Tunable intrinsic strain in two-dimensional transition r

Science 363, 870-874 DOI: 10.1126/science.aat8051

Citation Report

#	Article	IF	CITATIONS
1	Strain Engineering of a Defect-Free, Single-Layer MoS ₂ Substrate for Highly Efficient Single-Atom Catalysis of CO Oxidation. ACS Applied Materials & Interfaces, 2019, 11, 32887-32894.	4.0	33
2	Advanced engineering of core/shell nanostructures for electrochemical carbon dioxide reduction. Journal of Materials Chemistry A, 2019, 7, 20478-20493.	5.2	30
3	Low Dimensional Platinum-Based Bimetallic Nanostructures for Advanced Catalysis. Accounts of Chemical Research, 2019, 52, 3384-3396.	7.6	84
4	In Situ Modification of a Delafossite-Type PdCoO ₂ Bulk Single Crystal for Reversible Hydrogen Sorption and Fast Hydrogen Evolution. ACS Energy Letters, 2019, 4, 2185-2191.	8.8	34
5	Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation. Nature Catalysis, 2019, 2, 578-589.	16.1	760
6	Crystal phase effect upon O ₂ activation on gold surfaces through intrinsic strain. Nanoscale, 2019, 11, 14587-14591.	2.8	3
7	Atomically Dispersed Semimetallic Selenium on Porous Carbon Membrane as an Electrode for Hydrazine Fuel Cells. Angewandte Chemie - International Edition, 2019, 58, 13466-13471.	7.2	99
8	Atomically Dispersed Semimetallic Selenium on Porous Carbon Membrane as an Electrode for Hydrazine Fuel Cells. Angewandte Chemie, 2019, 131, 13600-13605.	1.6	32
9	Tunable In Situ Stress and Spontaneous Microwrinkling of Multiscale Heterostructures. Journal of Physical Chemistry C, 2019, 123, 26041-26046.	1.5	3
10	Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science, 2019, 366, 850-856.	6.0	1,005
11	Current challenges related to the deployment of shape-controlled Pt alloy oxygen reduction reaction nanocatalysts into low Pt-loaded cathode layers of proton exchange membrane fuel cells. Current Opinion in Electrochemistry, 2019, 18, 61-71.	2.5	111
12	Recent progress in two-dimensional nanomaterials: Synthesis, engineering, and applications. FlatChem, 2019, 18, 100133.	2.8	52
13	A Novel Approach to Highâ€Performance Aliovalentâ€Substituted Catalysts—2D Bimetallic MOFâ€Derived CeCuO <i>_x</i> Microsheets. Small, 2019, 15, e1903525.	5.2	46
14	A Two-Dimensional MoS ₂ Catalysis Transistor by Solid-State Ion Gating Manipulation and Adjustment (SIGMA). Nano Letters, 2019, 19, 7293-7300.	4.5	46
15	Ensemble Effect in Bimetallic Electrocatalysts for CO ₂ Reduction. Journal of the American Chemical Society, 2019, 141, 16635-16642.	6.6	238
16	Ultra-thin Ga nanosheets: analogues of high pressure Ga(<scp>iii</scp>). Nanoscale, 2019, 11, 17201-17205.	2.8	7
17	Electrocatalysis of Oxygen Reduction Reaction on Shape-Controlled Pt and Pd Nanoparticles—Importance of Surface Cleanliness and Reconstruction. Frontiers in Chemistry, 2019, 7, 648.	1.8	29
18	Noble metal-based 1D and 2D electrocatalytic nanomaterials: Recent progress, challenges and perspectives. Nano Today, 2019, 28, 100774.	6.2	81

#	Article	IF	CITATIONS
19	Structure-Related Electrocatalytic Performance of N/C-Supported Fe _{1–<i>x</i>} Ni _{<i>x</i>} Nanoparticles toward Oxygen Reduction. Journal of Physical Chemistry C, 2019, 123, 16250-16256.	1.5	5
20	Principles of Dynamic Heterogeneous Catalysis: Surface Resonance and Turnover Frequency Response. ACS Catalysis, 2019, 9, 6929-6937.	5.5	104
21	Palladium structure engineering induced by electrochemical H intercalation boosts hydrogen evolution catalysis. Journal of Materials Chemistry A, 2019, 7, 14876-14881.	5.2	36
22	Heterostructured NiFe oxide/phosphide nanoflakes for efficient water oxidation. Dalton Transactions, 2019, 48, 8442-8448.	1.6	6
23	Nanomechanics of low-dimensional materials for functional applications. Nanoscale Horizons, 2019, 4, 781-788.	4.1	29
24	Understanding electro-catalysis by using density functional theory. Physical Chemistry Chemical Physics, 2019, 21, 23782-23802.	1.3	53
25	Synthesis of PdM (M = Zn, Cd, ZnCd) Nanosheets with an Unconventional Face-Centered Tetragonal Phase as Highly Efficient Electrocatalysts for Ethanol Oxidation. ACS Nano, 2019, 13, 14329-14336.	7.3	133
26	Dynamic Tuning of a Thin Film Electrocatalyst by Tensile Strain. Scientific Reports, 2019, 9, 15906.	1.6	21
27	Octahedral spinel electrocatalysts for alkaline fuel cells. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24425-24432.	3.3	60
28	A general synthesis approach for amorphous noble metal nanosheets. Nature Communications, 2019, 10, 4855.	5.8	321
29	A silver catalyst activated by stacking faults for the hydrogen evolution reaction. Nature Catalysis, 2019, 2, 1107-1114.	16.1	245
30	Strain analysis from M-edge resonant inelastic X-ray scattering of nickel oxide films. Physical Chemistry Chemical Physics, 2019, 21, 21596-21602.	1.3	2
31	MOF-derived two-dimensional N-doped carbon nanosheets coupled with Co–Fe–P–Se as efficient bifunctional OER/ORR catalysts. Nanoscale, 2019, 11, 20144-20150.	2.8	83
32	Interface modulation of twinned PtFe nanoplates branched 3D architecture for oxygen reduction catalysis. Science Bulletin, 2020, 65, 97-104.	4.3	42
33	2D Electrocatalysts for Converting Earthâ€Abundant Simple Molecules into Valueâ€Added Commodity Chemicals: Recent Progress and Perspectives. Advanced Materials, 2020, 32, e1904870.	11.1	76
34	Twoâ€Dimensional Electrocatalysts for Efficient Reduction of Carbon Dioxide. ChemSusChem, 2020, 13, 59-77.	3.6	31
35	Tuning Internal Strain in Metal–Organic Frameworks via Vapor Phase Infiltration for CO 2 Reduction. Angewandte Chemie, 2020, 132, 4602-4610.	1.6	16
36	Tuning Internal Strain in Metal–Organic Frameworks via Vapor Phase Infiltration for CO ₂ Reduction. Angewandte Chemie - International Edition, 2020, 59, 4572-4580.	7.2	42

