreactivity enhancement of TiO2 mesocrystals towards acetone oxidation. Applied Surface Science, 2022, 594, 153519.	6.1	16
935	Interfacial interaction-dependent in situ restructure of NiO/TiO2 photocatalysts. Applied Surface Science, 2022, 596, 153606.	6.1	9
937	Switching Excited State Distribution of Metal–Organic Framework for Dramatically Boosting Photocatalysis. Angewandte Chemie - International Edition, 2022, 61, .	13.8	48
938	Origin of <scp>Bismuthâ€Rich</scp> Strategy in Bismuth Oxyhalide Photocatalysts. Energy and Environmental Materials, 2023, 6, .	12.8	17
939	Switching Excited State Distribution of Metal–Organic Framework for Dramatically Boosting Photocatalysis. Angewandte Chemie, 2022, 134, .	2.0	5
940	<i>En route</i> to artificial photosynthesis: the role of polyoxometalate based photocatalysts. Journal of Materials Chemistry A, 2022, 10, 13152-13169.	10.3	12
941	Atomically Thin Bi ₂ O ₂ (OH) _{1+<i>x</i>} (NO ₃) _{1–<i>x</i>} Nanosheets with Regulated Surface Composition for Enhanced Photocatalytic CO ₂ Reduction. ACS Applied Nano Materials, 2022, 5, 7019-7028.	5.0	9
942	High–efficiency photoreduction of CO2 in low vacuum. Physical Chemistry Chemical Physics, 0, , .	2.8	0
943	Application of proteomics and metabolomics in microbiology research. , 2022, , 107-129.		0
944	Greenery-inspired nanoengineering of bamboo-like hierarchical porous nanotubes with spatially organized bifunctionalities for synergistic photothermal catalytic CO ₂ fixation. Journal of Materials Chemistry A, 2022, 10, 12418-12428.	10.3	18
945	Recent advances in solarâ€driven CO ₂ reduction over g ₃ N ₄ â€based photocatalysts. , 2023, 5, .		38
946	MoS2 as a Co-Catalyst for Photocatalytic Hydrogen Production: A Mini Review. Molecules, 2022, 27, 3289.	3.8	24

#	Article	IF	CITATIONS
	Co-embedding oxygen vacancy and copper particles into titanium-based oxides (TiO2, BaTiO3, and) Tj ETQq0 0 C		
947	of Colloid and Interface Science, 2022, 624, 348-361.	9.4	32
948	Enhanced Photocatalytic CO2 Reduction through Hydrophobic Microenvironment and Binuclear Cobalt Synergistic Effect in Metallogels. Angewandte Chemie, 0, , .	2.0	Ο
949	Synthesis of Z-scheme g-C3N4/Gd-doped Bi2WO6 heterojunction with enhanced visible-light photodegradation of organic dyes. Journal of Materials Science: Materials in Electronics, 2022, 33, 14545-14555.	2.2	2
950	Environmentally-friendly carbon nanomaterials for photocatalytic hydrogen production. Chinese Journal of Catalysis, 2022, 43, 1719-1748.	14.0	32
951	Charge transfer and orbital reconstruction of non-noble transition metal single-atoms anchored on Ti2CT -MXenes for highly selective CO2 electrochemical reduction. Chinese Journal of Catalysis, 2022, 43, 1906-1917.	14.0	29
952	Photodeposition of earth-abundant cocatalysts in photocatalytic water splitting: Methods, functions, and mechanisms. Chinese Journal of Catalysis, 2022, 43, 1774-1804.	14.0	45
953	Metal-organic framework derived magnetic phase change nanocage for fast-charging solar-thermal energy conversion. Nano Energy, 2022, 99, 107383.	16.0	26
954	Branch-like Cd Zn1-Se/Cu2O@Cu step-scheme heterojunction for CO2 photoreduction. Materials Today Physics, 2022, 26, 100729.	6.0	31
955	Synergy of nitrogen vacancies and Fe2P cocatalyst on graphitic carbon nitride for boosting photocatalytic CO2 conversion. Chemical Engineering Journal, 2022, 446, 137096.	12.7	19
956	Synthesis of mixed-valence Cu phthalocyanine/graphene/g-C ₃ N ₄ ultrathin heterojunctions as efficient photocatalysts for CO ₂ reduction. Catalysis Science and Technology, 2022, 12, 4817-4825.	4.1	6
957	Removal of carbon dioxide using zeolitic imidazolate frameworks: Adsorption and conversion via catalysis. Applied Organometallic Chemistry, 2022, 36, .	3.5	31
958	Enhanced Photocatalytic CO ₂ Reduction through Hydrophobic Microenvironment and Binuclear Cobalt Synergistic Effect in Metallogels. Angewandte Chemie - International Edition, 2022, 61, .	13.8	10
959	Recent Progress of Metal Sulfide Photocatalysts for Solar Energy Conversion. Advanced Materials, 2022, 34, .	21.0	122
960	A heterostructured ZnAl-LDH@ZIF-8 hybrid as a bifunctional photocatalyst/adsorbent for CO2 reduction under visible light irradiation. Chemical Engineering Journal, 2022, 446, 137003.	12.7	27
961	Insight on Reaction Pathways of Photocatalytic CO ₂ Conversion. ACS Catalysis, 2022, 12, 7300-7316.	11.2	134
962	Ni(II) Tetra(4-carboxylphenyl)porphyrin-Sensitized TiO ₂ Nanotube Array Composite for Efficient Photocatalytic Reduction of CO ₂ . Journal of Physical Chemistry C, 2022, 126, 9742-9752.	3.1	4
963	The Potential of Sequential Fermentations in Converting C1 Substrates to Higher-Value Products. Frontiers in Microbiology, 2022, 13, .	3.5	2
964	Nanoscale 2D g-C3N4 decorating 3D hierarchical architecture LDH for artificial photosynthesis and mechanism insight. Chemical Engineering Journal, 2022, 448, 137338.	12.7	15

#	Article	IF	CITATIONS
965	Construction of Plasmonic Metal@Semiconductor Core–Shell Photocatalysts: From Epitaxial to Nonepitaxial Strategies. Small Structures, 2022, 3, .	12.0	13
966	Accelerating CO2 reduction on novel double perovskite oxide with sulfur, carbon incorporation: Synergistic electronic and chemical engineering. Chemical Engineering Journal, 2022, 446, 137161.	12.7	34
967	Spin polarized graphene monolayer of van der Waals heterojunction for photocatalytic H2O overall splitting. Applied Catalysis B: Environmental, 2022, 315, 121569.	20.2	13
968	High-efficiency photoreduction of CO2 to solar fuel on alkali intercalated Ultra-thin g-C3N4 nanosheets and enhancement mechanism investigation. Applied Surface Science, 2022, 598, 153848.	6.1	15
969	Electrochemical Applications of Metalâ^'Organic Frameworks: Overview, Challenges, and Perspectives. ACS Symposium Series, 0, , 395-453.	0.5	0
970	Metalâ^'Organic Frameworks for Photoreduction of CO ₂ . ACS Symposium Series, 0, , 173-202.	0.5	0
971	Ultrathin Ti-doped WO ₃ nanosheets realizing selective photoreduction of CO ₂ to CH ₃ OH. Nanoscale, 2022, 14, 14023-14028.	5.6	12
972	Thiadiazol-BasedÂConjugated Organic Polymer Anchoring Ag Nanoparticles for Efficient Conversion of Co2 into Oxazolidinones from Propargylic Amines. SSRN Electronic Journal, 0, , .	0.4	0
973	Efficient Co2 Photoreduction Triggered by Oxygen Vacancies in Ultrafine Bi5o7br Nanowires. SSRN Electronic Journal, 0, , .	0.4	0
974	Co2P nanorods with exposure of high-index facets for efficient photochemical reduction of CO2 by promoting the directional transfer of electrons. Journal of Energy Chemistry, 2022, 73, 322-329.	12.9	12
975	Singleâ€Atom Catalysts (SACs) for Photocatalytic CO ₂ Reduction with H ₂ O: Activity, Product Selectivity, Stability, and Surface Chemistry. Small, 2022, 18, .	10.0	54
976	Controllable Visible-Light-Driven Syngas Evolution by a Ternary Titania Hybrid Sacrificial System with a Photosensitive Metal–Organic Pd ^{II} Cage and Re ^I Catalyst. ACS Sustainable Chemistry and Engineering, 2022, 10, 8254-8264.	6.7	7
977	Quantitative Evaluation of Carrier Dynamics in Full-Spectrum Responsive Metallic ZnIn ₂ S ₄ with Indium Vacancies for Boosting Photocatalytic CO ₂ Reduction. Nano Letters, 2022, 22, 4970-4978.	9.1	54
978	Deep insight of the influence of Cu valence states in co-catalyst on CO2 photoreduction. Applied Catalysis B: Environmental, 2022, 316, 121621.	20.2	21
979	Polymer Photoelectrodes for Solar Fuel Production: Progress and Challenges. Chemical Reviews, 2022, 122, 11778-11829.	47.7	39
980	Plasmon Ag/AgVO3/ TiO2-nanowires S-scheme heterojunction photocatalyst for CO2 reduction. Journal of Environmental Chemical Engineering, 2022, 10, 108045.	6.7	18
981	Tunable green syngas generation from CO ₂ and H ₂ O with sunlight as the only energy input. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	16
982	Efficient, Light-Driven Reduction of CO ₂ to CO by a Carbon Monoxide Dehydrogenase–CdSe/CdS Nanorod Photosystem. Journal of Physical Chemistry Letters, 2022, 13, 5553-5556.	4.6	4

#	Article	IF	CITATIONS
983	Nb–O–C Charge Transfer Bridge in 2D/2D Nb ₂ O ₅ /gâ€C ₃ N ₄ Sâ€Scheme Heterojunction for Boosting Solarâ€Driven CO ₂ Reduction: In Situ Illuminated Xâ€Ray Photoelectron Spectroscopy Investigation and Mechanism Insight. Solar Rrl, 2022, 6, .	5.8	21
984	ZIF-67-derived ultrathin Co-Ni layered double hydroxides wrapped on 3D g-C3N4 with enhanced visible-light photocatalytic performance for greenhouse gas CO2 reduction. Journal of Environmental Chemical Engineering, 2022, 10, 108119.	6.7	3
985	DFT investigation of CO2 hydrogenation to methanol over Ir-doped Cu surface. Molecular Catalysis, 2022, 528, 112460.	2.0	1
986	Theoretical insights into the mechanism of photocatalytic reduction of CO2 over semiconductor catalysts. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2022, 52, 100538.	11.6	27
987	Facile Surfactant-Free synthesis of Pd-Sn1.1Nb2O5.5F0.9@SnO2 Core–Shell Nano-Octahedrons for efficient photocatalytic ethylene oxidation. Separation and Purification Technology, 2022, 297, 121478.	7.9	6
988	Fundamentals and application of single-atom photocatalyst in sustainable energy and environmental applications. Renewable and Sustainable Energy Reviews, 2022, 167, 112693.	16.4	17
989	Bi-Ti-In trimetallic sites in the Indium-doped Bi4Ti3O12-CuIn5S8 S-scheme heterojunction for controlling the selectivity of CO2 photoreduction. Fuel, 2022, 325, 124993.	6.4	7
990	Photocatalytic CO2 reduction by a Z-scheme mechanism in an aqueous suspension of particulate (CuGa)0.3Zn1.4S2, BiVO4 and a Co complex operating dual-functionally as an electron mediator and as a cocatalyst. Applied Catalysis B: Environmental, 2022, 316, 121600.	20.2	8
991	Copper/Cuprous Oxide Nanowires with High Density Defects for Enhanced Co2 Electrocatalytic Reduction to Ethylene Over a Wide Potential Window. SSRN Electronic Journal, 0, , .	0.4	0
992	Metal nanoclusters as photosensitizers. , 2022, , 569-587.		0
993	Graphene oxide-based photocatalysts for CO2 reduction. , 2022, , 93-134.		0
994	Metalâ€Organicâ€Frameworks and Their Derived Materials in Photoâ€Thermal Catalysis. European Journal of Inorganic Chemistry, 2022, 2022, .	2.0	7
995	Excited Electronâ€Rich Bi ^{(3–x)+} Sites: A Quantum Wellâ€Like Structure for Highly Promoted Selective Photocatalytic CO ₂ Reduction Performance. Advanced Functional Materials, 2022, 32, .	14.9	45
996	Designing Nanoengineered Photocatalysts for Hydrogen Generation by Water Splitting and Conversion of Carbon Dioxide to Clean Fuels. Chemical Record, 0, , .	5.8	0
997	Monolayer Molecular Functionalization Enabled by Acid–Base Interaction for High-Performance Photochemical CO ₂ Reduction. ACS Energy Letters, 2022, 7, 2265-2272.	17.4	15
998	DFT Study on the CO2 Reduction to C2 Chemicals Catalyzed by Fe and Co Clusters Supported on N-Doped Carbon. Nanomaterials, 2022, 12, 2239.	4.1	5
999	Application of MOFs and COFs for photocatalysis in CO2 reduction, H2 generation, and environmental treatment. EnergyChem, 2022, 4, 100078.	19.1	232
1000	Powering the World with Solar Fuels from Photoelectrochemical CO ₂ Reduction: Basic Principles and Recent Advances. Advanced Energy Materials, 2022, 12, .	19.5	44

#	Article	IF	CITATIONS
1001	Synthesis of a Defective WO _{3–<i>y</i>} /TiO _{2–<i>x</i>} Composite Catalyst for Photocatalytic CO ₂ Highly Selective Reduction. Energy & Fuels, 2022, 36, 11515-11523.	5.1	9
1002	Steel slag as low-cost catalyst for artificial photosynthesis to convert CO2 and water into hydrogen and methanol. Scientific Reports, 2022, 12, .	3.3	6
1003	Covalent organic frameworks: Fundamentals, mechanisms, modification, and applications in photocatalysis. Chem Catalysis, 2022, 2, 2157-2228.	6.1	39
1004	Recent advances in the electrochemical CO reduction reaction towards highly selective formation of Cx products (XÂ= 1–3). Chem Catalysis, 2022, 2, 1961-1988.	6.1	7
1005	A CO ₂ â€Masked Carbene Functionalized Covalent Organic Framework for Highly Efficient Carbon Dioxide Conversion. Angewandte Chemie - International Edition, 2022, 61, .	13.8	41
1006	Highly Dispersed Cobalt Centers on UiO-66-NH2 for Photocatalytic CO2 Reduction. Catalysis Letters, 2023, 153, 1475-1482.	2.6	6
1007	Porous fixed-bed photoreactor for boosting C–C coupling in photocatalytic CO2 reduction. EScience, 2022, 2, 428-437.	41.6	70
1008	Newly-modeled graphene-based ternary nanocomposite for the magnetophotocatalytic reduction of CO2 with electrochemical performance. Frontiers of Chemical Science and Engineering, 2022, 16, 1438-1459.	4.4	5
1009	An Overview of Solar-Driven Photoelectrochemical CO ₂ Conversion to Chemical Fuels. ACS Catalysis, 2022, 12, 9023-9057.	11.2	51
1010	An Artificial Photosystem of Metalâ€Insulatorâ€CTF Nanoarchitectures for Highly Efficient and Selective CO ₂ Conversion to CO. ChemSusChem, 2022, 15, .	6.8	4
1011	Low-Valent Cobalt(I) CNC Pincer Complexes as Catalysts for Light-Driven Carbon Dioxide Reduction. ACS Catalysis, 2022, 12, 8718-8728.	11.2	8
1012	Phosphorus Tailors the <i>d</i> â€Band Center of Copper Atomic Sites for Efficient CO ₂ Photoreduction under Visibleâ€Light Irradiation. Angewandte Chemie - International Edition, 2022, 61, .	13.8	73
1013	Ti(IV)-MOF with Specific Facet–Ag Nanoparticle Composites for Enhancing the Photocatalytic Activity and Selectivity of CO ₂ Reduction. ACS Applied Materials & Interfaces, 2022, 14, 32350-32359.	8.0	26
1014	Multi-channel charge transfer of hierarchical TiO2 nanosheets encapsulated MIL-125(Ti) hollow nanodisks sensitized by ZnSe for efficient CO2 photoreduction. Journal of Colloid and Interface Science, 2022, 627, 492-502.	9.4	10
1015	Modulating Ti <i>t</i> _{2g} Orbital Occupancy in a Cu/TiO ₂ Composite for Selective Photocatalytic CO ₂ Reduction to CO. Angewandte Chemie - International Edition, 2022, 61, .	13.8	35
1016	Ru/H MoO3- with plasmonic effect for boosting photothermal catalytic CO2 methanation. Applied Catalysis B: Environmental, 2022, 317, 121734.	20.2	27
1017	Cu-Loaded NaNbO ₃ Three-Dimensional Networks for CO ₂ Photoreduction to C ₂ Species. Energy & Fuels, 2022, 36, 11654-11659.	5.1	2
1018	Rational Construction of a 0D/1D S-Scheme CeO ₂ /CdWO ₄ Heterojunction for Photocatalytic CO ₂ Reduction and H ₂ Production. Industrial & Engineering Chemistry Research, 2022, 61, 10931-10944	3.7	13

