Bioinspired Artificial Sensory Nerve Based on Nafion M

Advanced Functional Materials 29, 1808783 DOI: 10.1002/adfm.201808783

Citation Report

#	Article	IF	CITATIONS
1	Recent Advances in Transistorâ€Based Artificial Synapses. Advanced Functional Materials, 2019, 29, 1903700.	7.8	396
2	Flexible oxide neuromorphic transistors with synaptic learning functions. Journal Physics D: Applied Physics, 2019, 52, 405101.	1.3	7
3	Electronic Skin: Recent Progress and Future Prospects for Skinâ€Attachable Devices for Health Monitoring, Robotics, and Prosthetics. Advanced Materials, 2019, 31, e1904765.	11.1	936
4	Cellular Carbon-Film-Based Flexible Sensor and Waterproof Supercapacitors. ACS Applied Materials & Interfaces, 2019, 11, 26288-26297.	4.0	28
5	Solutionâ€Processed Polymer Thinâ€Film Memristors with an Electrochromic Feature and Frequencyâ€Dependent Synaptic Plasticity. Advanced Intelligent Systems, 2019, 1, 1900022.	3.3	14
6	Biomimetics for high-performance flexible tactile sensors and advanced artificial sensory systems. Journal of Materials Chemistry C, 2019, 7, 14816-14844.	2.7	65
7	Robust Ag/ZrO ₂ /WS ₂ /Pt Memristor for Neuromorphic Computing. ACS Applied Materials & Interfaces, 2019, 11, 48029-48038.	4.0	123
8	A nanofluidic memristor based on ion concentration polarization. Analyst, The, 2019, 144, 7168-7172.	1.7	22
9	All-metal oxide synaptic transistor with modulatable plasticity. Nanotechnology, 2020, 31, 065201.	1.3	13
10	Mimicking Human and Biological Skins for Multifunctional Skin Electronics. Advanced Functional Materials, 2020, 30, 1904523.	7.8	247
11	Flexible Neuromorphic Electronics for Computing, Soft Robotics, and Neuroprosthetics. Advanced Materials, 2020, 32, e1903558.	11.1	289
12	Artificial Perception Built on Memristive System: Visual, Auditory, and Tactile Sensations. Advanced Intelligent Systems, 2020, 2, 1900118.	3.3	53
13	An artificial spiking afferent nerve based on Mott memristors for neurorobotics. Nature Communications, 2020, 11, 51.	5.8	217
14	A UV damage-sensing nociceptive device for bionic applications. Nanoscale, 2020, 12, 1484-1494.	2.8	22
15	Albumen based protein gated bioinspired neuromorphic transistors with learning abilities. Organic Electronics, 2020, 87, 105961.	1.4	10
16	Memristive Devices for Neuromorphic Applications: Comparative Analysis. BioNanoScience, 2020, 10, 834-847.	1.5	24
17	A Habituation Sensory Nervous System with Memristors. Advanced Materials, 2020, 32, e2004398.	11.1	78
18	Nonvolatile Flexible Memory Based on a Planar Zigzagâ€Type Nitrogenâ€Doped Picene. Advanced Intelligent	3.3	11

#	Article	IF	CITATIONS
19	A self-powered artificial retina perception system for image preprocessing based on photovoltaic devices and memristive arrays. Nano Energy, 2020, 78, 105246.	8.2	91
20	Allâ€Printed Electronic Skin Based on Deformable and Ionic Mechanotransducer Array. Macromolecular Bioscience, 2020, 20, e2000147.	2.1	15
21	Flexible Pressure Sensors for Biomedical Applications: From Ex Vivo to In Vivo. Advanced Materials Interfaces, 2020, 7, 2000743.	1.9	57
22	Self-Powered Memory Systems. , 2020, 2, 1669-1690.		15
23	Templateâ€Directed Growth of Hierarchical MOF Hybrid Arrays for Tactile Sensor. Advanced Functional Materials, 2020, 30, 2001296.	7.8	80
24	Stimuliâ€Enabled Artificial Synapses for Neuromorphic Perception: Progress and Perspectives. Small, 2020, 16, e2001504.	5.2	55
25	Recent Advances in Flexible Fieldâ€Effect Transistors toward Wearable Sensors. Advanced Intelligent Systems, 2020, 2, 2000113.	3.3	46
