Pathways for practical high-energy long-cycling lithiun

Nature Energy 4, 180-186 DOI: 10.1038/s41560-019-0338-x

Citation Report

#	Article	IF	CITATIONS
2	Ultrathin Bilayer of Graphite/SiO ₂ as Solid Interface for Reviving Li Metal Anode. Advanced Energy Materials, 2019, 9, 1901486.	10.2	128
3	Practical evaluation of energy densities for sulfide solid-state batteries. ETransportation, 2019, 1, 100010.	6.8	114
4	Stable LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Li Metal Cells with Practical Loading at 30 Degrees C and Elevated Temperatures. Journal of the Electrochemical Society, 2019, 166, A2834-A2839.	1.3	8
5	Electrochemical Diagram of an Ultrathin Lithium Metal Anode in Pouch Cells. Advanced Materials, 2019, 31, e1902785.	11.1	121
6	Using Mixed Salt Electrolytes to Stabilize Silicon Anodes for Lithium-Ion Batteries via in Situ Formation of Li–M–Si Ternaries (M = Mg, Zn, Al, Ca). ACS Applied Materials & Interfaces, 2019, 11, 29780-29790.	4.0	60
7	What Limits the Capacity of Layered Oxide Cathodes in Lithium Batteries?. ACS Energy Letters, 2019, 4, 1902-1906.	8.8	172
8	Using Triethyl Phosphate to Increase the Solubility of LiNO ₃ in Carbonate Electrolytes for Improving the Performance of the Lithium Metal Anode. Journal of the Electrochemical Society, 2019, 166, A2523-A2527.	1.3	60
9	Operational strategy to stabilize lithium metal anodes by applied thermal gradient. Energy Storage Materials, 2019, 22, 18-28.	9.5	13
10	Uniform Li deposition by regulating the initial nucleation barrier <i>via</i> a simple liquid-metal coating for a dendrite-free Li–metal anode. Journal of Materials Chemistry A, 2019, 7, 18861-18870.	5.2	93
11	Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte. Nature Energy, 2019, 4, 683-689.	19.8	603
12	Active formation of Li-ion batteries and its effect on cycle life. JPhys Energy, 2019, 1, 044003.	2.3	29
13	Cationic shield mediated electrodeposition stability in metal electrodes. Journal of Materials Chemistry A, 2019, 7, 18442-18450.	5.2	7
14	Safety Issues in Lithium Ion Batteries: Materials and Cell Design. Frontiers in Energy Research, 2019, 7, .	1.2	145
15	Thick Electrode Batteries: Principles, Opportunities, and Challenges. Advanced Energy Materials, 2019, 9, 1901457.	10.2	407
16	A review of naturally derived nanostructured materials for safe lithium metal batteries. Materials Today Nano, 2019, 8, 100049.	2.3	39
17	Thermally stable, nano-porous and eco-friendly sodium alginate/attapulgite separator for lithium-ion batteries. Energy Storage Materials, 2019, 22, 48-56.	9.5	79
18	Enabling High-Voltage Lithium-Metal Batteries under Practical Conditions. Joule, 2019, 3, 1662-1676.	11.7	598
19	Alkali-Metal Anodes: From Lab to Market. Joule, 2019, 3, 2334-2363.	11.7	247

#	Article	IF	CITATIONS
20	A Coaxialâ€Interweaved Hybrid Lithium Metal Anode for Longâ€Lifespan Lithium Metal Batteries. Advanced Energy Materials, 2019, 9, 1901932.	10.2	73
21	Plating/Stripping Behavior of Actual Lithium Metal Anode. Advanced Energy Materials, 2019, 9, 1902254.	10.2	168
22	A Compact Gel Membrane Based on a Blend of PEO and PVDF for Dendriteâ€Free Lithium Metal Anodes. ChemElectroChem, 2019, 6, 5413-5419.	1.7	21
23	Early Lithium Plating Behavior in Confined Nanospace of 3D Lithiophilic Carbon Matrix for Stable Solidâ€State Lithium Metal Batteries. Small, 2019, 15, e1904216.	5.2	61
24	Effects of oxalic acid concentration on the microstructures and properties of nano-VO2(B). Journal of Solid State Electrochemistry, 2019, 23, 2951-2959.	1.2	9
25	Supply risks of lithium-ion battery materials: An entire supply chain estimation. Materials Today Energy, 2019, 14, 100347.	2.5	50
26	Hot Formation for Improved Low Temperature Cycling of Anode-Free Lithium Metal Batteries. Journal of the Electrochemical Society, 2019, 166, A3342-A3347.	1.3	88
27	Microwave Processed, Onionlike Carbon and Fluoropolymer Passivated Lithium Metal Electrode for Enhanced Li Stripping/Plating Performance. ACS Applied Energy Materials, 2019, 2, 7933-7941.	2.5	2
28	Distinct Nanoscale Interphases and Morphology of Lithium Metal Electrodes Operating at Low Temperatures. Nano Letters, 2019, 19, 8664-8672.	4.5	141
29	Battery revolution to evolution. Nature Energy, 2019, 4, 893-893.	19.8	12
29 30	Battery revolution to evolution. Nature Energy, 2019, 4, 893-893. Tuning Solid Electrolyte Interphase Layer Properties through the Integration of Conversion Reaction. ACS Applied Materials & amp; Interfaces, 2019, 11, 44204-44213.	19.8 4.0	12 3
	Tuning Solid Electrolyte Interphase Layer Properties through the Integration of Conversion Reaction.		
30	Tuning Solid Electrolyte Interphase Layer Properties through the Integration of Conversion Reaction. ACS Applied Materials & amp; Interfaces, 2019, 11, 44204-44213. Extended Cycling through Rigid Block Copolymer Electrolytes Enabled by Reducing Impurities in	4.0	3
30 31	Tuning Solid Electrolyte Interphase Layer Properties through the Integration of Conversion Reaction. ACS Applied Materials & amp; Interfaces, 2019, 11, 44204-44213. Extended Cycling through Rigid Block Copolymer Electrolytes Enabled by Reducing Impurities in Lithium Metal Electrodes. ACS Applied Energy Materials, 2019, 2, 8197-8206. Milled-Si@C Composites as Potential Anode Materials for Li- ion Batteries. International Journal of	4.0 2.5	3 28
30 31 32	 Tuning Solid Electrolyte Interphase Layer Properties through the Integration of Conversion Reaction. ACS Applied Materials & amp; Interfaces, 2019, 11, 44204-44213. Extended Cycling through Rigid Block Copolymer Electrolytes Enabled by Reducing Impurities in Lithium Metal Electrodes. ACS Applied Energy Materials, 2019, 2, 8197-8206. Milled-Si@C Composites as Potential Anode Materials for Li- ion Batteries. International Journal of Electrochemical Science, 2019, , 9838-9849. Fluorinated Solid-Electrolyte Interphase in High-Voltage Lithium Metal Batteries. Joule, 2019, 3, 	4.0 2.5 0.5	3 28 2
30 31 32 33	 Tuning Solid Electrolyte Interphase Layer Properties through the Integration of Conversion Reaction. ACS Applied Materials & amp; Interfaces, 2019, 11, 44204-44213. Extended Cycling through Rigid Block Copolymer Electrolytes Enabled by Reducing Impurities in Lithium Metal Electrodes. ACS Applied Energy Materials, 2019, 2, 8197-8206. Milled-Si@C Composites as Potential Anode Materials for Li- ion Batteries. International Journal of Electrochemical Science, 2019, , 9838-9849. Fluorinated Solid-Electrolyte Interphase in High-Voltage Lithium Metal Batteries. Joule, 2019, 3, 2647-2661. Evolution of Dead Lithium Growth in Lithium Metal Batteries: Experimentally Validated Model of the 	4.0 2.5 0.5 11.7	3 28 2 432
30 31 32 33 34	 Tuning Solid Electrolyte Interphase Layer Properties through the Integration of Conversion Reaction. ACS Applied Materials & amp; Interfaces, 2019, 11, 44204-44213. Extended Cycling through Rigid Block Copolymer Electrolytes Enabled by Reducing Impurities in Lithium Metal Electrodes. ACS Applied Energy Materials, 2019, 2, 8197-8206. Milled-Si@C Composites as Potential Anode Materials for Li- ion Batteries. International Journal of Electrochemical Science, 2019, , 9838-9849. Fluorinated Solid-Electrolyte Interphase in High-Voltage Lithium Metal Batteries. Joule, 2019, 3, 2647-2661. Evolution of Dead Lithium Growth in Lithium Metal Batteries: Experimentally Validated Model of the Apparent Capacity Loss. Journal of the Electrochemical Society, 2019, 166, A3456-A3463. Molten Lithium-Filled Three-Dimensional Hollow Carbon Tube Mats for Stable Lithium Metal Anodes. 	4.0 2.5 0.5 11.7 1.3	3 28 2 432 45