#	Article	IF	CITATIONS
37	Strain effects on Co,N co-decorated graphyne catalysts for overall water splitting electrocatalysis. Physical Chemistry Chemical Physics, 2020, 22, 2457-2465.	1.3	32
38	Charge-compensated co-doping of graphdiyne with boron and nitrogen to form metal-free electrocatalysts for the oxygen reduction reaction. Physical Chemistry Chemical Physics, 2020, 22, 1493-1501.	1.3	32
39	Nanoporous Au-Sn with solute strain for simultaneously enhanced selectivity and durability during electrochemical CO2 reduction. Journal of Materials Science and Technology, 2020, 43, 154-160.	5.6	13
40	Ultrathin Pd-based nanosheets: syntheses, properties and applications. Nanoscale, 2020, 12, 4219-4237.	2.8	49
41	Boosting Oxygen Reduction of Single Iron Active Sites via Geometric and Electronic Engineering: Nitrogen and Phosphorus Dual Coordination. Journal of the American Chemical Society, 2020, 142, 2404-2412.	6.6	680
42	Endogenous Nanoparticles Strain Perovskite Host Lattice Providing Oxygen Capacity and Driving Oxygen Exchange and CH 4 Conversion to Syngas. Angewandte Chemie, 2020, 132, 2531-2540.	1.6	9
43	Atomic-level insights into strain effect on p-nitrophenol reduction via Au@Pd core–shell nanocubes as an ideal platform. Journal of Catalysis, 2020, 381, 427-433.	3.1	30
44	Intermetallic Compounds as an Alternative to Singleâ€atom Alloy Catalysts: Geometric and Electronic Structures from Advanced Xâ€ray Spectroscopies and Computational Studies. ChemCatChem, 2020, 12, 1325-1333.	1.8	50
45	Hierarchical porous Rh nanosheets for methanol oxidation reaction. Applied Catalysis B: Environmental, 2020, 264, 118520.	10.8	92
46	Endogenous Nanoparticles Strain Perovskite Host Lattice Providing Oxygen Capacity and Driving Oxygen Exchange and CH ₄ Conversion to Syngas. Angewandte Chemie - International Edition, 2020, 59, 2510-2519.	7.2	70
47	Strain Effect in Palladium Nanostructures as Nanozymes. Nano Letters, 2020, 20, 272-277.	4.5	85
48	O-doped graphdiyne as metal-free catalysts for nitrogen reduction reaction. Molecular Catalysis, 2020, 483, 110705.	1.0	44
49	Dopants fixation of Ruthenium for boosting acidic oxygen evolution stability and activity. Nature Communications, 2020, 11, 5368.	5.8	217
50	Recent Progress in Engineering the Atomic and Electronic Structure of Electrocatalysts via Cation Exchange Reactions. Advanced Materials, 2020, 32, e2001866.	11.1	101
51	Structure and activity of nanozymes: Inspirations for de novo design of nanozymes. Materials Today, 2020, 41, 81-119.	8.3	398
52	Eliminating dissolution of platinum-based electrocatalysts at the atomic scale. Nature Materials, 2020, 19, 1207-1214.	13.3	127
53	Recent Progress on Two-dimensional Electrocatalysis. Chemical Research in Chinese Universities, 2020, 36, 611-621.	1.3	140
54	Prolonged culture in aerobic environments alters Escherichia coli H 2 production capacity. Engineering Reports, 2020, 2, e12161.	0.9	0

#	Article	IF	CITATIONS
55	Polyoxometalate Derived Mo Based Hybrid HER Electrocatalysts with Carbon as Matrix and Their Application in Zn-H+ Battery. Journal of Cluster Science, 2020, , 1.	1.7	2
56	Oxophilicity Drives Oxygen Transfer at a Palladium–Silver Interface for Increased CO Oxidation Activity. ACS Catalysis, 2020, 10, 13878-13889.	5.5	7
57	Achieving high hydrogen evolution reaction activity of a Mo ₂ C monolayer. Physical Chemistry Chemical Physics, 2020, 22, 26189-26199.	1.3	9
58	Nanocrystals of platinum-group metals as peroxidase mimics forin vitrodiagnostics. Chemical Communications, 2020, 56, 14962-14975.	2.2	17
59	Activity–Stability Relationship in Au@Pt Nanoparticles for Electrocatalysis. ACS Energy Letters, 2020, 5, 2827-2834.	8.8	49
60	Effect of strain on the reactivity of graphene films. Journal of Catalysis, 2020, 390, 67-71.	3.1	12
61	Tensile-strained ruthenium phosphide by anion substitution for highly active and durable hydrogen evolution. Nano Energy, 2020, 77, 105212.	8.2	39
62	Lattice‧train Engineering of Homogeneous NiS _{0.5} Se _{0.5} Core–Shell Nanostructure as a Highly Efficient and Robust Electrocatalyst for Overall Water Splitting. Advanced Materials, 2020, 32, e2000231.	11.1	158
63	Promoting Electrocatalytic Hydrogen Evolution Reaction and Oxygen Evolution Reaction by Fields: Effects of Electric Field, Magnetic Field, Strain, and Light. Small Methods, 2020, 4, 2000494.	4.6	146
64	The Catalytic Mechanics of Dynamic Surfaces: Stimulating Methods for Promoting Catalytic Resonance. ACS Catalysis, 2020, 10, 12666-12695.	5.5	54
65	Probing the Irregular Lattice Strainâ€Induced Electronic Structure Variations on Late Transition Metals for Boosting the Electrocatalyst Activity. Small, 2020, 16, e2002434.	5.2	15
66	The Applications of 2D Nanomaterials in Energy-Related Process. ACS Symposium Series, 2020, , 219-251.	0.5	1
67	Influence of Local Inhomogeneities and the Electrochemical Environment on the Oxygen Reduction Reaction on Pt-Based Electrodes: A DFT Study. Journal of Physical Chemistry C, 2020, 124, 27604-27613.	1.5	10
68	Atomic-Level Manipulations in Oxides and Alloys for Electrocatalysis of Oxygen Evolution and Reduction. ACS Nano, 2020, 14, 14323-14354.	7.3	37
69	The Role of Surface Termination in Halide Perovskites for Efficient Photocatalytic Synthesis. Angewandte Chemie - International Edition, 2020, 59, 12931-12937.	7.2	27
70	The Role of Surface Termination in Halide Perovskites for Efficient Photocatalytic Synthesis. Angewandte Chemie, 2020, 132, 13031-13037.	1.6	2
71	Strain engineering the behaviors of small molecules over defective MoS2 monolayers in the 2H and 1T′ phases. Journal of Materials Science, 2020, 55, 10643-10655.	1.7	6
72	Lattice-compressed and N-doped Co nanoparticles to boost oxygen reduction reaction for zinc-air batteries. Applied Surface Science, 2020, 525, 146491.	3.1	17

