Visible quantum dot light-emitting diodes with simulta efficiency

Nature Photonics 13, 192-197 DOI: 10.1038/s41566-019-0364-z

Citation Report

#	Article	IF	CITATIONS
3	All-solution processed inverted green quantum dot light-emitting diodes with concurrent high efficiency and long lifetime. Materials Horizons, 2019, 6, 2009-2015.	6.4	66
4	Energetics of Nonradiative Surface Trap States in Nanoparticles Monitored by Time-of-Flight Photoconduction Measurements on Nanoparticle–Polymer Blends. ACS Applied Materials & Interfaces, 2019, 11, 37184-37192.	4.0	4
5	Recent progress in the device architecture of white quantum-dot light-emitting diodes. Journal of Information Display, 2019, 20, 169-180.	2.1	14
6	High-Performance, All-Inkjet-Printed Light-Emitting Diodes Based on Quantum Dots. , 2019, , .		0
7	Device Engineering for All-Inorganic Perovskite Light-Emitting Diodes. Nanomaterials, 2019, 9, 1007.	1.9	31
8	Remarkable lifetime improvement of quantum-dot light emitting diodes by incorporating rubidium carbonate in metal-oxide electron transport layers. Journal of Materials Chemistry C, 2019, 7, 10082-10091.	2.7	16
9	Efficient Hole Injection of MoO _x -Doped Organic Layer for Printable Red Quantum Dot Light-Emitting Diodes. IEEE Electron Device Letters, 2019, 40, 1147-1150.	2.2	10
10	High-efficiency blue and white electroluminescent devices based on non-Cd lâ^'Illâ^'VI quantum dots. Nano Energy, 2019, 63, 103869.	8.2	36
11	Oneâ€Pot Exfoliation of Graphitic C ₃ N ₄ Quantum Dots for Blue QLEDs by Methylamine Intercalation. Small, 2019, 15, e1902735.	5.2	26
12	Rapid Synthesis of Sulfur Nanodots by One-Step Hydrothermal Reaction for Luminescence-Based Applications. ACS Applied Nano Materials, 2019, 2, 6622-6628.	2.4	76
13	Performance Enhancement of All-Inorganic Quantum Dot Light-Emitting Diodes via Surface Modification of Nickel Oxide Nanoparticles Hole Transport Layer. ACS Applied Electronic Materials, 2019, 1, 2096-2102.	2.0	9
14	"Positive Incentive―Approach To Enhance the Operational Stability of Quantum Dot-Based Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2019, 11, 40252-40259.	4.0	20
15	Continuous and Controllable Liquid Transfer Guided by a Fibrous Liquid Bridge: Toward Highâ€Performance QLEDs. Advanced Materials, 2019, 31, e1904610.	11.1	24
16	Multifunctional pâ€Type Carbon Quantum Dots: a Novel Hole Injection Layer for Highâ€Performance Perovskite Lightâ€Emitting Diodes with Significantly Enhanced Stability. Advanced Optical Materials, 2019, 7, 1901299.	3.6	52
17	Investigation on Thermally Induced Efficiency Roll-Off: Toward Efficient and Ultrabright Quantum-Dot Light-Emitting Diodes. ACS Nano, 2019, 13, 11433-11442.	7.3	105
18	CdSe/ZnS Quantum-Dot Light-Emitting Diodes With Spiro-OMeTAD as Buffer Layer. IEEE Transactions on Electron Devices, 2019, 66, 4901-4906.	1.6	8
19	Nanoscale Photoinduced Charge Transfer with Individual Quantum Dots: Tunability through Synthesis, Interface Design, and Interaction with Charge Traps. ACS Omega, 2019, 4, 9102-9112.	1.6	13
20	Enhanced efficiency and high temperature stability of hybrid quantum dot light-emitting diodes using molybdenum oxide doped hole transport layer. RSC Advances, 2019, 9, 16252-16257.	1.7	14

#	Article	IF	CITATIONS
21	Boosting the external quantum efficiency in perovskite light-emitting diodes by an exciton retrieving layer. Journal of Materials Chemistry C, 2019, 7, 8705-8711.	2.7	6
22	Carbon quantum dots: an emerging material for optoelectronic applications. Journal of Materials Chemistry C, 2019, 7, 6820-6835.	2.7	225
23	All-solution-processed high-performance quantum dot light emitting devices employing an inorganic thiocyanate as hole injection layer. Organic Electronics, 2019, 70, 279-285.	1.4	16
24	QLED goes to be both bright and efficient. Science Bulletin, 2019, 64, 464-465.	4.3	5
25	Vacuum-Deposited Blue Inorganic Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2019, 11, 47083-47090.	4.0	68
26	Synthesis of Alloyed ZnSeTe Quantum Dots as Bright, Color-Pure Blue Emitters. ACS Applied Materials & Interfaces, 2019, 11, 46062-46069.	4.0	84
27	Photophysics and electroluminescence of red quantum dots diluted in a thermally activated delayed fluorescence host. Journal of Materials Chemistry C, 2019, 7, 13218-13223.	2.7	11
28	High-performance all-solution-processed quantum dot near-infrared-to-visible upconversion devices for harvesting photogenerated electrons. Applied Physics Letters, 2019, 115, 221103.	1.5	11
29	Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature, 2019, 575, 634-638.	13.7	802
30	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub><mml:mi mathvariant="normal">Ga<mml:mi>x</mml:mi></mml:mi </mml:msub> <mml:msub><mml:mi mathvariant="normal">In<mml:mrow><mml:mn>1</mml:mn><mml:mo>â^</mml:mo><mml:mi>xmathvariant="normal">P</mml:mi> quantum dots: Insights from time-dependent density</mml:mrow></mml:mi </mml:msub>	nml:mi> </td <td>mm⁸l:mrow><</td>	mm ⁸ l:mrow><
31	functional theory. Physical Review B, 2019, 100, . Optimization of Hole Injection and Transport Layers for High-Performance Quantum-Dot Light-Emitting Diodes. Journal of the Korean Physical Society, 2019, 75, 1033-1037.	0.3	1
32	Effects of 1,2-ethanedithiol concentration on performance improvement of quantum-dot LEDs. RSC Advances, 2019, 9, 38464-38468.	1.7	11
33	Investigation of optical and structural properties of aqueous CdS quantum dots under gamma irradiation. Radiation Physics and Chemistry, 2020, 166, 108476.	1.4	12
34	Emission layer of F4TCNQ-Doped nanorods for high-efficient red light-emitting diodes. Organic Electronics, 2020, 76, 105460.	1.4	5
35	Emerging Selfâ€Emissive Technologies for Flexible Displays. Advanced Materials, 2020, 32, e1902391.	11.1	131
36	AgNWs/AZO composite electrode for transparent inverted ZnCdSeS/ZnS quantum dot light-emitting diodes. Nanotechnology, 2020, 31, 055201.	1.3	7
37	Highâ€Resolution Inkjet Printing of Quantum Dot Lightâ€Emitting Microdiode Arrays. Advanced Optical Materials, 2020, 8, 1901429.	3.6	145
38	Quantumâ€Dot Lightâ€Emitting Diodes for Outdoor Displays with High Stability at High Brightness. Advanced Optical Materials, 2020, 8, 1901145.	3.6	94

#	Article	IF	CITATIONS
39	Improvement in hole transporting ability and device performance of quantum dot light emitting diodes. Nanoscale Advances, 2020, 2, 401-407.	2.2	12
40	Degradation of quantum dot light emitting diodes, the case under a low driving level. Journal of Materials Chemistry C, 2020, 8, 2014-2018.	2.7	31
41	Record High External Quantum Efficiency of 19.2% Achieved in Lightâ€Emitting Diodes of Colloidal Quantum Wells Enabled by Hotâ€Injection Shell Growth. Advanced Materials, 2020, 32, e1905824.	11.1	95
42	Efficiency enhancement of quantum-dot light-emitting diodes via rapid post-treatment of intense pulsed light sintering technique. Chemical Physics Letters, 2020, 739, 137048.	1.2	2
43	Efficiency Enhancement of Allâ€Solutionâ€Processed Invertedâ€Structure Green Quantum Dot Lightâ€Emitting Diodes Via Partial Ligand Exchange with Thiophenol Derivatives Having Negative Dipole Moment. Advanced Optical Materials, 2020, 8, 1901314.	3.6	29
44	Enhancing performance of quantum-dot light-emitting diodes based on poly(indenofluorene-co-triphenylamine) copolymer as hole-transporting layer. Journal of Materials Science: Materials in Electronics, 2020, 31, 2551-2556.	1.1	5
45	Perspective: Toward highly stable electroluminescent quantum dot light-emitting devices in the visible range. Applied Physics Letters, 2020, 116, .	1.5	37
46	Bright high-colour-purity deep-blue carbon dot light-emitting diodes via efficient edge amination. Nature Photonics, 2020, 14, 171-176.	15.6	303
47	High-efficiency and stable quantum dot light-emitting diodes with staircase V2O5/PEDOT:PSS hole injection layer interface barrier. Organic Electronics, 2020, 78, 105589.	1.4	10
48	Ultrapure Green Light-Emitting Diodes Based on CdSe/CdS Core/Crown Nanoplatelets. IEEE Journal of Quantum Electronics, 2020, 56, 1-6.	1.0	14
49	Composite Hole Transport Layer Consisting of High-Mobility Polymer and Small Molecule With Deep-Lying HOMO Level for Efficient Quantum Dot Light-Emitting Diodes. IEEE Electron Device Letters, 2020, 41, 80-83.	2.2	19
50	36â€3: Novel and Simple Patterning process of Quantum Dots via Transfer Printing for Active Matrix QDâ€LED. Digest of Technical Papers SID International Symposium, 2020, 51, 512-515.	0.1	3
51	Improvement of Quantum Dot Light Emitting Device Characteristics by CdSe/ZnS Blended with HMDS (Hexamethyldisilazane). Applied Sciences (Switzerland), 2020, 10, 6081.	1.3	4
52	Efficient All-Blade-Coated Quantum Dot Light-Emitting Diodes through Solvent Engineering. Journal of Physical Chemistry Letters, 2020, 11, 9019-9025.	2.1	10
53	Large-Area Tunable Red/Green/Blue Tri-Stacked Quantum Dot Light-Emitting Diode Using Sandwich-Structured Transparent Silver Nanowires Electrodes. ACS Applied Materials & Interfaces, 2020, 12, 48820-48827.	4.0	9
54	Efficient and stable blue quantum dot light-emitting diode. Nature, 2020, 586, 385-389.	13.7	380
55	Influence of quantum dot concentration on the opto-electronic properties of colloidal quantum-dots LEDs. Optical Materials, 2020, 109, 110251.	1.7	12
56	Improved Brightness and Color Tunability of Solution-Processed Silicon Quantum Dot Light-Emitting Diodes. Journal of Physical Chemistry C, 2020, 124, 23333-23342.	1.5	20

