A Survey on Ultraviolet C-Band (UV-C) Communication

IEEE Communications Surveys and Tutorials 21, 2111-2133

DOI: 10.1109/comst.2019.2898946

Citation Report

#	Article	IF	CITATIONS
1	High-Speed Ultraviolet-C Photodetector Based on Frequency Down-Converting CsPbBr3 Perovskite Nanocrystals on Silicon Platform. , 2019, , .		1
2	Artificial neural network-based threshold detection for OOK-VLC Systems. Optics Communications, 2020, 460, 125107.	1.0	5
3	Superior Deep-Ultraviolet Source Pumped by an Electron Beam for NLOS Communication. IEEE Transactions on Electron Devices, 2020, 67, 3391-3394.	1.6	5
4	Ultraviolet optoelectronic devices based on AlGaN-SiC platform: Towards monolithic photonics integration system. Nano Energy, 2020, 77, 105149.	8.2	94
5	Optimum Cooperative Spectrum Sensing Technique for Multiuser Ultraviolet Wireless Communications. , 2020, , .		2
6	Polarization detection in deep-ultraviolet light with monoclinic gallium oxide nanobelts. Nanoscale Advances, 2020, 2, 2705-2712.	2.2	18
7	Outdoor Optical Wireless Communication: potentials, standardization and challenges for Smart Cities. , 2020, , .		9
8	Non-Coherent Detection for Ultraviolet Communications With Inter-Symbol Interference. Journal of Lightwave Technology, 2020, 38, 4699-4707.	2.7	9
9	Performance Modeling of Ultraviolet Atmospheric Scattering of Different Light Sources Based on Monte Carlo Method. Applied Sciences (Switzerland), 2020, 10, 3564.	1.3	5
10	Novel Indoor Ultraviolet Wireless Communication: Design Implementation, Channel Modeling, and Challenges. IEEE Systems Journal, 2021, 15, 2349-2360.	2.9	23
11	AlGaN-based thin-film ultraviolet laser diodes and light-emitting diodes. Semiconductors and Semimetals, 2021, 107, 345-391.	0.4	0
12	LMMSE-Based SIMO Receiver for Ultraviolet Scattering Communication With Nonlinear Conversion. IEEE Wireless Communications Letters, 2021, 10, 2140-2144.	3.2	3
13	Research Progress and Prospect of Ultraviolet Communication. , 2021, , .		0
14	Simplified Closed-Form Single-Scatter Path Loss Model of Non-Line-of-Sight Ultraviolet Communications in Noncoplanar Geometry. IEEE Journal of Quantum Electronics, 2021, 57, 1-9.	1.0	16
15	Giant clam inspired high-speed photo-conversion for ultraviolet optical wireless communication. Optical Materials Express, 2021, 11, 1515.	1.6	2
16	Enhancement of polarization response in UVA and UVC wavelength with integrated sub-wavelength metal-grids. Microelectronic Engineering, 2021, 242-243, 111555.	1.1	4
17	High Data Transfer Rate Spatial Division Multiplexing for Short Range non-Line-of-Sight Ultraviolet Optical Transmission. IEEE Photonics Journal, 2021, 13, 1-19.	1.0	2
18	Spectrum Sensing for Optical Wireless Scattering Communications Over Málaga Fading—A Cooperative Approach With Hard Decision Fusion. IEEE Transactions on Communications, 2021, 69, 4615-4631.	4.9	11

