A Survey on malware analysis and mitigation technique

Computer Science Review 32, 1-23 DOI: 10.1016/j.cosrev.2019.01.002

Citation Report

#	Article	IF	CITATIONS
1	Software-defined forensic framework for malware disaster management in Internet of Thing devices for extreme surveillance. Computer Communications, 2019, 147, 14-20.	5.1	8
2	A Consistently-Executing Graph-Based Approach for Malware Packer Identification. IEEE Access, 2019, 7, 51620-51629.	4.2	10
3	Instrumenting API Hooking for a Realtime Dynamic Analysis. , 2019, , .		1
4	Classification of malicious process using highâ€level activity based dynamic analysis. Security and Privacy, 2019, 2, e86.	2.7	1
5	Identifying Malicious Software Using Deep Residual Long-Short Term Memory. IEEE Access, 2019, 7, 163128-163137.	4.2	25
7	Contextual Identification of Windows Malware through Semantic Interpretation of API Call Sequence. Applied Sciences (Switzerland), 2020, 10, 7673.	2.5	14
8	Analysis of Security Mechanisms to Mitigate Hacker Attacks to Improve e-Commerce Management in Ecuador. , 2020, , .		1
9	Development of Reinforcement Learning and Pattern Matching (RLPM) Based Firewall for Secured Cloud Infrastructure. Wireless Personal Communications, 2020, 115, 993-1018.	2.7	13
10	A proposed Crypto-Ransomware Early Detection(CRED) Model using an Integrated Deep Learning and Vector Space Model Approach. , 2020, , .		12
11	A Malware Variant Resistant To Traditional Analysis Techniques. , 2020, , .		4
12	A survey on machine learning-based malware detection in executable files. Journal of Systems Architecture, 2021, 112, 101861.	4.3	101
13	Automated malware identification method using image descriptors and singular value decomposition. Multimedia Tools and Applications, 2021, 80, 10881-10900.	3.9	9
14	Malware Behavior Through Network Trace Analysis. Lecture Notes in Networks and Systems, 2021, , 3-18.	0.7	2
15	Tight Arms Race: Overview of Current Malware Threats and Trends in Their Detection. IEEE Access, 2021, 9, 5371-5396.	4.2	59
16	An Adaptive Behavioral-Based Incremental Batch Learning Malware Variants Detection Model Using Concept Drift Detection and Sequential Deep Learning. IEEE Access, 2021, 9, 97180-97196.	4.2	33
17	Comparative Performance Analysis of Anti-virus Software. Communications in Computer and Information Science, 2021, , 430-443.	0.5	1
18	Early Detection of In-Memory Malicious Activity Based on Run-Time Environmental Features. Lecture Notes in Computer Science, 2021, , 397-404.	1.3	0
20	Trends and Challenges in Network Covert Channels Countermeasures. Applied Sciences (Switzerland), 2021, 11, 1641.	2.5	34

#	Article	IF	CITATIONS
21	Malicious Traffic classification Using Long Short-Term Memory (LSTM) Model. Wireless Personal Communications, 2021, 119, 2707-2724.	2.7	13
22	Comparative analysis of Android and iOS from security viewpoint. Computer Science Review, 2021, 40, 100372.	15.3	34
23	A survey and taxonomy of program analysis for IoT platforms. Ain Shams Engineering Journal, 2021, 12, 3725-3736.	6.1	6
24	Malicious application detection in android — A systematic literature review. Computer Science Review, 2021, 40, 100373.	15.3	31
25	Vulnerability retrospection of security solutions for software-defined Cyber–Physical System against DDoS and IoT-DDoS attacks. Computer Science Review, 2021, 40, 100371.	15.3	49
26	A threat model method for ICS malware. , 2021, , .		10
27	Boosting training for PDF malware classifier via active learning. International Journal of Intelligent Systems, 2022, 37, 2803-2821.	5.7	17
28	Security Analysis and Bypass User Authentication Bound to Device of Windows Hello in the Wild. Security and Communication Networks, 2021, 2021, 1-13.	1.5	2
29	A Flow-based Multi-agent Data Exfiltration Detection Architecture for Ultra-low Latency Networks. ACM Transactions on Internet Technology, 2021, 21, 1-30.	4.4	6
30	Comprehensive Analysis of IoT Malware Evasion Techniques. Engineering, Technology & Applied Science Research, 2021, 11, 7495-7500.	1.9	6
31	Identifying meaningful clusters in malware data. Expert Systems With Applications, 2021, 177, 114971.	7.6	4
32	The Risk of Botnets in Cyber Physical Systems. , 2020, , 81-106.		5
33	Advanced metering infrastructures. , 2020, , .		5
34	A Novel Method for Detecting Advanced Persistent Threat Attack Based on Belief Rule Base. Applied Sciences (Switzerland), 2021, 11, 9899.	2.5	5
35	An IoT Botnet Prediction Model Using Frequency based Dependency Graph. , 2019, , .		2
36	Introduction to Malware Analysis. Studies in Computational Intelligence, 2022, , 129-141.	0.9	4
37	Beyond Labeling: Using Clustering to Build Network Behavioral Profiles of Malware Families. , 2021, , 381-409.		6
38	A Malware Detection Framework Based on Forensic and Unsupervised Machine Learning Methodologies. , 2020, , .		1