#	Article	IF	CITATIONS
73	Computationally aided, entropy-driven synthesis of highly efficient and durable multi-elemental alloy catalysts. Science Advances, 2020, 6, eaaz0510.	4.7	158
74	Atomic-scale engineering of chemical-vapor-deposition-grown 2D transition metal dichalcogenides for electrocatalysis. Energy and Environmental Science, 2020, 13, 1593-1616.	15.6	166
75	Computational predictions of twoâ€dimensional anode materials of metalâ€ion batteries. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2020, 10, e1473.	6.2	30
76	Self-Induced Strain in 2D Chalcogenide Nanocrystals with Enhanced Photoelectrochemical Responsivity. Chemistry of Materials, 2020, 32, 2774-2781.	3.2	7
77	A review on fundamentals for designing oxygen evolution electrocatalysts. Chemical Society Reviews, 2020, 49, 2196-2214.	18.7	1,466
78	Catalytic resonance theory: parallel reaction pathway control. Chemical Science, 2020, 11, 3501-3510.	3.7	35
79	Surface Strain-Induced Collective Switching of Ensembles of Molecules on Metal Surfaces. Journal of Physical Chemistry Letters, 2020, 11, 2277-2283.	2.1	4
80	Strain engineering of two-dimensional multilayered heterostructures for beyond-lithium-based rechargeable batteries. Nature Communications, 2020, 11, 3297.	5.8	134
81	Strain engineering for Janus palladium-gold bimetallic nanoparticles: Enhanced electrocatalytic performance for oxygen reduction reaction and zinc-air battery. Chemical Engineering Journal, 2020, 389, 124240.	6.6	40
82	Elastic modulus scaling in graphene-metal composite nanoribbons. Journal Physics D: Applied Physics, 2020, 53, 185305.	1.3	4
83	Strain modulation of phase transformation of noble metal nanomaterials. InformaÄnÃ-Materiály, 2020, 2, 715-734.	8.5	38
84	Hierarchical Core–Shell Structure of 2D VS ₂ @VC@N-Doped Carbon Sheets Decorated by Ultrafine Pd Nanoparticles: Assembled in a 3D Rosette-like Array on Carbon Fiber Microelectrode for Electrochemical Sensing. ACS Applied Materials & Interfaces, 2020, 12, 15507-15516.	4.0	34
85	Electronic band contraction induced low temperature methane activation on metal alloys. Journal of Materials Chemistry A, 2020, 8, 6057-6066.	5.2	28
86	Advanced Electrocatalysts for the Oxygen Reduction Reaction in Energy Conversion Technologies. Joule, 2020, 4, 45-68.	11.7	596
87	Atomic-Level Construction of Tensile-Strained PdFe Alloy Surface toward Highly Efficient Oxygen Reduction Electrocatalysis. Nano Letters, 2020, 20, 1403-1409.	4.5	89
88	Pt alloy oxygen-reduction electrocatalysts: Synthesis, structure, and property. Chinese Journal of Catalysis, 2020, 41, 739-755.	6.9	84
89	Two-dimensional materials for energy conversion and storage. Progress in Materials Science, 2020, 111, 100637.	16.0	134
90	Fineâ€Tuning Intrinsic Strain in Pentaâ€Twinned Pt–Cu–Mn Nanoframes Boosts Oxygen Reduction Catalysis. Advanced Functional Materials, 2020, 30, 1910107.	7.8	108

#	Article	IF	CITATIONS
91	In Situ Induction of Strain in Iron Phosphide (FeP ₂) Catalyst for Enhanced Hydroxide Adsorption and Water Oxidation. Advanced Functional Materials, 2020, 30, 1907791.	7.8	55
92	Strain-Induced Modulation of Spin Configuration in LaCoO3. Frontiers in Materials, 2020, 7, .	1.2	4
93	Enhancing Oxygen Reduction Activity of Ptâ€based Electrocatalysts: From Theoretical Mechanisms to Practical Methods. Angewandte Chemie, 2020, 132, 18490-18504.	1.6	24
94	Enhancing Oxygen Reduction Activity of Ptâ€based Electrocatalysts: From Theoretical Mechanisms to Practical Methods. Angewandte Chemie - International Edition, 2020, 59, 18334-18348.	7.2	174
95	A strategy to unlock the potential of CrN as a highly active oxygen reduction reaction catalyst. Journal of Materials Chemistry A, 2020, 8, 8575-8585.	5.2	38
96	Partially hydroxylated ultrathin iridium nanosheets as efficient electrocatalysts for water splitting. National Science Review, 2020, 7, 1340-1348.	4.6	56
97	Recent Progress in Electrocatalysts for Acidic Water Oxidation. Advanced Energy Materials, 2020, 10, 2000478.	10.2	162
98	Metallic nanostructures with low dimensionality for electrochemical water splitting. Chemical Society Reviews, 2020, 49, 3072-3106.	18.7	609
99	Predicting metal–metal interactions. I. The influence of strain on nanoparticle and metal adlayer stabilities. Journal of Chemical Physics, 2020, 152, 094701.	1.2	12
100	Ultrathin and defect-rich intermetallic Pd ₂ Sn nanosheets for efficient oxygen reduction electrocatalysis. Journal of Materials Chemistry A, 2020, 8, 15665-15669.	5.2	54
101	The coupling of experiments with density functional theory in the studies of the electrochemical hydrogen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 8783-8812.	5.2	33
102	An overview of amphoteric ion exchange membranes for vanadium redox flow batteries. Journal of Materials Science and Technology, 2021, 69, 212-227.	5.6	41
103	Noble-Metal Nanocrystals with Controlled Shapes for Catalytic and Electrocatalytic Applications. Chemical Reviews, 2021, 121, 649-735.	23.0	388
104	Ultrasonic-assisted synthesis of two dimensional coral-like Pd nanosheets supported on reduced graphene oxide for enhanced electrocatalytic performance. Ultrasonics Sonochemistry, 2021, 70, 105309.	3.8	20
105	Self-activated cathode substrates in rechargeable zinc–air batteries. Energy Storage Materials, 2021, 35, 530-537.	9.5	11
106	Noble-Metal Nanoframes and Their Catalytic Applications. Chemical Reviews, 2021, 121, 796-833.	23.0	115
107	Synergistically modulating electronic structure of NiS2 hierarchical architectures by phosphorus doping and sulfur-vacancies defect engineering enables efficient electrocatalytic water splitting. Chemical Engineering Journal, 2021, 420, 127630.	6.6	83
108	Lattice-strained nanotubes facilitate efficient natural sunlight-driven CO2 photoreduction. Nano Research, 2021, 14, 2558-2567.	5.8	17

#	Article	IF	CITATIONS
109	Coplanar Pt/C Nanomeshes with Ultrastable Oxygen Reduction Performance in Fuel Cells. Angewandte Chemie - International Edition, 2021, 60, 6533-6538.	7.2	73
110	Efficient Electrocatalytic CO2 Reduction to C2+ Alcohols at Defect-Site-Rich Cu Surface. Joule, 2021, 5, 429-440.	11.7	194
111	Advanced Oxygen Electrocatalysis in Energy Conversion and Storage. Advanced Functional Materials, 2021, 31, 2007602.	7.8	86
112	Construction of Nitrogen-Doped Carbon Nanosheets for Efficient and Stable Oxygen Reduction Electrocatalysis. Journal of Electronic Materials, 2021, 50, 1349-1357.	1.0	4
113	Molecular and heterogeneous water oxidation catalysts: recent progress and joint perspectives. Chemical Society Reviews, 2021, 50, 2444-2485.	18.7	102
114	Metallenes as functional materials in electrocatalysis. Chemical Society Reviews, 2021, 50, 6700-6719.	18.7	253
115	Synthesis of Pd nanonetworks with abundant defects for oxygen reduction electrocatalysis. New Journal of Chemistry, 2021, 45, 2814-2819.	1.4	6
116	Doping and strain effect on hydrogen evolution reaction catalysts of NiP ₂ . Wuli Xuebao/Acta Physica Sinica, 2021, 70, 148802-148802.	0.2	0
117	DNA-based low resistance palladium nano-spheres for effective hydrogen evolution reaction. Catalysis Science and Technology, 2021, 11, 5868-5880.	2.1	5
118	Nanostructured metal phosphides: from controllable synthesis to sustainable catalysis. Chemical Society Reviews, 2021, 50, 7539-7586.	18.7	177
119	Emerging beyond-graphene elemental 2D materials for energy and catalysis applications. Chemical Society Reviews, 2021, 50, 10983-11031.	18.7	170
120	Understanding the enhanced catalytic activity of high entropy alloys: from theory to experiment. Journal of Materials Chemistry A, 2021, 9, 19410-19438.	5.2	43
121	Engineering electrocatalyst nanosurfaces to enrich the activity by inducing lattice strain. Energy and Environmental Science, 2021, 14, 3717-3756.	15.6	98
122	Benefits on photocarrier transfer from the transition of 3D to a 2D morphology. CrystEngComm, 2021, 23, 4825-4832.	1.3	0
123	Wet-chemical synthesis of two-dimensional metal nanomaterials for electrocatalysis. National Science Review, 2022, 9, nwab142.	4.6	41
124	First-Principles Study of C–C Coupling Pathways for CO ₂ Electrochemical Reduction Catalyzed by Cu(110). Journal of Physical Chemistry C, 2021, 125, 2464-2476.	1.5	21
125	From nanoparticle to single-atom catalyst; electrocatalytic reduction of carbon dioxide. , 2021, , 111-153.		1
126	Pt distribution-controlled Ni–Pt nanocrystals via an alcohol reduction technique for the oxygen reduction reaction. New Journal of Chemistry, 2021, 45, 11183-11191.	1.4	2