#	Article	IF	CITATIONS
57	72â€1: <i>Invited Paper:</i> Realizing Long Lifetime Blue Quantum Dots Light Emitting Diodes (QLEDs) through Quantum Dot Structure Tailoring. Digest of Technical Papers SID International Symposium, 2020, 51, 1071-1074.	0.1	5
58	Green and high yield synthesis of CdTe@Hydrotalcite nanocrystals with enhanced photoluminescence stability toward white light emitting diodes. Journal of Luminescence, 2020, 228, 117625.	1.5	3
59	Effect of Time-Dependent Characteristics of ZnO Nanoparticles Electron Transport Layer Improved by Intense-Pulsed Light Post-Treatment on Hole-Electron Injection Balance of Quantum-Dot Light-Emitting Diodes. Materials, 2020, 13, 5041.	1.3	5
60	Good Charge Balanced Inverted Red InP/ZnSe/ZnS-Quantum Dot Light-Emitting Diode with New High Mobility and Deep HOMO Level Hole Transport Layer. ACS Energy Letters, 2020, 5, 3868-3875.	8.8	43
61	Tailoring the Electronic Landscape of Quantum Dot Light-Emitting Diodes for High Brightness and Stable Operation. ACS Nano, 2020, 14, 17496-17504.	7.3	33
62	Identification of excess charge carriers in InP-based quantum-dot light-emitting diodes. Applied Physics Letters, 2020, 117, .	1.5	25
63	Dual-Wavelength Electroluminescent QLEDs Composed of Mixed Alloyed Quantum Dots. ACS Applied Nano Materials, 2020, 3, 8763-8770.	2.4	11
64	Inkâ€Based Additive Nanomanufacturing of Functional Materials for Humanâ€Integrated Smart Wearables. Advanced Intelligent Systems, 2020, 2, 2000117.	3.3	17
65	Achieving Highly Efficient and Stable Quantum Dot Light-Emitting Diodes With Interface Modification. IEEE Electron Device Letters, 2020, 41, 1384-1387.	2.2	7
66	Laminated low-melting-point-alloy electrodes for vacuum-free-processed quantum-dot light-emitting-diodes. Applied Physics Letters, 2020, 117, .	1.5	5
67	Ultrahighly Efficient White Quantum Dot Lightâ€Emitting Diodes Operating at Low Voltage. Advanced Optical Materials, 2020, 8, 2001479.	3.6	27
68	Highly Stable and Scalable Blue QDâ€LED via an Evaporated TiO ₂ Thin Film as an Electron Transport Layer. Advanced Optical Materials, 2020, 8, 2001172.	3.6	7
69	Optimizing the central steric hindrance of cross-linkable hole transport materials for achieving highly efficient RGB QLEDs. Materials Chemistry Frontiers, 2020, 4, 3368-3377.	3.2	18
70	Toward Seeâ€Through Optoelectronics: Transparent Lightâ€Emitting Diodes and Solar Cells. Advanced Optical Materials, 2020, 8, 2001122.	3.6	35
71	Spectrally Wide-Range-Tunable, Efficient, and Bright Colloidal Light-Emitting Diodes of Quasi-2D Nanoplatelets Enabled by Engineered Alloyed Heterostructures. Chemistry of Materials, 2020, 32, 7874-7883.	3.2	29
72	Simple Synthesis of CuInS2/ZnS Core/Shell Quantum Dots for White Light-Emitting Diodes. Frontiers in Chemistry, 2020, 8, 669.	1.8	22
73	Perovskite Quantum Dots with Atomic Crystal Shells for Light-Emitting Diodes with Low Efficiency Roll-Off. ACS Energy Letters, 2020, 5, 2927-2934.	8.8	55
74	Optical signatures of type I–type II band alignment transition in Cd(Se,Te)/ZnTe self-assembled quantum dots. Applied Physics Letters, 2020, 117, .	1.5	7

	CITATION	Report	
#	Article	IF	CITATIONS
75	Photocross-Linkable Hole Transport Materials for Inkjet-Printed High-Efficient Quantum Dot Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2020, 12, 58369-58377.	4.0	21
76	Optical Tunneling to Improve Light Extraction in Quantum Dot and Perovskite Light-Emitting Diodes. IEEE Photonics Journal, 2020, 12, 1-14.	1.0	5
77	Hierarchical Plasmonic-Fluorescent Labels for Highly Sensitive Lateral Flow Immunoassay with Flexible Dual-Modal Switching. ACS Applied Materials & Interfaces, 2020, 12, 58149-58160.	4.0	44
78	How Will Quantum Dots Enable Nextâ€Gen Display Technologies?. Information Display, 2020, 36, 14-18.	0.1	1
79	Synthesis of Blue-Emissive InP/GaP/ZnS Quantum Dots via Controlling the Reaction Kinetics of Shell Growth and Length of Capping Ligands. Nanomaterials, 2020, 10, 2171.	1.9	14
80	A Bright and Stable Violet Carbon Dot Lightâ€Emitting Diode. Advanced Optical Materials, 2020, 8, 2000239.	3.6	30
81	Quantum Dots for Display Applications. Angewandte Chemie, 2020, 132, 22496-22507.	1.6	33
82	Quantum Dots for Display Applications. Angewandte Chemie - International Edition, 2020, 59, 22312-22323.	7.2	168
83	Efficient Blue Perovskite Lightâ€Emitting Diodes Boosted by 2D/3D Energy Cascade Channels. Advanced Functional Materials, 2020, 30, 2001732.	7.8	118
84	Improved device performance of solution-processed red-colored Cu–In–Zn–S-based quantum dot light-emitting diodes enabled by doping TCTA into the emitting layer. Organic Electronics, 2020, 84, 105790.	1.4	6
85	Deciphering exciton-generation processes in quantum-dot electroluminescence. Nature Communications, 2020, 11, 2309.	5.8	96
86	Large Performance Enhancement in All-Solution-Processed, Full-Color, Inverted Quantum-Dot Light-Emitting Diodes Using Graphene Oxide Doped Hole Injection Layer. Journal of Physical Chemistry C, 2020, 124, 11617-11624.	1.5	11
87	Design of the Hole-Injection/Hole-Transport Interfaces for Stable Quantum-Dot Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2020, 11, 4649-4654.	2.1	34
88	Quantum-Sized SnO ₂ Nanoparticles with Upshifted Conduction Band: A Promising Electron Transportation Material for Quantum Dot Light-Emitting Diodes. Langmuir, 2020, 36, 6605-6609.	1.6	25
89	Kinetics and Thermodynamics of Killing a Quantum Dot. ACS Applied Materials & Interfaces, 2020, 12, 30695-30701.	4.0	15
90	Lattice Distortion in Mixed-Anion Lead Halide Perovskite Nanorods Leads to their High Fluorescence Anisotropy. , 2020, 2, 814-820.		33
91	Efficient Quantum Dot Lightâ€Emitting Diodes Based on Wellâ€Type Thickâ€Shell Cd <i>_x</i> Zn _{1â^'} <i>_x</i> S/CdSe/Cd <i>_y</i> Zn _{1â^' Quantum Dots. Particle and Particle Systems Characterization, 2020, 37, 2000115.}	b.2i> <s< td=""><td>ubøy<</td></s<>	ubøy<
92	Research progress and challenges of blue light-emitting diodes based on II–VI semiconductor quantum dots. Journal of Materials Chemistry C, 2020, 8, 10160-10173.	2.7	37

#	Article	IF	CITATIONS
93	ZnSeTe Quantum Dots as an Alternative to InP and Their High-Efficiency Electroluminescence. Chemistry of Materials, 2020, 32, 5768-5775.	3.2	31
94	Quantum-dot and organic hybrid tandem light-emitting diodes with multi-functionality of full-color-tunability and white-light-emission. Nature Communications, 2020, 11, 2826.	5.8	115
95	Reducing the Efficiency Roll Off and Applied Potential-Induced Color Shifts in CdSe@ZnS/ZnS-Based Light-Emitting Diodes. Journal of Physical Chemistry C, 2020, 124, 14847-14854.	1.5	4
96	Significant Enhancement in Quantum Dot Light-Emitting Device Stability via a Cascading Hole Transport Layer. ACS Applied Materials & Interfaces, 2020, 12, 16782-16791.	4.0	29
97	Quantum dot light-emitting diodes with an Al-doped ZnO anode. Nanotechnology, 2020, 31, 255203.	1.3	7
98	Chloride Insertion–Immobilization Enables Bright, Narrowband, and Stable Blue-Emitting Perovskite Diodes. Journal of the American Chemical Society, 2020, 142, 5126-5134.	6.6	116
99	Suppressing Förster Resonance Energy Transfer in Closeâ€Packed Quantumâ€Dot Thin Film: Toward Efficient Quantumâ€Dot Lightâ€Emitting Diodes with External Quantum Efficiency over 21.6%. Advanced Optical Materials, 2020, 8, 1902092.	3.6	36
100	Solvent Effects on the Interface and Film Integrity of Solution-Processed ZnO Electron Transfer Layers for Quantum Dot Light-Emitting Diodes. ACS Applied Electronic Materials, 2020, 2, 1074-1080.	2.0	10
101	Environmentally Friendly InP-Based Quantum Dots for Efficient Wide Color Gamut Displays. ACS Energy Letters, 2020, 5, 1316-1327.	8.8	141
102	Interface Engineering of CsPbBr ₃ Nanocrystal Lightâ€Emitting Diodes via Atomic Layer Deposition. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000083.	1.2	18
103	Highly Stable Red Quantum Dot Light-Emitting Diodes with Long <i>T</i> ₉₅ Operation Lifetimes. Journal of Physical Chemistry Letters, 2020, 11, 3111-3115.	2.1	76
104	High efficiency and stability of ink-jet printed quantum dot light emitting diodes. Nature Communications, 2020, 11, 1646.	5.8	129
105	Mg-Doped ZnO Nanoparticle Films as the Interlayer between the ZnO Electron Transport Layer and InP Quantum Dot Layer for Light-Emitting Diodes. Journal of Physical Chemistry C, 2020, 124, 8758-8765.	1.5	30
106	Gallium nitride micro-light-emitting diode structured light sources for multi-modal optical wireless communications systems. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190185.	1.6	32
107	Low Rollâ€Off Perovskite Quantum Dot Lightâ€Emitting Diodes Achieved by Augmenting Hole Mobility. Advanced Functional Materials, 2020, 30, 1910140.	7.8	42
108	Cation/Anion Exchange Reactions toward the Syntheses of Upgraded Nanostructures: Principles and Applications. Matter, 2020, 2, 554-586.	5.0	81
109	ZnSe/ZnS Core/Shell Quantum Dots with Superior Optical Properties through Thermodynamic Shell Growth. Nano Letters, 2020, 20, 2387-2395.	4.5	81
110	Enhancing the performance of blue quantum-dot light-emitting diodes through the incorporation of polyethylene glycol to passivate ZnO as an electron transport layer. RSC Advances, 2020, 10, 23121-23127	1.7	18