#	Article	IF	CITATIONS
1019	Modulating Ti <i>t</i> _{2g} Orbital Occupancy in a Cu/TiO ₂ Composite for Selective Photocatalytic CO ₂ Reduction to CO. Angewandte Chemie, 0, , .	2.0	1
1020	Artificial photosynthesis using ultrathin 2D materials. Materials Today: Proceedings, 2022, , .	1.8	0
1021	Phosphorus Tailors the dâ€Band Center of Copper Atomic Sites for Efficient CO2 Photoreduction under Visible‣ight Irradiation. Angewandte Chemie, 0, , .	2.0	0
1022	A CO ₂ â€Masked Carbene Functionalized Covalent Organic Framework for Highly Efficient Carbon Dioxide Conversion. Angewandte Chemie, 2022, 134, .	2.0	9
1023	Enhanced photocatalytic degradation of lignin by In2S3 with hydrophobic surface and metal defects. Applied Surface Science, 2022, 600, 154110.	6.1	14
1024	Electrocatalytic and photocatalytic sustainable conversion of carbon dioxide to value-added chemicals: State-of-the-art progress, challenges, and future directions. Journal of Environmental Chemical Engineering, 2022, 10, 108219.	6.7	17
1025	Breaking the intrinsic activity barriers of perovskite oxides photocatalysts for catalytic CO2 reduction via piezoelectric polarization. Applied Catalysis B: Environmental, 2022, 317, 121747.	20.2	33
1026	Universal Kinetic Mechanism Describing CO ₂ Photoreductive Yield and Selectivity for Semiconducting Nanoparticle Photocatalysts. Journal of the American Chemical Society, 0, , .	13.7	9
1027	Machine Learning for Electrocatalyst and Photocatalyst Design and Discovery. Chemical Reviews, 2022, 122, 13478-13515.	47.7	120
1028	Bacteria–photocatalyst sheet for sustainable carbon dioxide utilization. Nature Catalysis, 2022, 5, 633-641.	34.4	42
1029	Template-Free Synthesis of g-C3N4 Nanoball/BiOCl Nanotube Heterojunction with Enhanced Photocatalytic Activity. Nanomaterials, 2022, 12, 2569.	4.1	4
1030	Photo-induced surface frustrated Lewis pairs for promoted photocatalytic decomposition of perfluorooctanoic acid. Frontiers of Environmental Science and Engineering, 2023, 17, .	6.0	8
1031	A comprehensive study on heterogeneous single atom catalysis: Current progress, and challengesâ~†. Coordination Chemistry Reviews, 2022, 470, 214710.	18.8	27
1032	Znfe2o4-Srtio3 Z-Scheme Heterojunction for Highly Efficient Photocatalytic Degradation and Co2 Conversion. SSRN Electronic Journal, 0, , .	0.4	0
1033	Conversion of CO2 to Fuels. , 2022, , .		0
1034	Mediator-free NADH photochemical regeneration with the aid of the amino acid <scp>l</scp> -cysteine. Sustainable Energy and Fuels, 2022, 6, 4393-4397.	4.9	6
1035	Creation of SnxNb1â^'xO2 solid solution through heavy Nb-doping in SnO2 to boost its photocatalytic CO2 reduction to C2+ products under simulated solar illumination. Journal of Advanced Ceramics, 2022, 11, 1404-1416.	17.4	18
1036	Mechanism of Photocatalytic Reduction of CO ₂ to CH ₃ OH by Cu Nanoparticle and Metal Atom (Ag, Au, Pd, Zn)-Doped Cu Catalyst: A Theoretical Study. Organometallics, 2022, 41, 2001-2010.	2.3	2

#	Article	IF	CITATIONS
1037	Stabilization and Performance Enhancement Strategies for Halide Perovskite Photocatalysts. Advanced Materials, 2023, 35, .	21.0	31
1038	Construction of Spatially Separated Gold Nanocrystal/Cuprous Oxide Architecture for Plasmon-Driven CO ₂ Reduction. Nano Letters, 2022, 22, 7268-7274.	9.1	26
1039	Z-Scheme Cu ₂ O/Cu/Cu ₃ V ₂ O ₇ (OH) ₂ ·2H ₂ O Heterostructures for Efficient Visible-Light Photocatalytic CO ₂ Reduction. ACS Applied Energy Materials, 2022, 5, 10542-10552.	5.1	11
1040	A novel S-scheme heterojunction of Cd0.5Zn0.5S/BiOCl with oxygen defects for antibiotic norfloxacin photodegradation: Performance, mechanism, and intermediates toxicity evaluation. Journal of Colloid and Interface Science, 2023, 629, 276-286.	9.4	126
1041	Advances in Biomimetic Photoelectrocatalytic Reduction of Carbon Dioxide. Advanced Science, 2022, 9,	11.2	17
1042	Construction of a p–n Type S-Scheme Heterojunction by Incorporating CsPbBr ₃ Nanocrystals into Mesoporous Cu ₂ O Microspheres for Efficient CO ₂ Photoreduction. ACS Applied Energy Materials, 2022, 5, 10076-10085.	5.1	27
1043	Highly Strained Biâ€MOF on Bismuth Oxyhalide Support with Tailored Intermediate Adsorption/Desorption Capability for Robust CO ₂ Photoreduction. Angewandte Chemie - International Edition, 2022, 61, .	13.8	40
1044	Highly Strained Biâ€MOF on Bismuth Oxyhalide Support with Tailored Intermediate Adsorption/Desorption Capability for Robust CO ₂ Photoreduction. Angewandte Chemie, 2022, 134, .	2.0	4
1045	Microenvironment Modulation of <scp>Imineâ€Based</scp> Covalent Organic Frameworks for <scp>CO₂</scp> Photoreduction. Chinese Journal of Chemistry, 2022, 40, 2678-2684.	4.9	10
1046	Advances and challenges in developing cocatalysts for photocatalytic conversion of carbon dioxide to fuels. Nano Research, 2022, 15, 10090-10109.	10.4	21
1047	MXene-Based Photocatalysts and Electrocatalysts for CO2 Conversion to Chemicals. Transactions of Tianjin University, 2022, 28, 307-322.	6.4	22
1048	TiO2/CsPbBr3 S-scheme heterojunctions with highly improved CO2 photoreduction activity through facet-induced Fermi level modulation. Journal of Colloid and Interface Science, 2023, 629, 206-214.	9.4	20
1049	Molecular Cocatalyst of <i>p</i> -Mercaptophenylboronic Acid Boosts the Plasmon-Mediated Reduction of <i>p</i> -Nitrothiophenol. ACS Applied Materials & Interfaces, 2022, 14, 38302-38310.	8.0	8
1050	Metal–organic framework derived single-atom catalysts for CO2 conversion to methanol. Current Opinion in Green and Sustainable Chemistry, 2022, 37, 100660.	5.9	12
1051	Efficient, Selective CO ₂ Photoreduction Enabled by Facet-Resolved Redox-Active Sites on Colloidal CdS Nanosheets. Journal of the American Chemical Society, 2022, 144, 16974-16983.	13.7	34
1052	Bromo- and iodo-bridged building units in metal-organic frameworks for enhanced carrier transport and CO2 photoreduction by water vapor. Nature Communications, 2022, 13, .	12.8	42
1053	W–N Bonds Precisely Boost Z-Scheme Interfacial Charge Transfer in g-C ₃ N ₄ /WO ₃ Heterojunctions for Enhanced Photocatalytic H ₂ Evolution. ACS Catalysis, 2022, 12, 9994-10003.	11.2	117
1054	High selectivity of photocatalytic reduction of CO2 to CO based on terpyridine ligand supported CuI metal organic framework. Frontiers in Chemistry, 0, 10, .	3.6	3

#	Article	IF	CITATIONS
1055	The role of material defects in the photocatalytic CO2 reduction: Interfacial properties, thermodynamics, kinetics and mechanism. Journal of CO2 Utilization, 2022, 64, 102175.	6.8	11
1056	Recent advances on Z-scheme engineered BiVO4-based semiconductor photocatalysts for CO2 reduction: A review. Applied Surface Science Advances, 2022, 11, 100289.	6.8	5
1057	Coordinating single-atom catalysts on two-dimensional nanomaterials: A paradigm towards bolstered photocatalytic energy conversion. Coordination Chemistry Reviews, 2022, 471, 214743.	18.8	25
1058	Developments of the heterogeneous and homogeneous CO2 hydrogenation to value-added C2+-based hydrocarbons and oxygenated products. Coordination Chemistry Reviews, 2022, 471, 214737.	18.8	20
1059	Thiadiazol-based conjugated organic polymer anchoring Ag nanoparticles for efficient conversion of CO2 into oxazolidinones from propargylic amines. Applied Surface Science, 2022, 604, 154566.	6.1	4
1060	Ferrocene-boosting Zr-MOFs for efficient photocatalytic CO2 reduction: A trade-off between enhancing LMCT and frustrating Lewis acid. Chemical Engineering Journal, 2023, 451, 138747.	12.7	22
1061	A general acetic acid vapour etching strategy to synthesize layered carbon nitride with carbon vacancies for efficient photoredox catalysis. Journal of Materials Chemistry A, 2022, 10, 16873-16882.	10.3	7
1062	Gold nanomaterials – The golden approach from synthesis to applications. Materials Science for Energy Technologies, 2022, 5, 375-390.	1.8	12
1063	Tuning Metal-Free Hierarchical Boron Nitride-like Catalyst for Enhanced Photocatalytic CO ₂ Reduction Activity. ACS Catalysis, 2022, 12, 12217-12226.	11.2	23
1064	Oxygen-vacancy-induced charge localization and atomic site activation in ultrathin Bi4O5Br2 nanotubes for boosted CO2 photoreduction. Chemical Engineering Journal, 2023, 452, 139304.	12.7	8
1065	Nanoarchitectonics of CuNi bimetallic nanoparticles in ionic liquids for LED-assisted synergistic CO2 photoreduction. Molecular Catalysis, 2022, 531, 112654.	2.0	6
1066	Evolutionary face-to-face 2D/2D bismuth-based heterojunction: The quest for sustainable photocatalytic applications. Applied Materials Today, 2022, 29, 101636.	4.3	9
1067	Boosted charge transfer and selective photocatalytic CO2 reduction to CH4 over sulfur-doped K0.475WO3 nanorods under visible light: Performance and mechanism insight. Applied Surface Science, 2022, 605, 154632.	6.1	26
1068	Dual-functional copper (Cu0/Cu2+)-modified SrTiO3-δ nanosheets with enhanced photothermal catalytic performance for CO2 reduction and H2 evolution. Chemical Engineering Journal, 2023, 452, 139378.	12.7	7
1069	Efficiently photocatalytic H2O overall splitting within the strengthened polarized field by reassembling surface single atoms. Applied Catalysis B: Environmental, 2023, 320, 121945.	20.2	15
1070	Dual role of g-C3N4 microtubes in enhancing photocatalytic CO2 reduction of Co3O4 nanoparticles. Carbon, 2023, 201, 415-424.	10.3	29
1071	High-Temperature Semiconductor-Based Catalyst for Artificial Photosynthesis. SSRN Electronic Journal, 0, , .	0.4	0
1072	Selective CO ₂ -to-CO photoreduction over an orthophosphate semiconductor <i>via</i> the direct Z-scheme heterojunction of Ag ₃ PO ₄ quantum dots decorated on SnS ₂ nanosheets. Sustainable Energy and Fuels, 2022, 6, 4418-4428.	4.9	1

#	Article	IF	CITATIONS
1073	Fe Doped Bi2o2s Nanosheets for Improved Organic Pollutants Photo-Fenton Degradation and Co2 Photoreduction. SSRN Electronic Journal, 0, , .	0.4	0
1074	Interface modification by defect engineering for g-C ₃ N ₄ /LaPO _{4â^`<i>x</i>} nanorods towards efficient CO ₂ photoreduction. New Journal of Chemistry, 2022, 46, 18776-18786.	2.8	2
1075	Heterogeneous N-coordinated single-atom photocatalysts and electrocatalysts. Chinese Journal of Catalysis, 2022, 43, 2453-2483.	14.0	33
1076	Cobaltous Selenide/G-C3n4ÂHeterojunction Photocatalyst Based on Double-Electron Migration Mechanism Promotes Hydrogen Production and Tetracycline Hydrochloride Degradation. SSRN Electronic Journal, 0, , .	0.4	0
1077	Constructing an all zero-dimensional CsPbBr ₃ /CdSe heterojunction for highly efficient photocatalytic CO ₂ reduction. Journal of Materials Chemistry A, 2022, 10, 22468-22476.	10.3	25
1078	Silver based photocatalysts in emerging applications. Nanoscale, 2022, 14, 11909-11922.	5.6	13
1079	Non-covalent metalation of carbon nitride for photocatalytic NADH regeneration and enzymatic CO ₂ reduction. Chemical Communications, 2022, 58, 10997-11000.	4.1	3
1080	Cation vacancy activating surface neighboring sites for efficient CO ₂ photoreduction on Bi ₄ Ti ₃ O ₁₂ nanosheets. Journal of Materials Chemistry A, 2022, 10, 20396-20401.	10.3	11
1081	Unveiling the Difference in the Activity and Selectivity of Nickel Based Cocatalysts for Co2 Photoreduction. SSRN Electronic Journal, 0, , .	0.4	0
1082	TiO2-based photocatalysts for CO2 reduction and solar fuel generation. Chinese Journal of Catalysis, 2022, 43, 2500-2529.	14.0	31
1083	A novel S-scheme 3D ZnIn2S4/WO3 heterostructure for improved hydrogen production under visible light irradiation. Chinese Journal of Catalysis, 2022, 43, 2615-2624.	14.0	64
1084	In Situ Fabrication of Plasmonic Bi/Cspbbr3 Composite Photocatalyst Toward Enhanced Photocatalytic Co2 Reduction. SSRN Electronic Journal, 0, , .	0.4	0
1085	Hollow MoS ₂ -supported MAPbI ₃ composites for effective photocatalytic hydrogen evolution. New Journal of Chemistry, 0, , .	2.8	0
1086	Construction of a flower-like SnS2/SnO2 junction for efficient photocatalytic CO2 reduction. Journal of Colloid and Interface Science, 2023, 629, 871-877.	9.4	11
1087	Efficient CO2 photoreduction triggered by oxygen vacancies in ultrafine Bi5O7Br nanowires. Applied Catalysis B: Environmental, 2023, 321, 122031.	20.2	20
1088	2D/2D covalent organic framework/CdS Z-scheme heterojunction for enhanced photocatalytic H2 evolution: Insights into interfacial charge transfer mechanism. Journal of Materials Science and Technology, 2023, 137, 223-231.	10.7	34
1089	Direct Z-scheme ZnIn2S4 spheres and CeO2 nanorods decorated on reduced-graphene-oxide heterojunction photocatalysts for hydrogen evolution and photocatalytic degradation. Applied Surface Science, 2023, 607, 155087.	6.1	20
1090	Cu–S Bonds as an Atomic-Level Transfer Channel to Achieve Photocatalytic CO ₂ Reduction to CO on Cu-Substituted ZnIn ₂ S ₄ . ACS Sustainable Chemistry and Engineering, 2022, 10, 11902-11912.	6.7	21