# 127	ARTICLE Atomic-level insight into reasonable design of metal-based catalysts for hydrogen oxidation in alkaline electrolytes. Energy and Environmental Science, 2021, 14, 2620-2638.	IF 15.6	Citations 68
128	Impact of the degree of dehydrogenation in ethanol C–C bond cleavage on Ir(100). Journal of Chemical Physics, 2021, 154, 054705.	1.2	9
129	Coplanar Pt/C Nanomeshes with Ultrastable Oxygen Reduction Performance in Fuel Cells. Angewandte Chemie, 2021, 133, 6607-6612.	1.6	9
130	Strained Ultralong Silver Nanowires for Enhanced Electrocatalytic Oxygen Reduction Reaction in Alkaline Medium. Journal of Physical Chemistry Letters, 2021, 12, 2029-2035.	2.1	10
131	What Atomic Positions Determines Reactivity of a Surface? Longâ€Range, Directional Ligand Effects in Metallic Alloys. Advanced Science, 2021, 8, 2003357.	5.6	17
132	Palladium Nanobelts with Expanded Lattice Spacing for Electrochemical Oxygen Reduction in Alkaline Media. ACS Applied Nano Materials, 2021, 4, 2118-2125.	2.4	11
133	A highly efficient atomically thin curved PdIr bimetallene electrocatalyst. National Science Review, 2021, 8, nwab019.	4.6	59
134	Host Modification of Layered Double Hydroxide Electrocatalyst to Boost the Thermodynamic and Kinetic Activity of Oxygen Evolution Reaction. Advanced Functional Materials, 2021, 31, 2009743.	7.8	71
135	Univariate Lattice Parameter Modulation of Single-Crystal-like Anatase TiO ₂ Hierarchical Nanowire Arrays to Improve Photoactivity. Chemistry of Materials, 2021, 33, 1489-1497.	3.2	22
136	In situ scanning x-ray diffraction reveals strain variations in electrochemically grown nanowires. Journal Physics D: Applied Physics, 2021, 54, 235301.	1.3	7
137	Interfacial engineering of heterogeneous catalysts for electrocatalysis. Materials Today, 2021, 48, 115-134.	8.3	96
138	A fundamental comprehension and recent progress in advanced Ptâ€based ORR nanocatalysts. SmartMat, 2021, 2, 56-75.	6.4	141
139	Self-Doping Surface Oxygen Vacancy-Induced Lattice Strains for Enhancing Visible Light-Driven Photocatalytic H ₂ Evolution over Black TiO ₂ . ACS Applied Materials & Interfaces, 2021, 13, 18758-18771.	4.0	127
140	Noble metal-based high-entropy alloys as advanced electrocatalysts for energy conversion. Rare Metals, 2021, 40, 2354-2368.	3.6	47
141	In Situ Surface-Enhanced Raman Spectroscopy Characterization of Electrocatalysis with Different Nanostructures. Annual Review of Physical Chemistry, 2021, 72, 331-351.	4.8	26
142	Effects of Uniaxial Lattice Strain and Explicit Water Solvation on CO ₂ Electroreduction over a Cu Electrode: A Density Functional Theory Perspective. Journal of Physical Chemistry C, 2021, 125, 9138-9149.	1.5	10
143	Interfacial Electron Engineering of Palladium and Molybdenum Carbide for Highly Efficient Oxygen Reduction. Journal of the American Chemical Society, 2021, 143, 6933-6941.	6.6	62
144	Biaxial strained dual-phase palladium-copper bimetal boosts formic acid electrooxidation. Nano Research, 2022, 15, 280-284.	5.8	19

#	Article	IF	CITATIONS
145	Bragg Coherent Diffraction Imaging for <i>In Situ</i> Studies in Electrocatalysis. ACS Nano, 2021, 15, 6129-6146.	7.3	24
146	Highâ€Index Faceted PdPtCu Ultrathin Nanorings Enable Highly Active and Stable Oxygen Reduction Electrocatalysis. Small Methods, 2021, 5, e2100154.	4.6	34
147	Intrinsic Electrocatalytic Activity for Oxygen Evolution of Crystalline 3dâ€Transition Metal Layered Double Hydroxides. Angewandte Chemie, 2021, 133, 14567-14578.	1.6	30
148	Intrinsic Electrocatalytic Activity for Oxygen Evolution of Crystalline 3dâ€Transition Metal Layered Double Hydroxides. Angewandte Chemie - International Edition, 2021, 60, 14446-14457.	7.2	170
149	Lattice distortion releasing local surface strain on high-entropy alloys. Nano Research, 2022, 15, 4775-4779.	5.8	16
150	PdCoNi alloy nanoparticles decorated, nitrogen-doped carbon nanotubes for highly active and durable oxygen reduction electrocatalysis. Chemical Engineering Journal, 2021, 411, 128527.	6.6	26
151	Platinum Group Metal-based Nanosheets: Synthesis and Application towards Electrochemical Energy Storage and Conversion. Chemistry Letters, 2021, 50, 1304-1312.	0.7	7
152	Strain engineering of two-dimensional materials for advanced electrocatalysts. Materials Today Nano, 2021, 14, 100111.	2.3	35
153	Tailoring the Performance of ZnO for Oxygen Evolution by Effective Transition Metal Doping. ChemSusChem, 2021, 14, 3064-3073.	3.6	9
154	Recent progress on precious metal single atom materials for water splitting catalysis. SusMat, 2021, 1, 194-210.	7.8	86
155	Stepping Out of Transition Metals: Activating the Dual Atomic Catalyst through Main Group Elements. Advanced Energy Materials, 2021, 11, 2101404.	10.2	33
156	Understanding of Strainâ€Induced Electronic Structure Changes in Metalâ€Based Electrocatalysts: Using Pd@Pt Coreâ€Shell Nanocrystals as an Ideal Platform. Small, 2021, 17, e2100559.	5.2	15
157	Rapid Aqueous Synthesis of Largeâ€Size and Edge/Defectâ€Rich Porous Pd and Pdâ€Alloyed Nanomesh for Electrocatalytic Ethanol Oxidation. Chemistry - A European Journal, 2021, 27, 11175-11182.	1.7	12
158	Pd–SnO2 heterojunction catalysts anchored on graphene sheets for enhanced oxygen reduction. Composites Communications, 2021, 25, 100703.	3.3	19
159	Advanced Research Progress on High‣fficient Utilization of Pt Electrocatalysts in Fuel Cells. Energy Technology, 2021, 9, 2100227.	1.8	8
160	Extreme mixing in nanoscale transition metal alloys. Matter, 2021, 4, 2340-2353.	5.0	102
162	Atomic Regulation of PGM Electrocatalysts for the Oxygen Reduction Reaction. Frontiers in Chemistry, 2021, 9, 699861.	1.8	6
163	Elastic properties of two-dimensional Pt with adsorbed oxygen. Physical Review B, 2021, 104, .	1.1	1