#	Article	IF	CITATIONS
111	Controlled beams of shock-frozen, isolated, biological and artificial nanoparticles. Structural Dynamics, 2020, 7, 024304.	0.9	5
112	Enhanced hole transport by doping of a lewis acid to Poly(9-vinylcarbazole) for high efficient quantum dot light-emitting diodes. Organic Electronics, 2020, 85, 105875.	1.4	8
113	Emergence of Impurity-Doped Nanocrystal Light-Emitting Diodes. Nanomaterials, 2020, 10, 1226.	1.9	10
114	High-resolution, full-color quantum dot light-emitting diode display fabricated via photolithography approach. Nano Research, 2020, 13, 2485-2491.	5.8	81
115	Quantum dot light-emitting diodes as light sources in photomedicine: photodynamic therapy and photobiomodulation. JPhys Materials, 2020, 3, 032002.	1.8	17
116	Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots. Nature Nanotechnology, 2020, 15, 668-674.	15.6	541
117	Highly efficient and stable hybrid quantum-dot light-emitting field-effect transistors. Materials Horizons, 2020, 7, 2439-2449.	6.4	4
118	Blue quantum dot-based electroluminescent light-emitting diodes. Materials Chemistry Frontiers, 2020, 4, 1340-1365.	3.2	40
119	Colloidal quantum dot light-emitting diodes employing solution-processable tin dioxide nanoparticles in an electron transport layer. RSC Advances, 2020, 10, 8261-8265.	1.7	14
120	Efficient Structure for InP/ZnS-Based Electroluminescence Device by Embedding the Emitters in the Electron-Dominating Interface. Journal of Physical Chemistry Letters, 2020, 11, 1835-1839.	2.1	24
121	Solution-processed blue quantum-dot light-emitting diodes based on double hole transport layers: Charge injection balance, solvent erosion control and performance improvement. Superlattices and Microstructures, 2020, 140, 106460.	1.4	15
122	Realizing 22.3% EQE and 7-Fold Lifetime Enhancement in QLEDs via Blending Polymer TFB and Cross-Linkable Small Molecules for a Solvent-Resistant Hole Transport Layer. ACS Applied Materials & Interfaces, 2020, 12, 13087-13095.	4.0	62
123	High Color Purity Leadâ€Free Perovskite Lightâ€Emitting Diodes via Sn Stabilization. Advanced Science, 2020, 7, 1903213.	5.6	146
124	Highly efficient and bright red quantum dot light-emitting diodes with balanced charge injection. Organic Electronics, 2020, 81, 105683.	1.4	13
125	All-solution processed high performance inverted quantum dot light emitting diodes. Journal of Materials Chemistry C, 2020, 8, 4264-4270.	2.7	13
126	Microcavityâ€Enhanced Blue Organic Lightâ€Emitting Diode for Highâ€Quality Monochromatic Light Source with Nonquarterwave Structural Design. Advanced Optical Materials, 2020, 8, 1901421.	3.6	13
127	High-Brightness Blue InP Quantum Dot-Based Electroluminescent Devices: The Role of Shell Thickness. Journal of Physical Chemistry Letters, 2020, 11, 960-967.	2.1	87
128	Optically pumped colloidal-quantum-dot lasing in LED-like devices with an integrated optical cavity. Nature Communications, 2020, 11, 271.	5.8	96

#	Article	IF	CITATIONS
129	Preparation of Highly Stable and Photoluminescent Cadmiumâ€Free InP/GaP/ZnS Core/Shell Quantum Dots and Application to Quantitative Immunoassay. Particle and Particle Systems Characterization, 2020, 37, 1900441.	1.2	13
130	Cation exchange assisted synthesis of ZnCdSe/ZnSe quantum dots with narrow emission line widths and near-unity photoluminescence quantum yields. Chemical Communications, 2020, 56, 6130-6133.	2.2	33
131	Facet Control for Trap‣tate Suppression in Colloidal Quantum Dot Solids. Advanced Functional Materials, 2020, 30, 2000594.	7.8	60
132	Highâ€efficiency quantum dot lightâ€emitting diodes with blue cadmiumâ€free quantum dots. Journal of the Society for Information Display, 2020, 28, 401-409.	0.8	11
133	Cd(OH)2@ZnO nanowires thin-film transistor and UV photodetector with a floating ionic gate tuned by a triboelectric nanogenerator. Nano Energy, 2020, 73, 104808.	8.2	31
134	Growth of InZnP/ZnS core/shell quantum dots with wide-range and refined tunable photoluminescence wavelengths. Dalton Transactions, 2020, 49, 6119-6126.	1.6	9
135	Highly Efficient Near-Infrared Light-Emitting Diodes Based on Chloride Treated CdTe/CdSe Type-II Quantum Dots. Frontiers in Chemistry, 2020, 8, 266.	1.8	10
136	Red, Green, and Blue Microcavity Quantum Dot Light-Emitting Devices with Narrow Line Widths. ACS Applied Nano Materials, 2020, 3, 5301-5310.	2.4	18
137	Improved Efficiency of All-Inorganic Quantum-Dot Light-Emitting Diodes via Interface Engineering. Frontiers in Chemistry, 2020, 8, 265.	1.8	12
138	Realizing ultra-pure red emission with Sn-based lead-free perovskites. Rare Metals, 2020, 39, 330-331.	3.6	5
139	Suppressing Efficiency Roll-Off at High Current Densities for Ultra-Bright Green Perovskite Light-Emitting Diodes. ACS Nano, 2020, 14, 6076-6086.	7.3	142
140	Light extraction from quantum dot light emitting diodes by multiscale nanostructures. Nanoscale Advances, 2020, 2, 1967-1972.	2.2	10
141	Highâ€Performance Red Quantumâ€Dot Lightâ€Emitting Diodes Based on Organic Electron Transporting Layer. Advanced Functional Materials, 2021, 31, 2007686.	7.8	32
142	Thick-shell CdZnSe/ZnSe/ZnS quantum dots for bright white light-emitting diodes. Journal of Luminescence, 2021, 229, 117670.	1.5	10
143	Effect and mechanism of encapsulation on aging characteristics of quantum-dot light-emitting diodes. Nano Research, 2021, 14, 320-327.	5.8	46
144	Direct Writing Largeâ€Area Multi‣ayer Ultrasmooth Films by an Allâ€Solution Process: Toward Highâ€Performance QLEDs. Angewandte Chemie, 2021, 133, 690-694.	1.6	3
145	Perovskite QLED with an external quantum efficiency of over 21% by modulating electronic transport. Science Bulletin, 2021, 66, 36-43.	4.3	162
146	Efficient Infrared Solar Cells Employing Quantum Dot Solids with Strong Interâ€Dot Coupling and Efficient Passivation. Advanced Functional Materials, 2021, 31, 2006864.	7.8	16

#	Article	IF	CITATIONS
147	Carrier transport regulation with hole transport trilayer for efficiency enhancement in quantum dot light-emitting devices. Journal of Luminescence, 2021, 231, 117785.	1.5	8
148	Efficient larger size white quantum dots light emitting diodes using blade coating at ambient conditions. Organic Electronics, 2021, 88, 106021.	1.4	9
149	A critical review on quantum dots: From synthesis toward applications in electrochemical biosensors for determination of disease-related biomolecules. Talanta, 2021, 224, 121828.	2.9	102
150	Thermally Stable Quantum Rods, Covering Full Visible Range for Display and Lighting Application. Small, 2021, 17, e2004487.	5.2	20
151	Technology progress on quantum dot light-emitting diodes for next-generation displays. Nanoscale Horizons, 2021, 6, 68-77.	4.1	32
152	Direct Writing Largeâ€Area Multi‣ayer Ultrasmooth Films by an Allâ€Solution Process: Toward Highâ€Performance QLEDs. Angewandte Chemie - International Edition, 2021, 60, 680-684.	7.2	13
153	Suppression of non-radiative recombination to improve performance of colloidal quantum-dot LEDs with a Cs ₂ CO ₃ solution treatment. Nanotechnology, 2021, 32, 155202.	1.3	8
154	Advances in Perovskite Light-Emitting Diodes Possessing Improved Lifetime. Nanomaterials, 2021, 11, 103.	1.9	15
155	Hybrid white quantum dot–organic light-emitting diodes with highly stable CIEx,y coordinates by the introduction of n-type modulation and multi-stacked hole transporting layer. Journal of Materials Chemistry C, 2021, 9, 12248-12254.	2.7	7
156	Highly efficient and stable quantum dot light-emitting devices with a low-temperature tin oxide electron transport layer. Journal of Materials Chemistry C, 2021, 9, 13748-13754.	2.7	10
157	Brightening and Control of Quenched Quantum Dots with Strong Terahertz Pulses. , 2021, , .		0
158	Efficient all-inorganic perovskite light-emitting diodes enabled by manipulating the crystal orientation. Journal of Materials Chemistry A, 2021, 9, 11064-11072.	5.2	24
159	Water-passivated ZnMgO nanoparticles for blue quantum dot light-emitting diodes. Journal of Materials Chemistry C, 2021, 9, 10381-10387.	2.7	13
160	Surface organic ligand-passivated quantum dots: toward high-performance light-emitting diodes with long lifetimes. Journal of Materials Chemistry C, 2021, 9, 2483-2490.	2.7	18
161	Ultraâ€Bright and Stable Pure Blue Lightâ€Emitting Diode from O, N Coâ€Doped Carbon Dots. Laser and Photonics Reviews, 2021, 15, 2000412.	4.4	54
162	Lead-free bright blue light-emitting cesium halide nanocrystals by zinc doping. RSC Advances, 2021, 11, 2437-2445.	1.7	7
163	Electroluminescence Devices with Colloidal Quantum Dots. Series in Display Science and Technology, 2021, , 251-270.	0.6	1
164	Research Progress of Microfluidic Technique in Synthesis of Micro/Nano Materials. Acta Chimica Sinica, 2021, 79, 809.	0.5	4

ARTICLE IF CITATIONS # High-efficiency quantum dot light-emitting diodes based on Li-doped TiO2 nanoparticles as an 165 2.8 11 alternative electron transport layer. Nanoscale, 2021, 13, 2838-2842. High performance blue quantum light-emitting diodes by attaching diffraction wrinkle patterns. 2.8 Nanoscale, 2021, 13, 8498-8505. Layer Number-Dependent Enhanced Photoluminescence from a Quantum Dot Metamaterial Optical 167 2.0 4 Resonator. ACS Applied Electronic Materials, 2021, 3, 468-475. Electroluminescent materials toward near ultraviolet region. Chemical Society Reviews, 2021, 50, 168 8639-8668. 37.2: Invited Paper: Quantumâ€Dot Lightâ€Emitting Diodes for Outdoor Displays with High Stability at High 169 0.1 0 Brightness. Digest of Technical Papers SID International Symposium, 2021, 52, 258-258. The influence of H2O and O2 on the optoelectronic properties of inverted quantum-dot light-emitting diodes. Nano Research, 2021, 14, 4140-4145. 5.8 High performance inkjet-printed QLEDs with 18.3% EQE: improving interfacial contact by novel 171 5.8 42 halogen-free binary solvent system. Nano Research, 2021, 14, 4125-4131. Smoothing the energy transfer pathway in quasi-2D perovskite films using methanesulfonate leads to 5.8 274 highly efficient light-emitting devices. Nature Communications, 2021, 12, 1246. Photoelectrochemical investigation of charge injection efficiency for quantum dot light-emitting 174 1.5 7 diode. Applied Physics Letters, 2021, 118, . Solventâ€Regulated Electronic Structure and Morphology of Inorganic Hole Injection Layers for 1.7 Efficient Quantum Dot Lightâ€Emitting Diodes. Advanced Photonics Research, 2021, 2, 2000124. Studies on optical signal due to oxygen effect on hydrogenated amorphous/crystalline silicon thin 176 2 1.1 films. Applied Physics A: Materials Science and Processing, 2021, 127, 1. Colloidal quantum dot lasers. Nature Reviews Materials, 2021, 6, 382-401. 23.3 196 Allâ€Inorganic Quantum Dot Lightâ€Emitting Diodes with Suppressed Luminance Quenching Enabled by 178 5.2 33 Chloride Passivated Tungsten Phosphate Hole Transport Layers. Small, 2021, 17, e2100030. High-performance quasi-2D perovskite light-emitting diodes: from materials to devices. Light: Science and Applications, 2021, 10, 61. 179 Flexible and tandem quantum-dot light-emitting diodes with individually addressable red/green/blue 180 5.126 emission. Npj Flexible Electronics, 2021, 5, . A review on the electroluminescence properties of quantum-dot light-emitting diodes. Organic 1.4 Electronics, 2021, 90, 106086. Highly Efficient and Super Stable Fullâ€Color Quantum Dots Lightâ€Emitting Diodes with 182 5.232 Solutionâ€Processed Allâ€Inorganic Charge Transport Layers. Small, 2021, 17, e2007363. To improve the performance of green light-emitting devices by enhancing hole injection efficiency. 2.4 Chemical Engineering Journal Advances, 2021, 5, 100082.

