CITATION REPORT List of articles citing

Simultaneous bioprecipitation of cadmium to cadmium sulfide nanoparticles and nitrogen fixation by Rhodopseudomonas palustris TN110

DOI: 10.1016/j.chemosphere.2019.02.051 Chemosphere, 2019, 223, 455-464.

Source: https://exaly.com/paper-pdf/73781100/citation-report.pdf

Version: 2024-04-10

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
30	Extracellular biosynthesis of cadmium sulphide quantum dot using cell-free extract of Pseudomonas chlororaphis CHR05 and its antibacterial activity. <i>Process Biochemistry</i> , 2020 , 89, 63-70	4.8	6
29	Potential of Mn2+-Resistant Purple Nonsulfur Bacteria Isolated from Acid Sulfate Soils to Act as Bioremediators and Plant Growth Promoters via Mechanisms of Resistance. <i>Journal of Soil Science and Plant Nutrition</i> , 2020 , 20, 2364-2378	3.2	5
28	Highly efficient nitrate and phosphorus removal and adsorption of tetracycline by precipitation in a chitosan/polyvinyl alcohol immobilized bioreactor. <i>Bioprocess and Biosystems Engineering</i> , 2020 , 43, 17	61 ^{2:7} 77	17
27	Cadmium sulfide nanoparticles-assisted intimate coupling of microbial and photoelectrochemical processes: Mechanisms and environmental applications. <i>Science of the Total Environment</i> , 2020 , 740, 140080	10.2	20
26	Marine Microbial Response to Heavy Metals: Mechanism, Implications and Future Prospect. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2020 , 105, 182-197	2.7	3
25	Bacterially-assisted recovery of cadmium and nickel as their metal sulfide nanoparticles from spent Ni-Cd battery via hydrometallurgical route. <i>Journal of Environmental Management</i> , 2020 , 261, 110113	7.9	10
24	A newly isolated bacterium Comamonas sp. XL8 alleviates the toxicity of cadmium exposure in rice seedlings by accumulating cadmium. <i>Journal of Hazardous Materials</i> , 2021 , 403, 123824	12.8	8
23	Heavy metal removal using microbial bioremediation techniques. 2021 , 649-673		
22	Bioelectrochemical systems for managing the metal issues. 2021 , 41-82		
21	Genome Assessment. 2021 , 51-86		1
20	Biophotoelectrochemistry for renewable energy and environmental applications. <i>IScience</i> , 2021 , 24, 10	2 62 8	5
19	Role of nanoparticles in crop improvement and abiotic stress management. <i>Journal of Biotechnology</i> , 2021 , 337, 57-70	3.7	17
18	Facet-Dependent Photoinduced Transformation of Cadmium Sulfide (CdS) Nanoparticles. <i>Environmental Science & Environmental Sci</i>	10.3	1
17	The Microbiology of Metal Mine Waste: Bioremediation Applications and Implications for Planetary Health. <i>GeoHealth</i> , 2021 , 5, e2020GH000380	5	5
16	Two strains of Luteovulum sphaeroides (purple nonsulfur bacteria) promote rice cultivation in saline soils by increasing available phosphorus. <i>Rhizosphere</i> , 2021 , 20, 100456	3.5	1
15	Sustainable and efficient technologies for removal and recovery of toxic and valuable metals from wastewater: Recent progress, challenges, and future perspectives <i>Chemosphere</i> , 2021 , 292, 133102	8.4	6
14	Lignin-Based CdS Dots as Multifunctional Platforms for Sensing and Wearable Photodynamic Coatings. ACS Applied Nano Materials,	5.6	2

CITATION REPORT

13	Ultrafine multi-metal (Zn, Cd, Pb) sulfide aggregates formation in periodically water-logged organic soil <i>Science of the Total Environment</i> , 2022 , 153308	10.2	O
12	Microbe-mediated transformation of metal sulfides: Mechanisms and environmental significance <i>Science of the Total Environment</i> , 2022 , 153767	10.2	3
11	Photobiocatalytic Solar Fuel and Solar Chemical Conversion: Sufficient Activity and Better Selectivity. ACS ES&T Engineering,		1
10	The Critical Role of Environmental Synergies in the Creation of Bionanohybrid Microbes <i>Applied and Environmental Microbiology</i> , 2022 , e0232121	4.8	
9	Potential of Phototrophic Purple Nonsulfur Bacteria to Fix Nitrogen in Rice Fields <i>Microorganisms</i> , 2021 , 10,	4.9	3
8	Characteristics and Application of Rhodopseudomonas palustris as a Microbial Cell Factory. <i>Frontiers in Bioengineering and Biotechnology</i> , 2022 , 10,	5.8	1
7	Valorization of wastewater to recover value-added products: A comprehensive insight and perspective on different technologies. 2022 , 214, 113957		0
6	A recent development on iron-oxidising bacteria (IOB) applications in water and wastewater treatment. 2022 , 49, 103109		O
5	Facet-specific cation exchange and heterogeneous transformation of cadmium sulfide nanoparticles induced by Cu(II).		O
4	Characterization of CdSe QDs biosynthesized by a recombinant Rhodopseudomonas palustris. 2023 , 191, 108771		0
3	The Effect of Inorganic Fertilizer and Biofertilizer Applications on Some Quality and Biochemical Properties of Safflower (Carthamus tinctorius L.). 740-753		О
2	Scalable Solar-Driven Chemical Production by Semiconductor Biohybrids Synthesized from Wastewater Pollutants.		Ο
1	Semiconductor augumented valuable chemical photosynthesis fromRhodospirillum rubrumand mechanism study.		O