26	Artificial Indiumâ€Tinâ€Oxide Synaptic Transistor by Inkjet Printing Using Solutionâ€Processed ZrO _{<i>x</i>} Gate Dielectric. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000314.	0.8	8
27	Electromechanical coupling effects for data storage and synaptic devices. Nano Energy, 2020, 77, 105156.	8.2	16
28	Bioinspired, Self-Powered, and Highly Sensitive Electronic Skin for Sensing Static and Dynamic Pressures. ACS Applied Materials & Interfaces, 2020, 12, 37239-37247.	4.0	36
29	Aligned PCL Fiber Conduits Immobilized with Nerve Growth Factor Gradients Enhance and Direct Sciatic Nerve Regeneration. Advanced Functional Materials, 2020, 30, 2002610.	7.8	77
30	Artificially Intelligent Tactile Ferroelectric Skin. Advanced Science, 2020, 7, 2001662.	5.6	45
31	Technologies toward next generation human machine interfaces: From machine learning enhanced tactile sensing to neuromorphic sensory systems. Applied Physics Reviews, 2020, 7, .	5.5	194
32	Robust Polyethylenimine Electrolyte for High Performance and Thermally Stable Atomic Switch Memristors. Advanced Functional Materials, 2020, 30, 2004514.	7.8	31
33	Flexible Colorâ€Tunable Electroluminescent Devices by Designing Dielectricâ€Distinguishing Doubleâ€Stacked Emissive Layers. Advanced Functional Materials, 2020, 30, 2005200.	7.8	32
34	Flexible Waterproof Piezoresistive Pressure Sensors with Wide Linear Working Range Based on Conductive Fabrics. Nano-Micro Letters, 2020, 12, 159.	14.4	53
35	Flexible Hybrid Sensor Systems with Feedback Functions. Advanced Functional Materials, 2021, 31, 2007436.	7.8	80
36	Artificial Tactile Perceptual Neuron with Nociceptive and Pressure Decoding Abilities. ACS Applied Materials & Interfaces, 2020, 12, 26258-26266.	4.0	55

#	Article	IF	CITATIONS
37	Passive Filters for Nonvolatile Storage Based on Capacitive-Coupled Memristive Effects in Nanolayered Organic–Inorganic Heterojunction Devices. ACS Applied Nano Materials, 2020, 3, 5045-5052.	2.4	18
38	Recent advances in organicâ€based materials for resistive memory applications. InformaÄnÃ-Materiály, 2020, 2, 995-1033.	8.5	125
39	Energy scavenging artificial nervous system for detecting rotational movement. Nano Energy, 2020, 74, 104912.	8.2	29
40	A carbon-based memristor design for associative learning activities and neuromorphic computing. Nanoscale, 2020, 12, 13531-13539.	2.8	49
41	A novel post-processed surface modified double-network polymer layer for a triboelectric nanogenerator. Journal of Materials Chemistry A, 2020, 8, 6328-6336.	5.2	30
42	Dualâ€Gated MoS ₂ Transistors for Synaptic and Programmable Logic Functions. Advanced Electronic Materials, 2020, 6, 1901408.	2.6	41
43	Room-temperature developed flexible biomemristor with ultralow switching voltage for array learning. Nanoscale, 2020, 12, 9116-9123.	2.8	33
44	Ionic synergetically coupled electrolyte-gated transistors for neuromorphic engineering applications. , 2020, , 145-177.		1
45	Oxygenâ€Detecting Synaptic Device for Realization of Artificial Autonomic Nervous System for Maintaining Oxygen Homeostasis. Advanced Materials, 2020, 32, e2002653.	11.1	37
46	The Design of 3Dâ€Interface Architecture in an Ultralowâ€Power, Electrospun Singleâ€Fiber Synaptic Transistor for Neuromorphic Computing. Small, 2020, 16, e1907472.	5.2	54
47	Electroformingâ€Free Artificial Synapses Based on Proton Conduction in αâ€MoO 3 Films. Advanced Electronic Materials, 2020, 6, 1901290.	2.6	14
48	Non–zero-crossing current-voltage hysteresis behavior in memristive system. Materials Today Advances, 2020, 6, 100056.	2.5	37