#	Article	IF	CITATIONS
38	An Investigation on the Relationship between the Stability of Lithium Anode and Lithium Nitrate in Electrolyte. Journal of the Electrochemical Society, 2019, 166, A3570-A3574.	1.3	5
39	An in Situ-Formed Mosaic Li ₇ Sn ₃ /LiF Interface Layer for High-Rate and Long-Life Garnet-Based Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2019, 11, 34939-34947.	4.0	66
40	Design strategies toward catalytic materials and cathode structures for emerging Li–CO ₂ batteries. Journal of Materials Chemistry A, 2019, 7, 21605-21633.	5.2	75
41	A paradigm of storage batteries. Energy and Environmental Science, 2019, 12, 3203-3224.	15.6	154
42	Low-tortuosity and graded lithium ion battery cathodes by ice templating. Journal of Materials Chemistry A, 2019, 7, 21421-21431.	5.2	77
43	Solid-State Chemistries Stable with High-Energy Cathodes for Lithium-Ion Batteries. ACS Energy Letters, 2019, 4, 2444-2451.	8.8	65
44	Micro-Macroscopic Coupled Electrode Architecture for High-Energy-Density Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2019, 2, 7393-7402.	2.5	6
45	Monolithic solid–electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization. Nature Energy, 2019, 4, 796-805.	19.8	621
46	Understanding the impact of calcination time of high-voltage spinel Li1+Ni0.5Mn1.5O4 on structure and electrochemical behavior. Electrochimica Acta, 2019, 325, 134901.	2.6	14
47	Recent advances in nanostructured electrode-electrolyte design for safe and next-generation electrochemical energy storage. Materials Today Nano, 2019, 8, 100057.	2.3	31
48	Adiponitrile (C ₆ H ₈ N ₂): A New Biâ€Functional Additive for Highâ€Performance Liâ€Metal Batteries. Advanced Functional Materials, 2019, 29, 1902496.	7.8	115
49	Perspective—Safety Aspects of Energy Storage Testing. Journal of the Electrochemical Society, 2019, 166, E263-E265.	1.3	5
50	Alloy Anodes for Rechargeable Alkali-Metal Batteries: Progress and Challenge. , 2019, 1, 217-229.		135
51	Organic quinones towards advanced electrochemical energy storage: recent advances and challenges. Journal of Materials Chemistry A, 2019, 7, 23378-23415.	5.2	248
52	Sulfur–nitrogen co-doped porous carbon nanosheets to control lithium growth for a stable lithium metal anode. Journal of Materials Chemistry A, 2019, 7, 18267-18274.	5.2	71
53	Customizing a Li–metal battery that survives practical operating conditions for electric vehicle applications. Energy and Environmental Science, 2019, 12, 2174-2184.	15.6	130
54	Electrolyte for lithium protection: From liquid to solid. Green Energy and Environment, 2019, 4, 360-374.	4.7	110
55	Stable Liâ€Metal Deposition via a 3D Nanodiamond Matrix with Ultrahigh Young's Modulus. Small Methods, 2019, 3, 1900325.	4.6	40

#	Article	IF	CITATIONS
56	The effect of local lithium surface chemistry and topography on solid electrolyte interphase composition and dendrite nucleation. Journal of Materials Chemistry A, 2019, 7, 14882-14894.	5.2	45
57	Temperatureâ€Dependent Nucleation and Growth of Dendriteâ€Free Lithium Metal Anodes. Angewandte Chemie - International Edition, 2019, 58, 11364-11368.	7.2	182
58	Temperatureâ€Dependent Nucleation and Growth of Dendriteâ€Free Lithium Metal Anodes. Angewandte Chemie, 2019, 131, 11486-11490.	1.6	72
59	Charge Transfer and Storage of an Electrochemical Cell and Its Nano Effects. , 2019, , 29-87.		0
60	Promoting the Transformation of Li ₂ S ₂ to Li ₂ S: Significantly Increasing Utilization of Active Materials for Highâ€Sulfurâ€Loading Li–S Batteries. Advanced Materials, 2019, 31, e1901220.	11.1	303
61	Nanostructures and Nanomaterials for Batteries. , 2019, , .		12
62	Practical Evaluation of Li-Ion Batteries. Joule, 2019, 3, 911-914.	11.7	278
63	Less is more. Nature Nanotechnology, 2019, 14, 500-501.	15.6	4
64	Plasma-Introduced Oxygen Defects Confined in Li ₄ Ti ₅ O ₁₂ Nanosheets for Boosting Lithium-Ion Diffusion. ACS Applied Materials & Interfaces, 2019, 11, 17384-17392.	4.0	72
65	Porous LiF layer fabricated by a facile chemical method toward dendrite-free lithium metal anode. Journal of Energy Chemistry, 2019, 37, 197-203.	7.1	116
66	Efficient and robust lithium metal electrodes enabled by synergistic surface activation–passivation of copper frameworks. Journal of Materials Chemistry A, 2019, 7, 23208-23215.	5.2	21
67	Cood Practices for Rechargeable Lithium Metal Batteries. Journal of the Electrochemical Society, 2019, 166, A4141-A4149.	1.3	42
68	Probing the dynamic evolution of lithium dendrites: a review of <i>in situ</i> / <i>operando</i> characterization for lithium metallic batteries. Nanoscale, 2019, 11, 20429-20436.	2.8	26
69	Novel zinc–iodine hybrid supercapacitors with a redox iodide ion electrolyte and B, N dual-doped carbon electrode exhibit boosted energy density. Journal of Materials Chemistry A, 2019, 7, 24400-24407.	5.2	68
70	Ultrathin Al foils to fabricate dendrite-free Li–Al anodes. Journal of Materials Chemistry A, 2019, 7, 25415-25422.	5.2	27
71	Lithiophilic montmorillonite serves as lithium ion reservoir to facilitate uniform lithium deposition. Nature Communications, 2019, 10, 4973.	5.8	144
72	Molecular dynamics investigation of reduced ethylene carbonate aggregation at the onset of solid electrolyte interphase formation. Physical Chemistry Chemical Physics, 2019, 21, 22449-22455.	1.3	5
73	A supramolecular interaction strategy enabling high-performance all solid state electrolyte of lithium metal batteries. Energy Storage Materials, 2020, 25, 756-763.	9.5	59

#	Article	IF	CITATIONS
74	Understanding and suppression strategies toward stable Li metal anode for safe lithium batteries. Energy Storage Materials, 2020, 25, 644-678.	9.5	207
75	Lithiumâ€5chwefelâ€Batterien mit Magerelektrolyt: Herausforderungen und Perspektiven. Angewandte Chemie, 2020, 132, 12736-12753.	1.6	33
76	Rational design on separators and liquid electrolytes for safer lithium-ion batteries. Journal of Energy Chemistry, 2020, 43, 58-70.	7.1	170
77	Flexible lignin carbon membranes with surface ozonolysis to host lean lithium metal anodes for nickel-rich layered oxide batteries. Energy Storage Materials, 2020, 24, 129-137.	9.5	41
78	Cu coated soft fabric as anode for lithium metal batteries. Energy Storage Materials, 2020, 26, 371-377.	9.5	22
79	Photoacoustic Imaging of Lithium Metal Batteries. ACS Applied Energy Materials, 2020, 3, 1260-1264.	2.5	17
80	A Review of Composite Lithium Metal Anode for Practical Applications. Advanced Materials Technologies, 2020, 5, .	3.0	111
81	Lithium–Sulfur Batteries under Lean Electrolyte Conditions: Challenges and Opportunities. Angewandte Chemie - International Edition, 2020, 59, 12636-12652.	7.2	425
82	Copper Nitride Nanowires Printed Li with Stable Cycling for Li Metal Batteries in Carbonate Electrolytes. Advanced Materials, 2020, 32, e1905573.	11.1	105
83	Restructured rimous copper foam as robust lithium host. Energy Storage Materials, 2020, 26, 250-259.	9.5	34
84	Isotropic Li nucleation and growth achieved by an amorphous liquid metal nucleation seed on MXene framework for dendrite-free Li metal anode. Energy Storage Materials, 2020, 26, 223-233.	9.5	100
85	High-conductivity free-standing Li6PS5Cl/poly(vinylidene difluoride) composite solid electrolyte membranes for lithium-ion batteries. Journal of Materiomics, 2020, 6, 70-76.	2.8	51
86	Novel S-doped ordered mesoporous carbon nanospheres toward advanced lithium metal anodes. Nano Energy, 2020, 69, 104443.	8.2	52
87	A materials perspective on magnesium-ion-based solid-state electrolytes. Journal of Materials Chemistry A, 2020, 8, 2875-2897.	5.2	71
88	FSI-inspired solvent and "full fluorosulfonyl―electrolyte for 4 V class lithium-metal batteries. Energy and Environmental Science, 2020, 13, 212-220.	15.6	198
89	A copper-clad lithiophilic current collector for dendrite-free lithium metal anodes. Journal of Materials Chemistry A, 2020, 8, 1911-1919.	5.2	49
90	Porous film host-derived 3D composite polymer electrolyte for high-voltage solid state lithium batteries. Energy Storage Materials, 2020, 26, 283-289.	9.5	242
91	Covalent organic framework-based ultrathin crystalline porous film: manipulating uniformity of fluoride distribution for stabilizing lithium metal anode. Journal of Materials Chemistry A, 2020, 8, 3459-3467.	5.2	75