#	Article	IF	Citations
19	Ultraviolet communication technique and its application. Journal of Semiconductors, 2021, 42, 081801.	2.0	34
20	Single-scatter path loss model of LED-based non-line-of-sight ultraviolet communications. Optics Letters, 2021, 46, 4013.	1.7	8
21	Modeling of UV diffused-LOS communication channel incorporating obstacle and its applicability analysis. Optics Letters, 2021, 46, 4578.	1.7	4
22	The realization of a wide-angle voice transmission non-line-of-sight ultraviolet communication system. Journal of Semiconductors, 2021, 42, 092301.	2.0	8
23	Performance of Multiple Relay DF NLOS UVC System With CSI Imperfections. IEEE Open Journal of the Communications Society, 2021, 2, 602-616.	4.4	6
24	Ultraviolet-to-blue color-converting scintillating-fibers photoreceiver for 375-nm laser-based underwater wireless optical communication. Optics Express, 2019, 27, 30450.	1.7	52
25	Gbit/s ultraviolet-C diffuse-line-of-sight communication based on probabilistically shaped DMT and diversity reception. Optics Express, 2020, 28, 9111.	1.7	29
26	Modeling of ultraviolet scattering propagation and its applicability analysis. Optics Letters, 2019, 44, 4953.	1.7	10
27	The Impact of Vertical Salinity Gradient on Non-Line-of-Sight Underwater Optical Wireless Communication. IEEE Photonics Journal, 2021, 13, 1-9.	1.0	11
28	LaUV: A Physics-Based UV Light Simulator for Disinfection and Communication Applications. IEEE Access, 2021, 9, 137543-137559.	2.6	4
29	Ultraviolet Communications for Unmanned Aerial Vehicle Networks. IEEE Wireless Communications Letters, 2022, 11, 178-182.	3.2	9
30	Effects of transceiver jitter on the performance of optical scattering communication systems. Optics Letters, 2020, 45, 5680.	1.7	3
31	State-of-the-art ultraviolet multiuser indoor communication over power-constrained discrete-time Poisson channels. Optical Engineering, 2020, 59, .	0.5	7
32	275 nm Deep Ultraviolet AlGaN-Based Micro-LED Arrays for Ultraviolet Communication. IEEE Photonics Journal, 2022, 14, 1-5.	1.0	14
33	All-inorganic halide-perovskite-polymer luminescent fibers for high-bitrate ultraviolet free-space optical communication., 2021,,.		0
34	Estimation of optimal wavelengths for atmospheric non-line-of-sight optical communication in the UV range of the spectrum in daytime and at night for baseline distances from 50 m to 50 km. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2022, 39, 177.	0.8	7
35	Reflection-Assisted Non-Line-of-Sight Ultraviolet Communications. Journal of Lightwave Technology, 2022, 40, 1953-1961.	2.7	10
36	High-Dimensional Feature Based Non-Coherent Detection for Multi-Intensity Modulated Ultraviolet Communications. Journal of Lightwave Technology, 2022, 40, 1879-1887.	2.7	9

#	Article	IF	CITATIONS
37	Novel Optical Scattering-Based V2V Communications With Experimental Analysis. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 15765-15779.	4.7	5
38	Self-powered weather station for remote areas and difficult-access locations. Optics Express, 2022, 30, 2668.	1.7	4
39	On-channel characteristics of wireless ultraviolet communication with mobile terminals. Optics Letters, 2022, 47, 929.	1.7	1
40	10  Gbps wavelength division multiplexing using UV-A, UV-B, and UV-C micro-LEDs. Photonics Research, 2022, 10, 516.	3.4	18
41	On the performance of a relay assisted hybrid RF-NLOS UVC system with imperfect channel estimation. Journal of Optical Communications and Networking, 2022, 14, 177.	3.3	5
42	Modeling of ultraviolet propagation from air to human epidermis with wavelength range of 200–300Ânm. Optics Letters, 2022, 47, 1662.	1.7	1
44	Performance of the UV Multinode Network Under the Lossless Contention MAC Protocol. IEEE Photonics Journal, 2022, 14, 1-7.	1.0	4
45	Communication based on scattered laser radiation in a medium with high turbidity or in the presence of a noise source. Journal of Physics: Conference Series, 2021, 2140, 012009.	0.3	О
46	Ultraviolet-Based UAV Swarm Communications: Potentials and Challenges. IEEE Wireless Communications, 2022, 29, 84-90.	6.6	6
47	Surmounting the interband threshold limit by the hot electron excitation of multi-metallic plasmonic AgAuCu NPs for UV photodetector application. CrystEngComm, 2022, 24, 4134-4143.	1.3	3
48	Highly efficient UV detection in a metal–semiconductor–metal detector with epigraphene. Applied Physics Letters, 2022, 120, .	1.5	6
49	Link-Layer Retransmission-Based Error-Control Protocols in FSO Communications: A Survey. IEEE Communications Surveys and Tutorials, 2022, 24, 1602-1633.	24.8	12
50	Characteristic Study of Non-Line-of-Sight Scattering Ultraviolet Communication System at Small Elevation Angle. Photonics, 2022, 9, 363.	0.9	0
51	Endogenous Synergistic Enhanced Selfâ€Powered Photodetector via Multiâ€Effect Coupling Strategy toward Highâ€Efficiency Ultraviolet Communication. Advanced Functional Materials, 2022, 32, .	7.8	20
52	Fully Relaxed, Crack-Free AlGaN with upto 50% Al Composition Grown on Porous GaN Pseudo-Substrate. Crystals, 2022, 12, 989.	1.0	1
53	Optimization of ultraviolet communication links based on finite difference stochastic approximation. Optics Express, 2022, 30, 36283.	1.7	1
54	Deepâ€Ultraviolet LEDs Incorporated with SiO ₂ â€Based Microcavities Toward Highâ€6peed Ultraviolet Light Communication. Advanced Optical Materials, 2022, 10, .	3.6	18
55	Research on the rapid assembly algorithm of the wireless ultraviolet cooperative UAV formation. Optics Express, 2022, 30, 35163.	1.7	О