49	Implementing a Type of Synaptic Coupling between Excitatory and Inhibitory Cells by Using Pt/Poly(3,4-ethylenedioxythiophene):Polystyrenesulfonate/HfO _{<i>x</i>} /Pt Memristive Structure. Journal of Physical Chemistry C, 2020, 124, 4843-4851.	1.5	2
50	Neuromorphic Processing of Pressure Signal Using Integrated Sensor-Synaptic Device Capable of Selective and Reversible Short- and Long-Term Plasticity Operation. ACS Applied Materials & Interfaces, 2020, 12, 23207-23216.	4.0	37
51	An artificial piezotronic synapse for tactile perception. Nano Energy, 2020, 73, 104756.	8.2	36
52	Evolution of Bioâ€Inspired Artificial Synapses: Materials, Structures, and Mechanisms. Small, 2021, 17, e2000041.	5.2	55
53	Subâ€Femtojouleâ€Energyâ€Consumption Conformable Synaptic Transistors Based on Organic Singleâ€Crystalline Nanoribbons. Advanced Functional Materials, 2021, 31, 2007894.	7.8	45
54	Building Light Stimulated Synaptic Memory Devices for Visual Memory Simulation. Advanced	2.6	12

	CHANON		
#	Article	IF	CITATIONS
55	Solution-processed electronics for artificial synapses. Materials Horizons, 2021, 8, 447-470.	6.4	74
56	An optoelectronic synaptic transistor with efficient dual modulation by light illumination. Journal of Materials Chemistry C, 2021, 9, 3412-3420.	2.7	40
57	ABO ₃ multiferroic perovskite materials for memristive memory and neuromorphic computing. Nanoscale Horizons, 2021, 6, 939-970.	4.1	79
58	Introduction to tactile sensors. , 2021, , 1-12.		1
59	2D oriented covalent organic frameworks for alcohol-sensory synapses. Materials Horizons, 2021, 8, 2041-2049.	6.4	27
60	Recent advances in metal nanoparticleâ€based floating gate memory. Nano Select, 2021, 2, 1245-1265.	1.9	25
61	Controlled Assembly of MXene Nanosheets as an Electrode and Active Layer for Highâ€Performance Electronic Skin. Advanced Functional Materials, 2021, 31, 2010533.	7.8	143
62	High-Performance Organic Synaptic Transistors with an Ultrathin Active Layer for Neuromorphic Computing. ACS Applied Materials & amp; Interfaces, 2021, 13, 8672-8681.	4.0	37
63	Flexible pressure sensors with microstructures. Nano Select, 2021, 2, 1874-1901.	1.9	16
64	Multiterminal Ionic Synaptic Transistor With Artificial Blink Reflex Function. IEEE Electron Device Letters, 2021, 42, 351-354.	2.2	19
65	MXenes for memristive and tactile sensory systems. Applied Physics Reviews, 2021, 8, .	5.5	25
66	Self-Powered Intelligent Human-Machine Interaction for Handwriting Recognition. Research, 2021, 2021, 4689869.	2.8	21
67	Organic electronic synapses with low energy consumption. Joule, 2021, 5, 794-810.	11.7	79
68	Indium oxide nanomesh-based electrolyte-gated synaptic transistors. Journal of Information Display, 2021, 22, 179-185.	2.1	5
69	Negative effect of cations out-diffusion and auto-doping on switching mechanisms of transparent memristor devices employing ZnO/ITO heterostructure. Applied Physics Letters, 2021, 118, .	1.5	7
70	Organic Synaptic Transistors: The Evolutionary Path from Memory Cells to the Application of Artificial Neural Networks. Advanced Functional Materials, 2021, 31, 2101951.	7.8	73
71	Low-power electronic technologies for harsh radiation environments. Nature Electronics, 2021, 4, 243-253.	13.1	39
72	Magnetically induced micropillar arrays for an ultrasensitive flexible sensor with a wireless recharging system. Science China Materials, 2021, 64, 1977-1988.	3.5	13

#	Article	IF	CITATIONS
73	Recent Applications of Different Microstructure Designs in High Performance Tactile Sensors: A Review. IEEE Sensors Journal, 2021, 21, 10291-10303.	2.4	27