#	Article	IF	CITATIONS
92	Enhanced Surface Interactions Enable Fast Li ⁺ Conduction in Oxide/Polymer Composite Electrolyte. Angewandte Chemie, 2020, 132, 4160-4166.	1.6	27
93	Electrode Degradation in Lithium-Ion Batteries. ACS Nano, 2020, 14, 1243-1295.	7.3	484
94	Multifunctional inorganic nanomaterials for energy applications. Nanoscale, 2020, 12, 14-42.	2.8	89
95	An organic–inorganic semi-interpenetrating network ionogel electrolyte for high-voltage lithium metal batteries. Journal of Materials Chemistry A, 2020, 8, 4775-4783.	5.2	27
96	Bottom-top channeling Li nucleation and growth by a gradient lithiophilic 3D conductive host for highly stable Li-metal anodes. Journal of Materials Chemistry A, 2020, 8, 1678-1686.	5.2	31
97	Protective coatings for lithium metal anodes: Recent progress and future perspectives. Journal of Power Sources, 2020, 450, 227632.	4.0	104
98	Understanding Transformations in Battery Materials Using in Situ and Operando Experiments: Progress and Outlook. ACS Energy Letters, 2020, 5, 335-345.	8.8	82
99	Improving Lithiumâ€Metal Battery Performance under the Conditions of Lean Electrolyte through MoS ₂ Coating. ChemElectroChem, 2020, 7, 890-892.	1.7	13
100	Enhanced Surface Interactions Enable Fast Li ⁺ Conduction in Oxide/Polymer Composite Electrolyte. Angewandte Chemie - International Edition, 2020, 59, 4131-4137.	7.2	242
101	Dendriteâ€Free Potassium Metal Anodes in a Carbonate Electrolyte. Advanced Materials, 2020, 32, e1906735.	11.1	107
102	Constructing a Phosphating–Nitriding Interface for Practically Used Lithium Metal Anode. , 2020, 2, 1-8.		14
103	Tailoring the Pore Size of a Polypropylene Separator with a Polymer Having Intrinsic Nanoporosity for Suppressing the Polysulfide Shuttle in Lithium–Sulfur Batteries. Advanced Energy Materials, 2020, 10, 1902872.	10.2	72
104	A Sustainable Solid Electrolyte Interphase for Highâ€Energyâ€Đensity Lithium Metal Batteries Under Practical Conditions. Angewandte Chemie, 2020, 132, 3278-3283.	1.6	60
105	Graphdiyne nanostructure for high-performance lithium-sulfur batteries. Nano Energy, 2020, 68, 104307.	8.2	51
106	Revealing Principles for Design of Lean-Electrolyte Lithium Metal Anode via In Situ Spectroscopy. Journal of the American Chemical Society, 2020, 142, 2012-2022.	6.6	142
107	Crosstalk shielding of transition metal ions for long cycling lithium–metal batteries. Journal of Materials Chemistry A, 2020, 8, 4283-4289.	5.2	51
108	Batteries with high theoretical energy densities. Energy Storage Materials, 2020, 26, 46-55.	9.5	152
109	Multifunctional Silanization Interface for Highâ€Energy and Lowâ€Gassing Lithium Metal Pouch Cells. Advanced Energy Materials, 2020, 10, 1903362.	10.2	31

#	Article	IF	CITATIONS
110	Sulfurâ€Rich Molybdenum Sulfide as an Anode Coating to Improve Performance of Lithium Metal Batteries. ChemElectroChem, 2020, 7, 222-228.	1.7	4
111	A sandwich-type composite polymer electrolyte for all-solid-state lithium metal batteries with high areal capacity and cycling stability. Journal of Membrane Science, 2020, 596, 117739.	4.1	77
112	Stable lithium metal anode enabled by an artificial multi-phase composite protective film. Journal of Power Sources, 2020, 448, 227547.	4.0	30
113	Highly Concentrated LiTFSI–EC Electrolytes for Lithium Metal Batteries. ACS Applied Energy Materials, 2020, 3, 200-207.	2.5	67
114	Intrinsic Lithiophilicity of Li–Garnet Electrolytes Enabling Highâ€Rate Lithium Cycling. Advanced Functional Materials, 2020, 30, 1906189.	7.8	107
115	A Sustainable Solid Electrolyte Interphase for Highâ€Energyâ€Density Lithium Metal Batteries Under Practical Conditions. Angewandte Chemie - International Edition, 2020, 59, 3252-3257.	7.2	221
116	Regulating lithium nucleation and growth by zinc modified current collectors. Nano Research, 2020, 13, 45-51.	5.8	19
117	Neutron-based characterization techniques for lithium-ion battery research. Chinese Physics B, 2020, 29, 018201.	0.7	31
118	High Active Material Loading in Allâ€Solidâ€State Battery Electrode via Particle Size Optimization. Advanced Energy Materials, 2020, 10, 1902881.	10.2	152
119	Microscopic Properties of Na and Li—A First Principle Study of Metal Battery Anode Materials. ChemSusChem, 2020, 13, 771-783.	3.6	18
120	The origin of sulfuryl-containing components in SEI from sulfate additives for stable cycling of ultrathin lithium metal anodes. Journal of Energy Chemistry, 2020, 47, 128-131.	7.1	63
121	Crystallization of closo-borate electrolytes from solution enabling infiltration into slurry-casted porous electrodes for all-solid-state batteries. Energy Storage Materials, 2020, 26, 543-549.	9.5	50
122	Proton Inserted Manganese Dioxides as a Reversible Cathode for Aqueous Zn-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 319-327.	2.5	44
123	Redox Comediation with Organopolysulfides in Working Lithium-Sulfur Batteries. CheM, 2020, 6, 3297-3311.	5.8	177
124	Reducing polarization of lithium-sulfur batteries via ZnS/reduced graphene oxide accelerated lithium polysulfide conversion. Materials Today Energy, 2020, 18, 100519.	2.5	39
125	Nickel Impurities in the Solid-Electrolyte Interphase of Lithium-Metal Anodes Revealed by Cryogenic Electron Microscopy. Cell Reports Physical Science, 2020, 1, 100188.	2.8	22
126	Insights into the hydronium-ion storage of alloxazine in mild electrolyte. Journal of Materials Chemistry A, 2020, 8, 21983-21987.	5.2	17
127	Energy-dense Li metal anodes enabled by thin film electrolytes. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	0.9	6

#	Article	IF	CITATIONS
128	Function and Application of Defect Chemistry in Highâ€Capacity Electrode Materials for Liâ€Based Batteries. Chemistry - an Asian Journal, 2020, 15, 3620-3636.	1.7	12
129	High Voltage Stable Polyoxalate Catholyte with Cathode Coating for Allâ€Solidâ€State Liâ€Metal/NMC622 Batteries. Advanced Energy Materials, 2020, 10, 2002416.	10.2	41
130	Rational design of vanadium chalcogenides for sodium-ion batteries. Journal of Power Sources, 2020, 478, 228769.	4.0	21
131	Frontier Orbital Energy-Customized Ionomer-Based Polymer Electrolyte for High-Voltage Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2020, 12, 51374-51386.	4.0	21
132	Hydrated Mg <i>_x</i> V ₅ O ₁₂ Cathode with Improved Mg ²⁺ Storage Performance. Advanced Energy Materials, 2020, 10, 2002128.	10.2	31
133	Tantalum pentoxide-reduced graphene oxide nanocomposite as a new conversion type anode material having extrinsic pseudocapacitance for electrochemical lithium storage. Journal of Energy Storage, 2020, 32, 101991.	3.9	2
134	Design of Polymer Blend Electrolytes through a Machine Learning Approach. Macromolecules, 2020, 53, 9449-9459.	2.2	29
135	Accelerating Redox Kinetics of Lithium-Sulfur Batteries. Trends in Chemistry, 2020, 2, 1020-1033.	4.4	46
136	Role of Liâ€ion Depletion on Electrode Surface: Underlying Mechanism for Electrodeposition Behavior of Lithium Metal Anode. Advanced Energy Materials, 2020, 10, 2002390.	10.2	115
137	Challenges, mitigation strategies and perspectives in development of Li metal anode. Nano Select, 2020, 1, 622-638.	1.9	4
138	Dual redox mediators accelerate the electrochemical kinetics of lithium-sulfur batteries. Nature Communications, 2020, 11, 5215.	5.8	113
139	Ion-Transport-Rectifying Layer Enables Li-Metal Batteries with High Energy Density. Matter, 2020, 3, 1685-1700.	5.0	75
140	Minimizing lithium deactivation during high-rate electroplating via sub-ambient thermal gradient control. Materials Today Energy, 2020, 18, 100538.	2.5	7
141	Recently advances and perspectives of anode-free rechargeable batteries. Nano Energy, 2020, 78, 105344.	8.2	108
142	Toward High-Capacity Battery Anode Materials: Chemistry and Mechanics Intertwined. Chemistry of Materials, 2020, 32, 8755-8771.	3.2	28
143	Fundamentals and perspectives in developing zinc-ion battery electrolytes: a comprehensive review. Energy and Environmental Science, 2020, 13, 4625-4665.	15.6	497
144	Designing electrolytes with polymerlike glass-forming properties and fast ion transport at low temperatures. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26053-26060.	3.3	82
145	Facile preparation of a stable 3D host for lithium metal anodes. Chemical Communications, 2020, 56, 9898-9900.	2.2	17