#	Article	IF	CITATIONS
56	Fault-Tolerant Cooperative Signal Detection for Petahertz Short-Range Communication With Continuous Waveform Wideband Detectors. IEEE Transactions on Wireless Communications, 2023, 22, 88-106.	6.1	6
57	Performance Analysis of LDPC Coding under Multiple Scattering in Ultraviolet Communication. , 2022, ,		O
58	Real-Time Quantitative Detection of Ultraviolet Radiation Dose Based on Photochromic Hydrogel and Photo-Resistance. Chemistry of Materials, 2022, 34, 7947-7958.	3.2	12
59	Evaluation of the operation of a Non-Line-of-Sight wireless network cluster operating at the solar-blind part of the UV-C wavelength band. , 2022, , .		O
61	Optical Wireless Communications: Research Challenges for MAC Layer. IEEE Access, 2022, 10, 126969-126989.	2.6	5
62	A novel ultraviolet communication channel access protocol based on competition mechanism. Optik, 2023, 273, 170426.	1.4	1
63	Đ℥ЦЕĐĐ℥Đ•Đ℥ĐĐ℥Đ•Đ¡Đ¢Đ'Đ•Đ℥ĐĐĐлЕĐĐ¢ĐœĐ℥Đ¡Đ Đ• ĐĐĐ℥Đ™ Đ℥ĐŸĐ¢Đ~ĐֈĐ℥Đ™ Đ¡Đ°Đ¬Đ—Đ°	ĐĐ•ĐĐĐ _i	Đ¡Đ₀∙Đ⁻ĐĐĐžĐ
64	Enhancing the optical and electrical properties of AlGaN ultraviolet-C micro-LED via a hybrid scheme of plasma and chemical treatment. Applied Physics Letters, 2022, 121, .	1.5	7
65	Hundred-meter Gb/s deep ultraviolet wireless communications using AlGaN micro-LEDs. Optics Express, 2022, 30, 46811.	1.7	7
66	Quantum Dots Integrated Deep-Ultraviolet Micro-LED Array Toward Solar-Blind and Visible Light Dual-Band Optical Communication. IEEE Electron Device Letters, 2023, 44, 472-475.	2.2	10
67	Non-Line-of-Sight Full-Duplex Ultraviolet Communications Under Self-Interference. IEEE Transactions on Wireless Communications, 2023, 22, 7775-7788.	6.1	2
68	A Power-Domain MST Scheme With BPPM in NLOS Ultraviolet Communications. IEEE Photonics Journal, 2023, 15, 1-10.	1.0	O
69	Down-converting luminescent optoelectronics and their applications. APL Photonics, 2023, 8, .	3.0	6
70	The influences of AlGaN barrier epitaxy in multiple quantum wells on the optoelectrical properties of AlGaN-based deep ultra-violet light-emitting diodes. RSC Advances, 2023, 13, 5437-5443.	1.7	2
71	Optical Wireless Communication for 6G Networks. Smart Innovation, Systems and Technologies, 2023, , 361-377.	0.5	1
72	Ultraviolet communication with a large scattering angle via artificial agglomerate fog. Optics Express, 2023, 31, 23149.	1.7	3
77	ABER Estimation of NLOS UV Links with Time Diversity over K-Turbulent Channels and Path Loss. , 2023, , .		1
78	High power and high modulation bandwidth deepultraviolet LEDs with microcavities and reflectors. , 2023, , .		O

#	Article	IF	CITATIONS
81	A General 3D GBSM for 6G Indoor Optical Wireless Communication Systems. , 2023, , .		0
84	A 1 km Line-of-Sight Ultraviolet Communication System with a Data Rate of 26.6kbps. , 2023, , .		0
87	Gigabit Per Second UV-C LEDs for Communications. , 2023, , .		0