ARTICLE IF CITATIONS Ultrathin PdAuBiTe Nanosheets as Highâ€Performance Oxygen Reduction Catalysts for a Direct 11.1 61 164 Methanol Fuel Cell Device. Advanced Materials, 2021, 33, e2103383. H-Implanted Pd Icosahedra for Oxygen Reduction Catalysis: From Calculation to Practice. CCS 4.6 Chemistry, 2021, 3, 1972-1982. Atomic level engineering of noble metal nanocrystals for energy conversion catalysis. Journal of 166 7.1 12 Energy Chemistry, 2021, 63, 604-624. A bimetallic nanocatalyst for light-free oxygen sensitization therapy. Cell Reports Physical Science, 2021, 2, 100538. Structureâ€"property correlations for analysis of heterogeneous electrocatalysts. Chemical Physics 168 2.6 8 Reviews, 2021, 2, . Porous Pd/NiFeO_x Nanosheets Enhance the pHâ€Universal Overall Water Splitting. Advanced Functional Materials, 2021, 31, 2107181. 169 7.8 <i>In Situ</i> Precise Tuning of Bimetallic Electronic Effect for Boosting Oxygen Reduction Catalysis. 170 4.5 24 Nano Letters, 2021, 21, 7753-7760. Theoretical and Experimental Characterization of Adsorbed CO and NO on \hat{I}^3 -Al₂O₃-Supported Rh Nanoparticles. Journal of Physical Chemistry C, 2021, 125, 1.5 9 19733-19755. Steam-created grain boundaries for methane Câ€"H activation in palladium catalysts. Science, 2021, 373, 172 6.0 105 1518-1523. Lattice-strain and electron-density modulation of palladium nanocatalysts for highly efficient oxygen reduction. Journal of Colloid and Interface Science, 2021, 602, 159-167. Strain evolution in nanoporous gold during catalytic CH4 pyrolysis by in situ gas-phase transmission 174 2 2.6 electron microscopy. Scripta Materialia, 2021, 204, 114146. Carbonized wood membrane decorated with AuPd alloy nanoparticles as an efficient self-supported electrode for electrocatalytic CO2 reduction. Journal of Colloid and Interface Science, 2022, 607, 5.0 312-322. Unravelling the cooperative role of lattice strain on MnO₂/TiO₂ and MnO₂/ZnO catalysts for the fast decomposition of hydrogen peroxide. New Journal of 176 1.4 2 Chemistry, 2021, 45, 9944-9958. Compressed Intermetallic PdCu for Enhanced Electrocatalysis. ACS Energy Letters, 2020, 5, 3672-3680. 8.8 Polarization-dependent magnetism of the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Ni</mml:mi><mml:mo>/</mml:mo> <mml:mi>BaTi</mml: 178 mathvariant="normal">O</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:mrow></mml:math> interface. Physical Review Materials, 2020, 4, The Synthesis of Sub-Nano-Thick Pd Nanobelt–Based Materials for Enhanced Hydrogen Evolution 179 Reaction Activity. CCS Chemistry, 2020, 2, 642-654. Trimetallic PtNiCo branched nanocages as efficient and durable bifunctional electrocatalysts 180 towards oxygen reduction and methanol oxidation reactions. Journal of Materials Chemistry A, 2021, 5.249 9, 23444-23450. Strain effect in Pd@PdAg twinned nanocrystals towards ethanol oxidation electrocatalysis. 181 2.2 Nanoscale Advances, 2021, 4, 111-116.

#	Article	IF	CITATIONS
182	Advancements in cathode catalyst and cathode layer design for proton exchange membrane fuel cells. Nature Communications, 2021, 12, 5984.	5.8	120
183	Extreme Environmental Thermal Shock Induced Dislocationâ€Rich Pt Nanoparticles Boosting Hydrogen Evolution Reaction. Advanced Materials, 2022, 34, e2106973.	11.1	68
184	Enhancing the Intrinsic Activity and Stability of Perovskite Cobaltite at Elevated Temperature Through Surface Stress. Small, 2021, 17, e2104144.	5.2	21
185	Direct methane activation by atomically thin platinum nanolayers on two-dimensional metal carbides. Nature Catalysis, 2021, 4, 882-891.	16.1	63
186	Effects of lattice strain on noble metal (110) surface: Missing row reconstruction and adsorption properties. Applied Physics Letters, 2021, 119, 141604.	1.5	1
187	Synthesis of Palladium–Tungsten Metallene-Constructed Sandwich-Like Nanosheets as Bifunctional Catalysts for Direct Formic Acid Fuel Cells. ACS Applied Energy Materials, 2021, 4, 12336-12344.	2.5	15
188	Seeded Synthesis of Unconventional 2H-Phase Pd Alloy Nanomaterials for Highly Efficient Oxygen Reduction. Journal of the American Chemical Society, 2021, 143, 17292-17299.	6.6	59
189	Mastering the surface strain of platinum catalysts for efficient electrocatalysis. Nature, 2021, 598, 76-81.	13.7	229
190	Synthesis and Design of a Highly Stable Platinum Nickel Electrocatalyst for the Oxygen Reduction Reaction. ACS Applied Materials & amp; Interfaces, 2021, 13, 52681-52687.	4.0	14
191	Crystal-plane-controlled restructuring and enhanced oxygen-involving performances of bifunctional catalyst. Applied Catalysis A: General, 2021, , 118417.	2.2	5
192	Highly wrinkled palladium nanosheets as advanced electrocatalysts for the oxygen reduction reaction in acidic medium. Chemical Engineering Journal, 2022, 431, 133237.	6.6	33
193	Anomalous Size Effect of Pt Ultrathin Nanowires on Oxygen Reduction Reaction. Nano Letters, 2021, 21, 9354-9360.	4.5	43
194	Strain and support effects on phase transition and surface reactivity of ultrathin ZnO films: DFT insights. AIP Advances, 2020, 10, .	0.6	4
195	Theoretical insights into mechanisms of electrochemical reduction of CO2 to ethylene catalyzed by Pd3Au. Applied Surface Science, 2022, 572, 151474.	3.1	12
196	Achieving flexible large-scale reactivity tuning by controlling the phase, thickness and support of two-dimensional ZnO. Chemical Science, 2021, 12, 15284-15290.	3.7	3
197	Differences in the Electrochemical Performance of Pt-Based Catalysts Used for Polymer Electrolyte Membrane Fuel Cells in Liquid Half- and Full-Cells. Chemical Reviews, 2021, 121, 15075-15140.	23.0	104
198	Composition-dependent structure and properties of 5- and 15-element high-entropy alloy nanoparticles. Cell Reports Physical Science, 2021, 2, 100641.	2.8	8
199	Enhanced Electrochemical Oxygen Evolution Reaction on Hydrogen Embrittled CoSe Surface. Advanced Materials Interfaces, 0, , 2101209.	1.9	2