ARTICLE IF CITATIONS Metal Carbideâ€Based Cocatalysts for Photocatalytic Solarâ€toâ€Fuel Conversion. Small Structures, 2022, 1091 12.0 17 3, . Atomicâ€level insight of sulfidationâ€engineered Aurivilliusâ€related Bi₂O₂SiO₃ nanosheets enabling visible light lowâ€concentration 38 CO₂ conversion., 2023, 5, . Cr–Ti Mixed Oxide Molecular Cages: Synthesis, Structure, Photoresponse, and Photocatalytic 1093 4.0 4 Properties. Inorganic Chemistry, 2022, 61, 14887-14898. Toward Excellence in Photocathode Engineering for Photoelectrochemical CO₂ 1094 Reduction: Design Rationales and Current Progress. Advanced Energy Materials, 2022, 12, . Synthesis of Porous Carbon Nitride Nanobelts for Efficient Photocatalytic Reduction of CO2. 1095 3.8 5 Molecules, 2022, 27, 6054. Carbon-based nanostructures for emerging photocatalysis: CO2 reduction, N2 fixation, and organic conversion. Trends in Chemistry, 2022, 4, 984-1004. 8.5 Mg₂Fe₂O₅ Nanoparticle-Decorated Ca₂Fe₂Heterostructure for 1097 6.7 8 Efficient Photocatalytic CO₂ Conversion. ACS Sustainable Chemistry and Engineering, 2022, 10, 12651-12658. Addressing the stability challenge of metal halide perovskite based photocatalysts for solar fuel 1098 5.3 production. JPhys Energy, 2022, 4, 042005. Aligning Electronic Energy Levels in Pyridine-Assisted CO₂ Activation at the 1099 11.2 3 GaP(110)/Water Interface Using Ab Initio Molecular Dynamics. ACS Catalysis, 2022, 12, 12521-12529. Bicomponent Cocatalyst Decoration on Fluxâ€assisted CaTaO₂N Single Crystals for Photocatalytic CO₂ Reduction under Visible Light. Chemistry - A European Journal, 2022, 3.3 28,. Single-atom catalysts on metal-based supports for solar photoreduction catalysis. Chinese Journal of 1101 19 14.0Catalysis, 2022, 43, 2301-2315. Oxygen Vacancy and Metallic Silver Site Coinjection Associates Photocatalytic CO₂ Reduction upon Mesoporous NH₂â€"TiO₂ Nanoparticles Assembly. Solar Rrl, 5.8 2022, 6, . The development of balanced heterojunction photocatalysts. Cell Reports Physical Science, 2022, 3, 1103 5.6 4 101082. Phosphorus based hybrid materials for green fuel generation. Wiley Interdisciplinary Reviews: Energy 1104 4.1 and Environment, 2023, 12, . Metal-organic coordination polymers-derived ultra-small MoC nanodot/N-doped carbon combined with CdS. A hollow Z-type catalyst for stable and efficient H2 production/CO2 reduction. Applied 1105 6.1 5 Surface Science, 2023, 608, 155176. Photosynthesis of hydrogen peroxide in water: a promising on-site strategy for water remediation. Environmental Science: Water Research and Technology, 2022, 8, 2819-2842. 2.4 Highly efficient and stable photocatalytic CO₂ and H₂O reduction into methanol at lower temperatures through an elaborate gas–liquid–solid interfacial system. Green 1107 9.0 9 Chemistry, 2023, 25, 596-605. Rational catalyst design for spatial separation of charge carriers in a multi-component photocatalyst for effective hydrogen evolution. Journal of Materials Chemistry A, 2022, 10, 25380-25405.

#	Article	IF	CITATIONS
1109	Encapsulated CdSe/CdS nanorods in double-shelled porous nanocomposites for efficient photocatalytic CO2 reduction. Nature Communications, 2022, 13, .	12.8	55
1110	Heterogeneous Hollow Multiâ€Shelled Structures with Amorphousâ€Crystalline Outerâ€Shells for Sequential Photoreduction of CO ₂ . Angewandte Chemie, 2022, 134, .	2.0	0
1111	Advances in Hybrid Composites for Photocatalytic Applications: A Review. Molecules, 2022, 27, 6828.	3.8	22
1112	Ni ₃ B as p-Block Element-Modulated Cocatalyst for Efficient Photocatalytic CO ₂ Reduction. Inorganic Chemistry, 2022, 61, 17268-17277.	4.0	4
1113	Enhanced CO ₂ Photoreduction through Spontaneous Charge Separation in Endâ€Capping Assembly of Heterostructured Covalentâ€Organic Frameworks. Angewandte Chemie - International Edition, 2022, 61, .	13.8	51
1114	In Situ Formation of Z-Scheme Bi2WO6/WO3 Heterojunctions for Gas-Phase CO2 Photoreduction with H2O by Photohydrothermal Treatment. Catalysts, 2022, 12, 1237.	3.5	2
1115	Steering Photocatalytic CO ₂ Conversion over CsPbBr ₃ Perovskite Nanocrystals by Coupling with Transition-Metal Chalcogenides. Inorganic Chemistry, 2022, 61, 17828-17837.	4.0	8
1116	Heterogeneous Hollow Multiâ€Shelled Structures with Amorphousâ€Crystalline Outerâ€Shells for Sequential Photoreduction of CO ₂ . Angewandte Chemie - International Edition, 2022, 61, .	13.8	39
1117	Recent Advances in Design and Fabrication of Highly Active Nanozymes. ACS Symposium Series, 0, , 37-65.	0.5	1
1118	Covalent Organic Frameworks Based Inorganic/Organic Composite Materials for Photocatalytic Applications. ChemNanoMat, 2023, 9, .	2.8	4
1119	Metal-organic aerogels based on titanium(IV) for visible-light conducted CO2 photoreduction to alcohols. Materials Today Energy, 2022, 30, 101178.	4.7	15
1120	Enhanced CO ₂ Photoreduction through Spontaneous Charge Separation in Endâ€Capping Assembly of Heterostructured Covalentâ€Organic Frameworks. Angewandte Chemie, 2022, 134, .	2.0	3
1121	Effect of vacancy concentration on the production selectivity of Janus In2S2X (X=Se, Te) monolayer heterojunction photocatalytic reduction of CO2. Physica E: Low-Dimensional Systems and Nanostructures, 2023, 146, 115549.	2.7	2
1122	Metal single atom doped 2D materials for photocatalysis: current status and future perspectives. Progress in Energy, 2023, 5, 012001.	10.9	9
1123	One Step before Synthesis: Structure–Property–Condition Relationship Models to Sustainable Design of Efficient TiO2-Based Multicomponent Nanomaterials. International Journal of Molecular Sciences, 2022, 23, 13196.	4.1	0
1124	Construction of αâ€Fe ₂ O ₃ /gâ€C ₃ N ₄ /COF Ternary Hybrid with Double Zâ€6cheme Heterojunctions for Photocatalysis**. ChemPhotoChem, 2023, 7, .	3.0	2
1125	Solar Light Responsive Graphitic Carbon Nitride Coupled Porphyrin Photocatalyst that Uses for Solar Fine Chemical Production. Photochemistry and Photobiology, 2023, 99, 1080-1091.	2.5	1
1126	Recent advances on g–C3N4–based Z-scheme photocatalysts: Structural design and photocatalytic applications. International Journal of Hydrogen Energy, 2023, 48, 196-231.	7.1	42

#	Article	IF	CITATIONS
1127	Z-scheme π-π stacking MXene/GO/PDI composite aerogels to construct interface electron transport network for photocatalytic CO2 reduction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 657, 130486.	4.7	5
1128	Synergy of yolk-shelled structure and tunable oxygen defect over CdS/CdCO3-CoS2: Wide band-gap semiconductors assist in efficient visible-light-driven H2 production and CO2 reduction. Chemical Engineering Journal, 2023, 454, 140113.	12.7	8
1129	In situ fabrication of plasmonic Bi/CsPbBr3 composite photocatalyst toward enhanced photocatalytic CO2 reduction. Applied Surface Science, 2023, 609, 155391.	6.1	7
1130	Boosting the photocatalytic activity and stability of Cu2O for CO2 conversion by LaTiO2N. Journal of Colloid and Interface Science, 2023, 630, 352-362.	9.4	13
1131	Cooperative photocatalysis of dye–Ti-MCM-41 with trimethylamine for selective aerobic oxidation of sulfides illuminated by blue light. Journal of Colloid and Interface Science, 2023, 630, 921-930.	9.4	9
1132	0D/2D CeO2/BiVO4 S-scheme photocatalyst for production of solar fuels from CO2. Fuel, 2023, 333, 126417.	6.4	20
1133	PREPARATION AND PHOTOCATALYTIC PROPERTIES OF Ag/Graphene/TiO2 COMPOSITES. Digest Journal of Nanomaterials and Biostructures, 2021, 16, 217-229.	0.8	0
1134	Porous Ag3VO4/KIT-6 composite: Synthesis, characterization and enhanced photocatalytic performance for degradation of Congo Red. Chemosphere, 2023, 311, 137180.	8.2	25
1135	Effect of different food processing techniques on the composition of black cumin seed and seed oil. , 2023, , 89-112.		0
1136	Au nanoparticles-anchored defective metal–organic frameworks for photocatalytic transformation of amines to imines under visible light. Journal of Colloid and Interface Science, 2023, 631, 154-163.	9.4	15
1137	A comprehensive review on the photocatalytic inactivation of Microcystis aeruginosa: Performance, development, and mechanisms. Chemosphere, 2023, 312, 137239.	8.2	6
1138	Ball-Milled Processed, Selective Fe/ <i>h</i> -BN Nanocatalysts for CO ₂ Hydrogenation. ACS Applied Nano Materials, 2022, 5, 16475-16488.	5.0	6
1139	Design of the Synergistic Rectifying Interfaces in Mott–Schottky Catalysts. Chemical Reviews, 2023, 123, 1-30.	47.7	69
1140	A Comprehensive Review on Graphitic Carbon Nitride for Carbon Dioxide Photoreduction. Small Methods, 2022, 6, .	8.6	14
1141	Metal-Free Covalent Organic Framework for Facile Production of Solar Fuel via CO ₂ Reduction. Industrial & Engineering Chemistry Research, 2022, 61, 17044-17056.	3.7	5
1142	Effect of substrate conductivity on charge transfer and CO2 photoreduction in water vapor over silica-modified TiO2 films. Applied Surface Science, 2023, 611, 155595.	6.1	5
1143	Cobaltous selenide/g-C3N4 heterojunction photocatalyst based on double-electron migration mechanism promotes hydrogen production and tetracycline hydrochloride degradation. International Journal of Hydrogen Energy, 2023, 48, 3901-3915.	7.1	7
1144	Self-assembled supramolecular materials for photocatalytic H ₂ production and CO ₂ reduction. Materials Futures, 2022, 1, 042104.	8.4	9

#	ARTICLE SrTiO3 nanosheets decorated with ZnFe2O4 nanoparticles as Z-scheme photocatalysts for highly	IF	CITATIONS
1145	efficient photocatalytic degradation and CO2 conversion. Separation and Purificatión Technology, 2023, 306, 122667.	7.9	8
1146	Solar light-responsive Ag/CdS/TNTs (TiO2 nanotubes) photocatalysts for enhanced CO2 photoreduction and hydrogen evolution. Inorganic Chemistry Communication, 2022, 146, 110228.	3.9	6
1147	Photocatalytic CO2 Reduction Reactions. RSC Green Chemistry, 2022, , 285-307.	0.1	1
1148	Titanium oxide mediated rapid charge separation in halide perovskite for efficient photocatalytic CO2 reduction. Chemical Physics Letters, 2023, 811, 140255.	2.6	1
1149	Enhanced photocatalytic reduction of CO2 into CH4 over N, Eu co-doped TiO2: Insight into the synergistic effect of N and Eu. Applied Catalysis A: General, 2023, 650, 118977.	4.3	4
1150	A novel S-scheme heterojunction constructed by Ti-based hydrotalcite decorating MOFs for boosting CO ₂ -to-CO photoreduction and mechanism insights. Journal of Materials Chemistry A, 2023, 11, 630-641.	10.3	7
1151	Recent advances of cobalt-based nitride catalysts in solar energy conversion. Materials Chemistry Frontiers, 2023, 7, 607-627.	5.9	9
1152	Efficient acceptorless dehydrogenation of 5-Hydroxymethylfurfural (HMF) to 2,5-Diformylfuran (DFF) over Pt/CdS under visible light. Journal of Catalysis, 2023, 417, 178-184.	6.2	13
1153	Unveiling the difference in the activity and selectivity of nickel based cocatalysts for CO2 photoreduction. Journal of CO2 Utilization, 2023, 68, 102346.	6.8	0
1154	Multichannel electron transmission and multiple light scattering in CoCo PBA/CoSn(OH)6/Pt photocatalyst for effective conversion of simulated flue gas. Fuel, 2023, 334, 126747.	6.4	3
1155	Fe doped Bi2O2S nanosheets for improved organic pollutants photo-Fenton degradation and CO2 photoreduction. Separation and Purification Technology, 2023, 306, 122734.	7.9	10
1156	Evaluating alternative low carbon fuel technologies using a stakeholder participation-based q-rung orthopair linguistic multi-criteria framework. Applied Energy, 2023, 332, 120492.	10.1	10
1157	Reduced TiO2 quantum dots/graphene for solar light driven CO2 reduction into precisely controlled C1 vs C2 hydrocarbon products without noble Co-catalyst. Journal of Power Sources, 2023, 556, 232430.	7.8	4
1158	Machine learning for the yield prediction of CO2 cyclization reaction catalyzed by the ionic liquids. Fuel, 2023, 335, 126942.	6.4	1
1159	Understanding the injection process of hydrogen on Pt1-TiO2 surface for photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2023, 325, 122303.	20.2	12
1160	Reaction kinetics on facet-engineered bismuth tungstate photoanodes for water oxidation. Applied Surface Science, 2023, 613, 156081.	6.1	1
1161	Turning CO2 into Fuels and Chemicals: An Introduction. RSC Green Chemistry, 2022, , 1-18.	0.1	0
1162	Controllable Synthesis and Photocatalytic Applications of Two-dimensional Covalent Organic Frameworks. Acta Chimica Sinica, 2022, 80, 1494.	1.4	5

#	Article	IF	CITATIONS
1163	Cobalt-Based Cocatalysts for Photocatalytic CO2 Reduction. Transactions of Tianjin University, 2022, 28, 506-532.	6.4	9
1164	Pt-surface oxygen vacancies coupling accelerated photo-charge extraction and activated hydrogen evolution. Nano Research, 2023, 16, 4736-4741.	10.4	5
1165	Sunlight-Powered Reverse Water Gas Shift Reaction Catalysed by Plasmonic Au/TiO2 Nanocatalysts: Effects of Au Particle Size on the Activity and Selectivity. Nanomaterials, 2022, 12, 4153.	4.1	4
1166	Recent advances in direct gas–solid-phase photocatalytic conversion of CO2 for porous photocatalysts under different CO2 atmospheres. Chemical Engineering Journal, 2023, 455, 140654.	12.7	17
1167	Unexpected Insulating Polymer Maneuvered Solar CO ₂ â€ŧo‣yngas Conversion. Advanced Functional Materials, 2023, 33, .	14.9	25
1168	Metal-enhanced strategies for photocatalytic and photoelectrochemical CO2 reduction. Chemical Engineering Journal, 2023, 457, 141179.	12.7	8
1169	Vacancy Pair-Induced Charge Rebalancing with Surface and Interfacial Dual Polarization for CO ₂ Photoreduction. ACS Catalysis, 2022, 12, 15728-15736.	11.2	15
1170	Ultrafast Electron Transfer in Au–Cyanobacteria Hybrid for Solar to Chemical Production. ACS Energy Letters, 2023, 8, 677-684.	17.4	9
1171	Arylamines as More Strongly Reducing Organic Photoredox Catalysts than <i>fac</i> -[lr(ppy) ₃]. ACS Catalysis, 2022, 12, 15400-15415.	11.2	17
1172	Surface and Interface Engineering for the Catalysts of Electrocatalytic CO ₂ Reduction. Chemistry - an Asian Journal, 2023, 18, .	3.3	5
1173	Metal-oxide clusters with semiconductive heterojunction counterparts. , 2023, 2, 9140020.		9
1174	Selective Hydrogenation of CO ₂ to CH ₃ OH on a Dynamically Magic Single-Cluster Catalyst: Cu ₃ /MoS ₂ /Ag(111). ACS Catalysis, 2023, 13, 714-724.	11.2	9
1175	Structural Engineering of Donorâ^'π–Acceptor Conjugated Polymers for Facilitating Charge Separation: A Dual-Functional Photocatalysis. Macromolecules, 2022, 55, 10842-10853.	4.8	6
1176	Selective CO ₂ Reduction to Ethylene Over a Wide Potential Window by Copper Nanowires with High Density of Defects. Inorganic Chemistry, 2022, 61, 20666-20673.	4.0	1
1177	Promoting Photocatalytic Carbon Dioxide Reduction by Tuning the Properties of Cocatalysts. Chemistry - A European Journal, 2023, 29, .	3.3	3
1178	Porous Zn Conformal Coating on Dendriticâ€Like Ag with Enhanced Selectivity and Stability for CO ₂ Electroreduction to CO. Advanced Sustainable Systems, 2023, 7, .	5.3	7
1179	Recent Advances on Multivariate MOFs for Photocatalytic CO ₂ Reduction and H ₂ Evolution. Advanced Sustainable Systems, 2023, 7, .	5.3	6
1180	Plasmonic semiconductors for advanced artificial photosynthesis. , 2023, 2, 100047.		3