#	Article	IF	CITATIONS
146	Trifluoromethyl-free anion for highly stable lithium metal polymer batteries. Energy Storage Materials, 2020, 32, 225-233.	9.5	42
147	Design Principles of Artificial Solid Electrolyte Interphases for Lithium-Metal Anodes. Cell Reports Physical Science, 2020, 1, 100119.	2.8	133
148	Multifunctional Properties of Al ₂ O ₃ /Polyacrylonitrile Composite Coating on Cu to Suppress Dendritic Growth in Anode-Free Li-Metal Battery. ACS Applied Energy Materials, 2020, 3, 7666-7679.	2.5	41
149	Cell degradation quantification—a performance metric-based approach. JPhys Energy, 2020, 2, 034003.	2.3	1
150	High Voltage Stable Li Metal Batteries Enabled by Ether-Based Highly Concentrated Electrolytes at Elevated Temperatures. Journal of the Electrochemical Society, 2020, 167, 110543.	1.3	13
151	Eutectic Electrolytes as a Promising Platform for Next-Generation Electrochemical Energy Storage. Accounts of Chemical Research, 2020, 53, 1648-1659.	7.6	143
152	Current status and future directions of multivalent metal-ion batteries. Nature Energy, 2020, 5, 646-656.	19.8	798
153	Redistribution of Li-ions using covalent organic frameworks towards dendrite-free lithium anodes: a mechanism based on a Galton Board. Science China Chemistry, 2020, 63, 1306-1314.	4.2	32
154	Developing high safety Li-metal anodes for future high-energy Li-metal batteries: strategies and perspectives. Chemical Society Reviews, 2020, 49, 5407-5445.	18.7	264
155	Chemical Vapor Deposition-Assisted Fabrication of Self-Assembled Co/MnO@C Composite Nanofibers as Advanced Anode Materials for High-Capacity Li-Ion Batteries. Langmuir, 2020, 36, 14342-14351.	1.6	6
156	Effects of Carbon-Based Electrode Materials for Excess Sodium Metal Anode Engineered Rechargeable Sodium Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 17697-17706.	3.2	10
157	Design Strategies of Safe Electrolytes for Preventing Thermal Runaway in Lithium Ion Batteries. Chemistry of Materials, 2020, 32, 9821-9848.	3.2	100
158	The Dr Jekyll and Mr Hyde of lithium sulfur batteries. Energy and Environmental Science, 2020, 13, 4808-4833.	15.6	91
159	Noninvasive <i>In Situ</i> NMR Study of "Dead Lithium―Formation and Lithium Corrosion in Full-Cell Lithium Metal Batteries. Journal of the American Chemical Society, 2020, 142, 20814-20827.	6.6	160
160	Through-Space Charge Modulation Overriding Substituent Effect: Rise of the Redox Potential at 3.35 V in a Lithium-Phenolate Stereoelectronic Isomer. Chemistry of Materials, 2020, 32, 9996-10006.	3.2	39
161	Evaluating Sulfur-Composite Cathode Material with Lithiated Graphite Anode in Coin Cell and Pouch Cell Configuration. Frontiers in Energy Research, 2020, 8, .	1.2	1
162	In-Built Polymer-in-Solvent and Solvent-in-Polymer Electrolytes for High-Voltage Lithium Metal Batteries. Cell Reports Physical Science, 2020, 1, 100146.	2.8	10
163	Lithium Metal Anodes with Nonaqueous Electrolytes. Chemical Reviews, 2020, 120, 13312-13348.	23.0	393

#	Article	IF	CITATIONS
164	Tailoring Ion-Conducting Interphases on Magnesium Metals for High-Efficiency Rechargeable Magnesium Metal Batteries. ACS Energy Letters, 2020, 5, 3733-3740.	8.8	30
165	Advanced energy materials for flexible batteries in energy storage: A review. SmartMat, 2020, 1, .	6.4	186
166	Electroanalytical Measurement of Interphase Formation at a Li Metal–Solid Electrolyte Interface. ACS Energy Letters, 2020, 5, 3860-3867.	8.8	14
167	Shielding Polysulfide Intermediates by an Organosulfurâ€Containing Solid Electrolyte Interphase on the Lithium Anode in Lithium–Sulfur Batteries. Advanced Materials, 2020, 32, e2003012.	11.1	108
168	Ionic liquid assisted multi-heteroatom doping in core-shell ZnFe2O4@rGO with highly reversible lithiation/delithiation kinetics. Journal of Alloys and Compounds, 2020, 848, 156593.	2.8	9
169	Guiding Smooth Li Plating and Stripping by a Spherical Island Model for Lithium Metal Anodes. ACS Applied Materials & Interfaces, 2020, 12, 38098-38105.	4.0	17
170	Lithium metal storage in zeolitic imidazolate framework derived nanoarchitectures. Energy Storage Materials, 2020, 33, 95-107.	9.5	40
171	Novel Hoberman Sphere Design for Interlaced Mn ₃ O ₄ @CNT Architecture with Atomic Layer Deposition-Coated TiO ₂ Overlayer as Advanced Anodes in Li-Ion Battery. ACS Applied Materials & Interfaces, 2020, 12, 39282-39292.	4.0	24
172	Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis. Nature Energy, 2020, 5, 693-702.	19.8	303
173	A Truxenoneâ€based Covalent Organic Framework as an Allâ€Solidâ€State Lithiumâ€Ion Battery Cathode with High Capacity. Angewandte Chemie, 2020, 132, 20565-20569.	1.6	5
174	Horizontal Stress Release for Protuberanceâ€Free Li Metal Anode. Advanced Functional Materials, 2020, 30, 2002522.	7.8	22
175	One-pot synthesis of small-sized Ni3S2 nanoparticles deposited on graphene oxide as composite anode materials for high-performance lithium-/sodium-ion batteries. Applied Surface Science, 2020, 531, 147316.	3.1	28
176	A Liquid Electrolyte with De-Solvated Lithium Ions for Lithium-Metal Battery. Joule, 2020, 4, 1776-1789.	11.7	146
177	Thermodynamic Understanding of Li-Dendrite Formation. Joule, 2020, 4, 1864-1879.	11.7	252
178	A Truxenoneâ€based Covalent Organic Framework as an Allâ€Solidâ€State Lithiumâ€Ion Battery Cathode with High Capacity. Angewandte Chemie - International Edition, 2020, 59, 20385-20389.	7.2	110
179	Anode-free rechargeable lithium metal batteries: Progress and prospects. Energy Storage Materials, 2020, 32, 386-401.	9.5	136
180	A facile strategy to reconcile 3D anodes and ceramic electrolytes for stable solid-state Li metal batteries. Energy Storage Materials, 2020, 32, 458-464.	9.5	35
181	High-energy lithium batteries based on single-ion conducting polymer electrolytes and Li[Ni0.8Co0.1Mn0.1]O2 cathodes. Nano Energy, 2020, 77, 105129.	8.2	76

#	Article	IF	CITATIONS
182	Lithium Dendrite Suppression with a Silica Nanoparticle-Dispersed Colloidal Electrolyte. ACS Applied Materials & Interfaces, 2020, 12, 37188-37196.	4.0	27
183	Understanding additive controlled lithium morphology in lithium metal batteries. Journal of Materials Chemistry A, 2020, 8, 16960-16972.	5.2	26
184	Lithium and potassium storage behavior comparison for porous nanoflaked Co3O4 anode in lithium-ion and potassium-ion batteries. Journal of Power Sources, 2020, 474, 228491.	4.0	27
185	Determining the intrinsic role of Mg doping in LiCoO2. Materials Letters, 2020, 277, 128407.	1.3	14
186	Engineering Wavyâ€Nanostructured Anode Interphases with Fast Ion Transfer Kinetics: Toward Practical Liâ€Metal Full Batteries. Advanced Functional Materials, 2020, 30, 2003800.	7.8	63
187	Nanotube network arrays with nickel oxide canopies as flexible high-energy anodes for lithium storage. Journal of Alloys and Compounds, 2020, 847, 156366.	2.8	4
188	Sequenceâ€Defined Peptoids with OH and COOH GroupsÂAs Binders to Reduce Cracks of Si Nanoparticles of Lithiumâ€lon Batteries. Advanced Science, 2020, 7, 2000749.	5.6	38
189	Surface modification of garnet with amorphous SnO ₂ <i>via</i> atomic layer deposition. Journal of Materials Chemistry A, 2020, 8, 18087-18093.	5.2	25
190	Tuning the Interfacial Electronic Conductivity by Artificial Electron Tunneling Barriers for Practical Lithium Metal Batteries. Nano Letters, 2020, 20, 6606-6613.	4.5	43
191	Fast Li-ion transport and uniform Li-ion flux enabled by a double–layered polymer electrolyte for high performance Li metal battery. Energy Storage Materials, 2020, 32, 55-64.	9.5	75
192	Physicochemical Concepts of the Lithium Metal Anode in Solid-State Batteries. Chemical Reviews, 2020, 120, 7745-7794.	23.0	468
193	Designing Advanced Lithiumâ€Based Batteries for Lowâ€Temperature Conditions. Advanced Energy Materials, 2020, 10, 2001972.	10.2	225
194	Designing Comb-Chain Crosslinker-Based Solid Polymer Electrolytes for Additive-Free All-Solid-State Lithium Metal Batteries. Nano Letters, 2020, 20, 6914-6921.	4.5	35
195	Heteroatom-doped carbon networks enabling robust and flexible silicon anodes for high energy Li-ion batteries. Journal of Materials Chemistry A, 2020, 8, 18338-18347.	5.2	47
196	Growth behavior and influence factors of three-dimensional hierarchical flower-like FeF ₃ ·0.33H ₂ O. CrystEngComm, 2020, 22, 5550-5557.	1.3	8
197	Regulating the Li ⁺ â€Solvation Structure of Ester Electrolyte for Highâ€Energyâ€Density Lithium Metal Batteries. Small, 2020, 16, e2004688.	5.2	34
198	Stable Potassium Metal Anodes with an Allâ€Aluminum Current Collector through Improved Electrolyte Wetting. Advanced Materials, 2020, 32, e2002908.	11.1	70
199	Ethylene glycol combustion strategy towards 3D mesoporous ZnCo2O4 as anodes for Li-ion batteries. Solid State Ionics, 2020, 356, 115461.	1.3	10