74	Emerging Materials and Technologies with Applications in Flexible Neural Implants: A Comprehensive Review of Current Issues with Neural Devices. Advanced Materials, 2021, 33, e2005786.	11.1	51
75	Flexible Ta/TiO _x /TaO _x /Ru memristive synaptic devices on polyimide substrates. Nanotechnology, 2021, 32, 335205.	1.3	4
76	Highly Sensitive Pseudocapacitive Iontronic Pressure Sensor with Broad Sensing Range. Nano-Micro Letters, 2021, 13, 140.	14.4	69
77	Enhancement of Synaptic Characteristics Achieved by the Optimization of Proton–Electron Coupling Effect in a Solidâ€State Electrolyteâ€Gated Transistor. Small, 2021, 17, e2100242.	5.2	13
78	Low power consumption photoelectric coupling perovskite memristor with adjustable threshold voltage. Nanotechnology, 2021, 32, 375201.	1.3	3
79	CO ₂ â€Induced 2D Niâ€BDC Metal–Organic Frameworks with Enhanced Photocatalytic CO ₂ Reduction Activity. Advanced Materials Interfaces, 2021, 8, 2100205.	1.9	36
80	Neuromorphic Devices for Bionic Sensing and Perception. Frontiers in Neuroscience, 2021, 15, 690950.	1.4	20
81	Microâ€Nano Processing of Active Layers in Flexible Tactile Sensors via Template Methods: A Review. Small, 2021, 17, e2100804.	5.2	82
82	Artificial multisensory integration nervous system with haptic and iconic perception behaviors. Nano Energy, 2021, 85, 106000.	8.2	83
83	Fully Degradable Memristors and Humidity Sensors Based on a Tyrosine-Rich Peptide. ACS Applied Electronic Materials, 2021, 3, 3372-3378.	2.0	14
84	Flexible Artificial Synapses with a Biocompatible Maltose–Ascorbic Acid Electrolyte Gate for Neuromorphic Computing. ACS Applied Materials & Interfaces, 2021, 13, 34597-34604.	4.0	19
85	Highly sensitive flexible tactile perceptual interactive platform with functions of Braille code recognition. Journal Physics D: Applied Physics, 2021, 54, 375102.	1.3	4
86	Engineered Mechanosensors Inspired by Biological Mechanosensilla. Advanced Materials Technologies, 2021, 6, 2100352.	3.0	14
87	Recent Advances in Flexible Organic Synaptic Transistors. Advanced Electronic Materials, 2021, 7, 2100336.	2.6	43
88	Memristor Based on Inorganic and Organic Two-Dimensional Materials: Mechanisms, Performance, and Synaptic Applications. ACS Applied Materials & amp; Interfaces, 2021, 13, 32606-32623.	4.0	86
89	Short-term memory mimicked in a synaptic transistor gated by albumen. Journal Physics D: Applied Physics, 2021, 54, 505402.	1.3	1
90	A Skin-Inspired Artificial Mechanoreceptor for Tactile Enhancement and Integration. ACS Nano, 2021, 15, 16422-16431.	7.3	66

#	Article	IF	Citations
91	Organic and perovskite memristors for neuromorphic computing. Organic Electronics, 2021, 98, 106301.	1.4	54
92	Recent progress in artificial synaptic devices: materials, processing and applications. Journal of Materials Chemistry C, 2021, 9, 8372-8394.	2.7	41
93	Bioinspired Prosthetic Interfaces. Advanced Materials Technologies, 2020, 5, 1900856.	3.0	42
94	Self-powered high-sensitivity sensory memory actuated by triboelectric sensory receptor for real-time neuromorphic computing. Nano Energy, 2020, 75, 104930.	8.2	64
95	Biomimetic Tactile Sensors Based on Nanomaterials. ACS Nano, 2020, 14, 1220-1226.	7.3	53
96	Analytical Model of the Piezoresistive Behavior of Highly Compressible Sensors Made of Microporous Nanocomposites. Advanced Theory and Simulations, 2021, 4, .	1.3	3
97	Flexible and recyclable bio-based transient resistive memory enabled by self-healing polyimine membrane. Journal of Colloid and Interface Science, 2022, 608, 1126-1134.	5.0	15