#	Article	IF	CITATIONS
184	Nanoantennaâ€Enhanced Lightâ€Emitting Diodes: Fundamental and Recent Progress. Laser and Photonics Reviews, 2021, 15, 2000367.	4.4	16
185	Sensitive Immunoassay Based on Biocompatible and Robust Silica-Coated Cd-Free InP-Based Quantum Dots. Inorganic Chemistry, 2021, 60, 6503-6513.	1.9	17
186	Effect of Air Exposure of ZnMgO Nanoparticle Electron Transport Layer on Efficiency of Quantum-Dot Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2021, 13, 20305-20312.	4.0	19
187	Highly Efficient CsPbBr ₃ Perovskite Nanocrystal Light-Emitting Diodes with Enhanced Stability via Colloidal Layer-by-Layer Deposition. ACS Applied Electronic Materials, 2021, 3, 2398-2406.	2.0	6
188	Efficient red photoluminescence from Al3+ and Cu+ co-doped CdS QDs embedded silicate glasses. Chemical Engineering Journal, 2021, 410, 128324.	6.6	10
189	High-Performance Blue Quantum Dot Light Emitting Diode via Solvent Optimization Strategy for ZnO Nanoparticles. Nanomaterials, 2021, 11, 959.	1.9	7
190	Quantum dot light-emitting diodes with high efficiency at high brightness via shell engineering. Optics Express, 2021, 29, 12169.	1.7	13
191	Light-Emitting Diodes with Manganese Halide Tetrahedron Embedded in Anti-Perovskites. ACS Energy Letters, 2021, 6, 1901-1911.	8.8	17
192	Crystal Structure and Predominant Defects in CdS Quantum Dots Fabricated by the Langmuir–Blodgett Method. Langmuir, 2021, 37, 5651-5658.	1.6	6
193	Tailoring Nanostructures of Quantum Dots toward Efficient and Stable All-Solution Processed Quantum Dot Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2021, 13, 17861-17868.	4.0	12
194	Optimization of quantum-dot light source and detection of the simulants of chemical warfare agent. Optical Materials, 2021, 114, 110935.	1.7	3
195	64â€1: <i>Invited Paper:</i> Challenges for Realizing QDâ€LED Display. Digest of Technical Papers SID International Symposium, 2021, 52, 933-936.	0.1	1
196	White light-emitting diodes based on quaternary Ag–In-Ga-S quantum dots and their influences on melatonin suppression index. Journal of Luminescence, 2021, 233, 117903.	1.5	8
197	63â€1: <i>Invited Paper:</i> High Performance Top Emission Quantumâ€Dot Lightâ€Emitting Devices. Digest of Technical Papers SID International Symposium, 2021, 52, 920-922.	0.1	1
198	65â€3: Quantum Dot Lightâ€emitting Diodes with High Color Purity RGB Cadmiumâ€Free Quantum Dots. Digest of Technical Papers SID International Symposium, 2021, 52, 953-956.	0.1	1
199	Controllable Synthesis of Mesoporous Cu7Te4 Flowerlike Structures by Cation-Exchange Method and Their Thermoelectric Properties. Journal of Electronic Materials, 2021, 50, 4678-4684.	1.0	2
200	Synthetic Mechanism Studies of Iron Selenides: An Emerging Class of Materials for Electrocatalysis. Catalysts, 2021, 11, 681.	1.6	5
201	63â€4: Development of Inkâ€jet Printing Process for 55â€inch UHD AMQLED Display. Digest of Technical Papers SID International Symposium, 2021, 52, 930-932.	0.1	9

#	Article	IF	CITATIONS
202	Pâ€64: Improvement in Inkjet Printed Green QLED Efficiency. Digest of Technical Papers SID International Symposium, 2021, 52, 1305-1307.	0.1	0
203	Performance improvements in all-solution processed inverted QLEDs realized by inserting an electron blocking layer. Nanotechnology, 2021, 32, 335204.	1.3	4
204	Highly efficient and stable blue quantum-dot light-emitting diodes based on polyfluorenes with carbazole pendent groups as hole-transporting materials. Organic Electronics, 2021, 92, 106138.	1.4	10
205	Evaluation of degradation behavior in quantum dot light-emitting diode with different hole transport materials via transient electroluminescence. Applied Physics Letters, 2021, 118, .	1.5	9
206	Utilization of Nanoporous Nickel Oxide as the Hole Injection Layer for Quantum Dot Light-Emitting Diodes. ACS Omega, 2021, 6, 13447-13455.	1.6	12
207	Balanced Charge Carrier Transport Mediated by Quantum Dot Film Post-organization for Light-Emitting Diode Applications. ACS Applied Materials & Interfaces, 2021, 13, 26170-26179.	4.0	8
208	Solution-Processed NiO as a Hole Injection Layer for Stable Quantum Dot Light-Emitting Diodes. Applied Sciences (Switzerland), 2021, 11, 4422.	1.3	8
209	Progress toward blue-emitting (460–475Ânm) nanomaterials in display applications. Nanophotonics, 2021, 10, 1801-1836.	2.9	20
210	Enhanced performance through trap states passivation in quantum dot light emitting diode. Journal of Luminescence, 2021, 234, 117946.	1.5	8
211	Ultra-Confined Visible-Light-Emitting Colloidal Indium Arsenide Quantum Dots. Nano Letters, 2021, 21, 5167-5172.	4.5	12
212	Effects of UV Irradiation and Storage on the Performance of Inverted Red Quantum-Dot Light-Emitting Diodes. Nanomaterials, 2021, 11, 1606.	1.9	5
213	Preparation and optical properties of nanostructure thin films. Applied Nanoscience (Switzerland), 2021, 11, 1967-1976.	1.6	0
214	Efficient quantum-dot light-emitting diodes featuring the interfacial carrier relaxation and exciton recycling. Materials Today Energy, 2021, 20, 100649.	2.5	5
215	The Renascence of One Ancient Recipe for Synthesizing Luminescent Cs ₄ PbBr ₆ Microcrystals. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100169.	1.2	2
216	Bright Near-Infrared to Visible Upconversion Double Quantum Dots Based on a Type-II/Type-I Heterostructure. ACS Photonics, 2021, 8, 1909-1916.	3.2	12
217	Continuously Graded Quantum Dots: Synthesis, Applications in Quantum Dot Light-Emitting Diodes, and Perspectives. Journal of Physical Chemistry Letters, 2021, 12, 5967-5978.	2.1	53
218	Toward Atomic-Resolution Quantum Measurements with Coherently Shaped Free Electrons. Physical Review Letters, 2021, 126, 233403.	2.9	38
219	Efficient transparent quantum-dot light-emitting diodes with an inverted architecture. Optical Materials Express, 2021, 11, 2145.	1.6	2

#	Article	IF	CITATIONS
220	Enhanced Direct White Light Emission Efficiency in Quantum Dot Lightâ€Emitting Diodes via Embedded Ferroelectric Islands Structure. Advanced Functional Materials, 2021, 31, 2104239.	7.8	18
221	Polarized Electroluminescence Emission in Highâ€Performance Quantum Rod Lightâ€Emitting Diodes via the Langmuirâ€Blodgett Technique. Small, 2021, 17, e2101204.	5.2	14
222	Solvent Engineering of Colloidal Quantum Dot Inks for Scalable Fabrication of Photovoltaics. ACS Applied Materials & Interfaces, 2021, 13, 36992-37003.	4.0	17
223	Modelling charge transport and electro-optical characteristics of quantum dot light-emitting diodes. Npj Computational Materials, 2021, 7, .	3.5	19
224	Light-Emitting Memristors for Optoelectronic Artificial Efferent Nerve. Nano Letters, 2021, 21, 6087-6094.	4.5	42
225	A Study on the Stability of TiO2 Nanoparticles as an Electron Transport Layer in Quantum Dot Light-Emitting Diodes. Journal of Korean Institute of Metals and Materials, 2021, 59, 476-480.	0.4	2
226	Excitonic characteristics of blue-emitting quantum dot materials in group II-VI using hybrid time-dependent density functional theory. Physical Review B, 2021, 104, .	1.1	7
227	An Efficient Hole Transporting Polymer for Quantum Dot Lightâ€Emitting Diodes. Advanced Materials Interfaces, 2021, 8, 2100731.	1.9	16
228	Highly efficient all-solution processed blue quantum dot light-emitting diodes based on balanced charge injection achieved by double hole transport layers. Organic Electronics, 2021, 94, 106169.	1.4	12
229	Temperature-dependent recombination dynamics and electroluminescence characteristics of colloidal CdSe/ZnS core/shell quantum dots. Applied Physics Letters, 2021, 119, .	1.5	10
230	Bulk-like ZnSe Quantum Dots Enabling Efficient Ultranarrow Blue Light-Emitting Diodes. Nano Letters, 2021, 21, 7252-7260.	4.5	69
231	Tuning the Dimensionality of Excitons in Colloidal Quantum Dot Molecules. Nano Letters, 2021, 21, 7339-7346.	4.5	9
232	13.2: Invited Paper: Synergistic photothermal strategy for lowâ€temperature crossâ€linking of hole transport materials for red QLEDs. Digest of Technical Papers SID International Symposium, 2021, 52, 184-186.	0.1	2
233	High-Resolution Colloidal Quantum Dot Film Photolithography via Atomic Layer Deposition of ZnO. ACS Applied Materials & Interfaces, 2021, 13, 43075-43084.	4.0	25
234	Semiconductor quantum dots: Technological progress and future challenges. Science, 2021, 373, .	6.0	600
235	Structural, morphological, and electrical properties of ZnSe nanostructures: Effects of Zn precursors. Surfaces and Interfaces, 2021, 25, 101196.	1.5	3
236	Emerging light-emitting diodes for next-generation data communications. Nature Electronics, 2021, 4, 559-572.	13.1	102
237	Colloidal quantum dot electronics. Nature Electronics, 2021, 4, 548-558.	13.1	192