#	Article	IF	Citations
200	A new É›-Keggin polyoxometalate-based metal-organic framework: From design and synthesis to electrochemical hydrogen evolution. Catalysis Communications, 2021, 161, 106367.	1.6	16
201	Epitaxial Growth of Highâ€Energy Copper Facets for Promoting Hydrogen Evolution Reaction. Small, 2022, 18, e2107481.	5.2	9
202	Characterization of nanomaterials dynamics with transmission electron microscope. , 2022, , .		0
203	Modulation rate on adsorption and catalysis of 2D Pt: the effects of adsorbate-induced surface stress. Catalysis Science and Technology, 2022, 12, 1458-1465.	2.1	0
204	Metal–organic-framework derived Co@CN modified horizontally aligned graphene oxide array as free-standing anode for lithium-ion batteries. Journal of Materials Chemistry A, 2022, 10, 699-706.	5.2	17
205	Screening strain sensitive transition metals using oxygen adsorption. New Journal of Chemistry, 2022, 46, 2178-2188.	1.4	2
206	Synergistic Effects of Crystal Phase and Strain for N ₂ Dissociation on Ru(0001) Surfaces with Multilayered Hexagonal Close-Packed Structures. ACS Omega, 2022, 7, 4492-4500.	1.6	4
207	Multi-principal elemental intermetallic nanoparticles synthesized via a disorder-to-order transition. Science Advances, 2022, 8, eabm4322.	4.7	49
208	Direct band gap and anisotropic transport of ZnSb monolayers tuned by hydrogenation and strain. RSC Advances, 2022, 12, 2693-2700.	1.7	2
209	Nonprecious transition metal nitrides as efficient oxygen reduction electrocatalysts for alkaline fuel cells. Science Advances, 2022, 8, eabj1584.	4.7	94
210	Unveiling the Pitfalls of Comparing Oxygen Reduction Reaction Kinetic Data for Pd-Based Electrocatalysts without the Experimental Conditions of the Current–Potential Curves. ACS Energy Letters, 2022, 7, 952-957.	8.8	14
211	Strainâ€Activated Copper Catalyst for pHâ€Universal Hydrogen Evolution Reaction. Advanced Functional Materials, 2022, 32, .	7.8	46
212	Recent progress in low-dimensional palladium-based nanostructures for electrocatalysis and beyond. Coordination Chemistry Reviews, 2022, 459, 214388.	9.5	38
213	Tensile Strain of Feni Alloy Coupled with Pyridinic-N Doping Carbon Layers for Activating Water and Urea Oxidation. SSRN Electronic Journal, 0, , .	0.4	0
214	Ultrathin two-dimensional metallenes for heterogeneous catalysis. Chem Catalysis, 2022, 2, 693-723.	2.9	39
215	Tunable angle-dependent electrochemistry at twisted bilayer graphene with moiré flat bands. Nature Chemistry, 2022, 14, 267-273.	6.6	51
216	Frequency Dependent Silica Dissolution Rate Enhancement under Oscillating Pressure via an Electrochemical Pressure Solution-like, Surface Resonance Mechanism. Journal of the American Chemical Society, 2022, 144, 3875-3891.	6.6	1
217	Governing Interlayer Strain in Bismuth Nanocrystals for Efficient Ammonia Electrosynthesis from Nitrate Reduction. ACS Nano, 2022, 16, 4795-4804.	7.3	76

#	Article	IF	CITATIONS
218	Carbon-based bifunctional electrocatalysts for oxygen reduction and oxygen evolution reactions: Optimization strategies and mechanistic analysis. Journal of Energy Chemistry, 2022, 71, 234-265.	7.1	78
219	Stress Regulation of the Oxygen Reduction Reaction on a Pt (100) Surface Using First Principles Calculations. Chemistry Letters, 2022, 51, 566-569.	0.7	1
220	Electronic and Potential Synergistic Effects of Surface-Doped P–O Species on Uniform Pd Nanospheres: Breaking the Linear Scaling Relationship toward Electrochemical Oxygen Reduction. ACS Applied Materials & Interfaces, 2022, 14, 14146-14156.	4.0	8
221	Strained Zeroâ€Valent Iron for Highly Efficient Heavy Metal Removal. Advanced Functional Materials, 2022, 32, .	7.8	42
222	The Coupling of Local Strain and K ⁺ â€ion Release Induced Phase Transition Heterogeneity in Tunnel MnO ₂ . Advanced Functional Materials, 2022, 32, .	7.8	11
223	Operando Highâ€Valence Crâ€Modified NiFe Hydroxides for Water Oxidation. Small, 2022, 18, e2200303.	5.2	44
224	From Stochastic Selfâ€Assembly of Nanoparticles to Nanostructured (Photo)Electrocatalysts for Renewable Powerâ€ŧoâ€X Applications via Scalable Flame Synthesis. Advanced Functional Materials, 2022, 32, .	7.8	12
225	Sublayer Stable Fe Dopant in Porous Pd Metallene Boosts Oxygen Reduction Reaction. ACS Nano, 2022, 16, 522-532.	7.3	52
226	Strain Engineering in Electrocatalysts: Fundamentals, Progress, and Perspectives. Advanced Energy Materials, 2022, 12, .	10.2	72
227	Enriched <i>d</i> â€Band Holes Enabling Fast Oxygen Evolution Kinetics on Atomicâ€Layered Defectâ€Rich Lithium Cobalt Oxide Nanosheets. Advanced Functional Materials, 2022, 32, .	7.8	24
228	Interface-rich Au-doped PdBi alloy nanochains as multifunctional oxygen reduction catalysts boost the power density and durability of a direct methanol fuel cell device. Nano Research, 2022, 15, 6036-6044.	5.8	26
229	Two-Dimensionally Assembled Pd–Pt–Ir Supernanosheets with Subnanometer Interlayer Spacings toward High-Efficiency and Durable Water Splitting. ACS Catalysis, 2022, 12, 5305-5315.	5.5	26
231	Synergistically engineering of shell thickness and core ordering to boost the oxygen reduction performance. Physical Chemistry Chemical Physics, 0, , .	1.3	2
232	Oxidative Stability Matters: A Case Study of Palladium Hydride Nanosheets for Alkaline Fuel Cells. Journal of the American Chemical Society, 2022, 144, 8106-8114.	6.6	27
233	Local Coordination Regulation through Tuning Atomicâ€ 5 cale Cavities of Pd Metallene toward Efficient Oxygen Reduction Electrocatalysis. Advanced Materials, 2022, 34, e2202084.	11.1	57
234	Molybdenumâ€doped ordered L1 ₀ â€PdZn nanosheets for enhanced oxygen reduction electrocatalysis. SusMat, 2022, 2, 347-356.	7.8	13
235	Pyridinic-N doping carbon layers coupled with tensile strain of FeNi alloy for activating water and urea oxidation. Green Energy and Environment, 2024, 9, 684-694.	4.7	6
236	Recent advances of amorphous-phase-engineered metal-based catalysts for boosted electrocatalysis. Journal of Materials Science and Technology, 2022, 127, 1-18.	5.6	18

#	Article	IF	CITATIONS
237	Shortâ€Range Diffusion Enables General Synthesis of Mediumâ€Entropy Alloy Aerogels. Advanced Materials, 2022, 34, .	11.1	74
238	Impact of different metallic forms of nickel on hydrogen evolution reaction. Scripta Materialia, 2022, 218, 114829.	2.6	2
239	Reconstruction of an AgPd nanoalloy with oxidation for formate oxidation electrocatalysis. Journal of Materials Chemistry A, 2022, 10, 13998-14010.	5.2	17
240	Ru–Co Pair Sites Catalyst Boosts the Energetics for the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	154
241	Ruâ€ C o Pair Sites Catalyst Boosts the Energetics for Oxygen Evolution Reaction. Angewandte Chemie, O,	1.6	12
242	Surfaceâ€Ðecorated Highâ€Entropy Alloy Catalysts with Significantly Boosted Activity and Stability. Advanced Functional Materials, 2022, 32, .	7.8	37
243	Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Research, 2022, 15, 7806-7839.	5.8	201
244	Hierarchical palladium catalyst for highly active and stable water oxidation in acidic media. National Science Review, 2023, 10, .	4.6	12
245	Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films. Chinese Physics B, 0, , .	0.7	0
246	Tailored synthesis of molecularly thin platinum nanosheets using designed 2D surfactant solids. Nanoscale, 2022, 14, 11561-11567.	2.8	3
247	Chemical insights into two-dimensional quantum materials. Matter, 2022, 5, 2168-2189.	5.0	2
248	Recent Advances in the Construction of 2D Heterostructures for Electrocatalytic Water Splitting. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	15
249	Low temperature synthesis of NiO/CoO nanostructures to enhance their low temperature oxygen reduction catalysis. Micron, 2022, 161, 103326.	1.1	1
250	Tuning the Selective Ethanol Oxidation on Tensileâ€Trained Pt(110) Surface by Ir Single Atoms. Small, 2022, 18, .	5.2	14
251	In-plane strain engineering in ultrathin noble metal nanosheets boosts the intrinsic electrocatalytic hydrogen evolution activity. Nature Communications, 2022, 13, .	5.8	93
252	Highly Durable Fuel Cell Electrocatalyst with Low-Loading Pt-Co Nanoparticles Dispersed Over Single-Atom Pt-Co-N-Graphene Nanofiber. SSRN Electronic Journal, 0, , .	0.4	0
253	Graphene-nanopocket-encaged PtCo nanocatalysts for highly durable fuel cell operation under demanding ultralow-Pt-loading conditions. Nature Nanotechnology, 2022, 17, 968-975.	15.6	114
254	Atomically Reconstructed Palladium Metallene by Intercalation-Induced Lattice Expansion and Amorphization for Highly Efficient Electrocatalysis. ACS Nano, 2022, 16, 13715-13727.	7.3	64