#	Article	IF	CITATIONS
39	A Quest for Best: A Detailed Comparison Between Drakvuf-VMI-Based and Cuckoo Sandbox-Based Technique for Dynamic Malware Analysis. Advances in Intelligent Systems and Computing, 2021, , 275-290.	0.6	7
40	MANIAC: A Man-Machine Collaborative System for Classifying Malware Author Groups. , 2021, , .		1
41	Investigating Malware Propagation and Behaviour Using System and Network Pixel-Based Visualisation. SN Computer Science, 2022, 3, 1.	3.6	1
42	A Recent Research on Malware Detection Using Machine Learning Algorithm: Current Challenges and Future Works. Lecture Notes in Computer Science, 2021, , 469-481.	1.3	5
43	A study on malicious software behaviour analysis and detection techniques: Taxonomy, current trends and challenges. Future Generation Computer Systems, 2022, 130, 1-18.	7.5	23
44	USING TRANSFER LEARNING FOR MALWARE CLASSIFICATION. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLIV-4/W3-2020, 343-349.	0.2	6
45	Security Threat and Vulnerability Assessment and Measurement in Secure Software Development. Computers, Materials and Continua, 2022, 71, 5039-5059.	1.9	11
46	Polymorphic Malware Behavior Through Network Trace Analysis. , 2022, , .		2
47	On the Effectiveness of Image Processing Based Malware Detection Techniques. Cybernetics and Systems, 2022, 53, 615-640.	2.5	7
48	Tools and Techniques for Collection and Analysis of Internet-of-Things malware: A systematic state-of-art review. Journal of King Saud University - Computer and Information Sciences, 2022, 34, 9867-9888.	3.9	11
49	A pilot comparative analysis of the Cuckoo and Drakvuf sandboxes: An end-user perspective. Military Technical Courier, 2022, 70, 372-392.	0.7	1
50	A game model design using test bed for Malware analysis training. Information and Computer Security, 2022, ahead-of-print, .	2.2	0
51	CamoDroid: An Android application analysis environment resilient against sandbox evasion. Journal of Systems Architecture, 2022, 125, 102452.	4.3	3
52	Deep Learning for Malware Classification Platform using Windows API Call Sequence. , 2021, , .		1
53	EthClipper: A Clipboard Meddling Attack on Hardware Wallets with Address Verification Evasion. , 2021, , .		5
54	The Reliability Assessment for Advanced Persistent Threat Defense based on Correlation Evidence Reasoning Rule. , 2021, , .		0
55	Malware Detection Approaches using Machine Learning Techniques- Strategic Survey. , 2021, , .		1
56	A Taxonomy for Threat Actors' Delivery Techniques. Applied Sciences (Switzerland), 2022, 12, 3929.	2.5	3