98	The self-powered artificial synapse mechanotactile sensing system by integrating triboelectric plasma and gas-ionic-gated graphene transistor. Nano Energy, 2022, 91, 106660.	8.2	41
99	Flexible artificial Si-In-Zn-O/ion gel synapse and its application to sensory-neuromorphic system for sign language translation. Science Advances, 2021, 7, eabg9450.	4.7	41
100	A Multifunctional Biomimetic Flexible Sensor Based Novel Artificial Tactile Neuron with Perceptual Memory. Advanced Materials Interfaces, 2021, 8, 2101068.	1.9	10
101	Processing, Characterization, and Impact of Nafion Thin Film on Photonic Nanowaveguides for Humidity Sensing. Advanced Photonics Research, 2022, 3, 2100181.	1.7	9
102	Protrusion Microstructure-Induced Sensitivity Enhancement for Zinc Oxide–Carbon Nanotube Flexible Pressure Sensors. ACS Applied Electronic Materials, 2021, 3, 5506-5513.	2.0	28
103	Three-Terminal Ovonic Threshold Switch (3T-OTS) with Tunable Threshold Voltage for Versatile Artificial Sensory Neurons. Nano Letters, 2022, 22, 733-739.	4.5	10
104	A Flexible Tactile Sensor With Dual-Interlocked Structure for Broad Range Force Sensing and Gaming Applications. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-10.	2.4	12
105	Artificial Nociceptor Using Liquid Ionic Memory. Advanced Electronic Materials, 2022, 8, .	2.6	6
106	An Artificial Reflex Arc That Perceives Afferent Visual and Tactile Information and Controls Efferent Muscular Actions. Research, 2022, 2022, 9851843.	2.8	30
107	Advances in Biosensing and Environmental Monitoring Based on Electrospun Nanofibers. Advanced Fiber Materials, 2022, 4, 404-435.	7.9	73
108	Multimode modulated memristors for in-sensor computing system. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 148502.	0.2	2

#	Article	IF	CITATIONS
109	Filament Engineering of Twoâ€Dimensional <i>h</i> â€BN for a Selfâ€Power Mechanoâ€Nociceptor System. Small, 2022, 18, e2200185.	5.2	25
110	Artificial Multisensory Neurons with Fused Haptic and Temperature Perception for Multimodal Inâ€ S ensor Computing. Advanced Intelligent Systems, 2022, 4, .	3.3	25
111	Nanoâ€Memristors with 4ÂmVÂSwitching Voltage Based on Surfaceâ€Modified Copper Nanoparticles. Advanced Materials, 2022, 34, e2201197.	11.1	10
112	A Bioinspired Artificial Injury Response System Based on a Robust Polymer Memristor to Mimic a Sense of Pain, Sign of Injury, and Healing. Advanced Science, 2022, 9, e2200629.	5.6	34
113	Flexible Sensory Systems: Structural Approaches. Polymers, 2022, 14, 1232.	2.0	5
114	Bioinspired sensor system for health care and humanâ€machine interaction. EcoMat, 2022, 4, .	6.8	54
115	Memristive System Based Image Processing Technology: A Review and Perspective. Electronics (Switzerland), 2021, 10, 3176.	1.8	6
116	A Heterogeneously Integrated Spiking Neuron Array for Multimodeâ€Fused Perception and Object Classification. Advanced Materials, 2022, 34, e2200481.	11.1	48
117	Applications of biomemristors in next generation wearable electronics. Nanoscale Horizons, 2022, 7, 822-848.	4.1	19
118	Self-Powered Multifunctional Electronic Skin Based on Carbon Nanotubes/Poly(dimethylsiloxane) for Health Monitoring. ACS Applied Materials & Interfaces, 2022, 14, 21406-21417.	4.0	20
119	A Memristorâ€Based Bioinspired Multimodal Sensory Memory System for Sensory Adaptation of Robots. Advanced Intelligent Systems, 2022, 4, .	3.3	4
120	Recent Trends in Al-Based Intelligent Sensing. Electronics (Switzerland), 2022, 11, 1661.	1.8	8
121	Memristive Characteristics of the Single-Layer P-Type CuAlO2 and N-Type ZnO Memristors. Materials, 2022, 15, 3637.	1.3	1