#	Article	IF	CITATIONS
255	Lattice Strain Enhances the Activity of Irâ^'IrO ₂ /C for Acidic Oxygen Evolution Reaction. ChemElectroChem, 2022, 9, .	1.7	4
256	SnS2 monolayer as a promising candidate for NO2 sensor or capturer with high selectivity and sensitivity: A first-principles study. Materials Science in Semiconductor Processing, 2022, 152, 107073.	1.9	8
257	Nitrogen-doped carbon nanotubes filled with Fe3C nanowires for efficient electrocatalytic oxygen reduction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 654, 130095.	2.3	0
258	A fourteen-component high-entropy alloy@oxide bifunctional electrocatalyst with a record-low Δ <i>E</i> of 0.61 V for highly reversible Zn–air batteries. Chemical Science, 2022, 13, 12056-12064.	3.7	27
259	Heterostructure from heteromixture: unusual OER activity of FeP and CoP nanostructures on physical mixing. Journal of Materials Chemistry A, 2022, 10, 22354-22362.	5.2	19
260	Strain engineering of metal nanostructures for catalysis. , 2022, , .		0
261	Pt Atomic Layers with Tensile Strain and Rich Defects Boost Ethanol Electrooxidation. Nano Letters, 2022, 22, 7563-7571.	4.5	37
262	The d band center as an indicator for the hydrogen solution and diffusion behaviors in transition metals. International Journal of Hydrogen Energy, 2022, 47, 38445-38454.	3.8	11
263	Interstitial Carbon-Doped PdMo Bimetallene for High-Performance Oxygen Reduction Reaction. ACS Energy Letters, 2022, 7, 3329-3336.	8.8	24
264	Adsorption Energy in Oxygen Electrocatalysis. Chemical Reviews, 2022, 122, 17028-17072.	23.0	45
265	Ab Initio to Activity: Machine Learning-Assisted Optimization of High-Entropy Alloy Catalytic Activity. , 2023, 1, 120-133.		10
266	Two-dimensional materials for electrocatalysis and energy storage applications. Inorganic Chemistry Frontiers, 2022, 9, 6008-6046.	3.0	9
267	Orbital Occupancy and Spin Polarization: From Mechanistic Study to Rational Design of Transition Metal-Based Electrocatalysts toward Energy Applications. ACS Nano, 2022, 16, 17847-17890.	7.3	48
268	Are Fe–N–C Electrocatalysts an Alternative to Pt-Based Electrocatalysts for the Next Generation of Proton Exchange Membrane Fuel Cells?. ACS Catalysis, 2022, 12, 13853-13875.	5.5	24
269	Double-atom dealloying-derived Frank partial dislocations in cobalt nanocatalysts boost metal–air batteries and fuel cells. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	10
270	Tunable activity of electrocatalytic CO dimerization on strained Cu surfaces: Insights from ab initio molecular dynamics simulations. Chinese Journal of Catalysis, 2022, 43, 2898-2905.	6.9	4
271	Emerging two-dimensional metallenes: Recent advances in structural regulations and electrocatalytic applications. Chinese Journal of Catalysis, 2022, 43, 2802-2814.	6.9	9
272	A Systematic Theoretical Study on Electronic Interaction in Cu-based Single-Atom Alloys. ACS Omega, 2022, 7, 41586-41593.	1.6	2