#	Article	IF	CITATIONS
1181	Review on Metals and Metal Oxides in Sustainable Energy Production: Progress and Perspectives. Energy & Fuels, 2023, 37, 1577-1632.	5.1	23
1182	The Collision between g ₃ N ₄ and QDs in the Fields of Energy and Environment: Synergistic Effects for Efficient Photocatalysis. Small, 2023, 19, .	10.0	42
1183	Molecular Nickel Thiolate Complexes for Electrochemical Reduction of CO2 to C1â^3 Hydrocarbons. Angewandte Chemie, 0, , .	2.0	0
1184	2D–1D-2D multi-interfacial-electron transfer scheme enhanced g-C3N4/MWNTs/rGO hybrid composite for accelerating CO2 photoreduction. Journal of Alloys and Compounds, 2023, 940, 168796.	5.5	4
1185	Synergistic effect of oxygen vacancies and Ni particles over the ZnWO ₄ /CdS heterostructure for enhanced photocatalytic reduction and oxidation activities. Catalysis Science and Technology, 2023, 13, 1196-1207.	4.1	5
1186	Near-infrared-featured broadband CO2 reduction with water to hydrocarbons by surface plasmon. Nature Communications, 2023, 14, .	12.8	34
1187	Highly efficient photocatalytic formic acid decomposition to syngas under visible light using CdS nanorods integrated with crystalline W ₂ N ₃ nanosheets. Journal of Materials Chemistry A, 2023, 11, 2246-2251.	10.3	4
1188	2D Transition Metal Dichalcogenides for Photocatalysis. Angewandte Chemie - International Edition, 2023, 62, .	13.8	65
1189	Recent Advances in Electrochemical, Photochemical, and Photoelectrochemical Reduction of CO ₂ to C ₂₊ Products. Small, 2023, 19, .	10.0	30
1190	Understanding the light-induced oxygen vacancy in the photochemical conversion. JPhys Energy, 2023, 5, 011001.	5.3	3
1191	Visible-light driven reaction of CO ₂ with alcohols using a Ag/CeO ₂ nanocomposite: first photochemical synthesis of linear carbonates under mild conditions. Chemical Communications, 2023, 59, 1313-1316.	4.1	3
1192	NiFe-Layered Double Hydroxides/Lead-free Cs ₂ AgBiBr ₆ Perovskite 2D/2D Heterojunction for Photocatalytic CO ₂ Conversion. Inorganic Chemistry, 2023, 62, 1752-1761.	4.0	14
1193	2D Transition Metal Dichalcogenides for Photocatalysis. Angewandte Chemie, 2023, 135, .	2.0	3
1194	Molecular Nickel Thiolate Complexes for Electrochemical Reduction of CO ₂ to C _{1–3} Hydrocarbons. Angewandte Chemie - International Edition, 2023, 62, .	13.8	10
1195	Plasmon-enhanced visible-light photocatalytic antibacterial activity of metal–organic framework/gold nanocomposites. Journal of Materials Chemistry A, 2023, 11, 2391-2401.	10.3	7
1196	Direct Z-scheme heterojunction of PCN-222/CsPbBr3 for boosting photocatalytic CO2 reduction to HCOOH. Chemical Engineering Journal, 2023, 457, 141248.	12.7	24
1197	Insight into the role of [C2C1mim][OAc] and AgNO3 in the reaction of propargylic alcohols, CO2, and 2-aminoethanols. Molecular Catalysis, 2023, 537, 112909.	2.0	0
1198	Rapid charge transfer in covalent organic framework via through-bond for enhanced photocatalytic CO2 reduction. Chemical Engineering Journal, 2023, 458, 141360.	12.7	11

#	Article	IF	CITATIONS
1199	Dioxygen-enhanced CO2 photoreduction on TiO2 supported Cu single-atom sites. Applied Catalysis B: Environmental, 2023, 325, 122339.	20.2	17
1200	Rational design of MoS2@COF hybrid composites promoting C-C coupling for photocatalytic CO2 reduction to ethane. Applied Catalysis B: Environmental, 2023, 325, 122393.	20.2	24
1201	Charge Carrier Dynamics of CsPbBr ₃ /g-C ₃ N ₄ Nanoheterostructures in Visible-Light-Driven CO ₂ -to-CO Conversion. Journal of Physical Chemistry Letters, 2023, 14, 122-131.	4.6	4
1202	A direct Z-scheme Bi2WO6/La2Ti2O7 photocatalyst for selective reduction of CO2 to CO. , 2023, 42, 100010.		6
1203	A critical review on layered double hydroxide (LDH)-derived functional nanomaterials as potential and sustainable photocatalysts. Sustainable Energy and Fuels, 2023, 7, 1145-1186.	4.9	12
1204	Electron transfer in heterojunction catalysts. Physical Chemistry Chemical Physics, 2023, 25, 7106-7119.	2.8	6
1205	Photocatalytic water splitting and reduction of CO2. , 2023, , 111-155.		0
1206	Effect of Calcination Temperature on the Performance of SiO2@Co@CeO2 Catalyst in CO2 Reforming With Ethanol. Catalysis Letters, 0, , .	2.6	0
1207	Graphene-based nanomaterials for CO2 capture and conversion. , 2023, , 211-243.		1
1208	A p–n Junction by Coupling Amine-Enriched Brookite–TiO2 Nanorods with CuxS Nanoparticles for Improved Photocatalytic CO2 Reduction. Materials, 2023, 16, 960.	2.9	5
1210	New Horizons in the Synthesis, Properties, and Applications of MXene Quantum Dots. Advanced Materials Interfaces, 2023, 10, .	3.7	12
1211	Cu-Based Materials as Photocatalysts for Solar Light Artificial Photosynthesis: Aspects of Engineering Performance, Stability, Selectivity. Solar, 2023, 3, 87-112.	1.8	3
1212	Nanostructured Materials for Photothermal Carbon Dioxide Hydrogenation: Regulating Solar Utilization and Catalytic Performance. ACS Nano, 2023, 17, 1725-1738.	14.6	43
1213	Dual-optimization strategy engineered Ti-based metal-organic framework with Fe active sites for highly-selective CO2 photoreduction to formic acid. Applied Catalysis B: Environmental, 2023, 327, 122418.	20.2	19
1214	Design and synthesis of a covalent organic framework bridging CdS nanoparticles and a homogeneous cobalt–bipyridine cocatalyst for a highly efficient photocatalytic CO ₂ reduction. Journal of Materials Chemistry A, 2023, 11, 8392-8403.	10.3	8
1215	Active Learning Accelerating to Screen Dual-Metal-Site Catalysts for Electrochemical Carbon Dioxide Reduction Reaction. ACS Applied Materials & amp; Interfaces, 2023, 15, 12986-12997.	8.0	4
1216	Selective CO ₂ â€ŧoâ€C ₂ H ₄ Photoconversion Enabled by Oxygenâ€Mediated Triatomic Sites in Partially Oxidized Bimetallic Sulfide. Angewandte Chemie - International Edition, 2023, 62, .	13.8	11
1217	Enhanced photocatalytic H2 evolution and anti-photocorrosion of sulfide photocatalyst by improving surface reaction: A review. International Journal of Hydrogen Energy, 2023, 48, 24264-24284.	7.1	13

#	Article	IF	CITATIONS
1218	Metal Vacancies in CoAl-Layered Double Hydroxide Nanosheets Enabling Boosted Visible Light Driven CO ₂ Photoreduction. Journal of Physical Chemistry C, 0, , .	3.1	0
1219	CuCo2O4/CeO2 S-scheme photocatalyst for promoted CO2 photoreduction to CH3OH. Journal of Molecular Liquids, 2023, 376, 121509.	4.9	11
1220	DFT Study of CO2 Reduction Reaction to CH3OH on Low-Index Cu Surfaces. Catalysts, 2023, 13, 722.	3.5	3
1221	Structurally designable Bi2S3/P-doped ZnO S-scheme photothermal metamaterial enhanced CO2 reduction. Separation and Purification Technology, 2023, 312, 123365.	7.9	4
1222	Evaluation of the activity and selectivity of mesoporous composites of MCM-41 and CuO in the CO2 photoreduction process. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 439, 114631.	3.9	6
1223	MXenes and their interfaces for the taming of carbon dioxide & nitrate: A critical review. Coordination Chemistry Reviews, 2023, 483, 215094.	18.8	19
1224	Metal halide perovskites for photocatalytic CO2 reduction: An overview and prospects. Coordination Chemistry Reviews, 2023, 482, 215076.	18.8	18
1225	Electro-enzyme coupling systems for selective reduction of CO2. Journal of Energy Chemistry, 2023, 80, 140-162.	12.9	10
1226	Surface selenation engineering on metal cocatalysts for highly efficient photoreduction of carbon dioxide to methanol. Chemical Engineering Journal, 2023, 464, 142612.	12.7	3
1227	Synchronistic embedding of oxygen vacancy and Ag nanoparticles into potholed TiO2 nanoparticles-assembly for collaboratively promoting photocatalytic CO2 reduction. Molecular Catalysis, 2023, 542, 113138.	2.0	2
1228	Photocatalytic CO2 reduction and pesticide degradation over g-C3N4/Ce2S3 heterojunction. Journal of Environmental Chemical Engineering, 2023, 11, 109675.	6.7	8
1229	Constructing an S-scheme heterojunction of 2D/2D Cd0.5Zn0.5S/CuInS2 nanosheet with vacancies for photocatalytic hydrogen generation under visible light. Applied Surface Science, 2023, 621, 156721.	6.1	11
1230	Construction and optimization of a photoâ^'enzyme coupled system for sustainable CO2 conversion to methanol. Process Biochemistry, 2023, 129, 44-55.	3.7	5
1231	Cu2O nanocubes/TiO2 heterostructure and its adsorption and photocatalytic properties for tetracycline removal. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 440, 114652.	3.9	1
1232	Construction of Z-scheme É'-Fe2O3/graphene/Bi2O2S heterojunction for visible-light-driven photocatalytic CO2 conversion. Separation and Purification Technology, 2023, 314, 123607.	7.9	13
1233	Fabricate dual interface build-in electric fields by introducing Au nanospecies into Z-scheme heterojunction to propel photocatalytic CO2 reduction. Separation and Purification Technology, 2023, 315, 123726.	7.9	4
1234	Effect of Ag-doping strategies on the Lewis acid/base behavior of mesoporous TiO2 photocatalyst and its performance in CO2 photoreduction. Applied Materials Today, 2023, 32, 101811.	4.3	1
1235	Fluorenone-based covalent organic frameworks with efficient exciton dissociation and well-defined active center for remarkable photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2023, 330, 122581.	20.2	22

#	Article	IF	CITATIONS
1236	A hierarchical Bi-MOF-derived BiOBr/Mn0.2Cd0.8S S-scheme for visible-light-driven photocatalytic CO2 reduction. Journal of Materials Science and Technology, 2023, 156, 64-71.	10.7	36
1237	Bimetal-organic layer-derived ultrathin lateral heterojunction with continuous semi-coherent interfaces for boosting photocatalytic CO2 reduction. Applied Catalysis B: Environmental, 2023, 331, 122689.	20.2	8
1238	Self-supported CsPbBr3/Ti3C2Tx MXene aerogels towards efficient photocatalytic CO2 reduction. Journal of Colloid and Interface Science, 2023, 643, 174-182.	9.4	20
1239	Electrocatalytic CO2 conversion on metal-organic frameworks derivative electrocatalysts. Journal of CO2 Utilization, 2023, 69, 102412.	6.8	8
1240	Integrating 3D porous morphology with efficient plasmonic Au nanoparticles in photo-responsive g-C3N4/Au hybrid photocatalyst for the enhancement of CO2 reduction. Journal of Environmental Chemical Engineering, 2023, 11, 109478.	6.7	5
1241	Cobalt single atom induced catalytic active site shift in carbon-doped BN for efficient photodriven CO2 reduction. Applied Surface Science, 2023, 616, 156451.	6.1	3
1242	Modulating microenvironment of active moiety in Prussian blue analogues via surface coordination to enhance CO2 photoreduction. Separation and Purification Technology, 2023, 311, 123230.	7.9	9
1243	Flower-like and nanorods ZnO deposited on rGO as efficient photocatalysts for removal of polychlorinated biphenyls (PCBs). Nanocomposites, 2022, 8, 204-214.	4.2	3
1244	Anion vacancy correlated photocatalytic CO ₂ to CO conversion over quantum-confined CdS nanorods under visible light. Journal of Materials Chemistry A, 2023, 11, 3937-3941.	10.3	7
1245	Carbon Dots Based Photoinduced Reactions: Advances and Perspective. Advanced Science, 2023, 10, .	11.2	20
1246	Modeling Adsorption of CO2 in Rutile Metallic Oxide Surfaces: Implications in CO2 Catalysis. Molecules, 2023, 28, 1776.	3.8	1
1247	An artificial leaf device built with earth-abundant materials for combined H ₂ production and storage as formate with efficiency > 10%. Energy and Environmental Science, 2023, 16, 1644-1661.	30.8	8
1248	Efficient Photocatalytic Hydrogen Evolution by Modulating Excitonic Effects in Niâ€Intercalated Covalent Organic Frameworks. Advanced Energy Materials, 2023, 13, .	19.5	42
1249	Solar-driven CO ₂ reduction catalysed by hybrid supramolecular photocathodes and enhanced by ionic liquids. Catalysis Science and Technology, 2023, 13, 1708-1717.	4.1	2
1250	Selective CO ₂ â€ŧoâ€C ₂ H ₄ Photoconversion Enabled by Oxygenâ€Mediated Triatomic Sites in Partially Oxidized Bimetallic Sulfide. Angewandte Chemie, 2023, 135, .	2.0	1
1251	Highly selective CO ₂ photoreduction to CO on MOF-derived TiO ₂ . , 2023, 1, 494-503.		1
1253	Construction of Nitrogenâ€Đoped Carbon Functionalized Ni(OH) ₂ for Selective CO ₂ Photoreduction. ChemCatChem, 2023, 15, .	3.7	1
1254	Oxide based Heterostructured Photocatalysts for CO ₂ Reduction and Hydrogen Generation. ChemistrySelect, 2023, 8, .	1.5	13