#	Article	IF	CITATIONS
200	Highly concentrated nitrile functionalized disiloxane - LiFSI based non-flammable electrolyte for high energy density Li metal battery. Journal of Electroanalytical Chemistry, 2020, 879, 114794.	1.9	12
201	Reversible Deposition of Lithium Particles Enabled by Ultraconformal and Stretchable Graphene Film for Lithium Metal Batteries. Advanced Materials, 2020, 32, e2005763.	11.1	64
202	Synergistic influence of charge conditions on electrochemical impedance response of LiNiMnCoO2 C coin cells - Complementary statistical analysis. Journal of Energy Storage, 2020, 32, 101809.	3.9	3
203	Inducing uniform lithium nucleation by integrated lithium-rich li-in anode with lithiophilic 3D framework. Energy Storage Materials, 2020, 33, 423-431.	9.5	56
204	Hierarchically Nanoporous 3D Assembly Composed of Functionalized Onionâ€Like Graphitic Carbon Nanospheres for Anodeâ€Minimized Li Metal Batteries. Small, 2020, 16, e2003918.	5.2	18
205	Opportunities and Challenges of High-Energy Lithium Metal Batteries for Electric Vehicle Applications. ACS Energy Letters, 2020, 5, 3140-3151.	8.8	196
206	Reaction heterogeneity in practical high-energy lithium–sulfur pouch cells. Energy and Environmental Science, 2020, 13, 3620-3632.	15.6	127
207	Porosity controlled carbon-based 3D anode for lithium metal batteries by a slurry based process. Chemical Communications, 2020, 56, 13040-13043.	2.2	16
208	Advances in the Design of 3D‣tructured Electrode Materials for Lithiumâ€Metal Anodes. Advanced Materials, 2020, 32, e2002193.	11.1	165
209	Dendrite-Free lithium electrode enabled by graphene aerogels with gradient porosity. Energy Storage Materials, 2020, 33, 329-335.	9.5	28
210	Enhanced cycling stability of high-voltage lithium metal batteries with a trifunctional electrolyte additive. Journal of Materials Chemistry A, 2020, 8, 22054-22064.	5.2	65
211	Effects of Film Formation on the Electrodeposition of Lithium. ChemElectroChem, 2020, 7, 4336-4342.	1.7	12
212	Sustained-Release Nanocapsules Enable Long-Lasting Stabilization of Li Anode for Practical Li-Metal Batteries. Nano-Micro Letters, 2020, 12, 176.	14.4	41
213	Challenges and Strategies to Advance Highâ€Energy Nickelâ€Rich Layered Lithium Transition Metal Oxide Cathodes for Harsh Operation. Advanced Functional Materials, 2020, 30, 2004748.	7.8	146
214	Mitigating Interfacial Instability in Polymer Electrolyte-Based Solid-State Lithium Metal Batteries with 4 V Cathodes. ACS Energy Letters, 2020, 5, 3244-3253.	8.8	93
215	Reconfiguring Organosulfur Cathode by Over-Lithiation to Enable Ultrathick Lithium Metal Anode toward Practical Lithium–Sulfur Batteries. ACS Nano, 2020, 14, 13784-13793.	7.3	62
216	Electrical Dynamic Switching of Magnetic Plasmon Resonance Based on Selective Lithium Deposition. Advanced Materials, 2020, 32, e2000058.	11.1	16
217	Insights into lithium ion deposition on lithium metal surfaces. Physical Chemistry Chemical Physics, 2020, 22, 21369-21382.	1.3	16

#	Article	IF	CITATIONS
218	Not All Fluorination Is the Same: Unique Effects of Fluorine Functionalization of Ethylene Carbonate for Tuning Solid-Electrolyte Interphase in Li Metal Batteries. Langmuir, 2020, 36, 11450-11466.	1.6	22
219	Stabilizing Dendritic Electrodeposition by Limiting Spatial Dimensions in Nanostructured Electrolytes. ACS Energy Letters, 2020, 5, 2889-2896.	8.8	13
220	Constructing Stable Anodic Interphase for Quasi-Solid-State Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2020, 12, 39335-39341.	4.0	12
221	Characterization of mechanical degradation in an all-solid-state battery cathode. Journal of Materials Chemistry A, 2020, 8, 17399-17404.	5.2	100
222	Free-standing lithiophilic Ag-nanoparticle-decorated 3D porous carbon nanotube films for enhanced lithium storage. RSC Advances, 2020, 10, 30880-30886.	1.7	9
223	Nanofibrous Conductive Binders Based on DNA-Wrapped Carbon Nanotubes for Lithium Battery Electrodes. IScience, 2020, 23, 101739.	1.9	3
224	Proton-Induced Disproportionation of Jahn–Teller-Active Transition-Metal lons in Oxides Due to Electronically Driven Lattice Instability. Journal of the American Chemical Society, 2020, 142, 21122-21130.	6.6	35
225	Electrophoretic Deposited Black Phosphorus on 3D Porous Current Collectors to Regulate Li Nucleation for Dendrite-Free Lithium Metal Anodes. ACS Applied Materials & Interfaces, 2020, 12, 51563-51572.	4.0	30
226	Role of inner solvation sheath within salt–solvent complexes in tailoring electrode/electrolyte interphases for lithium metal batteries. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28603-28613.	3.3	191
227	A High-Rate Two-Dimensional Polyarylimide Covalent Organic Framework Anode for Aqueous Zn-Ion Energy Storage Devices. Journal of the American Chemical Society, 2020, 142, 19570-19578.	6.6	232
228	Leveraging Cation Identity to Engineer Solid Electrolyte Interphases for Rechargeable Lithium Metal Anodes. Cell Reports Physical Science, 2020, 1, 100239.	2.8	11
229	Highly Efficient Interface Modification between Poly(Propylene Carbonate)-Based Solid Electrolytes and a Lithium Anode by Facile Graphite Coating. ACS Sustainable Chemistry and Engineering, 2020, 8, 17106-17115.	3.2	15
230	Thin laminar composite solid electrolyte with high ionic conductivity and mechanical strength towards advanced all-solid-state lithium–sulfur battery. Journal of Materials Chemistry A, 2020, 8, 23344-23353.	5.2	52
231	Probing the electrode–solution interfaces in rechargeable batteries by sum-frequency generation spectroscopy. Journal of Chemical Physics, 2020, 153, 170902.	1.2	27
232	Rapid Production of Metal–Organic Frameworks Based Separators in Industrial‣evel Efficiency. Advanced Science, 2020, 7, 2002190.	5.6	34
233	Ultrathin Aramid/COF Heterolayered Membrane for Solid-State Li-Metal Batteries. Nano Letters, 2020, 20, 8120-8126.	4.5	63
234	Concept design of solar cell satellite dish. IOP Conference Series: Materials Science and Engineering, 2020, 852, 012088.	0.3	0
235	Designing Advanced In Situ Electrode/Electrolyte Interphases for Wide Temperature Operation of 4.5 V Li LiCoO ₂ Batteries. Advanced Materials, 2020, 32, e2004898.	11.1	123

#	Article	IF	CITATIONS
236	Super-Expansion of Assembled Reduced Graphene Oxide Interlayers by Segregation of Al Nanoparticle Pillars for High-Capacity Na-Ion Battery Anodes. ACS Applied Materials & Interfaces, 2020, 12, 23781-23788.	4.0	16
237	Modulating reactivity and stability of metallic lithium <i>via</i> atomic doping. Journal of Materials Chemistry A, 2020, 8, 10363-10369.	5.2	18
238	Molar Volume Mismatch: A Malefactor for Irregular Metallic Electrodeposition with Solid Electrolytes. Journal of the Electrochemical Society, 2020, 167, 082510.	1.3	44
239	Stable Lithium Metal Anode Achieved by <i>In Situ</i> Grown CuO Nanowire Arrays on Cu Foam. Energy & Fuels, 2020, 34, 7684-7691.	2.5	36
240	A long-lasting dual-function electrolyte additive for stable lithium metal batteries. Nano Energy, 2020, 75, 104889.	8.2	77
241	Realizing High Volumetric Lithium Storage by Compact and Mechanically Stable Anode Designs. ACS Energy Letters, 2020, 5, 1986-1995.	8.8	72
242	Recent Advances in Developing Hybrid Materials for Sodium-Ion Battery Anodes. ACS Energy Letters, 2020, 5, 1939-1966.	8.8	149
243	Fluorinated Aromatic Diluent for Highâ€Performance Lithium Metal Batteries. Angewandte Chemie, 2020, 132, 14979-14986.	1.6	16
244	Fluorinated Aromatic Diluent for Highâ€Performance Lithium Metal Batteries. Angewandte Chemie - International Edition, 2020, 59, 14869-14876.	7.2	130
245	Sacrificial Poly(propylene carbonate) Membrane for Dispersing Nanoparticles and Preparing Artificial Solid Electrolyte Interphase on Li Metal Anode. ACS Applied Materials & Interfaces, 2020, 12, 27087-27094.	4.0	8
246	Colossal Granular Lithium Deposits Enabled by the Grain oarsening Effect for Highâ€Efficiency Lithium Metal Full Batteries. Advanced Materials, 2020, 32, e2001740.	11.1	157
247	Enabling Solid-State Li Metal Batteries by In Situ Forming Ionogel Interlayers. ACS Applied Energy Materials, 2020, 3, 5712-5721.	2.5	28
248	Fundamentals, impedance, and performance of solid-state Li-metal microbatteries. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, 033212.	0.9	3
249	Realizing high performance of solid-state lithium metal batteries by flexible ceramic/polymer hybrid solid electrolyte. Rare Metals, 2020, 39, 458-459.	3.6	31
250	A novel Mg/Na hybrid battery based on Na2VTi(PO4)3 cathode: Enlightening the Na-intercalation cathodes by a metallic Mg anode and a dual-ion Mg2+/Na+ electrolyte. Chemical Engineering Journal, 2020, 399, 125689.	6.6	13
251	A Surface Chemistry Approach to Tailoring the Hydrophilicity and Lithiophilicity of Carbon Films for Hosting Highâ€Performance Lithium Metal Anodes. Advanced Functional Materials, 2020, 30, 2000585.	7.8	37
252	Building Artificial Solidâ€Electrolyte Interphase with Uniform Intermolecular Ionic Bonds toward Dendriteâ€Free Lithium Metal Anodes. Advanced Functional Materials, 2020, 30, 2002414.	7.8	104
253	Atomically dispersed metal active centers as a chemically tunable platform for energy storage devices. Journal of Materials Chemistry A, 2020, 8, 15358-15372.	5.2	16

