Protein Intake Falls below 0.6 g \hat{A} ·kg-1 \hat{A} ·d-1 in Healthy, 0 or Knee Arthroplasty

Journal of Nutrition, Health and Aging 23, 299-305 DOI: 10.1007/s12603-019-1157-2

Citation Report

#	Article	IF	CITATIONS
1	During Hospitalization, Older Patients at Risk for Malnutrition Consume <0.65 Grams of Protein per Kilogram Body Weight per Day. Nutrition in Clinical Practice, 2020, 35, 655-663.	2.4	19
2	Skeletal Muscle Disuse Atrophy and the Rehabilitative Role of Protein in Recovery from Musculoskeletal Injury. Advances in Nutrition, 2020, 11, 989-1001.	6.4	23
3	Dietary protein intake does not modulate daily myofibrillar protein synthesis rates or loss of muscle mass and function during short-term immobilization in young men: a randomized controlled trial. American Journal of Clinical Nutrition, 2021, 113, 548-561.	4.7	24
4	No differences in muscle protein synthesis rates following ingestion of wheat protein, milk protein, and their protein blend in healthy, young males. British Journal of Nutrition, 2021, 126, 1832-1842.	2.3	34
5	Omega-3 fatty acids and human skeletal muscle. Current Opinion in Clinical Nutrition and Metabolic Care, 2021, 24, 114-119.	2.5	12
6	Nutritional Strategies to Offset Disuse-Induced Skeletal Muscle Atrophy and Anabolic Resistance in Older Adults: From Whole-Foods to Isolated Ingredients. Nutrients, 2020, 12, 1533.	4.1	31
7	Protein intake in hospitalized older patients after hip fracture: Pilot feasibility study evaluating ESPEN guidelines for geriatrics. Clinical Nutrition Open Science, 2022, 42, 148-159.	1.3	0
9	Considerations for a protein-focused screening instrument in clinical nutrition assessment. Clinical Nutrition ESPEN, 2023, 58, 111-116.	1.2	0
10	Nutrition Intervention Informed by Indirect Calorimetry Compared to Predictive Equations to Achieve Weight Goals in Geriatric Rehabilitation Inpatients: The NEED Study. Journal of Nutrition, Health and Aging, 2023, 27, 833-841.	3.3	0
11	Better hospital foodservice – aspects highlighted in research published 2000–2023: A scoping review. Clinical Nutrition Open Science, 2024, 54, 1-40.	1.3	0
12	Fast-track rehabilitation focusing on nutritional support during the perioperative period of total hip arthroplasty. , 0, , .		0

2