		CITATION REPORT	
# 1255	ARTICLE Theoretical design and experimental study of pyridine-incorporated polymeric carbon nitride with an optimal structure for boosting photocatalytic CO2 reduction. Chinese Journal of Catalysis, 2023, 46, 91-102.	lF 14.0	CITATIONS 4
1256	Effect of palladium chemical states on CO2 photocatalytic reduction over g-C3N4: Distinct role of single-atomic state in boosting CH4 production. Chinese Journal of Catalysis, 2023, 46, 177-190.	14.0	17
1257	Leadâ€Free Cs ₂ AgBiBr ₆ Nanocrystals Confined in MCMâ€48 Mesoporous Molecular Sieve for Efficient Photocatalytic CO ₂ Reduction. Solar Rrl, 2023, 7, .	5.8	15
1258	Addressing the stability challenge of photo(electro)catalysts towards solar water splitting. Chemical Science, 2023, 14, 3415-3427.	7.4	8
1259	One-dimensional III-nitrides: towards ultrahigh efficiency, ultrahigh stability artificial photosynthesis. Journal of Materials Chemistry A, 2023, 11, 5427-5459.	10.3	5
1260	MXene Ti3C2 decorated g-C3N4/ZnO photocatalysts with improved photocatalytic performance for CO2 reduction. Nano Materials Science, 2023, 5, 237-245.	8.8	24
1261	In-situ growth of Z-Scheme Ag/PPy/BiVO4 core–shell structure for efficient CO2 photoreduction into hydrocarbon fuels. Fuel, 2023, 343, 128004.	6.4	1
1262	Engineering Single Cu Sites into Covalent Organic Framework for Selective Photocatalytic CO ₂ Reduction. Small, 2023, 19, .	10.0	20
1263	Photoelectrochemical CO ₂ Reduction at a Direct CuInGaS ₂ /Electrolyte Junction. ACS Energy Letters, 2023, 8, 1645-1651.	17.4	3
1264	Solar driven CO ₂ reduction: from materials to devices. Journal of Materials Chemistry A, 2023, 11, 12499-12520.	10.3	7
1265	å…æœ‰ä¸ºå⁻Œç¡«ç©ºä¼₂的强å¸å…‰Cu2S/CuClå¼,èˆʻ阵列的构ç ʿ åŠå…¶åœ¨å…‰å电èµç"µå®¹ä¸	çš" æ. ȝç" S	Sci e nce China
1266	Photoinduced CO ₂ Conversion under Arctic Conditions─The High Potential of Plasmon Chemistry under Low Temperature. ACS Catalysis, 2023, 13, 3830-3840.	11.2	4
1267	Near Field Scattering Optical Model-Based Catalyst Design for Artificial Photoredox Transformation. ACS Catalysis, 2023, 13, 3971-3982.	11.2	32
1268	Role of Co-catalysts for Photocatalytic H2O Splitting and CO2 Reduction. , 2023, , 231-274.		1
1269	Comproportionation of CO ₂ and Cellulose to Formate Using a Floating Semiconductorâ€Enzyme Photoreforming Catalyst. Angewandte Chemie, 0, , .	2.0	0
1270	Comproportionation of CO ₂ and Cellulose to Formate Using a Floating Semiconductorâ€Enzyme Photoreforming Catalyst. Angewandte Chemie - International Edition, 2023, 62, .	13.8	12
1271	Spatially Separated Redox Cocatalysts on Ferroelectric Nanoplates for Improved Piezophotocatalytic CO ₂ Reduction and H ₂ O Oxidation. ACS Applied Materials & Interfaces, 0, ,	8.0	4
1272	Recent Developments of Light-Harvesting Excitation, Macroscope Transfer and Multi-Stage Utilization of Photogenerated Electrons in Rotating Disk Photocatalytic Reactor. Processes, 2023, 11, 838.	2.8	0

#	Article	IF	CITATIONS
1273	Research Progress of Tungsten Oxide-Based Catalysts in Photocatalytic Reactions. Catalysts, 2023, 13, 579.	3.5	3
1274	Integrating Dual-Metal Sites into Covalent Organic Frameworks for Enhanced Photocatalytic CO ₂ Reduction. ACS Catalysis, 2023, 13, 4316-4329.	11.2	42
1275	Synthesis of a Hexagonal Phase ZnS Photocatalyst for High CO Selectivity in CO ₂ Reduction Reactions. ACS Applied Materials & Interfaces, 2023, 15, 15387-15395.	8.0	7
1276	MOF-on-MOF Composites with UiO-66-Based Materials as Photocatalysts for the Overall Water Splitting under Sunlight Irradiation. Energy & Fuels, 2023, 37, 5457-5468.	5.1	12
1277	Deep transfer learning for predicting frontier orbital energies of organic materials using small data and its application to porphyrin photocatalysts. Physical Chemistry Chemical Physics, 2023, 25, 10536-10549.	2.8	4
1278	Copper phenanthroline for selective electrochemical CO ₂ reduction on carbon paper. Chemical Communications, 2023, 59, 4778-4781.	4.1	6
1279	Regulating Activity and Selectivity of Photocatalytic CO ₂ Reduction on Cobalt by Rare Earth Compounds. ACS Applied Materials & amp; Interfaces, 2023, 15, 16621-16630.	8.0	5
1280	Recent Progress in Electrocatalytic Reduction of CO2. Catalysts, 2023, 13, 644.	3.5	4
1281	Tunable Interfacial Charge Transfer in a 2D–2D Composite for Efficient Visibleâ€Lightâ€Driven CO ₂ Conversion. Advanced Materials, 2023, 35, .	21.0	51
1282	UiO-66 MOF-Derived Ru@ZrO2 Catalysts for Photo-Thermal CO2 Hydrogenation. Chemistry, 2023, 5, 720-729.	2.2	1
1283	Novelty Allâ€Inorganic Titaniumâ€Based Halide Perovskite for Highly Efficient Photocatalytic CO ₂ Conversion. Small, 2023, 19, .	10.0	4
1284	Photocatalytic Reduction of Carbon Dioxide in Aqueous Suspensions of a Titania Semiconductor. High Energy Chemistry, 2023, 57, 12-17.	0.9	0
1285	Photothermally accelerated photocatalysis over hollow carbon@ZnIn ₂ S ₄ for enhanced amine oxidation. Reaction Chemistry and Engineering, 0, , .	3.7	0
1286	Electronic Transmission Channels Promoting Charge Separation of Conjugated Polymers for Photocatalytic CO ₂ Reduction with Controllable Selectivity. Angewandte Chemie - International Edition, 2023, 62, .	13.8	24
1287	Large-scale and solvent-free synthesis of magnetic bamboo-like nitrogen-doped carbon nanotubes with nickel active sites for photothermally driven CO ₂ fixation. Green Chemistry, 2023, 25, 3585-3591.	9.0	3
1288	Electronic Transmission Channels Promoting Charge Separation of Conjugated Polymers for Photocatalytic CO2 Reduction with Controllable Selectivity. Angewandte Chemie, 0, , .	2.0	0
1289	Emerging Single-Atom Catalysts and Nanomaterials for Photoelectrochemical Reduction of Carbon Dioxide to Value-Added Products: A Review of the Current State-of-the-Art and Future Perspectives. Energy & Fuels, 2023, 37, 5712-5742.	5.1	11
1290	A follow-up study on "A sensitive determination of morphine in plasma using AuNPs@UiO-66/PVA hydrogel as an advanced optical scaffold― Heliyon, 2023, 9, e15267.	3.2	3

#	Article	IF	CITATIONS
1291	Fabrication of a Concave Cubic Z-Scheme Znln ₂ S ₄ /Cu ₂ O Heterojunction with Superior Light-Driven CO ₂ Reduction Performance. Energy & Fuels, 2023, 37, 6036-6048.	5.1	4
1292	Recent Advances in Graphitic Carbon Nitride Based Electro-Catalysts for CO2 Reduction Reactions. Molecules, 2023, 28, 3292.	3.8	4
1293	Fabrication and characterization of Z-scheme BiOCl/C/Cu ₂ O heterojunction nanocomposites as efficient catalysts for the photocatalytic reduction of CO ₂ . Dalton Transactions, 2023, 52, 6375-6387.	3.3	2
1294	<i>Operando</i> FTIR study of the photocatalytic reduction of CO ₂ in the presence of water vapor over Pt/TiO ₂ : on the role of surface residual C-species. Sustainable Energy and Fuels, 2023, 7, 2819-2823.	4.9	1
1295	Recent progress of cocatalysts loaded on carbon nitride for selective photoreduction of CO ₂ to CH ₄ . Nanoscale, 2023, 15, 8548-8577.	5.6	10
1296	Au-based heterostructure composites for photo and electro catalytic energy conversions. Sustainable Materials and Technologies, 2023, 36, e00609.	3.3	4
1297	Value Behaviour Norm Theory Approach to Predict Private Sphere Pro-Environmental Behaviour among University Students. Environmental and Climate Technologies, 2023, 27, 164-176.	1.4	2
1298	Photosynthesis of Hydrogen Peroxide Based on g‑C ₃ N ₄ : The Road of a Costâ€Effective Clean Fuel Production. Small, 2023, 19, .	10.0	16
1299	Superheterojunction covalent organic frameworks: Supramolecular synergetic charge transfer for highly efficient photocatalytic CO2 reduction. Applied Catalysis B: Environmental, 2023, 333, 122782.	20.2	12
1300	Combing Hollow Shell Structure and Z-Scheme Heterojunction Construction for Promoting CO ₂ Photoreduction. Journal of Physical Chemistry C, 2023, 127, 8071-8082.	3.1	2
1301	A Novel Synergetic Effect and Photoactivation Lead to Very Effective UV–Visible–Infrared Lightâ€Đriven Photothermocatalytic CO ₂ Reduction with CH ₄ on Ni/Niâ€Đoped Al ₂ O ₃ . Solar Rrl, 2023, 7, .	5.8	2
1302	Photothermal catalysis in CO2 reduction reaction: Principles, materials and applications. New Carbon Materials, 2023, 38, 283-300.	6.1	3
1303	Efficient visible-light-driven CO2 reduction mediated by novel Au-doped BiOBr nanosheets. Journal of Environmental Chemical Engineering, 2023, 11, 109986.	6.7	7
1304	Direct and Indirect Effects of Fluorine on the Photocatalytic Performance of Titaniaâ€Based Photocatalysts. Energy Technology, 2023, 11, .	3.8	3
1305	Photoinitiated Energy Transfer in Porous ageâ€Stabilised Silver Nanoparticles. Angewandte Chemie - International Edition, 2023, 62, .	13.8	1
1306	Photoinitiated Energy Transfer in Porous ageâ€Stabilised Silver Nanoparticles. Angewandte Chemie, 2023, 135, .	2.0	0
1307	WS2–TiO2 hetero-photocatalysts for efficient hydrogen evolution via plasmon-induced resonance energy transfer. International Journal of Hydrogen Energy, 2023, , .	7.1	0
1308	Efficient Photoactive Materials for CO2 Conversion into Valuable Products Using Organic and Inorganic-Based Composites. Green Chemistry and Sustainable Technology, 2023, , 395-415.	0.7	0

#	Article	IF	CITATIONS
1309	Unique TiO2-enveloped Ti3C2 composites for efficient visible light-assisted photoreduction of bicarbonate. Chemical Physics Letters, 2023, 823, 140541.	2.6	3
1310	Plasmonic Energetic Electrons Drive CO ₂ Reduction on Defective Cu ₂ O. ACS Catalysis, 2023, 13, 6328-6337.	11.2	4
1311	Design and Development of Photocatalytic Systems for Reduction of CO2 into Valuable Chemicals and Fuels. Processes, 2023, 11, 1433.	2.8	1
1312	Recent advances on energy and environmental application of graphitic carbon nitride (g-C3N4)-based photocatalysts: A review. Journal of Environmental Chemical Engineering, 2023, 11, 110164.	6.7	23
1313	Engineering heterostructured Ti4O5/BaTiO3 ferroelectric by surface reconstruction for enhanced photocatalytic CO2 reduction. Inorganic Chemistry Frontiers, 0, , .	6.0	1
1314	Doping Sn4+ ionized cocatalyst in CdSe/S colloidal crystal for promoting photocatalytic CO2 reduction under visible light. Chemical Engineering Journal, 2023, 468, 143639.	12.7	8
1315	In Situ Growth of Lead-Free Cs ₂ CuBr ₄ Perovskite Quantum Dots in KIT-6 Mesoporous Molecular Sieve for CO ₂ Adsorption, Activation, and Reduction. Inorganic Chemistry, 2023, 62, 9240-9248.	4.0	5
1316	In situ growth of CsPbBr3 quantum dots in mesoporous SnO2 frameworks as an efficient CO2-reduction photocatalyst. Journal of CO2 Utilization, 2023, 72, 102480.	6.8	7
1317	Advances in photothermal conversion of carbon dioxide to solar fuels. Journal of Energy Chemistry, 2023, 83, 62-78.	12.9	8
1318	Designing reliable and accurate isotope-tracer experiments for CO2 photoreduction. Nature Communications, 2023, 14, .	12.8	16
1319	Photoinduced deposition of AuCu cocatalyst and polyaniline conducting layer on graphitic-C3N4 for enhanced CO2 photoreduction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 670, 131584.	4.7	3
1320	Ag–O–Ce ³⁺ atomic interface and surface oxygen vacancies on CeO ₂ synergistically promoted the selective visible photocatalytic reduction of carbon dioxide. Journal of Materials Chemistry C, 2023, 11, 7320-7330.	5.5	9
1321	A Stable Triphenylamine-Based Zn(II)-MOF for Photocatalytic H ₂ Evolution and Photooxidative Carbon–Carbon Coupling Reaction. Inorganic Chemistry, 2023, 62, 7954-7963.	4.0	4
1322	A robust perovskite photosensitizer for efficient visible-light-driven CO2 reduction. Materials Today Physics, 2023, 35, 101043.	6.0	4
1323	Highly ordered Janus CdS-Au-TiO2 Z-scheme structure with high efficiency in photocatalysis. Science China Chemistry, 2023, 66, 1722-1730.	8.2	2
1324	Emerging heterostructured C ₃ N ₄ photocatalysts for photocatalytic environmental pollutant elimination and sterilization. Inorganic Chemistry Frontiers, 2023, 10, 3756-3780.	6.0	11
1325	Polymeric carbon nitride loaded with atomic Cu sites for improved CO2 photocatalytic conversion performance. Journal of Power Sources, 2023, 577, 233188.	7.8	1
1326	Photothermal Catalytic CO2 Conversion: Beyond Catalysis and Photocatalysis. Topics in Current Chemistry, 2023, 381, .	5.8	3