#	Article	IF	CITATIONS
254	Synergistic Dualâ€Additive Electrolyte Enables Practical Lithiumâ€Metal Batteries. Angewandte Chemie, 2020, 132, 15045-15051.	1.6	26
255	Synergistic Dualâ€Additive Electrolyte Enables Practical Lithiumâ€Metal Batteries. Angewandte Chemie - International Edition, 2020, 59, 14935-14941.	7.2	210
256	Anode-free, Lean-Electrolyte Lithium-Sulfur Batteries Enabled by Tellurium-Stabilized Lithium Deposition. Joule, 2020, 4, 1121-1135.	11.7	126
257	Cycling Lithium Metal on Graphite to Form Hybrid Lithium-Ion/Lithium Metal Cells. Joule, 2020, 4, 1296-1310.	11.7	80
258	Amide-Based Interface Layer with High Toughness In Situ Building on the Li Metal Anode. ACS Applied Materials & Interfaces, 2020, 12, 25826-25831.	4.0	6
259	Atomic layer deposition-strengthened lithiophilicity of ultrathin TiO2 film decorated Cu foil for stable lithium metal anode. Journal of Power Sources, 2020, 463, 228157.	4.0	33
260	Nitrogen-doped carbon nanotubes intertwined with porous carbon with enhanced cathode performance in lithium–sulfur batteries. Sustainable Energy and Fuels, 2020, 4, 3926-3933.	2.5	10
262	A Lithium Metal Anode Surviving Battery Cycling Above 200 °C. Advanced Materials, 2020, 32, e2000952.	11.1	35
263	Nanocomposite solid polymer electrolytes based on semi-interpenetrating hybrid polymer networks for high performance lithium metal batteries. Electrochimica Acta, 2020, 353, 136481.	2.6	19
264	Emerging Potassium Metal Anodes: Perspectives on Control of the Electrochemical Interfaces. Accounts of Chemical Research, 2020, 53, 1161-1175.	7.6	105
265	B ₂ P ₆ : A Two-Dimensional Anisotropic Janus Material with Potential in Photocatalytic Water Splitting and Metal-Ion Batteries. Chemistry of Materials, 2020, 32, 4795-4800.	3.2	142
266	Building an artificial solid electrolyte interphase with high-uniformity and fast ion diffusion for ultralong-life sodium metal anodes. Journal of Materials Chemistry A, 2020, 8, 16232-16237.	5.2	43
267	Polyolefinâ€Based Janus Separator for Rechargeable Sodium Batteries. Angewandte Chemie, 2020, 132, 16868-16877.	1.6	5
268	Lithium-ion battery separators: Recent developments and state of art. Current Opinion in Electrochemistry, 2020, 20, 99-107.	2.5	55
269	Wetting Phenomena and their Effect on the Electrochemical Performance of Surfaceâ€Tailored Lithium Metal Electrodes in Contact with Crossâ€linked Polymeric Electrolytes. Angewandte Chemie - International Edition, 2020, 59, 17145-17153.	7.2	21
270	Understanding capacity fading mechanism of thick electrodes for lithium-ion rechargeable batteries. Journal of Power Sources, 2020, 468, 228369.	4.0	54
271	Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nature Energy, 2020, 5, 526-533.	19.8	642
272	Determining the Length Scale of Transport Impedances in Li-Ion Electrodes: Li(Ni _{0.33} Mn _{0.33} Co _{0.33})O ₂ . Journal of the Electrochemical Society, 2020, 167, 100542.	1.3	11

#	Article	IF	CITATIONS
273	Efficient Low-Temperature Cycling of Lithium Metal Anodes by Tailoring the Solid-Electrolyte Interphase. ACS Energy Letters, 2020, 5, 2411-2420.	8.8	174
274	An ester electrolyte for lithium–sulfur batteries capable of ultra-low temperature cycling. Chemical Communications, 2020, 56, 9114-9117.	2.2	44
275	Activating Li ₂ S as the Lithium-Containing Cathode in Lithium–Sulfur Batteries. ACS Energy Letters, 2020, 5, 2234-2245.	8.8	125
276	Carbon-Intercalated Montmorillonite as Efficient Polysulfide Mediator for Enhancing the Performance of Lithium–Sulfur Batteries. Energy & Fuels, 2020, 34, 8947-8955.	2.5	19
277	Benetzungsvorgäge und ihr Einfluss auf die elektrochemischen Eigenschaften von oberflähenangepassten Lithiumâ€Metallâ€Elektroden in Kontakt mit quervernetzten Polymerâ€Elektrolyten. Angewandte Chemie, 2020, 132, 17293-17302.	1.6	6
278	A 500 Wh/kg Lithium-Metal Cell Based on Anionic Redox. Joule, 2020, 4, 1445-1458.	11.7	80
279	High-performance, long lifetime chloride ion battery using a NiFe–Cl layered double hydroxide cathode. Journal of Materials Chemistry A, 2020, 8, 12548-12555.	5.2	47
280	Liquefied gas electrolytes for wide-temperature lithium metal batteries. Energy and Environmental Science, 2020, 13, 2209-2219.	15.6	120
281	Ni–Li anti-site defect induced intragranular cracking in Ni-rich layer-structured cathode. Nano Energy, 2020, 76, 105021.	8.2	76
282	Freeâ€Standing Crystalline@Amorphous Core–Shell Nanoarrays for Efficient Energy Storage. Small, 2020, 16, e2000040.	5.2	21
283	Modulating Lithium Nucleation Behavior through Ultrathin Interfacial Layer for Superior Lithium Metal Batteries. ACS Applied Energy Materials, 2020, 3, 6692-6699.	2.5	8
284	Polyolefinâ€Based Janus Separator for Rechargeable Sodium Batteries. Angewandte Chemie - International Edition, 2020, 59, 16725-16734.	7.2	102
285	Recent Advances in Lithiophilic Porous Framework toward Dendrite-Free Lithium Metal Anode. Applied Sciences (Switzerland), 2020, 10, 4185.	1.3	33
286	Resolving Nanoscopic and Mesoscopic Heterogeneity of Fluorinated Species in Battery Solid-Electrolyte Interphases by Cryogenic Electron Microscopy. ACS Energy Letters, 2020, 5, 1128-1135.	8.8	199
287	Toward real-time monitoring of lithium metal growth and dendrite formation surveillance for safe lithium metal batteries. Journal of Materials Chemistry A, 2020, 8, 7090-7099.	5.2	11
288	2-Fluoropyridine: A novel electrolyte additive for lithium metal batteries with high areal capacity as well as high cycling stability. Chemical Engineering Journal, 2020, 393, 124789.	6.6	65
289	An ultrastable lithium metal anode enabled by designed metal fluoride spansules. Science Advances, 2020, 6, eaaz3112.	4.7	157
290	Sandwich structured NASICON-type electrolyte matched with sulfurized polyacrylonitrile cathode for high performance solid-state lithium-sulfur batteries. Chemical Engineering Journal, 2020, 393, 124705.	6.6	71