ARTICLE IF CITATIONS # Malware Detection Using LightGBM With a Custom Logistic Loss Function. IEEE Access, 2022, 10, 4.2 7 57 47792-47804. ConcSpectre: Be Aware of Forthcoming Malware Hidden in Concurrent Programs. IEEE Transactions 4.6 on Reliability, 2022, 71, 1174-1188. Deep-Ensemble and Multifaceted Behavioral Malware Variant Detection Model. IEEE Access, 2022, 10, 59 4.2 7 42762-42777. Application of the SAMA methodology to Ryuk malware. Journal of Computer Virology and Hacking Techniques, 2023, 19, 165-198. Utility of Binary Cuckoo Search Approach for Microarray Data Analysis. Advances in Healthcare 61 0.2 0 Information Systems and Administration Book Series, 2022, , 12-31. ModX., 2022, , . MaliCage: A packed malware family classification framework based on DNN and GAN. Journal of 63 2.5 2 Information Security and Applications, 2022, 68, 103267. Malware Detection Issues, Challenges, and Future Directions: A Survey. Applied Sciences 2.5 (Switzerland), 2022, 12, 8482. A comprehensive review on detection of cyber-attacks: Data sets, methods, challenges, and future 7.7 17 66 research directions. Internet of Things (Netherlands), 2022, 20, 100615. Static Analysis of Malware. SpringerBriefs in Computer Science, 2022, , . 0.2 Towards Optimizing Malware Detection: An Approach Based onÂGenerative Adversarial Networks 68 1.3 1 andÂTransformers. Lecture Notes in Computer Science, 2022, , 598-610. Principles of Code-Level Analysis. SpringerBriefs in Computer Science, 2022, , . 0.2 Cyber Weapons and Artificial Intelligence: Impact, Influence and the Challenges for Arms Control., 70 1 2022, , 145-158. Cybersecurity Infrastructure adoption Model for Malware Mitigation in Small Medium Enterprises (ŚME)., 2022, , . PDF Malware Detection Based on Optimizable Decision Trees. Electronics (Switzerland), 2022, 11, 3142. 72 3.1 11 Machine Learning and Hyperparameters Algorithms for Identifying Groundwater Aflaj Potential Mapping in Semi-Arid Ecosystems Using LiDAR, Sentinel-2, GIS Data, and Analysis. Remote Sensing, 2022, 14, 5425. Malware Detection by Control-Flow Graph Level Representation Learning With Graph Isomorphism 74 4.2 5 Network. IEEE Access, 2022, 10, 111830-111841. Detection of Android Malware Behavior in Browser Downloads., 2022, , .

CITATION REPORT

#	Article	IF	Citations
76	A comprehensive survey on deep learning based malware detection techniques. Computer Science Review, 2023, 47, 100529.	15.3	36
77	Diffusion of White-Hat Botnet Using Lifespan with Controllable Ripple Effect for Malware Removal in IoT Networks. Sensors, 2023, 23, 1018.	3.8	2
78	A Review on Nature, Cybercrime and Best Practices of Digital Footprints. , 2022, , .		0
79	Prior Knowledge based Advanced Persistent Threats Detection for IoT in a Realistic Benchmark. , 2022, ,		2
80	A Novel and Efficient Sequential Learning-Based Malware Classification Model. , 2022, , .		1
81	A Blueprint for Collaborative Cybersecurity Operations Centres with Capacity for Shared Situational Awareness, Coordinated Response, and Joint Preparedness. , 2022, , .		3
82	Study ofÂanÂApproach Based onÂtheÂAnalysis ofÂComputer Program Execution Traces forÂthe Detection ofÂVulnerabilities. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2022, , 105-115.	0.3	0
83	A Cheating Attack on a Whitelist-based Anti-Ransomware Solution and its Countermeasure. , 2023, , .		2
84	Early-Stage Ransomware Detection Based onÂPre-attack Internal API Calls. Lecture Notes in Networks and Systems, 2023, , 417-429.	0.7	0
85	TCMal: A Hybrid Deep Learning Model for Encrypted Malicious Traffic Classification. , 2022, , .		2
86	PDF Malware Detection Based on Fuzzy Unordered Rule Induction Algorithm (FURIA). Applied Sciences (Switzerland), 2023, 13, 3980.	2.5	2
87	Study of Various Cyber Threats and Their Mitigation Techniques Requirements. Wireless Personal Communications, 0, , .	2.7	1
88	A Survey of Malware Forensics Analysis Techniques and Tools. , 2023, , .		1
89	Detecting Malware Activities With MalpMiner: A Dynamic Analysis Approach. IEEE Access, 2023, 11, 84772-84784.	4.2	0
90	NG-MVEE: A New Proposed Hybrid Technique for Enhanced Mitigation of Code Re-Use Attack. IEEE Access, 2023, 11, 48169-48191.	4.2	0
91	CLOUDOSCOPE: Detecting Anti-Forensic Malware using Public Cloud Environments. , 2023, , .		0
92	Similarity-Based Hybrid Malware Detection Model Using API Calls. Mathematics, 2023, 11, 2944.	2.2	3
93	YAMME: a YAra-byte-signatures Metamorphic Mutation Engine. IEEE Transactions on Information Forensics and Security, 2023, 18, 4530-4545.	6.9	2