#	Article	IF	CITATIONS
1327	Boosting photo-charge transfer in 3D/2D TiO2@Ti3C2 MXene/Bi2S3 Schottky/Z-scheme heterojunction for photocatalytic antibiotic degradation and H2 evolution. Composites Part B: Engineering, 2023, 262, 110820.	12.0	19
1328	Alloy Catalysts for Electrocatalytic CO ₂ Reduction. Small Methods, 2023, 7, .	8.6	8
1329	Proximity of defects and Ti-H on hydrogenated SrTiO3 mediated photocatalytic reduction of CO2 to C2H2. Applied Catalysis B: Environmental, 2023, 336, 122935.	20.2	10
1330	Space-Confined Growth of Cs ₂ CuBr ₄ Perovskite Nanodots in Mesoporous CeO ₂ for Photocatalytic CO ₂ Reduction: Structure Regulation and Built-in Electric Field Construction. Journal of Physical Chemistry Letters, 2023, 14, 5249-5259.	4.6	23
1331	Heterogeneous Catalytic Systems for Carbon Dioxide Hydrogenation to Valueâ€Added Chemicals. ChemPlusChem, 2023, 88, .	2.8	2
1332	Platinum nanoparticle modulated titania electronic structure descriptors for selective photocatalytic CO2 conversion. Applied Surface Science, 2023, 635, 157678.	6.1	0
1333	d-NH ₂ -MIL-125 doped with Cu NPs for light-driven hydrogen evolution. Chemical Communications, 0, , .	4.1	0
1334	Photocatalytic CO2 reduction to C1–C5 hydrocarbons using K2Fe2O4/g-C3N4 as coupling photocatalyst. Materials Today Sustainability, 2023, 23, 100430.	4.1	7
1335	Isolated Single-Atom Cobalt in the ZnIn ₂ S ₄ Monolayer with Exposed Zn Sites for CO ₂ Photofixation. ACS Catalysis, 2023, 13, 8317-8329.	11.2	15
1336	Photochemical Synthesis of Atomically Precise Ag Nanoclusters. ACS Nano, 2023, 17, 11607-11615.	14.6	4
1337	Electronic Structure Manipulation <i>via</i> Site-Selective Atomically Dispersed Ni for Efficient Photocatalytic CO ₂ Reduction. ACS Catalysis, 2023, 13, 8362-8371.	11.2	10
1338	Investigating efficient photothermal conversion towards CO2 reduction. Energy Conversion and Management, 2023, 291, 117246.	9.2	5
1339	Highly Efficient and Selective Visibleâ€light Photocatalytic CO ₂ Reduction to CO Using a 2D Co(II)â€lmidazole MOF as Cocatalyst and Ru(bpy) ₃ Cl ₂ as Photosensitizer. Chemistry - an Asian Journal, 2023, 18, .	3.3	2
1341	Ruthenium–rhenium and ruthenium–palladium supramolecular photocatalysts for photoelectrocatalytic CO ₂ and H ⁺ reduction. Sustainable Energy and Fuels, 0, , .	4.9	0
1342	Precise Regulation of the Coordination Environment of Single Co(II) Sites in a Metal–Organic Framework for Boosting CO ₂ Photoreduction. ACS Catalysis, 2023, 13, 8760-8769.	11.2	14
1346	2D ultrathin ZnIn2S4 nanosheets anchored on octahedral TiO2/Ti3C2 Z-scheme heterostructure for enhanced photocatalytic CO2 reduction. Applied Surface Science, 2023, 636, 157865.	6.1	7
1347	Metal doping promotes the efficient electrochemical reduction of CO2 to CO in CuO nanosheets. Inorganic Chemistry Communication, 2023, 155, 110976.	3.9	4
1348	The metal-organic frameworks as unique platform for photocatalytic CO2 conversion to liquid fuels. Journal of Environmental Chemical Engineering, 2023, 11, 110424.	6.7	0

#	Article	IF	CITATIONS
1349	Progress of electrocatalytic urea synthesis: strategic design, reactor engineering, mechanistic details and techno-commercial study. Materials Chemistry Frontiers, 2023, 7, 3820-3854.	5.9	6
1350	Research progress on synthetic and modification strategies of CdS-based photocatalysts. Ionics, 2023, 29, 2115-2139.	2.4	2
1351	Selective Photocatalytic Reduction of CO ₂ to CO Mediated by Silver Single Atoms Anchored on Tubular Carbon Nitride. Angewandte Chemie, 2023, 135, .	2.0	2
1352	Selective Photocatalytic Reduction of CO ₂ to CO Mediated by Silver Single Atoms Anchored on Tubular Carbon Nitride. Angewandte Chemie - International Edition, 2023, 62, .	13.8	21
1353	Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Environmental Applications. Springer Series in Materials Science, 2023, , 103-136.	0.6	4
1354	Mechanistic Study and Conceptual Chemical Reactivity Analysis of Hydroboration of Carbon Dioxide Catalyzed by a Manganese(I)–PNP–Pincer Complex. Inorganic Chemistry, 2023, 62, 7366-7375.	4.0	1
1355	Recent advances of single-atom catalysts in CO ₂ conversion. Energy and Environmental Science, 2023, 16, 2759-2803.	30.8	41
1356	Significant Acceleration of Photocatalytic CO ₂ Reduction at the Gas‣iquid Interface of Microdroplets**. Angewandte Chemie - International Edition, 2023, 62, .	13.8	11
1357	Significant Acceleration of Photocatalytic CO ₂ Reduction at the Gas‣iquid Interface of Microdroplets**. Angewandte Chemie, 2023, 135, .	2.0	0
1358	Degradation of wastewater from carbon capture plants using metalâ€impregnated <scp>TiO₂</scp> photocatalyst. Canadian Journal of Chemical Engineering, 2023, 101, 6827-6844.	1.7	0
1359	Surface Dual Metal Occupations in Fe-Doped Fe _{<i>x</i>} Bi _{2-<i>x</i>} O ₃ Induce Highly Efficient Photocatalytic CO ₂ Reduction. ACS Applied Materials & Interfaces, 2023, 15, 25049-25057.	8.0	2
1360	Solar O ₂ â€ŧo‧yngas Conversion Enabled by Precise Charge Transport Modulation. Small, 2023, 19, .	10.0	12
1361	Recent updates in modification strategies for escalated performance of Graphene/MFe2O4 heterostructured photocatalysts towards energy and environmental applications. Journal of Alloys and Compounds, 2023, 960, 170576.	5.5	25
1362	Molecular Catalysis of Energy Relevance in Metal–Organic Frameworks: From Higher Coordination Sphere to System Effects. Chemical Reviews, 2023, 123, 6545-6611.	47.7	15
1363	Synthesis, characterization, and photocatalytic CO ₂ reduction evaluation of the CaW _{<i>x</i>} Mo _{1â^'<i>x</i>} O ₄ (<i>x</i> = 0–1) solid solution. New Journal of Chemistry, 2023, 47, 11251-11260.	2.8	0
1364	Photocatalytic Reduction of Carbon Dioxide to Methanol: Carbonaceous Materials, Kinetics, Industrial Feasibility, and Future Directions. Energy & Fuels, 2023, 37, 7577-7602.	5.1	11
1365	Artificial spherical chromatophore nanomicelles for selective CO2 reduction in water. Nature Catalysis, 2023, 6, 464-475.	34.4	20
1366	Trinuclear Fe Clusters for Highly Efficient CO ₂ Photoreduction. ACS Applied Materials & Interfaces, 2023, 15, 26619-26626.	8.0	2

#	Article	IF	CITATIONS
1367	Enabling heterogeneous catalysis to achieve carbon neutrality: Directional catalytic conversion of CO ₂ into carboxylic acids. , 0, , .		22
1368	A Direct Zâ€Scheme Quasiâ€2D/2D Heterojunction Constructed by Loading Photosensitive Metal–Organic Nanorings with Pd Single Atoms on Graphitic–C ₃ N ₄ for Superior Visible Lightâ€Đriven H ₂ Production. Solar Rrl, 2023, 7, .	5.8	4
1369	Highly efficient CO2 photoreduction by ultralow-Ru-Loading ZIF-67. Applied Catalysis B: Environmental, 2023, 336, 122934.	20.2	8
1370	Beyond Reduction Cocatalysts: Critical Role of Metal Cocatalysts in Photocatalytic Oxidation of Methane with Water**. Angewandte Chemie - International Edition, 2023, 62, .	13.8	3
1371	Beyond Reduction Cocatalysts: Critical Role of Metal Cocatalysts in Photocatalytic Oxidation of Methane with Water**. Angewandte Chemie, 0, , .	2.0	0
1372	Enhanced visible light-driven CO2 reduction activity induced by Z-scheme heterojunction photocatalyst C60/TpPa (COF). Applied Catalysis A: General, 2023, 663, 119320.	4.3	0
1373	Well-defined surface catalytic sites for solar CO ₂ reduction: heterogenized molecular catalysts and single atom catalysts. Chemical Communications, 2023, 59, 9301-9319.	4.1	1
1374	Unrevealing the potential of microbes in decomposition of organic matter and release of carbon in the ecosystem. Journal of Environmental Management, 2023, 344, 118529.	7.8	16
1375	Leadâ€Free Halide Perovskite Photocatalysts for Photocatalytic CO ₂ Reduction: A Review. Solar Rrl, 2023, 7, .	5.8	4
1376	A review of II–VI semiconductor nanoclusters for photocatalytic CO ₂ conversion: synthesis, characterization, and mechanisms. , 2023, 1, 687-694.		1
1378	MoS ₂ -Based Nanocomposites for Photocatalytic Hydrogen Evolution and Carbon Dioxide Reduction. ACS Omega, 2023, 8, 25649-25673.	3.5	11
1379	Metal-organic Frameworks and MOF-based Materials for Photocatalytic CO2 Reduction. , 2023, , 45-85.		0
1380	Sub-nanomaterials for Photo/Electro-catalytic CO2 Reduction: Achievements, Challenges, and Opportunities. Chemical Research in Chinese Universities, 2023, 39, 580-598.	2.6	2
1382	Biomimetic chlorophyll derivatives-based photocatalytic fabric for highly efficient O2 production via CO2 and H2O photoreaction. Chemical Engineering Journal, 2023, 472, 145103.	12.7	0
1386	Shining Light on Carbon Aerogel Photocatalysts: Unlocking the Potentials in the Quest for Revolutionizing Solarâ€ŧo hemical Conversion and Environmental Remediation. Advanced Functional Materials, 2023, 33, .	14.9	5
1387	Divalent Heterometal Doped Titanium-Oxide Cluster Polymers: Structures, Photoresponse, and Photocatalysis. Inorganic Chemistry, 2023, 62, 13476-13484.	4.0	3
1388	Photocatalytic CO2 reduction. Nature Reviews Methods Primers, 2023, 3, .	21.2	36
1389	Influence of Vacancy Defects on the Interfacial Structural and Optoelectronic Properties of ZnO/ZnS Heterostructures for Photocatalysis. Catalysts, 2023, 13, 1199.	3.5	0

#	Article	IF	CITATIONS
1390	Localized CdS homojunctions with optimal ratio of high and low index facets to dynamically boost H2O splitting into H2 energy. Journal of Materials Science and Technology, 2024, 171, 94-100.	10.7	2
1391	Titanium Carbide MXenes Cocatalyst with Graphitic Carbon Nitride for Photocatalytic H ₂ Production, CO ₂ Reduction, and Reforming Applications: A Review on Fundamentals and Recent Advances. Energy & Fuels, 2023, 37, 12623-12664.	5.1	4
1392	Self-Assembled Zn _{1–<i>x</i>} O/TiO ₂ Nanocomposite as a Novel p–n Heterojunction for Selective CO ₂ -to-CO Photoreduction. ACS Applied Nano Materials, 2023, 6, 15213-15223.	5.0	2
1393	Twoâ€dimensional conjugated polymer frameworks for solar fuel generation from water. Progress in Polymer Science, 2023, 145, 101734.	24.7	6
1394	Theoretical Prediction of Electrocatalytic Reduction of CO ₂ Using a 2D Catalyst Composed of 3 d Transition Metal and Hexaamine Dipyrazino Quinoxaline. Chemistry - A European Journal, 2023, 29, .	3.3	0
1395	Photoreduction of low concentrations of CO2 into methane in self-assembled palladium/porous organic cages nanocomposites. Chemical Engineering Journal, 2023, 474, 145431.	12.7	Ο
1396	Tandem catalysts CuSe/Au _{<i>X</i>} for increasing local *CO concentration to promote the photocatalytic CO ₂ reduction to C ₂ H ₄ ., 2023, 1, .		0
1397	Efficient and Direct Functionalization of Allylic <i>sp</i> ^{<i>3</i>} Câ^'H Bonds with Concomitant CO ₂ Reduction. Angewandte Chemie - International Edition, 2023, 62, .	13.8	18
1398	Cu-doped monoclinic WO3 nanoplates with superior photocatalytic activity for CO2 photoreduction. Journal of Materials Science: Materials in Electronics, 2023, 34, .	2.2	0
1399	Graphene Quantum Dots for Photocatalytic CO ₂ Reduction. Energy Technology, 2023, 11, .	3.8	1
1400	Bismuth clusters pinned on TiO2 porous nanowires boosting charge transfer for CO2 photoreduction to CH4. Nano Research, 2024, 17, 1190-1198.	10.4	1
1401	Understanding Photo(electro)catalysts for Energy Conversion via Operando Functional Imaging. , 0, ,		Ο
1402	Extending the π-Conjugated System in Conjugated Microporous Polymers to Modulate Excitonic Effects for Metal-Free Selective CO ₂ Photoreduction to CH ₄ . ACS Catalysis, 2023, 13, 12142-12152.	11.2	10
1403	Optimized full CO ₂ photoreduction process by defective spinel atomic layers. Chemical Communications, 2023, 59, 11700-11703.	4.1	Ο
1404	Review of covalent organic frameworks for single-site photocatalysis and electrocatalysis. Chinese Journal of Catalysis, 2023, 50, 45-82.	14.0	7
1405	Review and Perspective on Rational Design and Interface Engineering of g-C ₃ N ₄ /ZnO: From Type-II to Step-Scheme Heterojunctions for Photocatalytic Applications. Energy & Fuels, 2023, 37, 14421-14472.	5.1	1
1406	Engineering stable construction of MnCo ₂ O ₄ yolk-in-double-shell amalgamated with bio-synthesized ZnMn ₂ O ₄ nanoparticles for superior artificial CO ₂ reduction. Journal of Materials Chemistry A, 2023, 11, 19465-19482.	10.3	2
1407	A novel strategy for dramatically improving catalytic performance for light-driven thermocatalytic CO ₂ reduction with CH ₄ on Ru/MgO: the CO ₂ molecular fencing effect promoted by photoactivation. Journal of Materials Chemistry A, 2023, 11, 19645-19655.	10.3	4

ARTICLE IF CITATIONS Single B-vacancy enriched I±₁-borophene sheet: an efficient metal-free electrocatalyst for 1408 2.8 4 CO₂ reduction. Physical Chemistry Chemical Physics, 2023, 25, 25018-25028. Prominent COF, g-C3N4, and Their Heterojunction Materials for Selective Photocatalytic CO2 1409 3.5 Reduction. Catalysts, 2023, 13, 1331. Tin sulfide supported on cellulose nanocrystals-derived carbon as a green and effective catalyst for 1410 0 3.7 CO2 electroreduction to formate. Journal of Materials Science, 2023, 58, 14673-14685. Engineering of oxygen vacancy and bismuth cluster assisted ultrathin Bi < sub > 12 < /sub > O < sub > 17 < /sub > Cl < sub > 2 < /sub > nanosheets with efficient and selective photoreduction of CO < sub > 2 < /sub > to CO., 0, , .1411 Fundamentals and Challenges of Engineering Charge Polarized Active Sites for CO₂ 1412 15.6 6 Photoreduction toward C₂ Products. Accounts of Chemical Research, 2023, 56, 2500-2513. Position-selected cocatalyst modification on a Z-scheme Cd0.5Zn0.5S/NiTiO3 photocatalyst for 3.2 boosted H2 evolution. Materials Reports Energy, 2023, 3, 100230. Photocatalytic CO2 reduction reaction: Influencing factors, reaction pathways and dominant 1414 7.9 4 catalysts. Separation and Purification Technology, 2024, 328, 125056. Photocatalytic oxygenation of sulfide using solar light and ingenious <scp>GQDs</scp>@<scp>AQ</scp> catalyst: Mechanistic and synthetic investigations. Photochemistry 1416 2.5 and Photobiology, O, , . Progress and prospect of CO2 photocatalytic reduction to methanol. Fuel Processing Technology, 1417 7.2 4 2023, 251, 107933. <i>In Situ</i> Probing the Short-Lived Intermediates in Visible-Light Heterogeneous Photocatalysis by 1418 6.5 Mass Spectrometry. Analytical Chemistry, 2023, 95, 14150-14157. A review of updated S-scheme heterojunction photocatalysts. Journal of Materials Science and 1419 10.7 13 Technology, 2024, 177, 142-180. Photo/electrochemical urea synthesis via CO2 coupling with nitrogenous small molecules: Status and challenges for the development of mechanism and catalysts. Applied Catalysis B: Environmental, 20.2 2023, 339, 123146. Ternary CdS@MoS₂–Co₃O₄ Multiheterojunction Photocatalyst for Boosting Photocatalytic H₂ Evolution. ACS Applied Materials & amp; Interfaces, 2023, 1422 8.0 3 15, 43790-43798. 1423 Boosting Photocatalytic CO₂ Reduction with H₂O by Oxygen Vacancy- and Hydroxyl-Tailored SrBi₂C₉ Surface-Frustrated Lewis Pairs. 1424 11.2 12 ACS Catalysis, 2023, 13, 12700-12710. Bidirectional host-guest interactions promote selective photocatalytic CO2 reduction coupled with 1425 14.0 alcohol oxidation in aqueous solution. Chinese Journal of Catalysis, 2023, 52, 176-186. Enhanced Photocatalytic Activity of Leadâ€Free Cs₂TeBr₆/gâ€C₃N₄ Heterojunction Photocatalyst and 1426 14.9 3 Its Mechanism. Advanced Functional Materials, 2024, 34, . Construction of an S-scheme Bi₂S₃/CdIn₂S₄ 1427 heterojunction for the photocatalytic generation of methyl formate. New Journal of Chemistry, 2023, 2.8 47, 19235-19242.