#	Article	IF	CITATIONS
291	Functionality of Dualâ€Phase Lithium Storage in a Porous Carbon Host for Lithiumâ€Metal Anode. Advanced Functional Materials, 2020, 30, 1910538.	7.8	68
292	Morphological and Chemical Mapping of Columnar Lithium Metal. Chemistry of Materials, 2020, 32, 2803-2814.	3.2	10
293	Lithium Metal Battery Pouch Cell Assembly and Prototype Demonstration Using Tailored Polypropylene Separator. Energy Technology, 2020, 8, 2000094.	1.8	5
294	Benchmarking the performance of all-solid-state lithium batteries. Nature Energy, 2020, 5, 259-270.	19.8	662
295	High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes. Nature Energy, 2020, 5, 299-308.	19.8	932
296	Challenges and Key Parameters of Lithium-Sulfur Batteries on Pouch Cell Level. Joule, 2020, 4, 539-554.	11.7	288
297	Enabling remarkable cycling performance of high-loading MoS2@Graphene anode for sodium ion batteries with tunable cut-off voltage. Journal of Power Sources, 2020, 458, 228040.	4.0	43
298	Performance enhanced high-nickel lithium metal batteries through stable cathode and anode electrolyte interfaces. Sustainable Energy and Fuels, 2020, 4, 2875-2883.	2.5	2
299	Regulating electrodeposition morphology of lithium: towards commercially relevant secondary Li metal batteries. Chemical Society Reviews, 2020, 49, 2701-2750.	18.7	310
300	Selfâ€Healing Materials for Energyâ€Storage Devices. Advanced Functional Materials, 2020, 30, 1909912.	7.8	121
300 301	Selfâ∈Healing Materials for Energyâ€Storage Devices. Advanced Functional Materials, 2020, 30, 1909912. Advanced Liquid Electrolytes for Rechargeable Li Metal Batteries. Advanced Functional Materials, 2020, 30, 1910777.	7.8 7.8	121 201
	Advanced Liquid Electrolytes for Rechargeable Li Metal Batteries. Advanced Functional Materials,		
301	Advanced Liquid Electrolytes for Rechargeable Li Metal Batteries. Advanced Functional Materials, 2020, 30, 1910777. A Flexible Ceramic/Polymer Hybrid Solid Electrolyte for Solidâ€6tate Lithium Metal Batteries. Advanced	7.8	201
301 302	Advanced Liquid Electrolytes for Rechargeable Li Metal Batteries. Advanced Functional Materials, 2020, 30, 1910777. A Flexible Ceramic/Polymer Hybrid Solid Electrolyte for Solidâ€6tate Lithium Metal Batteries. Advanced Materials, 2020, 32, e2000399. Transition Metal (Fe, Co, Mn) Boosting the Lithium Storage of the Multishelled NiO Anode. Energy	7.8	201 292
301 302 303	Advanced Liquid Electrolytes for Rechargeable Li Metal Batteries. Advanced Functional Materials, 2020, 30, 1910777. A Flexible Ceramic/Polymer Hybrid Solid Electrolyte for Solidâ€State Lithium Metal Batteries. Advanced Materials, 2020, 32, e2000399. Transition Metal (Fe, Co, Mn) Boosting the Lithium Storage of the Multishelled NiO Anode. Energy Technology, 2020, 8, 2000008. Composite polymer electrolytes reinforced by two-dimensional layer-double-hydroxide nanosheets	7.8 11.1 1.8	201 292 7
301 302 303 304	Advanced Liquid Electrolytes for Rechargeable Li Metal Batteries. Advanced Functional Materials, 2020, 30, 1910777. A Flexible Ceramic/Polymer Hybrid Solid Electrolyte for Solid‧tate Lithium Metal Batteries. Advanced Materials, 2020, 32, e2000399. Transition Metal (Fe, Co, Mn) Boosting the Lithium Storage of the Multishelled NiO Anode. Energy Technology, 2020, 8, 2000008. Composite polymer electrolytes reinforced by two-dimensional layer-double-hydroxide nanosheets for dendrite-free lithium batteries. Solid State Ionics, 2020, 347, 115275. Fast Capacitive Energy Storage and Long Cycle Life in a Deintercalation–Intercalation Cathode	7.8 11.1 1.8 1.3	201 292 7 26
301 302 303 304 305	Advanced Liquid Electrolytes for Rechargeable Li Metal Batteries. Advanced Functional Materials, 2020, 30, 1910777. A Flexible Ceramic/Polymer Hybrid Solid Electrolyte for Solidâ€State Lithium Metal Batteries. Advanced Materials, 2020, 32, e2000399. Transition Metal (Fe, Co, Mn) Boosting the Lithium Storage of the Multishelled NiO Anode. Energy Technology, 2020, 8, 2000008. Composite polymer electrolytes reinforced by two-dimensional layer-double-hydroxide nanosheets for dendrite-free lithium batteries. Solid State Ionics, 2020, 347, 115275. Fast Capacitive Energy Storage and Long Cycle Life in a Deintercalation–Intercalation Cathode Material. Small, 2020, 16, 1906025. Flaky and Dense Lithium Deposition Enabled by a Nanoporous Copper Surface Layer on Lithium Metal	7.8 11.1 1.8 1.3	 201 292 7 26 2

#	Article	IF	CITATIONS
309	Recent advances in research on anodes for safe and efficient lithium–metal batteries. Nanoscale, 2020, 12, 15528-15559.	2.8	31
310	Should All Electrochemical Energy Materials Be Isomaterially Heterostructured to Optimize Contra and Co-varying Physicochemical Properties?. Frontiers in Chemistry, 2020, 8, 515.	1.8	4
311	PVDF-HFP/LiF Composite Interfacial Film to Enhance the Stability of Li-Metal Anodes. ACS Applied Energy Materials, 2020, 3, 7191-7199.	2.5	33
312	Localized High Concentration Electrolytes for High Voltage Lithium–Metal Batteries: Correlation between the Electrolyte Composition and Its Reductive/Oxidative Stability. Chemistry of Materials, 2020, 32, 5973-5984.	3.2	97
313	Stabilizing Solid Electrolyte Interphases on Both Anode and Cathode for High Areal Capacity, Highâ€Voltage Lithium Metal Batteries with High Li Utilization and Lean Electrolyte. Advanced Functional Materials, 2020, 30, 2002824.	7.8	69
314	Understanding and applying coulombic efficiency in lithium metal batteries. Nature Energy, 2020, 5, 561-568.	19.8	526
315	High specific capacitance of manganese-based colloidal system with rare earth modification. Nanotechnology, 2020, 31, 424004.	1.3	4
316	Properties of Thin Lithium Metal Electrodes in Carbonate Electrolytes with Realistic Parameters. ACS Applied Materials & Interfaces, 2020, 12, 32863-32870.	4.0	8
317	Platinum nano-interlayer enhanced interface for stable all-solid-state batteries observed <i>via</i> cryo-transmission electron microscopy. Journal of Materials Chemistry A, 2020, 8, 13541-13547.	5.2	47
318	Rational design of hierarchical carbon hybrid microassemblies via reductive-catalytic chemical vapor deposition. Carbon, 2020, 167, 422-430.	5.4	6
319	Lithium degradation in lithium–sulfur batteries: insights into inventory depletion and interphasial evolution with cycling. Energy and Environmental Science, 2020, 13, 2501-2514.	15.6	88
320	Recent progress in all-solid-state lithium batteries: The emerging strategies for advanced electrolytes and their interfaces. Energy Storage Materials, 2020, 31, 401-433.	9.5	107
321	Polypyrrole-controlled plating/stripping for advanced zinc metal anodes. Materials Today Energy, 2020, 17, 100443.	2.5	40
322	Synchrotron Operando Depth Profiling Studies of State-of-Charge Gradients in Thick Li(Ni _{0.8} Mn _{0.1} Co _{0.1})O ₂ Cathode Films. Chemistry of Materials, 2020, 32, 6358-6364.	3.2	17
323	Structure-related electrochemical performance of organosulfur compounds for lithium–sulfur batteries. Energy and Environmental Science, 2020, 13, 1076-1095.	15.6	143
324	New Lithium Salt Forms Interphases Suppressing Both Li Dendrite and Polysulfide Shuttling. Advanced Energy Materials, 2020, 10, 1903937.	10.2	58
325	LaNiO3 as a Novel Anode for Lithium-Ion Batteries. Transactions of Tianjin University, 2020, 26, 142-147.	3.3	10
326	Deepâ€Eutecticâ€Solventâ€Based Selfâ€Healing Polymer Electrolyte for Safe and Longâ€Life Lithiumâ€Metal Batteries. Angewandte Chemie - International Edition, 2020, 59, 9134-9142.	7.2	292

#	Article	IF	CITATIONS
327	A Long Cycle Life, All-Solid-State Lithium Battery with a Ceramic–Polymer Composite Electrolyte. ACS Applied Energy Materials, 2020, 3, 2916-2924.	2.5	73
328	Heterostructured NiS ₂ /ZnIn ₂ S ₄ Realizing Toroid-like Li ₂ O ₂ Deposition in Lithium–Oxygen Batteries with Low-Donor-Number Solvents. ACS Nano, 2020, 14, 3490-3499.	7.3	113
329	Fundamentals and Challenges of Lithium Ion Batteries at Temperatures between â^'40 and 60 °C. Advanced Energy Materials, 2020, 10, 1904152.	10.2	200
330	Deepâ€Eutecticâ€Solventâ€Based Selfâ€Healing Polymer Electrolyte for Safe and Longâ€Life Lithiumâ€Metal Batteries. Angewandte Chemie, 2020, 132, 9219-9227.	1.6	42
331	Improving LiNi0.9Co0.08Mn0.02O2's cyclic stability via abating mechanical damages. Energy Storage Materials, 2020, 28, 1-9.	9.5	44
332	Enabling Rapid Charging Lithium Metal Batteries via Surface Acoustic Waveâ€Driven Electrolyte Flow. Advanced Materials, 2020, 32, e1907516.	11.1	35
333	Petaloid-shaped ZnO coated carbon felt as a controllable host to construct hierarchical Li composite anode. Nano Energy, 2020, 71, 104614.	8.2	44
334	DFT modelling of explicit solid–solid interfaces in batteries: methods and challenges. Physical Chemistry Chemical Physics, 2020, 22, 10412-10425.	1.3	44
335	In situ sulfur-doped graphene nanofiber network as efficient metal-free electrocatalyst for polysulfides redox reactions in lithium–sulfur batteries. Journal of Energy Chemistry, 2020, 47, 281-290.	7.1	72
336	Rational Design of a Laminated Dual-Polymer/Polymer–Ceramic Composite Electrolyte for High-Voltage All-Solid-State Lithium Batteries. , 2020, 2, 317-324.		59
337	Current Challenges and Routes Forward for Nonaqueous Lithium–Air Batteries. Chemical Reviews, 2020, 120, 6558-6625.	23.0	356
338	An aqueous manganese–lead battery for large-scale energy storage. Journal of Materials Chemistry A, 2020, 8, 5959-5967.	5.2	29
339	A stable high-voltage lithium-ion battery realized by an in-built water scavenger. Energy and Environmental Science, 2020, 13, 1197-1204.	15.6	67
340	Discovering the Influence of Lithium Loss on Garnet Li ₇ La ₃ Zr ₂ O ₁₂ Electrolyte Phase Stability. ACS Applied Energy Materials, 2020, 3, 3415-3424.	2.5	49
341	Review—Emerging Trends in the Design of Electrolytes for Lithium and Post-Lithium Batteries. Journal of the Electrochemical Society, 2020, 167, 050508.	1.3	89
342	Binary composites of strontium oxide/polyaniline for high performance supercapattery devices. Solid State Ionics, 2020, 347, 115276.	1.3	48
343	Is the Cation Innocent? An Analytical Approach on the Cationic Decomposition Behavior of <i>N</i> -Butyl- <i>N</i> -methylpyrrolidinium Bis(trifluoromethanesulfonyl)imide in Contact with Lithium Metal. Chemistry of Materials, 2020, 32, 2389-2398.	3.2	31
344	Electrolyte Engineering Enables High Stability and Capacity Alloying Anodes for Sodium and Potassium Ion Batteries. ACS Energy Letters, 2020, 5, 766-776.	8.8	134