#	Article	IF	CITATIONS
238	High Performance Inkjetâ€Printed Quantumâ€Dot Lightâ€Emitting Diodes with High Operational Stability. Advanced Optical Materials, 2021, 9, 2101069.	3.6	36
239	Surface state-induced barrierless carrier injection in quantum dot electroluminescent devices. Nature Communications, 2021, 12, 5669.	5.8	27
240	Nanocomposites of CsPbBr3 perovskite quantum dots embedded in Gd2O3:Eu3+ hollow spheres for LEDs application. Journal of Rare Earths, 2022, 40, 1509-1518.	2.5	13
241	Highly efficient transparent quantum-dot light-emitting diodes based on inorganic double electron-transport layers. Photonics Research, 2021, 9, 1979.	3.4	8
242	Intelligent, biomimetic, color-tunable, light-emitting artificial skin with memory function. Nano Energy, 2021, 90, 106569.	8.2	10
243	Carrier Dynamics in Alloyed Chalcogenide Quantum Dots and Their Lightâ€Emitting Devices. Advanced Energy Materials, 2021, 11, 2101693.	10.2	29
244	Color-Tunable Alternating-Current Quantum Dot Light-Emitting Devices. ACS Applied Materials & Interfaces, 2021, 13, 45815-45821.	4.0	12
245	Optimization of carrier transport layer: A simple but effective approach toward achieving high efficiency all-solution processed InP quantum dot light emitting diodes. Organic Electronics, 2021, 96, 106256.	1.4	3
246	Improved blue quantum dot light-emitting diodes via chlorine passivated ZnO nanoparticle layer*. Chinese Physics B, 2021, 30, 118503.	0.7	3
247	High efficiency green InP quantum dot light-emitting diodes by balancing electron and hole mobility. Communications Materials, 2021, 2, .	2.9	58
248	High Colorâ€Rendering Index and Stable White Lightâ€Emitting Diodes Based on Highly Luminescent Quantum Dots. Particle and Particle Systems Characterization, 2021, 38, 2100120.	1.2	6
249	A Study on the ZnO Thin Film Deposited by RF Sputtering Method as an Electron Transport Layer in Quantum Dot Light-Emitting Diodes. Journal of Korean Institute of Metals and Materials, 2021, 59, 718-723.	0.4	0
250	A Study on the ZnO Thin Film Deposited by RF Sputtering Method as an Electron Transport Layer in Quantum Dot Light-Emitting Diodes. Journal of Korean Institute of Metals and Materials, 2021, 59, 718-723.	0.4	1
251	Positive temperature dependence of the electroluminescent performance in a colloidal quantum dot light-emitting diode. Dyes and Pigments, 2021, 195, 109703.	2.0	6
252	Cathode made by silver-precursor ink for all-solution processed quantum dots light-emitting diodes. Organic Electronics, 2021, 99, 106281.	1.4	0
253	Boosting the performance of solution-processed quantum dots light-emitting diodes by a hybrid emissive layer via doping small molecule hole transport materials into quantum dots. Organic Electronics, 2021, 99, 106344.	1.4	6
254	Heterostructural tailoring of blue ZnSeTe quantum dots toward high-color purity and high-efficiency electroluminescence. Chemical Engineering Journal, 2022, 429, 132464.	6.6	27
255	Progressive advancement of ZnS-based quantum dot LED. Optical and Quantum Electronics, 2021, 53, 1.	1.5	3

#	Article	IF	CITATIONS
256	Spontaneous surface plasmon polariton decay of band-edge excitons in quantum dots near a metal surface. Physical Review B, 2021, 103, .	1.1	3
257	Highâ€Performance Ultrapure Green CdSe/CdS Core/Crown Nanoplatelet Lightâ€Emitting Diodes by Suppressing Nonradiative Energy Transfer. Advanced Electronic Materials, 2021, 7, 2000965.	2.6	17
258	Lifetime elongation of quantum-dot light-emitting diodes by inhibiting the degradation of hole transport layer. RSC Advances, 2021, 11, 20884-20891.	1.7	6
259	Quantum-dot and organic hybrid tandem light-emitting diodes with color-selecting intermediate electrodes for full-color displays. Nanoscale, 2021, 13, 16781-16789.	2.8	1
260	Colour-encoded electroluminescent white light-emitting diodes enabled using perovskite–Cu–In–S quantum composites. Journal of Materials Chemistry C, 2021, 9, 7027-7034.	2.7	13
261	Large-area and efficient perovskite light-emitting diodes via low-temperature blade-coating. Nature Communications, 2021, 12, 147.	5.8	100
262	Regulation of hole transport layer for perovskite quantum dot light-emitting diodes. E3S Web of Conferences, 2021, 245, 03021.	0.2	1
263	A seed-mediated and double shell strategy to realize large-size ZnSe/ZnS/ZnS quantum dots for high color purity blue light-emitting diodes. Nanoscale, 2021, 13, 4562-4568.	2.8	23
264	Production of C, N Alternating 2D Materials Using Covalent Modification and Their Electroluminescence Performance. Small Science, 2021, 1, 2000042.	5.8	9
265	Filtering Strategy of Colloidal Quantum Dots for Improving Performance of Light-Emitting Diodes. Journal of Physical Chemistry C, 2021, 125, 2299-2305.	1.5	4
266	Improving the performance of quantum-dot light-emitting diodes <i>via</i> an organic–inorganic hybrid hole injection layer. RSC Advances, 2021, 11, 4168-4172.	1.7	11
267	Reducing the impact of Auger recombination in quasi-2D perovskite light-emitting diodes. Nature Communications, 2021, 12, 336.	5.8	237
268	ZnO Nanoparticles for Quantum-Dot-Based Light-Emitting Diodes. ACS Applied Nano Materials, 2020, 3, 5203-5211.	2.4	60
269	Nitrogen and sulphur co-doped carbon quantum dots and their optical power limiting properties. Materials Advances, 2020, 1, 3176-3181.	2.6	15
270	Material and device engineering for high-performance blue quantum dot light-emitting diodes. Nanoscale, 2020, 12, 13186-13224.	2.8	57
271	Suppressed efficiency roll-off in blue light-emitting diodes by balancing the spatial charge distribution. Journal of Materials Chemistry C, 2020, 8, 12927-12934.	2.7	10
272	Solution-processed double-layered hole transport layers for highly-efficient cadmium-free quantum-dot light-emitting diodes. Optics Express, 2020, 28, 6134.	1.7	7
273	Factors influencing the working temperature of quantum dot light-emitting diodes. Optics Express, 2020, 28, 34167.	1.7	9

#	Article	IF	CITATIONS
274	Enhancing extraction efficiency of quantum dot light-emitting diodes introducing a highly wrinkled ZnO electron transport layer. Optics Letters, 2020, 45, 2243.	1.7	2
275	Exploring the emission mechanism of dichromatic white-light quantum-dot light-emitting diodes using wavelength-resolved transient electroluminescence analysis. Optics Letters, 2020, 45, 6370.	1.7	3
276	Fabrication of highly efficient pure blue-emitting electroluminescent devices using ZnSe/ZnSe _x S _{1-x} /ZnS QDs. Optical Materials Express, 2020, 10, 3372.	1.6	11
277	Efficiency Improvement of Quantum Dot Light-Emitting Diodes via Thermal Damage Suppression with HATCN. ACS Applied Materials & Interfaces, 2021, 13, 49058-49065.	4.0	1
278	A Generic Protocol for Highly Reproducible Manufacturing of Efficient Perovskite Lightâ€Emitting Diodes Using In‧itu Photoluminescence Monitoring. Advanced Materials Technologies, 2022, 7, 2100987.	3.0	3
279	Analyzing and modulating energy transfer in ternary-emissive system of quantum dot light-emitting diodes towards efficient emission. Optics Express, 2021, 29, 36964.	1.7	4
280	Bright and Stable Quantum Dot Lightâ€Emitting Diodes. Advanced Materials, 2022, 34, e2106276.	11.1	109
281	Surface Oxidation of Quantum Dots to Improve the Device Performance of Quantum Dot Light-Emitting Diodes. Journal of Physical Chemistry C, 2020, 124, 28424-28430.	1.5	12
282	Toward phosphorescent and delayed fluorescent carbon quantum dots for next-generation electroluminescent displays. Journal of Materials Chemistry C, 2022, 10, 2333-2348.	2.7	23
283	Fast-response, high-stability, and high-efficiency full-color quantum dot light-emitting diodes with sharee storage layer. Science, thina Materials, 2022, 65, 1012-1019. Structural, electronic, and excitonic properties of few-layer smillimath	3.5	8
284	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi>Se</mml:mi><mml:msub><mml:mi mathvariant="normal">S<mml:mn>2</mml:mn></mml:mi </mml:msub></mml:mrow> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Te</mml:mi><mml:msub><mml:mi< td=""><td>0.9</td><td>3</td></mml:mi<></mml:msub></mml:mrow></mml:math 	0.9	3
285	mathvariant="normal">S <mml:mn>2</mml:mn> . Physi Defect Behaviors in Perovskite Light-Emitting Diodes. , 2021, 3, 1702-1728.		27
286	Nanophotonics for current and future white light-emitting devices. Journal of Applied Physics, 2021, 130, .	1.1	8
287	Enhancing hole injection by electric dipoles for efficient blue InP QLEDs. Applied Physics Letters, 2021, 119, .	1.5	13
288	Toward Stable and Efficient Perovskite Lightâ€Emitting Diodes. Advanced Functional Materials, 2022, 32, 2109495.	7.8	77
289	Observation and Suppression of Stacking Interface States in Sandwich-Structured Quantum Dot Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2021, 13, 56630-56637.	4.0	5
290	Distribution control enables efficient reduced-dimensional perovskite LEDs. Nature, 2021, 599, 594-598.	13.7	358
291	Perovskite White Light Emitting Diodes: Progress, Challenges, and Opportunities. ACS Nano, 2021, 15, 17150-17174.	7.3	101

#	Article		CITATIONS
292	Ultrahigh Resolution Pixelated Topâ€Emitting Quantumâ€Dot Lightâ€Emitting Diodes Enabled by Colorâ€Converting Cavities. Small Methods, 2022, 6, e2101090.	4.6	20
293	Efficient Tandem Quantumâ€Dot LEDs Enabled by An Inorganic Semiconductorâ€Metalâ€Dielectric Interconnecting Layer Stack. Advanced Materials, 2022, 34, e2108150.	11.1	53
294	Operating Mechanism of Quantum-Dot Light-Emitting Diodes Under Alternating Current-Drive. IEEE Electron Device Letters, 2022, 43, 256-259.	2.2	4
295	Carbon dots/ZnO quantum dots composite-based white phosphors for white light-emitting diodes. Chemical Communications, 2022, 58, 1910-1913.	2.2	28
296	Synthesis and structure design of l–Ill–VI quantum dots for white light-emitting diodes. Materials Chemistry Frontiers, 2022, 6, 418-429.	3.2	18
297	Efficient and Stable Quantumâ€Dot Lightâ€Emitting Diodes Enabled by Tin Oxide Multifunctional Electron Transport Layer. Advanced Optical Materials, 2022, 10, 2102404.	3.6	16
298	Degradation dynamics of quantum dots in white LED applications. Scientific Reports, 2021, 11, 24153.	1.6	4
299	Recent Research Trends for Improving the Stability of Organo/Inorgano Halide Perovskites. Journal of Korean Institute of Metals and Materials, 2022, 60, 1-13.	0.4	8
300	Carbon quantum dots—Annexin V probe: photoinduced electron transfer mechanism, phosphatidylserine detection, and apoptotic cell imaging. Mikrochimica Acta, 2022, 189, 69.	2.5	12
301	Thermal assisted up-conversion electroluminescence in quantum dot light emitting diodes. Nature Communications, 2022, 13, 369.	5.8	49
302	The light of carbon dots: From mechanism to applications. Matter, 2022, 5, 110-149.	5.0	374
303	Ligand-Induced Nucleation Growth Kinetics of CdTe QDs: Implications for White-Light-Emitting Diodes. ACS Applied Nano Materials, 2022, 5, 401-410.	2.4	3
304	Solution-Processed Smooth Copper Thiocyanate Layer with Improved Hole Injection Ability for the Fabrication of Quantum Dot Light-Emitting Diodes. Nanomaterials, 2022, 12, 154.	1.9	1
305	Efficient Solution-Processed Green InP-Based Quantum Dot Light-Emitting Diodes With a Stepwise Hole Injection Layer. IEEE Electron Device Letters, 2022, 43, 410-413.	2.2	2
306	Molecular physics of persistent room temperature phosphorescence and long-lived triplet excitons. Applied Physics Reviews, 2022, 9, .	5.5	66
307	Tailoring Colloidal Core–Shell Quantum Dots for Optoelectronics. RSC Nanoscience and Nanotechnology, 2022, , 492-517.	0.2	0
308	Terahertz Field-Induced Reemergence of Quenched Photoluminescence in Quantum Dots. Nano Letters, 2022, , .	4.5	0
309	Observation of high-density multi-excitons in medium-size CdSe/CdZnS/ZnS colloidal quantum dots through transient spectroscopy and their optical gain properties. Nanoscale, 2022, 14, 5369-5376.	2.8	1