ARTICLE IF CITATIONS # S-Scheme Photocatalyst NH₂–UiO-66/CuZnS with Enhanced Photothermal-Assisted CO₂ Reduction Performances. ACS Sustainable Chemistry and Engineering, 2023, 11, 1428 3 6.7 14827-14840. Bifunctional core–shell co-catalyst for boosting photocatalytic CO2 reduction to CH4. Nano Research, 2024, 17, 1259-1266. 1429 10.4 Novel strategy for in situ construction of Cercis chinensis cluster-like photocatalytic 1430 3.2 0 heterojunctions. Solid State Sciences, 2023, 144, 107304. Defective NiCo2S4/Cu2-xS derived from layered double hydroxide grown in Cu2O colloid for 1431 photocatalytic CO2 conversion. Chemical Éngineering Journal, 2023, 474, 145354. Highly Selective Photoconversion of CO₂ to CH₄ over 1432 SnO₂/Cs₃Bi₂Br₉ Heterojunctions Assisted by 11.2 13 S-Scheme Charge Separation. ACS Catalysis, 2023, 13, 12623-12633. Reticular framework materials for photocatalytic organic reactions. Chemical Society Reviews, 2023, 52, 7949-8004. 38.1 Promoted Photocatalytic Hydrogen Evolution by Tuning the Electronic State of Copper Sites in 1434 13.8 3 Metalâ€Organic Supramolecular Assemblies. Angewandte Chemie - International Edition, 2023, 62, . Deep insight of CO2 reduction reaction mechanism through experimental and theoretical 1435 4.1 anticipations. Materials Today Sustainability, 2023, 24, 100587. CH₄ Synthesis from CO₂ and H₂O of an Electron Source over 1437 Rh–Ru Cocatalyst's Loaded on NaTaO₃:Sr Photocatalysts. Journal of the American 13.7 4 Chemical Society, 2023, 145, 20485-20491. Regulating Oxygen Vacancies and Fermi Level of Mesoporous CeO_{2â€x} for Intensified Builtâ€In Electric Field and Boosted Charge Separation of 1438 Cs₃Bi₂Br₉/CeO_{2â€x} Sâ€Scheme Heterojunction. Small, 2024, 20, Spatial charge separation in core-shell dual metal-organic frameworks for enhanced CO2 1439 0 7.9 photoreduction. Separation and Purification Technology, 2024, 328, 125009. Ultrathin RuO2/Bi2WO6 and PtO2-Pt/Bi2WO6 heterojunction nanosheets toward efficient photocatalytic CO2 reduction under visible light irradiation. Journal of Environmental Chemical Engineering, 2023, 11, 110960. 6.7 Hydroxylated metal–organic-layer nanocages anchoring single atomic cobalt sites for robust 1441 10.4 1 photocatalytic CO2 reduction. Nano Research, 2024, 17, 2410-2419. Hollow Plasmonic Pâ€Metalâ€N Sâ€Scheme Heterojunction Photoreactor with Spatially Separated Dual 1442 10.0 Cocatalysts toward Artificial Photosynthesis. Small, 2024, 20, . Cheap transition metal reinforced donor–acceptor covalent organic frameworks for CO2 1443 12.7 1 photoreduction. Chemical Engineering Journal, 2023, 475, 146106. Synergistic effect of surface modification and effective interfacial charge transfer over faceted g-C3N4/ZnSe heterojunction to enhance CO2 photoreduction activity. Journal of Water Process 1444 Engineering, 2023, 56, 104307. Epitaxial-grafting strategy to boost inert hydroxide photocatalytic performance: A case study of 1445 6.2 0 SnOx-MgSn(OH)6. Journal of Catalysis, 2023, 428, 115145. Promoted Photocatalytic Hydrogen Evolution by Tuning the Electronic State of Copper Sites in 1446 Metalâ€Organic Supramolecular Assemblies. Angewandte Chemie, 2023, 135, .

		CITATION REPORT		
# 1448	ARTICLE Valence state effect of Cu on photocatalytic CO2 reduction. Materials Reports Energy,	, 2023, 3, 100233.	IF 3.2	CITATIONS 0
1449	CO2 photoreduction with high selectivity of C2H4 production on conjugated micropo with Cu single atoms. Fuel, 2024, 357, 130020.	rous polymer	6.4	0
1450	Magneto-electric integrated design strategy of NiCo@C composites for synergistic abs conversion in mid-high frequency microwaves. Nano Research, 0, , .	sorption and	10.4	0
1451	Modulated Connection Modes of Redox Units in Molecular Junction Covalent Organic for Artificial Photosynthetic Overall Reaction. Journal of the American Chemical Society 23167-23175.		13.7	6
1452	Computational Chemistry as Applied in Environmental Research: Opportunities and Ch ES&T Engineering, 0, , .	allenges. ACS	7.6	1
1453	Modulating CsPbBr ₃ nanocrystals encapsulated in PCN-224(Zr) for boost full-spectrum-driven CO ₂ reduction: S-scheme transfer, photothermal-syn and DFT calculations. Sustainable Energy and Fuels, 2023, 7, 5499-5512.	ing ergistic effect,	4.9	2
1454	Synergistic effect on photocatalytic CO2 reduction of facet-engineered Fe-soc-MOFs w photo-deposited PtO species. Chemical Engineering Journal, 2023, 476, 146560.	vith	12.7	3
1455	Transition Metal Dichalcogenides—An Important Class of Layered Materials. Engineer 2023, , 103-140.	ring Materials,	0.6	0
1456	Active Site Engineering in Reticular Covalent Organic Frameworks for Photocatalytic CO ₂ Reduction. Advanced Functional Materials, 0, , .		14.9	2
1457	Exploring the effect of the reaction conditions on the mechanism of the photocatalytic CO2 in vapor phase over Pt/TiO2: An operando FTIR study. Inorganic Chemistry Frontie		6.0	0
1458	Molecular modification of planar four-coordinated cobalt active site for electrochemica of carbon dioxide. A density functional theory study. Inorganic Chemistry Frontiers, 0,		6.0	0
1459	WS2 supported PtOx cluster for efficient photocatalytic CO2 reduction: A DFT study. I Chemistry Chemical Physics, 0, , .	Physical	2.8	0
1461	Achieving Enhanced Visible–Near-Infrared Light Absorption in Stable Lead-Free Vana Perovskite Nanocrystals via Structural Regulation. Journal of Physical Chemistry Letters 9646-9654.		4.6	0
1462	Emerging transition metal nitrides in solar energy conversion: design strategies and fur perspectives for efficient photocatalysis. Catalysis Science and Technology, 2023, 13,	ture 6864-6877.	4.1	1
1463	Creation of robust oxygen vacancies in 2D ultrathin BiOBr nanosheets by irradiation th photocatalytic memory effect for enhanced CO2 reduction. Chemical Engineering Jour 146892.		12.7	1
1464	Highly selective photocatalytic CO2 reduction by metal-N4 dynamically generated fror dispersed copper. Chemical Engineering Journal, 2023, 477, 147040.	n atomically	12.7	5
1465	Visible-light photopolymerization activated by nanocarbon materials as photocatalysts Photochemistry and Photobiology C: Photochemistry Reviews, 2023, 57, 100637.	. Journal of	11.6	1
1466	Application of single-atom-based photocatalysts in environmental pollutant removal ar energy production. Critical Reviews in Environmental Science and Technology, 0, , 1-22		12.8	0

#	Article	IF	Citations
1467	Killing two birds with one stone: State-of-the-art progress in dual-functional photoredox catalysis for solar fuel conversion and selective organic transformation. EnergyChem, 2023, 5, 100112.	19.1	3
1468	Polymer semiconductors: A unique platform for photocatalytic hydrogen peroxide production. Materials Today, 2023, 71, 152-173.	14.2	1
1469	Probing Charge Carrier Behavior in Engineered Photocatalysts with Time-Resolved Visible to Mid-IR Absorption Spectroscopy. Journal of Physical Chemistry C, 2023, 127, 21881-21914.	3.1	0
1470	Selectivity control towards CO versus H ₂ for photo-driven CO ₂ reduction with a novel Co(II) catalyst. Beilstein Journal of Organic Chemistry, 0, 19, 1766-1775.	2.2	0
1471	Regulating Photocatalytic CO ₂ Reduction Kinetics through Modification of Surface Coordination Sphere. Advanced Functional Materials, 2024, 34, .	14.9	5
1472	Application of single-atom-based photocatalysts in environmental pollutant removal and renewable energy production. Critical Reviews in Environmental Science and Technology, 0, , 1-22.	12.8	0
1473	Emerging hollow artificial photosynthetic system with S-scheme heterojunction sandwiched between layered redox cocatalysts for overall CO2 reduction and H2O oxidation. Applied Catalysis B: Environmental, 2024, 342, 123445.	20.2	8
1474	In Water High Yield and Selectivity of CH ₄ and H ₂ Production Using UVC Light and a SiO ₂ -surface-modified TiO ₂ Photocatalysts. , 2023, 03, 1-36.		0
1475	Photocatalytic Degradation of Volatile Organic Compounds over WO ₂ /SnS ₂ Nanofibers. ACS Applied Nano Materials, 2023, 6, 22301-22310.	5.0	0
1476	Fine crystals of potassium hexatitanate prepared by a sol-gel method for photocatalytic reduction of carbon dioxide with water. Catalysis Today, 2024, 429, 114476.	4.4	0
1477	Copper Modulated Leadâ€Free Cs ₄ MnSb ₂ Cl ₁₂ Double Perovskite Microcrystals for Photocatalytic Reduction of CO ₂ . Advanced Science, 2024, 11, .	11.2	0
1478	Defective Nb ₂ C MXene Cocatalyst on TiO ₂ Microsphere for Enhanced Photocatalytic CO ₂ Conversion to Methane. Small, 0, , .	10.0	0
1479	Systematic investigation of MoS2-metal sulfides (MetalÂ=ÂIn, Sn, Cu, Cd) heterostructure via metal-sulfur bond for photocatalytic CO2 reduction. Chemical Engineering Journal, 2024, 479, 147718.	12.7	0
1480	Unveiling the magnetic ordering effect in La-doped Ti ₃ C ₂ O ₂ MXenes on electrocatalytic CO ₂ reduction. Journal of Materials Chemistry A, 0, , .	10.3	0
1481	Recent progress in modifications of g-C ₃ N ₄ for photocatalytic hydrogen evolution and CO ₂ reduction. Semiconductor Science and Technology, 2024, 39, 013001.	2.0	0
1482	Inâ€Plane Palladium and Interplanar Copper Dual Singleâ€Atom Catalyst in Bulkâ€Like Carbon Nitride for Cascade CO ₂ Photoreduction. Small, 0, , .	10.0	1
1483	Modulating internal electric field by oxygen vacancy engineering and consequent forming quantum wells for boosted selective CO2 photoreduction. Applied Catalysis B: Environmental, 2024, 343, 123523.	20.2	3
1484	Modulating Charge Separation of Oxygenâ€Doped Boron Nitride with Isolated Co Atoms for Enhancing CO ₂ â€toâ€CO Photoreduction. Advanced Materials, 2024, 36, .	21.0	3

#	Article	IF	CITATIONS
1485	Preparation of Heterojunction Catalysts for Photocatalysis by <i>inâ€situ</i> Synthesis: What We Should Do Next?. ChemCatChem, 2024, 16, .	3.7	1
1486	Heterointerface Connection with Multiple Hydrogen-Bonding in Z-Scheme Heterojunction SiW ₉ Co ₃ @UiO-67-NH ₂ Deciding High Stability and Photocatalytic CO ₂ Reduction Performance. Inorganic Chemistry, 2023, 62, 20401-20411.	4.0	0
1488	CO ₂ Adsorption-Mediated Oxygen Defects for Photothermal Catalysis Self-Decomposition over Low-Crystalline Nb ₂ O ₅ Nanoribbons. ACS Catalysis, 2023, 13, 15841-15850.	11.2	1
1490	Subnanometric Bismuth Clusters Confined in Pyrochloreâ€Bi ₂ Sn ₂ O ₇ Enable Remarkable CO ₂ Photoreduction. Angewandte Chemie, 2024, 136, .	2.0	0
1491	Subnanometric Bismuth Clusters Confined in Pyrochloreâ€Bi ₂ Sn ₂ O ₇ Enable Remarkable CO ₂ Photoreduction. Angewandte Chemie - International Edition, 2024, 63, .	13.8	1
1492	Boosting the Plasmon-Mediated Electrochemical Oxidation of <i>p</i> -Aminothiophenol with <i>p</i> -Hydroxythiophenol as Molecular Cocatalyst. ACS Applied Materials & Interfaces, 0, , .	8.0	0
1493	Research status and prospect of nano silver (Ag)-modified photocatalytic materials for degradation of organic pollutants. Environmental Science and Pollution Research, 0, , .	5.3	0
1494	Multilevel-Regulated Metal–Organic Framework Platform Integrating Pore Space Partition and Open-Metal Sites for Enhanced CO ₂ Photoreduction to CO with Nearly 100% Selectivity. Journal of the American Chemical Society, 2023, 145, 27728-27739.	13.7	4
1495	Photochromic single atom Ag/TiO ₂ catalysts for selective CO ₂ reduction to CH ₄ . Energy and Environmental Science, 2024, 17, 518-530.	30.8	7
1496	All-solid-state Z-scheme nanojunction PW12/Ag/ZnO photocatalyst: Effective carriers transfer promotion and enhanced visible light driven. Journal of Molecular Structure, 2024, 1300, 137272.	3.6	26
1497	Unveiling the Ultrafast Electron Transfer Dynamics in Epitaxial Dodecahedron CsPbBr3/Au Heterostructure. ChemPhotoChem, 0, , .	3.0	0
1498	Construction of 0D Ti3C2O2/2D black phosphorus S-scheme heterostructure for photocatalytic CO2 reduction. Surfaces and Interfaces, 2024, 44, 103741.	3.0	0
1499	Enhancing photocatalytic CO2 reduction with TiO2-based materials: Strategies, mechanisms, challenges, and perspectives. Environmental Science and Ecotechnology, 2024, 20, 100368.	13.5	0
1500	Regulating the crystallinity and hydrophobicity of cobalt boride nanosheet for enhanced CO2 photoreduction performance. Chemical Engineering Journal, 2024, 479, 147560.	12.7	0
1501	Optimizing CO ₂ photoreduction on bismuth oxyhalides <i>via</i> intrinsic and extrinsic techniques. Journal of Materials Chemistry A, 2024, 12, 1392-1406.	10.3	1
1502	Basic comprehension and recent trends in photoelectrocatalytic systems. Green Chemistry, 2024, 26, 1682-1708.	9.0	0
1503	Photocatalytic Conversion of Diluted CO ₂ into Tunable Syngas via Modulating Transition Metal Hydroxides. Inorganic Chemistry, 0, , .	4.0	0
1504	Boosting CO ₂ Photoreduction to Formate or CO with High Selectivity over a Covalent Organic Framework Covalently Anchored on Graphene Oxide. Angewandte Chemie, 2024, 136, .	2.0	Ο