122	Micro/nanoarrays and their applications in flexible sensors: A review. Materials Today Nano, 2022, 19, 100224.	2.3	9
123	Design Rules for a Wearable Micro-Fabricated Piezo-Resistive Pressure Sensor. Micromachines, 2022, 13, 838.	1.4	12
124	Biomimetic Microstructured Antifatigue Fracture Hydrogel Sensor for Human Motion Detection with Enhanced Sensing Sensitivity. ACS Applied Materials & amp; Interfaces, 2022, 14, 27371-27382.	4.0	30
125	A Flexible Artificial Sensory Nerve Enabled by Nanoparticleâ€Assembled Synaptic Devices for Neuromorphic Tactile Recognition. Advanced Science, 2022, 9, .	5.6	24
126	Self-powered perception system based on triboelectric nanogenerator and artificial neuron for fast-speed multilevel feature recognition. Nano Energy, 2022, 100, 107525.	8.2	16

#	Article	IF	CITATIONS
127	Neuromorphic Skin Based on Emerging Artificial Synapses. Advanced Materials Technologies, 2022, 7, .	3.0	11
128	Tactile Nearâ€Sensor Analogue Computing for Ultrafast Responsive Artificial Skin. Advanced Materials, 2022, 34, .	11.1	42
129	Emerging Memristive Devices for Brain-Inspired Computing and Artificial Perception. Frontiers in Nanotechnology, 0, 4, .	2.4	6
130	Recent Advances in Transistor-Based Bionic Perceptual Devices for Artificial Sensory Systems. Frontiers in Nanotechnology, 0, 4, .	2.4	1
131	A low-power stretchable neuromorphic nerve with proprioceptive feedback. Nature Biomedical Engineering, 2023, 7, 511-519.	11.6	59
132	Neurorobotic approaches to emulate human motor control with the integration of artificial synapse. Science Advances, 2022, 8, .	4.7	5
133	Highâ€Performance MXeneâ€Based Flexible and Wearable Pressure Sensor Based on a Microâ€Pyramid Structured Active Layer. Advanced Materials Technologies, 2023, 8, .	3.0	6
134	Emerging Devices for Sensing-Memory-Computing Applications. , 2022, , 143-197.		0
135	2D Layers of Group VA Semiconductors: Fundamental Properties and Potential Applications. Advanced Science, 2023, 10, .	5.6	10
136	Neuromorphic Metamaterials for Mechanosensing and Perceptual Associative Learning. Advanced Intelligent Systems, 2022, 4, .	3.3	5
137	Memristorâ€Based Intelligent Human‣ike Neural Computing. Advanced Electronic Materials, 2023, 9, .	2.6	16
138	Spatiotemporal Modulation of Plasticity in Multiâ€Terminal Tactile Synaptic Transistor. Advanced Electronic Materials, 2023, 9, .	2.6	3
139	An Oxide Based Spiking Thermoreceptor for Low-Power Thermography Edge Detection. IEEE Electron Device Letters, 2022, 43, 2196-2199.	2.2	6
140	Bioderived materials for stimuli-responsive, adaptive, and neuromorphic systems: A perspective. Journal of Composite Materials, 2023, 57, 659-678.	1.2	1
141	An electronic synaptic memory device based on four-cation mixed halide perovskite. Discover Materials, 2022, 2, .	1.0	5
142	MXenes for Sulfurâ€Based Batteries. Advanced Energy Materials, 2023, 13, .	10.2	24
143	A low-power and flexible bioinspired artificial sensory neuron capable of tactile perceptual and associative learning. Journal of Materials Chemistry B, 2023, 11, 1469-1477.	2.9	3
144	A review of memristor: material and structure design, device performance, applications and prospects. Science and Technology of Advanced Materials, 2023, 24, .	2.8	24

#	Article	IF	CITATIONS
145	Bio-plausible memristive neural components towards hardware implementation of brain-like intelligence. Materials Today, 2023, 62, 251-270.	8.3	10
146	Realization of Artificial Nerve Synapses Based on Biological Threshold Resistive Random Access Memory. Advanced Biology, 2023, 7, .	1.4	2