	CITATION	N REPORT	
#	Article	IF	CITATIONS
310	Solution-processable Li-doped transition metal oxide hole-injection layer for highly efficient quantum-dot light-emitting diodes. Journal of Materials Chemistry C, 2022, 10, 5590-5597.	2.7	7
311	Luminescent Nanomaterials for Energy-Efficient Display and Healthcare. ACS Energy Letters, 2022, 7, 1001-1020.	8.8	51
312	Enhanced emission directivity from asymmetrically strained colloidal quantum dots. Science Advances, 2022, 8, eabl8219.	4.7	10
313	Light extraction employing optical tunneling in blue InP quantum dot light-emitting diodes. Applied Physics Letters, 2022, 120, .	1.5	11
314	Pure-colored red, green, and blue quantum dot light-emitting diodes using emitting layers composed of cadmium-free quantum dots and organic electron-transporting materials. Japanese Journal of Applied Physics, 2022, 61, 052004.	0.8	4
315	Balancing charge injection in quantum dot light-emitting diodes to achieve high efficienciy of over 21%. Science China Materials, 2022, 65, 1882-1889.	3.5	9
316	Atomic scale memristive photon source. Light: Science and Applications, 2022, 11, 78.	7.7	9
317	Application of Mini-LEDs with Microlens Arrays and Quantum Dot Film as Extra-Thin, Large-Area, and High-Luminance Backlight. Nanomaterials, 2022, 12, 1032.	1.9	5
318	Synergistic Effect of Halogen Ions and Shelling Temperature on Anion Exchange Induced Interfacial Restructuring for Highly Efficient Blue Emissive InP/ZnS Quantum Dots. Small, 2022, 18, e2108120.	5.2	23
319	Optical properties of individual CdS/CdSe/CdS nanocrystals: spherical quantum wells as single-photon sources. Nanotechnology, 2022, 33, 275703.	1.3	1
320	Electronic and Excitonic Processes in Quantum Dot Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2022, 13, 2878-2884.	2.1	21
321	Alleviating Electron Over-Injection for Efficient Cadmium-Free Quantum Dot Light-Emitting Diodes toward Deep-Blue Emission. ACS Photonics, 2022, 9, 1400-1408.	3.2	18
322	Cadmiumâ€Doped Zinc Sulfide Shell as a Hole Injection Springboard for Red, Green, and Blue Quantum Dot Lightâ€Emitting Diodes. Advanced Science, 2022, 9, e2104488.	5.6	19
323	Quantum-dot and organic hybrid light-emitting diodes employing a blue common layer for simple fabrication of full-color displays. Nano Research, 2022, 15, 6477-6482.	5.8	8
324	Improvement of the efficiency and stability of inkjetâ€printed green quantum dot lightâ€emitting diodes by controlling the extra shell of quantum dot. Journal of the Society for Information Display, 0, , .	0.8	1
325	Effect of PVK mixed TAPC as hole transport layers on device performance of red quantum-dot light-emitting diodes. Journal of Luminescence, 2022, 247, 118871.	1.5	5
326	High-Performance White Light-Emitting Diodes over 150 lm/W Using Near-Unity-Emitting Quantum Dots in a Liquid Matrix. ACS Photonics, 2022, 9, 1304-1314.	3.2	18
327	Approaching high-performance light-emitting devices upon perovskite quantum dots: Advances and prospects. Nano Today, 2022, 43, 101449.	6.2	53

#	Article		CITATIONS
328	Full-Color Quantum Dot Light-Emitting Diodes Based on Microcavities. IEEE Photonics Journal, 2022, 14, 1-9.		7
329	Quantum-dot light-emitting diodes with Fermi-level pinning at the hole-injection/hole-transporting interfaces. Nano Research, 2022, 15, 7453-7459.	5.8	5
330	Self-powered multi-color display based on stretchable self-healing alternating current electroluminescent devices. Nano Energy, 2022, 95, 107061.	8.2	30
331	Improving hole injection ability using a newly proposed WO3/NiOx bilayer in solution processed quantum dot light-emitting diodes. Current Applied Physics, 2022, 38, 81-90.	1.1	1
332	Linear cross-linkers enabling photothermally cured hole transport layer for high-performance quantum dots light-emitting diodes with ultralow efficiency roll-off. Chemical Engineering Journal, 2022, 439, 135702.	6.6	10
333	Steering Interface Dipoles for Bright and Efficient All-Inorganic Quantum Dot Based Light-Emitting Diodes. ACS Nano, 2021, 15, 20332-20340.	7.3	18
334	Unraveling the effect of shell thickness on charge injection in blue quantum-dot light-emitting diodes. Applied Physics Letters, 2021, 119, .	1.5	12
335	GO-induced effective interconnection layer for all solution-processed tandem quantum dot light-emitting diodes. Journal of Central South University, 2021, 28, 3737-3746.	1.2	5
336	Cathodoluminescence in Ultrafast Electron Microscopy. ACS Nano, 2021, 15, 19480-19489.	7.3	8
337	Blue-Emitting CdSe Nanoplatelets Enabled by Sulfur-Alloyed Heterostructures for Light-Emitting Diodes with Low Turn-on Voltage. ACS Applied Nano Materials, 2022, 5, 1367-1376.	2.4	14
338	Tuning the structures of polypyridinium salts as bifunctional cathode interfacial layers for all-solution-processed red quantum-dot light-emitting diodes. Chinese Chemical Letters, 2023, 34, 107411.	4.8	0
339	Green CdSe/CdSeS Core/Alloyedâ€Crown Nanoplatelets Achieve Unity Photoluminescence Quantum Yield over a Broad Emission Range. Advanced Optical Materials, 2022, 10, .	3.6	11
340	Solution-Processed Red, Green, and Blue Quantum Rod Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2022, 14, 18723-18735.	4.0	7
341	Management of electroluminescence from silver-doped colloidal quantum well light-emitting diodes. Cell Reports Physical Science, 2022, 3, 100860.	2.8	10
342	Efficient Flexible Quantum-Dot Light-Emitting Diodes with Unipolar Charge Injection. Optics Express, 2022, 30, 15747-15756.	1.7	5
346	Enhancing Hole Transport of Quantumâ€Dot Lightâ€Emitting Diodes by a Cruciform Oligothiophene for Effective pâ€Type Doping. Macromolecular Rapid Communications, 2022, , 2200187.	2.0	0
347	Exploring performance degradation of quantum-dot light-emitting diodes. Journal of Materials Chemistry C, 2022, 10, 8642-8649.	2.7	9
348	Perovskite light-emitting diodes. Nature Electronics, 2022, 5, 203-216.	13.1	268

#	Article		CITATIONS
349	Inkjetâ€printed multiâ€color arrays based on ecoâ€friendly quantum dot light emitting diodes with tailored hole transport layer. Journal of the Society for Information Display, 2022, 30, 748-757.	0.8	4
350	Advances and Challenges in Heavy-Metal-Free InP Quantum Dot Light-Emitting Diodes. Micromachines, 2022, 13, 709.	1.4	10
351	Colloidal Quantum Dot Light Emitting Diodes at Telecom Wavelength with 18% Quantum Efficiency and Over 1ÂMHz Bandwidth. Advanced Science, 2022, 9, e2200637.	5.6	15
352	ZnF ₂ -Assisted Synthesis of Highly Luminescent InP/ZnSe/ZnS Quantum Dots for Efficient and Stable Electroluminescence. Nano Letters, 2022, 22, 4067-4073.	4.5	62
353	Highâ€Performance Blue Quantumâ€Dot Lightâ€Emitting Diodes by Alleviating Electron Trapping. Advanced Optical Materials, 2022, 10, .	3.6	14
354	The Synthesis and Application of 2-Cyano and -Ester Containing Anilines: Selective Copper Catalyzed Reductive Amination, N-Benzylation and Cyclization Reactions. Synthesis, 0, , .	1.2	1
355	Size Engineering of Trap Effects in Oxidized and Hydroxylated ZnSe Quantum Dots. Nano Letters, 2022, 22, 3604-3611.	4.5	13
356	Highly photoluminescent water-soluble ZnSe/ZnS/ZnS quantum dots via successive shell growth approach. Journal of Materials Science: Materials in Electronics, 2022, 33, 13905-13912.	1.1	2
357	Quasiâ€Shellâ€Growth Strategy Achieves Stable and Efficient Green InP Quantum Dot Lightâ€Emitting Diodes. Advanced Science, 2022, 9, .	5.6	33
358	Tunable ultraviolet to deep blue light emission from sulfur nanodots fabricated by a controllable fission-aggregation strategy. Science China Materials, 0, , .	3.5	3
359	Solution-processed green and blue quantum-dot light-emitting diodes with eliminated charge leakage. Nature Photonics, 2022, 16, 505-511.	15.6	152
360	Colloidal Quantum-dot Light Emitting Diodes with Bias-tunable Color. Photonics Research, 0, , .	3.4	5
361	Twisting Enabled Charge Transfer Excitons in Epitaxially Fused Quantum Dot Molecules. Nano Letters, 2022, 22, 4912-4918.	4.5	6
362	Voltage-controlled reversible modulation of colloidal quantum dot thin film photoluminescence. Applied Physics Letters, 2022, 120, 211104.	1.5	6
363	Solvent-mediated surface ligand exchange to enhance the performance of quantum-dot light-emitting diodes. Organic Electronics, 2022, 108, 106561.	1.4	1
364	On the accurate characterization of quantum-dot light-emitting diodes for display applications. Npj Flexible Electronics, 2022, 6, .	5.1	8
365	Highly efficient blue quantum-dot light-emitting diodes based on a mixed composite of a carbazole donor and a triazine acceptor as the hole transport layer. Physical Chemistry Chemical Physics, 2022, 24, 16148-16155.	1.3	3
366	The role of surface charges in the blinking mechanisms and quantum-confined Stark effect of single colloidal quantum dots. Nano Research, 2022, 15, 7655-7661.	5.8	12