#	Article	IF	CITATIONS
273	Density functional theory study of active sites and reaction mechanism of ORR on Pt surfaces under anhydrous conditions. Chinese Journal of Catalysis, 2022, 43, 3126-3133.	6.9	4
274	Metallene-related materials for electrocatalysis and energy conversion. Materials Horizons, 2023, 10, 407-431.	6.4	13
275	Pt-Based Oxygen Reduction Reaction Catalysts in Proton Exchange Membrane Fuel Cells: Controllable Preparation and Structural Design of Catalytic Layer. Nanomaterials, 2022, 12, 4173.	1.9	12
276	Efficient catalyst screening using graph neural networks to predict strain effects on adsorption energy. Science Advances, 2022, 8, .	4.7	7
277	Machine-Learning-Driven High-Entropy Alloy Catalyst Discovery to Circumvent the Scaling Relation for CO ₂ Reduction Reaction. ACS Catalysis, 2022, 12, 14864-14871.	5.5	20
278	Single‣ayer Platinum Cluster Catalyst for Efficient Hydrogen Electroâ€Production. Advanced Functional Materials, 2023, 33, .	7.8	5
279	Colloidal Synthesis of Metal Nanocrystals: From Asymmetrical Growth to Symmetry Breaking. Chemical Reviews, 2023, 123, 3693-3760.	23.0	28
281	Monodispersed ultrathin twisty PdBi alloys nanowires assemblies with tensile strain enhance C2+ alcohols electrooxidation. Journal of Energy Chemistry, 2023, 79, 279-290.	7.1	9
282	Flattening bent Janus nanodiscs expands lattice parameters. CheM, 2023, 9, 948-962.	5.8	3
283	Cathode Materials for Primary Zinc-Air Battery. , 2023, , 23-66.		0
283 284	Cathode Materials for Primary Zinc-Air Battery. , 2023, , 23-66. Electron Microscopy Studies of Soft Nanomaterials. Chemical Reviews, 2023, 123, 4051-4145.	23.0	0
283 284 285	Cathode Materials for Primary Zinc-Air Battery. , 2023, , 23-66. Electron Microscopy Studies of Soft Nanomaterials. Chemical Reviews, 2023, 123, 4051-4145. Functional Surfactant-Induced Long-Range Compressive Strain in Curved Ultrathin Nanodendrites Boosts Electrocatalysis. Nano Letters, 2023, 23, 1085-1092.	23.0	0 16 19
283 284 285 286	Cathode Materials for Primary Zinc-Air Battery. , 2023, , 23-66. Electron Microscopy Studies of Soft Nanomaterials. Chemical Reviews, 2023, 123, 4051-4145. Functional Surfactant-Induced Long-Range Compressive Strain in Curved Ultrathin Nanodendrites Boosts Electrocatalysis. Nano Letters, 2023, 23, 1085-1092. Oxygen reduction performance measurements: Discrepancies against benchmarks. , 2023, 2, .	23.0 4.5	0 16 19 14
283 284 285 286 287	Cathode Materials for Primary Zinc-Air Battery., 2023, , 23-66. Electron Microscopy Studies of Soft Nanomaterials. Chemical Reviews, 2023, 123, 4051-4145. Functional Surfactant-Induced Long-Range Compressive Strain in Curved Ultrathin Nanodendrites Boosts Electrocatalysis. Nano Letters, 2023, 23, 1085-1092. Oxygen reduction performance measurements: Discrepancies against benchmarks., 2023, 2,. The lattice strain dominated catalytic activity in single-metal nanosheets. Journal of Materials Chemistry A, 2023, 11, 4037-4044.	23.0 4.5 5.2	0 16 19 14
283 284 285 286 286 287	Cathode Materials for Primary Zinc-Air Battery. , 2023, , 23-66. Electron Microscopy Studies of Soft Nanomaterials. Chemical Reviews, 2023, 123, 4051-4145. Functional Surfactant-Induced Long-Range Compressive Strain in Curved Ultrathin Nanodendrites Boosts Electrocatalysis. Nano Letters, 2023, 23, 1085-1092. Oxygen reduction performance measurements: Discrepancies against benchmarks. , 2023, 2, . The lattice strain dominated catalytic activity in single-metal nanosheets. Journal of Materials Chemistry A, 2023, 11, 4037-4044. Defect and strain engineered MoS ₂ /graphene catalyst for an enhanced hydrogen evolution reaction. RSC Advances, 2023, 13, 4056-4064.	23.0 4.5 5.2 1.7	0 16 19 14 7
283 284 285 286 287 288	Cathode Materials for Primary Zinc-Air Battery. , 2023, , 23-66. Electron Microscopy Studies of Soft Nanomaterials. Chemical Reviews, 2023, 123, 4051-4145. Functional Surfactant-Induced Long-Range Compressive Strain in Curved Ultrathin Nanodendrites Boosts Electrocatalysis. Nano Letters, 2023, 23, 1085-1092. Oxygen reduction performance measurements: Discrepancies against benchmarks. , 2023, 2, . The lattice strain dominated catalytic activity in single-metal nanosheets. Journal of Materials Chemistry A, 2023, 11, 4037-4044. Defect and strain engineered MoS ₂ /graphene catalyst for an enhanced hydrogen evolution reaction. RSC Advances, 2023, 13, 4056-4064. Cu-Based Materials as Photocatalysts for Solar Light Artificial Photosynthesis: Aspects of Engineering Performance, Stability, Selectivity. Solar, 2023, 3, 87-112.	23.0 4.5 5.2 1.7	0 16 19 14 7 5
283 284 285 286 287 288 288 289	Cathode Materials for Primary Zinc-Air Battery., 2023, 23-66. Electron Microscopy Studies of Soft Nanomaterials. Chemical Reviews, 2023, 123, 4051-4145. Functional Surfactant-Induced Long-Range Compressive Strain in Curved Ultrathin Nanodendrites Boosts Electrocatalysis. Nano Letters, 2023, 23, 1085-1092. Oxygen reduction performance measurements: Discrepancies against benchmarks., 2023, 2, . The lattice strain dominated catalytic activity in single-metal nanosheets. Journal of Materials Chemistry A, 2023, 11, 4037-4044. Defect and strain engineered MoS ₂ /graphene catalyst for an enhanced hydrogen evolution reaction. RSC Advances, 2023, 13, 4056-4064. Cu-Based Materials as Photocatalysts for Solar Light Artificial Photosynthesis: Aspects of Engineering Performance, Stability, Selectivity. Solar, 2023, 3, 87-112. The Î ² -PdBi ₂ monolayer for efficient electrocatalytic NO reduction to NH ₃ : a computational study. Inorganic Chemistry Frontiers, 2023, 10, 2677-2688.	23.0 4.5 5.2 1.7 0.9	0 16 19 14 7 3 3

#	Article	IF	CITATIONS
292	Lattice stain dominated hydrazine oxidation reaction in single-metal-element nanosheet. Chemical Engineering Journal, 2023, 463, 142385.	6.6	7
293	Atomic phosphorus induces tunable lattice strain in high entropy alloys and boosts alkaline water splitting. Nano Energy, 2023, 110, 108380.	8.2	18
294	Epitaxial growth of Pt–Pd bimetallic heterostructures for the oxygen reduction reaction. , 2023, 2, 100131.		11
295	Core-shell nanoparticle enhanced Raman spectroscopy in situ probing the composition and evolution of interfacial species on PtCo surfaces. Nano Research, 0, , .	5.8	1
296	Atomic Scaled Depth Correlation to the Oxygen Reduction Reaction Performance of Single Atom Ni Alloy to the NiO ₂ Supported Pd Nanocrystal. Advanced Science, 2023, 10, .	5.6	4
297	In-situ/operando Raman techniques for in-depth understanding on electrocatalysis. Chemical Engineering Journal, 2023, 461, 141939.	6.6	26
298	Detection and impact of short-range order in medium/high-entropy alloys. IScience, 2023, 26, 106209.	1.9	8
299	Spatially Confined PdH _{<i>x</i>} Metallenes by Tensile Strained Atomic Ru Layers for Efficient Hydrogen Evolution. Journal of the American Chemical Society, 2023, 145, 5710-5717.	6.6	35
300	Highly durable fuel cell electrocatalyst with low-loading Pt-Co nanoparticles dispersed over single-atom Pt-Co-N-graphene nanofiber. Chem Catalysis, 2023, 3, 100541.	2.9	3
301	Bimetalâ€Incorporated Black Phosphorene with Surface Electron Deficiency for Efficient Antiâ€Reconstruction Water Electrolysis. Advanced Functional Materials, 2023, 33, .	7.8	25
302	Molecular Engineering of Metal–Organic Frameworks as Efficient Electrochemical Catalysts for Water Oxidation. Advanced Materials, 2023, 35, .	11.1	27
303	Insight into Surface Electronic Effects on Pd Nanostructures as Efficient Electrocatalysts. Nano Letters, 2023, 23, 2778-2785.	4.5	3
304	Enhancement Mechanism of Pt/Pd-Based Catalysts for Oxygen Reduction Reaction. Nanomaterials, 2023, 13, 1275.	1.9	4
305	Atomic understanding of the strain-induced electrocatalysis from DFT calculation: progress and perspective. Physical Chemistry Chemical Physics, 2023, 25, 12565-12586.	1.3	9
306	Recent advances, properties, fabrication and opportunities in two-dimensional materials for their potential sustainable applications. Energy Storage Materials, 2023, 59, 102780.	9.5	12
307	Metallene-based catalysts towards hydrogen evolution reaction. Current Opinion in Electrochemistry, 2023, 39, 101303.	2.5	1
308	Advanced dual-atom catalysts for efficient oxygen evolution reaction. , 2023, 1, 665-676.		2
334	Selective edge etching of Pd metallene for enhanced formic acid electrooxidation. Chemical Communications, 2023, 59, 11588-11591.	2.2	1

#	Article	IF	CITATIONS
352	Water electrolysis for hydrogen production: from hybrid systems to self-powered/catalyzed devices. Energy and Environmental Science, 2024, 17, 49-113.	15.6	10
368	The mechanism and challenges of cobalt-boron-based catalysts in the hydrolysis of sodium borohydride. Journal of Materials Chemistry A, 2024, 12, 5606-5625.	5.2	0
369	Strain engineering in electrocatalysis: Strategies, characterization, and insights. Nano Research, 2024, 17, 3603-3621.	5.8	0
371	Application of 1D/2D carbon material supported metal nanoclusters for electrochemical conversion. Catalysis Science and Technology, 2024, 14, 1462-1479.	2.1	0