#	Article	IF	CITATIONS
1505	Boosting CO ₂ Photoreduction to Formate or CO with High Selectivity over a Covalent Organic Framework Covalently Anchored on Graphene Oxide. Angewandte Chemie - International Edition, 2024, 63, .	13.8	2
1506	Recent advances and perspective of g–C3N4– based materials for efficient solar fuel (hydrogen) generation via photocatalytic water-splitting. International Journal of Hydrogen Energy, 2023, , .	7.1	0
1507	Nickel selenide/g-C3N4 heterojunction photocatalyst promotes C C coupling for photocatalytic CO2 reduction to ethane. Journal of Colloid and Interface Science, 2024, 658, 966-975.	9.4	1
1508	Photocatalytic Reduction of CO2 to CO and CH4 in Aqueous Suspensions of Modified Heterojunction Semiconductor Cu–MgO/SiC/ZnO. High Energy Chemistry, 2023, 57, S299-S303.	0.9	0
1509	Vegetal route for synthesis of CQDs/CdS nanocomposites for photocatalytic reduction of CO2 to methanol under visible light. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 683, 133068.	4.7	1
1510	Solar CO ₂ Reduction Enabled by Cascade Hole Migration. Inorganic Chemistry, 0, , .	4.0	0
1511	Internal Electric Field Modulated by Morphological Control of Sulfur-Deficient CuS for Boosted Selective CO ₂ Photoreduction. ACS Sustainable Chemistry and Engineering, 0, , .	6.7	0
1512	Recent progress and challenges of photocatalytic CO2 conversion into value-added multi-carbon products. Coordination Chemistry Reviews, 2024, 502, 215623.	18.8	1
1513	Tailoring co-catalysts on Si photocathodes for efficient photoelectrochemical CO ₂ reduction: recent progress and prospects of deposition methods. Inorganic Chemistry Frontiers, 2024, 11, 998-1018.	6.0	0
1514	Accelerated Photocatalytic Carbon Dioxide Reduction and Water Oxidation under Spatial Synergy. Angewandte Chemie - International Edition, 2024, 63, .	13.8	1
1515	Accelerated Photocatalytic Carbon Dioxide Reduction and Water Oxidation under Spatial Synergy. Angewandte Chemie, 2024, 136, .	2.0	0
1516	Template-free synthesized porous ZnO-CdS spherical-shell S-scheme heterostructure assisted with Pt nanoparticle for enhanced photocatalytic H2-production. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2024, 301, 117127.	3.5	1
1517	Urea catalytic oxidation for energy and environmental applications. Chemical Society Reviews, 2024, 53, 1552-1591.	38.1	2
1518	Photonic approach in stacked slabs having periodic holes for enhancing photocatalytic activities. RSC Advances, 2024, 14, 2277-2284.	3.6	Ο
1519	Decoration of cyanamide groups to tune the surface electronic structures of semiconductor photocatalysts for efficient solar driven CO2 reduction. Chemical Engineering Journal, 2024, 481, 148495.	12.7	0
1520	Hydrophobic Porphyrin Titanium-Based MOFs for Visible-Light-Driven CO ₂ Reduction to Formate. Inorganic Chemistry, 2024, 63, 1499-1506.	4.0	0
1521	Progress in design and preparation of multi-atom catalysts for photocatalytic CO2 reduction. Science China Materials, 2024, 67, 397-423.	6.3	2
1522	Molecular Co-Catalyst Confined within a Metallacage for Enhanced Photocatalytic CO ₂ Reduction. Journal of the American Chemical Society, 2024, 146, 2275-2285.	13.7	0

#	Article	IF	CITATIONS
1523	Role of Ag Loading on the Concentration of Surface-Reaching Photoexcited Holes in TiO ₂ Nanoparticles. Journal of Physical Chemistry C, 2024, 128, 810-818.	3.1	0
1524	Single-atom Pt–N4 active sites anchored on porous C3N4 nanosheet for boosting the photocatalytic CO2 reduction with nearly 100% CO selectivity. Applied Catalysis B: Environmental, 2024, 346, 123737.	20.2	0
1525	Prediction of M ₃ B ₄ â€ŧype MBenes as Promising Catalysts for CO ₂ Capture and Reduction. ChemPhysChem, 2024, 25, .	2.1	1
1526	Au-decorated Sb ₂ Se ₃ photocathodes for solar-driven CO ₂ reduction. , 2024, 2, 664-674.		0
1527	METAL-BASED REUSABLE CATALYSTS FOR PHOTOREDUCTION OF CO2 TO FUELS: FUNDAMENTALS AND RECENT DEVELOPMENTS. Catalysis in Green Chemistry and Engineering, 2023, 6, 1-34.	0.2	1
1528	Recent progress in perylene diimide supermolecule-based photocatalysts. Journal of Materials Chemistry A, 2024, 12, 3807-3843.	10.3	0
1529	Elucidating protonation pathways in CO2 photoreduction using the kinetic isotope effect. Nature Communications, 2024, 15, .	12.8	0
1530	Theoretical Investigation of the BCN Monolayer and Their Derivatives for Metal-free CO ₂ Photocatalysis, Capture, and Utilization. ACS Omega, 0, , .	3.5	0
1531	Photocatalytic CO2 reduction to CH4 over PtM1 single-atom alloys modified WS2: A first-principles study. Molecular Catalysis, 2024, 554, 113815.	2.0	0
1532	A comprehensive review on photo-thermal co-catalytic reduction of CO2 to value-added chemicals. Fuel, 2024, 362, 130906.	6.4	3
1533	Harmonized Physical and Electrochemical Process Design for Densely Dispersed Cu Catalysts on Cu ₂ 0 Absorbers for Efficient Photoelectrochemical CO ₂ Reduction Reaction. Advanced Energy Materials, 2024, 14, .	19.5	0
1534	Preparation of amino-functionalized polyethylene-silica composite membrane and FDH immobilization. Separation and Purification Technology, 2024, 336, 126323.	7.9	0
1535	Hydrochar-Supported NiFe ₂ O ₄ Nanosheets with a Tailored Microstructure for Enhanced CO ₂ Photoreduction to Syngas. Inorganic Chemistry, 2024, 63, 2148-2156.	4.0	4
1537	Synthesis and Interface Engineering in Heterojunctions of Tin-Selenide-Based Nanostructures for Photoelectrochemical Water Splitting. ACS Applied Nano Materials, 2024, 7, 1986-1999.	5.0	0
1538	Carbon dioxide and "methanol" economy: advances in the catalytic synthesis of methanol from CO ₂ . Russian Chemical Reviews, 2024, 93, RCR5101.	6.5	0
1539	Porous In ₂ O ₃ Hollow Tube Infused with g-C ₃ N ₄ for CO ₂ Photocatalytic Reduction. ACS Applied Materials & amp; Interfaces, 2024, 16, 4581-4591.	8.0	1
1540	Electronic state reconfiguration of oxygen-doped carbon nitride covalently linked resorcinol-melamine-formaldehyde photocatalysts for highly selective CO2 reduction to methanol. Carbon, 2024, 219, 118822.	10.3	0
1541	MOFs materials as photocatalysts for CO2 reduction: Progress, challenges and perspectives. Carbon Capture Science & Technology, 2024, 11, 100191.	10.4	0

ARTICLE IF CITATIONS Application of GaS nanotubes as efficient catalysts in photocatalytic hydrolysis: a first principles 2.8 0 1542 study. Physical Chemistry Chemical Physics, 2024, 26, 6148-6154. Highly active platinum decorated BiVO4 nanosheet/TiO2 nanobelt heterojunction for photocatalytic 1543 CO2 reduction. Surfaces and Interfaces, 2024, 45, 103908. Promoting photocarriers separation in distinctive ternary g-C3N4/Ni2P/ZnO composite with Ni2P 1544 0 5.8 electron-bridge. Journal of Industrial and Engineering Chemistry, 2024, , . Deciphering orbital hybridization in heterogeneous catalysis., 2024, 2, . 1545 Synchronously regulating d- and p-band centers of heterojunction photocatalysts by strain effect for 1546 10.7 0 solar energy conversion into H2. Journal of Materials Science and Technology, 2024, 190, 210-217. One-step solvothermal formation of Cu - Doped Cu2WO4(OH)2 nanocatalysts for efficient photocatalytic amine oxidation coupling. Materials Today Chemistry, 2024, 36, 101932. 1547 3.5 Intentionally Introducing Oxygen Vacancies and Ti³⁺ Defects on the Surface of 1548 Bi₄Ti₃O₁₂ Nanosheets for Promoting the Photoreduction of 5.0 0 CO₂ to CH₃OH. ACS Applied Nano Materials, 2024, 7, 3012-3023. Applications in energy conversion., 2024, , 183-213. 1549 MXenes for CO2 reduction: a promising choice. , 2024, , 219-232. 0 1550 Photocatalytic Reactors for the Production of Syngas Through Natural Gas Methane., 2024, , . Surface Functionalization and Defect Construction of SnO₂ with Amine Group for Enhanced Visibleâ€Lightâ€Driven Photocatalytic CO₂ Reduction. Advanced Energy Materials, 1552 19.5 1 2024, 14, . Lightâ€Driven Câ⁻'C Coupling for Targeted Synthesis of CH₃COOH with Nearly 100 % 13.8 Selectivity from CO₂. Angewandte Chemie - International Edition, 2024, 63, . Lightâ€Driven Câ⁻C Coupling for Targeted Synthesis of CH₃COOH with Nearly 100 % 1554 2.0 0 Selectivity from CO₂. Angewandte Chemie, 2024, 136, . A nonmetallic plasmonic catalyst for photothermal CO2 flow conversion with high activity, 12.8 selectivity and durability. Nature Communications, 2024, 15, . Regulating the Electronic Configuration of Ni Sites by Breaking Symmetry of Niâ€Porphyrin to Facilitate 1556 14.9 0 CO₂ Photocatalytic Reduction. Advanced Functional Materials, 0, , . Moâ€"P sites boosting interfacial charge transfer of 2D/3D MoS₂/TiO₂ heterostructure for efficient photocatalytic hydrogen production and chromium(<scp>vi</scp>) reduction. Catalysis Science and Technology, 2024, 14, 1579-1587. Core-shell nanoconfinement: Nanoreactors for directional electron migration in 1558 photothermal-assisted photocatalytic hydrogen production. Chemical Engineering Journal, 2024, 484, 12.7 0 149607. CO₂ Photoreduction Product Selectivity with TiO₂â⁻Cu Nanocatalysts under Different Reaction Media. ChemCatChem, 0, , .

#	Article	IF	CITATIONS
1560	Cellulose nanocrystals as bridges to construct CNCs@ZIF-8 3D network with topological chirality for realizing efficient photocatalytic reduction of CO2. Separation and Purification Technology, 2024, 340, 126840.	7.9	0
1561	Boosting exciton dissociation and charge transfer in CsPbBr ₃ QDs via ferrocene derivative ligation for CO ₂ photoreduction. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121, .	7.1	0
1562	A review of photocatalytic CO2 reduction: exploring sustainable carbon emission mitigation from thermodynamics to kinetics and strategies for enhanced efficiency. Journal of the Korean Ceramic Society, 2024, 61, 367-390.	2.3	0
1563	Recent Development on Photocatalysts and Membrane Processes for Photoreduction of CO2 into C1 Solar Fuels. Korean Journal of Chemical Engineering, 2024, 41, 609-637.	2.7	0
1564	Ab initio modelling of photocatalytic CO2 reduction reactions over Cu/TiO2 semiconductors including the electronic excitation effects. Chemical Engineering Journal, 2024, 485, 149894.	12.7	0
1565	Advances in photocatalytic ceramic coatings. , 2024, , 171-211.		0
1566	Nanoflower-like TiO2/CoAl-layered double hydroxide direct Z-scheme for boosted photocatalytic CO2 conversion. Separation and Purification Technology, 2024, 341, 126915.	7.9	0
1567	Recent advances in the construction of structurally diverse catalysts for enhanced photocatalytic CO2 reduction. Separation and Purification Technology, 2024, 343, 126917.	7.9	0
1568	Photocatalytic CO2 reduction of amino-functionalized MIL-101(Fe) coupled with reduced graphene oxide under UV–visible light illumination. Reaction Kinetics, Mechanisms and Catalysis, 2024, 137, 1789-1803.	1.7	0
1569	Decorating ZnS photocatalyst with noble metal species – Strengthening or weakening the activity?. Journal of Photochemistry and Photobiology A: Chemistry, 2024, 452, 115555.	3.9	0
1570	Photothermal catalytic C–C coupling to ethylene from CO2 with high efficiency by synergistic cooperation of oxygen vacancy and half-metallic WTe2. Journal of Energy Chemistry, 2024, 93, 547-556.	12.9	0
1571	Large-Area Conductive MOF Ultrathin Film Controllably Integrating Dinuclear-Metal Sites and Photosensitizers to Boost Photocatalytic CO ₂ Reduction with H ₂ O as an Electron Donor. Journal of the American Chemical Society, 2024, 146, 6893-6904.	13.7	0
1572	Surface C N bonds mediate photocatalytic CO2 reduction into efficient CH4 production in TiO2-decorated g-C3N4 nanosheets. Journal of Colloid and Interface Science, 2024, 663, 825-833.	9.4	0
1573	Remarkable Enhancement of Photocatalytic Activity of High-Energy TiO ₂ Nanocrystals for NO Oxidation through Surface Defluorination. ACS Applied Materials & Interfaces, 2024, 16, 11479-11488.	8.0	0
1574	Cu2O/SiC photocatalytic reduction of carbon dioxide to methanol using visible light on InTaO4. Materials Science in Semiconductor Processing, 2024, 174, 108235.	4.0	0
1575	A molecular view of single-atom catalysis toward carbon dioxide conversion. Chemical Science, 2024, 15, 4631-4708.	7.4	0
1576	LDH-derived CoTiAl mixed oxide as catalyst for photo-assisted CO2 hydrogenation. Journal of CO2 Utilization, 2024, 81, 102725.	6.8	0
1577	Toward Tailoring Metal–Organic Frameworks for Photocatalytic Reduction of CO ₂ to Fuels. Crystal Growth and Design, 2024, 24, 2619-2644.	3.0	Ο

#	Article	IF	CITATIONS
1579	Asymmetrical Interactions between Ni Single Atomic Sites and Ni Clusters in a 3D Porous Organic Framework for Enhanced CO ₂ Photoreduction. Advanced Science, 0, , .	11.2	0
1580	Recent Advances and Challenges in Efficient Selective Photocatalytic CO ₂ Methanation. Small, 0, , .	10.0	0
1581	Constructing copper Phthalocyanine/Molybdenum disulfide (CuPc/MoS2) S-scheme heterojunction with S-rich vacancies for enhanced Visible-Light photocatalytic CO2 reduction. Journal of Colloid and Interface Science, 2024, 665, 500-509.	9.4	0
1582	Interfacially Modulated Sâ€5cheme Van der Waals Heterojunctional Photocatalyst for Selective CO ₂ Photoreduction Coupled with Organic Pollutant Degradation. Solar Rrl, 2024, 8, .	5.8	Ο
1583	Promoting photoreduction selectivity <i>via</i> synergetic utilization between vacancy and nanofiber structure over flexible Zr/TiO _{2â^'<i>x</i>} nanofiber films. Journal of Materials Chemistry C, 2024, 12, 5377-5385.	5.5	0
1584	Addressing the competing adsorption bottleneck in photoreduction of CO2 using a hydrophilic-hydrophobic heterojunction photocatalyst. Journal of Photochemistry and Photobiology, 2024, 21, 100236.	2.5	0
1585	2D Nanostructured MXene-Based Silver Nanoparticles for Photocatalytic Degradation of Safranin Dye. Catalysts, 2024, 14, 201.	3.5	0
1586	Efficient Photoreduction of CO ₂ to CO with 100% Selectivity by Slowing Down Electron Transport. Journal of the American Chemical Society, 2024, 146, 9163-9171.	13.7	0
1587	Photocatalytic conversion of CH4 and CO2 to acetic acid over Cu/ZnO catalysts under mild conditions. Chemical Engineering Journal, 2024, 487, 150690.	12.7	0
1588	Bifunctional noble-metal-free cocatalyst coating enabling better coupling of photocatalytic CO2 reduction and H2O oxidation on direct Z-scheme heterojunction. Nano Research, 0, , .	10.4	0
1589	Fluorenoneâ€Based Covalent Triazine Frameworks/Twinned Zn _{0.5} Cd _{0.5} S Sâ€scheme Heterojunction for Efficient Photocatalytic H ₂ Evolution. Advanced Functional Materials, 0, , .	14.9	0
1590	Closing the loop: Waste carbon transformation into solar fuels via CdS/Bi2WO6 heterojunction. Ceramics International, 2024, 50, 20068-20079.	4.8	0