#	Article		CITATIONS
367	Over 32.5% Efficient Top-Emitting Quantum-Dot LEDs with Angular-Independent Emission. ACS Applied Materials & Interfaces, 2022, 14, 30039-30045.	4.0	21
368	Importance of Monitoring the Synthesis of Lightâ€Interacting Nanoparticles – A Review on In Situ, Ex Situ, and Online Timeâ€Resolved Studies. Advanced Optical Materials, 2022, 10, .	3.6	4
369	Heterostructured core/gradient multi-shell quantum dots for high-performance and durable photoelectrochemical hydrogen generation. Nano Energy, 2022, 100, 107524.	8.2	11
370	Direct Optical Patterning of Nanocrystal-Based Thin-Film Transistors and Light-Emitting Diodes through Native Ligand Cleavage. ACS Applied Nano Materials, 2022, 5, 8457-8466.	2.4	7
371	Highly Stable SnO ₂ -Based Quantum-Dot Light-Emitting Diodes with the Conventional Device Structure. ACS Nano, 2022, 16, 9631-9639.	7.3	14
372	Over 16% efficiency organic/nanostructured Si heterojunction solar cells with a p-doped organic small molecule layer. Organic Electronics, 2022, 108, 106576.	1.4	1
373	Charge carrier analysis via impedance spectroscopy and the achievement of high performance in CdSe/ZnS:di-[4-(N,N-di-p-tolyl-amino)-phenyl]cyclohexane hybrid quantum dot light-emitting diodes. Organic Electronics, 2022, 108, 106593.	1.4	8
374	Color controllable smart white lighting based on various device architectures of electrically driven quantum-dot light-emitting diodes. Journal of Materials Chemistry C, 2022, 10, 10728-10741.	2.7	2
375	Air stable eco-friendly quantum dots with a light-mediated photoinitiator for an inkjet printed flexible light emitting diode. Journal of Materials Chemistry C, 2022, 10, 10708-10718.	2.7	5
376	8â€1: <i>Invited Paper:</i> Development of High Efficiency QLED Technology for Display Applications. Digest of Technical Papers SID International Symposium, 2022, 53, 61-64.	0.1	2
377	Transient Dynamics of Charges and Excitons in Quantum Dot Lightâ€Emitting Diodes. Small, 2022, 18, .	5.2	15
378	Pâ€89: Highâ€Efficiency Red Quantum Dot Lightâ€Emitting Diodes with Acrylateâ€Treated ZnMgO as an Electron Transport Layer. Digest of Technical Papers SID International Symposium, 2022, 53, 1357-1360.	0.1	0
379	Two-band optical gain and ultrabright electroluminescence from colloidal quantum dots at 1000 A cmâ^'2. Nature Communications, 2022, 13, .	5.8	22
380	Blue Light Emitting Diodes based on Bright Quasiâ€Typeâ€II ZnO@1â€Aminopyrene Hybrid Quantum Dots with a Long Operation Life. Advanced Optical Materials, 0, , 2200601.	3.6	3
381	13â€1: <i>Invited Paper:</i> Optimizations for the Commercialization of Inkjetâ€Printed Quantumâ€Dot Lightâ€Emitting Diode Displays. Digest of Technical Papers SID International Symposium, 2022, 53, 132-135.	0.1	0
382	Performance Enhancement of InP Quantum Dot Light-Emitting Diodes via a Surface-Functionalized ZnMgO Electron Transport Layer. ACS Energy Letters, 2022, 7, 2247-2255.	8.8	25
383	Electron transport mechanism in colloidal SnO ₂ nanoparticle films and its implications for quantum-dot light-emitting diodes. Journal Physics D: Applied Physics, 2022, 55, 374004.	1.3	8
384	In Situ Ligandâ€Exchange in Solid Quantum Dots Film Enables Stacked White Lightâ€Emitting Diodes. Advanced Optical Materials, 2022, 10, .	3.6	2

#	Article		CITATIONS
385	High Performance InPâ€based Quantum Dot Lightâ€Emitting Diodes via the Suppression of Fieldâ€Enhanced Electron Delocalization. Advanced Functional Materials, 2022, 32, .	7.8	23
386	Boosting electroluminescence performance of all solution processed InP based quantum dot light emitting diodes using bilayered inorganic hole injection layers. Photonics Research, 2022, 10, 2133.	3.4	5
387	Highâ€Performance Inkjetâ€Printed Blue QLED Enabled by Crosslinked and Intertwined Hole Transport Layer. Advanced Optical Materials, 2022, 10, .	3.6	23
388	An electrical and infrared controllable color emission quantum dot light-emitting diode. AIP Advances, 2022, 12, .	0.6	2
389	Taming quantum dots nucleation and growth enables stable and efficient blue light-emitting devices. Photonics Research, 0, , .	3.4	0
390	Perovskite nanocrystal LEDs: Large areas for efficient vivid displays. Matter, 2022, 5, 2450-2452.	5.0	3
392	Temperature-dependent transition of charge transport in core/shell structured colloidal quantum dot thin films: From Poole–Frenkel emission to variable-range hopping. Applied Physics Letters, 2022, 121, 063301.	1.5	1
393	Molecular Design of Diazo Compound for Carbene-Mediated Cross-Linking of Hole-Transport Polymer in QLED with Reduced Energy Barrier and Improved Charge Balance. ACS Applied Materials & Interfaces, 2022, 14, 39149-39158.	4.0	13
394	A roadmap for the commercialization of perovskite light emitters. Nature Reviews Materials, 2022, 7, 757-777.	23.3	96
395	Ultrastable near-infrared perovskite light-emitting diodes. Nature Photonics, 2022, 16, 637-643.	15.6	125
396	Enabling ultranarrow blue emission linewidths in colloidal alloy quantum dots by decreasing the exciton fine structure splitting and exciton-phonon coupling. Nano Research, 2023, 16, 1576-1585.	5.8	4
397	High-Efficiency, Large-Area, Flexible Top-Emitting Quantum-Dot Light-Emitting Diode. ACS Photonics, 2023, 10, 2192-2200.	3.2	15
398	Recent advances of eco-friendly quantum dots light-emitting diodes for display. Progress in Quantum Electronics, 2022, 86, 100415.	3.5	8
399	Spectra Stable Quantum Dots Enabled by Band Engineering for Boosting Electroluminescence in Devices. Micromachines, 2022, 13, 1315.	1.4	0
400	Inkjet-printed blue InP/ZnS/ZnS quantum dot light-emitting diodes. Chemical Engineering Journal, 2022, 450, 138413.	6.6	18
401	Surface engineering of ZnO nanoparticles with diethylenetriamine for efficient red quantum-dot light-emitting diodes. IScience, 2022, 25, 105111.	1.9	8
402	Acid treatment to tune the optical properties of carbon quantum dots. Applied Surface Science, 2022, 605, 154690.	3.1	11
403	High-efficiency quantum-dot light-emitting diodes enabled by boosting the hole injection. Journal of Materials Chemistry C, 2022, 10, 15200-15206.	2.7	8

#	Article	IF	CITATIONS
404	Recombination Kinetics of Excitons and Trions in Free-Standing CdS Quantum Dots Synthesized by the Langmuir–Blodgett Method. Journal of Experimental and Theoretical Physics, 2022, 135, 215-225.	0.2	0
405	Perovskite nanocrystals for light-emitting diodes. Journal of Semiconductors, 2022, 43, 090201.	2.0	3
406	Trap state-assisted electron injection in blue quantum dot light-emitting diode. Applied Physics Letters, 2022, 121, 113507.	1.5	4
407	Composition-Controlled Synthesis of Nonstochiometric AgInZnS Nanocrystals for Green Light-Emitting Diodes. ACS Applied Nano Materials, 2022, 5, 13553-13560.	2.4	3
408	Cu-Enhanced Efficient Förster Resonance Energy Transfer in PBSA Sunscreen-Associated Ternary Cu _{<i>x</i>} Cd _{1–<i>x</i>} S Quantum Dots. ACS Omega, 2022, 7, 35014-35022.	1.6	2
409	Electronic Structural Insight into Highâ€Performance Quantum Dot Lightâ€Emitting Diodes. Advanced Functional Materials, 2022, 32, .	7.8	8
410	Colloidal synthesis of size-confined CsAgCl ₂ nanocrystals: implications for electroluminescence applications. Materials Chemistry Frontiers, 2022, 6, 3669-3677.	3.2	6
411	Freestanding High-Resolution Quantum Dot Color Converters with Small Pixel Sizes. ACS Applied Materials & amp; Interfaces, 2022, 14, 48995-49002.	4.0	7
412	Photonics Design Theory Enhancing Light Extraction Efficiency in Quantum Dot Light Emitting Diodes. JPhys Materials, 0, , .	1.8	2
413	Fabrication of ZnO dual electron transport layer via atomic layer deposition for highly stable and efficient CsPbBr ₃ perovskite nanocrystals light-emitting diodes. Nanotechnology, 2023, 34, 025203.	1.3	3
414	Influence of Light–Matter Interaction on Efficiency of Quantum-Dot Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2022, 13, 10312-10317.	2.1	4
415	On the voltage sweep behavior of quantum dot light-emitting diode. Nano Research, 2023, 16, 5511-5516.	5.8	4
416	23.2: <i>Invited Paper:</i> Challenges for Realizing QD‣ED. Digest of Technical Papers SID International Symposium, 2022, 53, 265-268.	0.1	1
417	Efficient InP Green Quantumâ€Dot Lightâ€Emitting Diodes Based on Organic Electron Transport Layer. Advanced Optical Materials, 2022, 10, .	3.6	3
418	31.2: <i>Invited Paper:</i> Highâ€Efficiency Blue Cadmiumâ€Free Quantum Dot Lightâ€Emitting Diodes. Digest of Technical Papers SID International Symposium, 2022, 53, 346-346.	0.1	0
419	Color-tunable quantum-dot light emitting diode and its integration with GaN-based blue LED for smart white-light emission. Optical Materials, 2022, 133, 113058.	1.7	1
420	Dipole Engineering through the Orientation of Interface Molecules for Efficient InP Quantum Dot Light-Emitting Diodes. Journal of the American Chemical Society, 2022, 144, 20923-20930.	6.6	6
421	The efficient green light-emitting diodes based on low-toxicity Zr-Pb alloy perovskite quantum dots passivated by inorganic ligand. Applied Materials Today, 2022, 29, 101658.	2.3	4