#	Article	IF	CITATIONS
94	Organizational cybersecurity readiness in the ICT sector: a quanti-qualitative assessment. Information and Computer Security, 2023, ahead-of-print, .	2.2	0
95	Delving and Unveiling the Malicious World: Implementing Malware Analysis for Preventive Approach. , 2023, , .		2
96	JMLKelinci+: Detecting Semantic Bugs and Covering Branches with Valid Inputs Using Coverage-guided Fuzzing and Runtime Assertion Checking. Formal Aspects of Computing, 2024, 36, 1-24.	1.8	1
97	A comprehensive survey on hardware-assisted malware analysis and primitive techniques. Computer Networks, 2023, 235, 109967.	5.1	1
98	Parent process termination: an adversarial technique for persistent malware. Journal of Cyber Security Technology, 0, , 1-26.	2.9	0
99	Malware Analysis and Its Mitigation Tools. Advances in Information Security, Privacy, and Ethics Book Series, 2023, , 263-284.	0.5	2
100	PDFalse: Evasive Malicious PDF Machine Learning Classifier. , 2023, , .		1
101	Machine learning aided malware detection for secure and smart manufacturing: a comprehensive analysis of the state of the art. International Journal on Interactive Design and Manufacturing, 0, , .	2.2	0
102	A Review of State-of-the-Art Malware Attack Trends and Defense Mechanisms. IEEE Access, 2023, 11, 121118-121141.	4.2	1
103	Bypassing Heaven's Gate Technique Using Black-Box Testing. Sensors, 2023, 23, 9417.	3.8	1
104	Learning autoencoder ensembles for detecting malware hidden communications in IoT ecosystems. Journal of Intelligent Information Systems, 0, , .	3.9	0
105	A survey of strategy-driven evasion methods for PE malware: Transformation, concealment, and attack. Computers and Security, 2024, 137, 103595.	6.0	1
106	Scaling a Machine Learning Approach to many kinds of Malicious Behavior for Cybersecurity. , 2023, , .		0
107	Evaluation of Information Technology Equivalence in Telemedicine. , 2023, , .		0
108	A Survey of Recent Advances in Deep Learning Models for Detecting Malware in Desktop and Mobile Platforms. ACM Computing Surveys, 0, , .	23.0	0
109	Assessment of the actual security of the information system by studying the equivalence of the applied technologies. Revista Colombiana De Computacion, 2023, 24, 29-38.	0.5	0
110	Hide My Payload: An Empirical Study of Antimalware Evasion Tools. , 2023, , .		0
111	Android Operating System. Progress in IS, 2024, , 25-42.	0.6	0

#	Article	IF	CITATIONS
112	Enhancing Android Malware Detection: CFS Based Texture Feature Selection and Ensembled Classifier for Malware App Analysis. Communications in Computer and Information Science, 2024, , 292-306.	0.5	0
113	Enhancing Ransomware Detection: A Registry Analysis-Based Approach. , 2023, , .		0
114	An Efficient Support Vector Machine Algorithm Based Network Outlier Detection System. IEEE Access, 2024, 12, 24428-24441.	4.2	0
115	Enhancing Cybersecurity Resilience: Real-time Ransomware Detection using AES Algorithm on Kafka Stream. , 2023, , .		0
116	IoT-enabled B2B Integration. SSRN Electronic Journal, 0, , .	0.4	0