147	Biomaterial Inks from Peptide-Functionalized Silk Fibers for 3D Printing of Futuristic Wound-Healing and Sensing Materials. International Journal of Molecular Sciences, 2023, 24, 947.	1.8	6
148	Artificial Neuronal Devices Based on Emerging Materials: Neuronal Dynamics and Applications. Advanced Materials, 2023, 35, .	11.1	16
149	Recent progress in bio-voltage memristors working with ultralow voltage of biological amplitude. Nanoscale, 2023, 15, 4669-4681.	2.8	2
150	Impact of Initial Cyclic Loading on Mechanical Properties and Performance of Nafion. Sensors, 2023, 23, 1488.	2.1	0
151	An Oxide-Based Bilayer ZrOâ,,/IGZO Memristor for Synaptic Plasticity and Artificial Nociceptor. IEEE Transactions on Electron Devices, 2023, 70, 1001-1005.	1.6	3
152	In-Memory Tactile Sensor with Tunable Steep-Slope Region for Low-Artifact and Real-Time Perception of Mechanical Signals. ACS Nano, 2023, 17, 2134-2147.	7.3	5
153	Stretchable Transistorâ \in Structured Artificial Synapses for Neuromorphic Electronics. Small, 2023, 19, .	5.2	14
154	Perspective for soft robotics: the field's past and future. Bioinspiration and Biomimetics, 2023, 18, 035001.	1.5	6
155	Modeling and emulation of artificial nociceptor based on TiO2 threshold switching memristor. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2023, 290, 116360.	1.7	0
156	Biological function simulation in neuromorphic devices: from synapse and neuron to behavior. Science and Technology of Advanced Materials, 2023, 24, .	2.8	13
157	Advanced Bioinspired Organic Sensors for Futureâ€Oriented Intelligent Applications. , 0, , 2200066.		2
158	Molecular Structure Engineering of Polyelectrolyte Bilayer-Based Memristors: Implications for Linear Potentiation and Depression Characteristics. ACS Applied Nano Materials, 2023, 6, 3919-3926.	2.4	1
159	A Strain-Sensitive Flexible MoTe ₂ -Based Memristor for Gesture Recognition. IEEE Electron Device Letters, 2023, 44, 622-625.	2.2	3
160	Doppler Frequencyâ€Shift Information Processing in WO <i>_x</i> â€Based Memristive Synapse for Auditory Motion Perception. Advanced Science, 2023, 10, .	5.6	6
161	An Overview of Complex Instability Behaviors Induced by Nonlinearity of Power Electronic Systems with Memristive Load. Energies, 2023, 16, 2528.	1.6	0
162	Emerging Iontronic Neural Devices for Neuromorphic Sensory Computing. Advanced Materials, 2023, 35, .	11.1	18

#	Article	IF	CITATIONS
163	An Ultrawide Range, Highly Stretchable Liquid Metal Force and Strain Sensor Based on Spiral Multilayer Microfluidic Fibers. IEEE Transactions on Industrial Informatics, 2024, 20, 4-11.	7.2	1
164	Machine Learning for Tactile Perception: Advancements, Challenges, and Opportunities. Advanced Intelligent Systems, 2023, 5, .	3.3	8
165	Bioâ€Inspired Artificial Perceptual Devices for Neuromorphic Computing and Gesture Recognition. Advanced Functional Materials, 2023, 33, .	7.8	15
166	<scp>Polymerâ€based</scp> neuromorphic devices: resistive switches and organic electrochemical transistors. Polymer International, 2023, 72, 609-618.	1.6	3
167	Research Process of Carbon Dots in Memristors. Advanced Electronic Materials, 2023, 9, .	2.6	6
168	Design of a novel sensory neuromorphic circuit. , 2023, , .		0
169	Memcapacitive to Memristive Transition in Al/Y\$_{ext{2}}\$O\$_{ext{3}}\$/GZO Crossbar Array. IEEE Transactions on Electron Devices, 2023, , 1-6.	1.6	0
186	Organic Resistive Memories for Neuromorphic Electronics. , 2023, , 60-120.		0
195	An in-sensor humidity computing system for contactless human–computer interaction. Materials Horizons, 2024, 11, 939-948.	6.4	0