ARTICLE IF CITATIONS An alloyed mid-shell strategy assisted realization of thick-shell violet-blue ZnSe/ZnSexS1-x/ZnS 422 1.5 3 quantum dots with high color purity. Journal of Luminescence, 2022, 252, 119391. ZnSeTe blue top-emitting QLEDs with color saturation near Rec.2020 standards and efficiency over 423 5.8 18.16%. Nano Research, 2023, 16, 5517-5524. A Review on Quantum Dot Lightâ€Emitting Diodes: From Materials to Applications. Advanced Optical 424 3.6 19 Materials, 2023, 11, . Improved luminescent InP/ZnS quantum dots by ZnF2 assisted one-pot aminophosphine synthesis 425 strategy. Optical Materials, 2022, 134, 113209. Interfacial Charge Modulation: An Efficient Strategy for Stable Blue Quantumâ€Dot Lightâ€Emitting 426 3.6 6 Diodes. Advanced Optical Materials, 2023, 11, . Dual-function perovskite light-emitting/sensing devices for optical interactive display. Light: Science and Applications, 2022, 11, . Effect of Excess Carriers on the Degradation of InP-Based Quantum-Dot Light-Emitting Diodes. ACS 428 2.0 3 Applied Electronic Materials, 2022, 4, 6229-6236. Unraveling the Energy Transfer Mechanisms in Biâ€Color and Triâ€Color Quantum Dots: toward Efficient 429 3.6 White Quantum Dot Lightâ€Emitting Diodes. Advanced Optical Materials, 2023, 11, . Bromide Decorated Ecoâ€Friendly ZnSeTe/ZnSe/ZnS Quantum Dots for Efficient Blue Lightâ€Emitting 430 1.9 5 Diodes. Advanced Materials Interfaces, 2023, 10, . Charging and Charged Species in Quantum Dot Light-Emitting Diodes. Nano Letters, 2022, 22, 9500-9506. 4.5 Parabolic Potential Surfaces Localize Charge Carriers in Nonblinking Long-Lifetime "Giant―Colloidal 432 4.51 Quantum Dots. Nano Letters, 2022, 22, 9470-9476. All-inorganic quantum dot light-emitting diodes realizing a synergistically regulated carrier mobility dynamic equilibrium mechanism. Journal of Materials Science, 2022, 57, 21630-21643. Efficient solution-processed InP quantum-dots light-emitting diodes enabled by suppressing hole 434 5.8 3 injection loss. Nano Research, 2023, 16, 7511-7517. Advances, Challenges, and Perspectives for Heavyâ€Metalâ€Free Blueâ€Emitting Indium Phosphide Quantum 3.6 Dot Lightâ€Emitting Diodes. Advanced Optical Materials, 2023, 11, . Ligand-assisted structure tailoring of highly luminescent Cu-In-Zn-S/ZnS//ZnS quantum dots for 436 0 1.8 bright and stable light-emitting diodes. Frontiers in Chemistry, 0, 10, . Carboxylicâ€Free Synthesis of InP Quantum Dots for Highly Efficient and Bright Electroluminescent Device. Advanced Óptical Materials, 2023, 11, . Narrowâ€Band Blueâ€Emitting Indium Phosphide Quantum Dots Induced by Highly Active Zn Precursor. 438 3.6 1 Advanced Optical Materials, 2023, 11, . Interface regulation toward low driving voltage perovskite light-emitting diodes. Applied Physics 439 1.5 Letters, 2023, 122, .

ARTICLE IF CITATIONS # Efficient Quantum-Dot Light-Emitting Diodes Based on Solvent-Annealed SnO₂ 440 2.0 3 Electron-Transport Layers. ACS Applied Electronic Materials, 2023, 5, 537-543. 441 Multi-Color Light-Emitting Diodes. Coatings, 2023, 13, 182. 1.2 Self-Assembled and Wavelength-Tunable Quantum Dot Whispering-Gallery-Mode Lasers for Backlight 442 4.5 4 Displays. Nano Letters, 2023, 23, 437-443. Blue light-emitting diodes based on colloidal quantum dots with reduced surface-bulk coupling. 443 5.8 Nature Communications, 2023, 14, . Highly stable quantum dot light-emitting diodes with improved interface contacting via violet 444 3.1 1 irradiation. Applied Surface Science, 2023, 615, 156339. Colloidal Quantum Dots: Synthesis, Composition, Structure, and Emerging Optoelectronic Applications. Laser and Photonics Reviews, 2023, 17, . 4.4 Highly Monodisperse PbS Quantum Dots with Facet Engineering for High-Radiance Light-Emitting 446 3.2 2 Diodes in the NIR-II Window. ACS Photonics, 2023, 10, 2241-2248. Superradiant Electron Energy Loss Spectroscopy. Nano Letters, 2023, 23, 779-787. 447 4.5 Universal Molecular Control Strategy for Scalable Fabrication of Perovskite Light-Emitting Diodes. 448 4.5 15 Nano Letters, 2023, 23, 985-992. 449 Applications of quantum dots in light-emitting devices., 2023, , 305-333. CdSe and Ag2S quantum dots: synthesis, effects of doping, and applications., 2023, , 267-285. 450 0 Slower Auger Recombination in 12-Faceted Dodecahedron CsPbBr₃ Nanocrystals. Journal 2.1 of Physical Chemistry Letters, 2023, 14, 1066-1072. Electrochemically Stable Ligands of ZnO Electron-Transporting Layers for Quantum-Dot 452 4.5 11 Light-Emitting Diodes. Nano Letters, 2023, 23, 1061-1067. Improving the performance of quantum dot light-emitting diodes by tailoring QD emitters. Nanoscale, 2023, 15, 3585-3593. 2.8 Does interfacial exciton quenching exist in high-performance quantum dot light-emitting diodes?. 454 2.8 3 Nanoscale, 2023, 15, 3430-3437. Quantum dot materials, devices, and their applications in photomedicine., 2023, , 155-200. Quantitative Determination of Charge Accumulation and Recombination in Operational Quantum Dots 456 Light Emitting Diodes via Time-Resolved Electroluminescence Spectroscopy. Journal of Physical 2.113 Chemistry Letters, 2023, 14, 1777-1783. Anisotropic Heavy-Metal-Free Semiconductor Nanocrystals: Synthesis, Properties, and Applications. Chemical Reviews, 2023, 123, 3625-3692.

		CITATION RI	EPORT	
#	Article		IF	CITATIONS
458	Patterning Quantum Dots via Photolithography: A Review. Advanced Materials, 2023, 3	ō,.	11.1	14
459	Nanoscale imaging of quantum dot dimers using time-resolved super-resolution microsc with scanning electron microscopy. Nanotechnology, 0, , .	opy combined	1.3	0
460	An efficient green-emitting quantum dot with near-unity quantum yield and suppressed recombination for high-performance light-emitting diodes. Chemical Engineering Journal 142027.		6.6	4
461	Carbon Quantum Dots with Nearâ€Unity Quantum Yield Bandgap Emission for Electrolı Lightâ€Emitting Diodes. Angewandte Chemie - International Edition, 2023, 62, .	ıminescent	7.2	28
462	Effects of concertation and size of aqueous QDs on the detection of ionizing radiation b changes in optical properties. Applied Radiation and Isotopes, 2023, 196, 110722.	based on	0.7	0
463	The fatigue effects in red emissive CdSe based QLED operated around turn-on voltage. J Chemical Physics, 2023, 158, .	ournal of	1.2	3
464	Unraveling the Turn-On Limitation of Quantum-Dot Electroluminescence via a Stepwise- Voltage Measurement. Physical Review Applied, 2023, 19, .	Increasing	1.5	4
465	Materials and device engineering to achieve high-performance quantum dots light emitt display applications. Chinese Physics B, O, , .	ing diodes for	0.7	0
466	All-Solution-Processed Quantum Dot Light-Emitting Diode Using Phosphomolybdic Acid Injection Layer. Materials, 2023, 16, 1371.	as Hole	1.3	2
467	Unlocking the electronic, optical and transport properties of semiconductor coupled qu using first principles methods. International Journal of Quantum Chemistry, 0, , .	antum dots	1.0	0
468	Review: Quantum Dot Light-Emitting Diodes. Chemical Reviews, 2023, 123, 4663-4692.		23.0	53
470	One-Pot Synthesis of InP Multishell Quantum Dots for Narrow-Bandwidth Light-Emitting Applied Nano Materials, 2023, 6, 3797-3802.	; Devices. ACS	2.4	1
471	Recent Advances and Challenges of Colloidal Quantum Dot Lightâ€Emitting Diodes for Applications. Advanced Materials, 0, , .	Display	11.1	19
472	Top-Emission ZnSeTe/ZnSe/ZnS-Based Blue Quantum Dot Light-Emitting Diodes with En Efficiency. Journal of Physical Chemistry Letters, 2023, 14, 2526-2532.	hanced Chroma	2.1	2
473	Flexible Quantum Dot Lightâ€Emitting Device for Emerging Multifunctional and Smart A Advanced Materials, 2023, 35, .	opplications.	11.1	13
474	Modeling charge transport mechanism in inorganic quantum dot light-emitting devices transport layer modification strategies. Journal of Applied Physics, 2023, 133, .	through	1.1	3
475	Carbon Quantum Dots with Nearâ€Unity Quantum Yield Bandgap Emission for Electrolı Lightâ€Emitting Diodes. Angewandte Chemie, 2023, 135, .	ıminescent	1.6	5
476	On the Electroluminescence Turnâ€On Mechanism of Blue Quantumâ€Dot Lightâ€Emit Optical Materials, 2023, 11, .	ting Diodes. Advanced	3.6	1

#	Article	IF	CITATIONS
477	All-inorganic lead halide perovskite nanocrystals applied in advanced display devices. Materials Horizons, 2023, 10, 1969-1989.	6.4	5
478	Approaching the theoretical efficiency limit of quantum-dot light-emitting diodes via synergistic optimization. Nano Research, 2023, 16, 10156-10163.	5.8	3
479	ZnO/silica quasi core/shell nanoparticles as electron transport materials for high-performance quantum-dot light-emitting diodes. Ceramics International, 2023, 49, 22304-22312.	2.3	1
480	Ultrabright Blue Light-emitting Cesium Bromide Quantum Dots for White LEDs. Chemical Communications, 0, , .	2.2	0
481	Pseudohalogen Resurfaced CsPbBr ₃ Nanocrystals for Bright, Efficient, and Stable Green-Light-Emitting Diodes. Nano Letters, 2023, 23, 3385-3393.	4.5	14
482	Origin of the bias instability in CsPbI3 light-emitting diodes. Applied Surface Science, 2023, 626, 157289.	3.1	3
483	Elaborating the interplay between the detecting unit and emitting unit in infrared quantum dot up-conversion photodetectors. Nanoscale, 2023, 15, 8197-8203.	2.8	5
484	Quantum Dot (QD)-Induced Toxicity and Biocompatibility. , 2023, , 181-211.		Ο
485	Colorâ€Tunable Organic Lightâ€Emitting Displays for Interactive Multiâ€Signal Visualization. Advanced Functional Materials, 2023, 33, .	7.8	8
488	Design Principle for Tetrahedral Semiconductors and Their Functional Derivatives: Cation Stabilizing Charged Cluster Network. Nano Letters, 2023, 23, 4648-4653.	4.5	2
490	Machine Learning Assisted Stability Analysis of Blue Quantum Dot Light-Emitting Diodes. Nano Letters, 2023, 23, 5738-5745.	4.5	4
507	Ultrastable and High-Efficiency Deep Red QLEDs through Giant Continuously Graded Colloidal Quantum Dots with Shell Engineering. Nano Letters, 2023, 23, 6689-6697.	4.5	4
513	From LEDs to lasing by electrical injection, this is possible for lead halide perovskites?. , 2023, , 183-199.		0
522	Heavy-metal-free blue-emitting ZnSe(Te) quantum dots: synthesis and light-emitting applications. Journal of Materials Chemistry C, 2023, 11, 14495-14514.	2.7	2
541	Advances in Colloidal Quantum Dot Laser Diodes. , 0, , .		0
543	Synthesis and hybridization of CuInS ₂ nanocrystals for emerging applications. Chemical Society Reviews, 2023, 52, 8374-8409.	18.7	2
562	Metal oxides in quantum-dot-based LEDs and their applications. , 2024, , 409-442.		0
564	Introduction to engineered nanomaterials. , 2024, , 1-23.		0

#	Article	IF	CITATIONS
566	Dynamical control of nanoscale light-matter interactions in low-dimensional quantum materials. Light: Science and Applications, 2024, 13, .	7.7	0
573	Metal oxide-based phosphors for white light-emitting diodes. , 2024, , 139-163.		0