#	Article	IF	CITATIONS
345	Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode. Nature Communications, 2020, 11, 829.	5.8	246
346	A Quantitative Failure Analysis on Capacity Fade in Rechargeable Lithium Metal Cells. Journal of the Electrochemical Society, 2020, 167, 090502.	1.3	5
347	Waterâ€6table Lithium Metal Anodes with Ultrahighâ€Rate Capability Enabled by a Hydrophobic Graphene Architecture. Advanced Materials, 2020, 32, e1908494.	11.1	77
348	Strong Lewis Acid–Base and Weak Hydrogen Bond Synergistically Enhancing Ionic Conductivity of Poly(ethylene oxide)@SiO ₂ Electrolytes for a High Rate Capability Li-Metal Battery. ACS Applied Materials & Interfaces, 2020, 12, 10341-10349.	4.0	77
349	In Situ Electrochemical Coating Mechanism of NASICON-Structured AgTi ₂ (PO ₄) ₃ for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 5932-5938.	4.0	8
350	Highly reversible lithium storage in a conversion-type ZnCo ₂ O ₄ anode promoted by NiCl _{2â^'x} F _x hydrate. Journal of Materials Chemistry A, 2020, 8, 2356-2363.	5.2	11
351	Communication—Pressure Evolution in Constrained Rechargeable Lithium-metal Pouch Cells. Journal of the Electrochemical Society, 2020, 167, 020511.	1.3	7
352	Electrodeposition Accelerates Metal-Based Batteries. Joule, 2020, 4, 10-11.	11.7	36
353	Elastic and Plastic Characteristics of Sodium Metal. ACS Applied Energy Materials, 2020, 3, 1759-1767.	2.5	33
354	Biomacromolecules enabled dendrite-free lithium metal battery and its origin revealed by cryo-electron microscopy. Nature Communications, 2020, 11, 488.	5.8	158
355	High-Performance Lithium-Rich Layered Oxide Material: Effects of Preparation Methods on Microstructure and Electrochemical Properties. Materials, 2020, 13, 334.	1.3	20
356	Chemically Prelithiated Hardâ€Carbon Anode for High Power and High Capacity Liâ€lon Batteries. Small, 2020, 16, e1907602.	5.2	144
357	Sustainable Recycling Technology for Li-Ion Batteries and Beyond: Challenges and Future Prospects. Chemical Reviews, 2020, 120, 7020-7063.	23.0	957
358	Ecofriendly Chemical Activation of Overlithiated Layered Oxides by DNAâ€Wrapped Carbon Nanotubes. Advanced Energy Materials, 2020, 10, 1903658.	10.2	5
359	Nonflammable Lithium Metal Full Cells with Ultra-high Energy Density Based on Coordinated Carbonate Electrolytes. IScience, 2020, 23, 100844.	1.9	58
360	In-situ organic SEI layer for dendrite-free lithium metal anode. Energy Storage Materials, 2020, 27, 69-77.	9.5	70
361	A more stable lithium anode by mechanical constriction for solid state batteries. Energy and Environmental Science, 2020, 13, 908-916.	15.6	101
362	Adhesion and Surface Layers on Silicon Anodes Suppress Formation of <i>c</i> -Li _{3.75} Si and Solid-Electrolyte Interphase. ACS Applied Energy Materials, 2020, 3, 1609-1616.	2.5	10

#	Article	IF	CITATIONS
363	Ceramic-Based Flexible Sheet Electrolyte for Li Batteries. ACS Applied Materials & Interfaces, 2020, 12, 10382-10388.	4.0	47
364	Behavior of Solid Electrolyte in Li-Polymer Battery with NMC Cathode via in-Situ Scanning Electron Microscopy. Nano Letters, 2020, 20, 1607-1613.	4.5	85
365	Countersolvent Electrolytes for Lithiumâ€Metal Batteries. Advanced Energy Materials, 2020, 10, 1903568.	10.2	200
366	Perspective—Electrochemical Stability of Water-in-Salt Electrolytes. Journal of the Electrochemical Society, 2020, 167, 070544.	1.3	68
367	Biochar for electrochemical applications. Current Opinion in Green and Sustainable Chemistry, 2020, 23, 25-30.	3.2	36
368	Correlation of electrochemical and mechanical responses: Differential analysis of rechargeable lithium metal cells. Journal of Power Sources, 2020, 463, 228180.	4.0	16
369	An alternative for the anode materials of nickel metal hydride batteries: an AB ₃ -type La _{0.6} Gd _{0.2} Mg _{0.2} Ni _{2.6} Co _{0.3} Al _{0.1} ł storage alloy. Dalton Transactions, 2020, 49, 6312-6320.	nyudrogen	9
370	Printable Solid Electrolyte Interphase Mimic for Antioxidative Lithium Metal Electrodes. Advanced Functional Materials, 2020, 30, 2000792.	7.8	16
371	Topological design of ultrastrong MXene paper hosted Li enables ultrathin and fully flexible lithium metal batteries. Nano Energy, 2020, 74, 104817.	8.2	112
372	Transition metal oxides as lithium-free cathodes for solid-state lithium metal batteries. Nano Energy, 2020, 74, 104867.	8.2	25
373	Recent progress on flexible lithium metal batteries: Composite lithium metal anodes and solid-state electrolytes. Energy Storage Materials, 2020, 29, 310-331.	9.5	63
374	Effect of diethyl carbonate solvent with fluorinated solvents as electrolyte system for anode free battery. Journal of Power Sources, 2020, 461, 228102.	4.0	26
375	Analyzing Energy Materials by Cryogenic Electron Microscopy. Advanced Materials, 2020, 32, e1908293.	11.1	61
376	Construction of core-shell Li3PO4@LiNiO·5CoO·2MnO·3O2 cathode with improved cycling stability for lithium ion batteries. Electrochimica Acta, 2020, 344, 136142.	2.6	15
377	Recent advances and historical developments of high voltage lithium cobalt oxide materials for rechargeable Li-ion batteries. Journal of Power Sources, 2020, 460, 228062.	4.0	150
378	N–S-codoped mesoporous carbons from melamine-2-thenaldehyde polymers on carbon nanotubes for oxygen reduction and Zn-air batteries. Journal of Solid State Chemistry, 2020, 287, 121348.	1.4	10
379	Efficient Synthesis of N-Doped SiO _{<i>x</i>} /C Composite Based on the Defect-Enriched Graphite Flake for Lithium-Ion Battery. ACS Applied Energy Materials, 2020, 3, 4394-4402.	2.5	30
380	An All-Fluorinated Ester Electrolyte for Stable High-Voltage Li Metal Batteries Capable of Ultra-Low-Temperature Operation. ACS Energy Letters, 2020, 5, 1438-1447.	8.8	214

#	Article	IF	CITATIONS
381	Metal chloride perovskite thin film based interfacial layer for shielding lithium metal from liquid electrolyte. Nature Communications, 2020, 11, 1761.	5.8	68
382	Advances in metal–organic framework coatings: versatile synthesis and broad applications. Chemical Society Reviews, 2020, 49, 3142-3186.	18.7	327
383	Self‣uppression of Lithium Dendrite with Aluminum Nitride Nanoflake Additive in 3D Carbon Paper for Lithium Metal Batteries. Energy Technology, 2020, 8, 1901463.	1.8	14
384	Lead Sulfide Nanocubes for Solar Energy Storage. Energy Technology, 2020, 8, 2000301.	1.8	5
385	Thermodynamic analysis and kinetic optimization of high-energy batteries based on multi-electron reactions. National Science Review, 2020, 7, 1367-1386.	4.6	31
386	Highâ€Power Lithium Metal Batteries Enabled by Highâ€Concentration Acetonitrileâ€Based Electrolytes with Vinylene Carbonate Additive. Advanced Functional Materials, 2020, 30, 2001285.	7.8	121
387	Robust interface layers with redox shuttle reactions suppress the dendrite growth for stable solid-state Li metal batteries. Journal of Energy Chemistry, 2020, 51, 222-229.	7.1	8
388	Ta2O5 nanoparticles as an anode material for lithium ion battery. Journal of Solid State Electrochemistry, 2020, 24, 1067-1074.	1.2	17
389	Confining ultrafine Li3P nanoclusters in porous carbon for high-performance lithium-ion battery anode. Nano Research, 2020, 13, 1122-1126.	5.8	19
390	Stable Li metal anode by crystallographically oriented plating through in-situ surface doping. Science China Materials, 2020, 63, 1036-1045.	3.5	15
391	Fabrication of porous lithium titanate self-supporting anode for high performance lithium-ion capacitor. Journal of Energy Chemistry, 2020, 50, 344-350.	7.1	40
392	Unveiling the Charge Storage Mechanism in Nonaqueous and Aqueous Zn/Na ₃ V ₂ (PO ₄) ₂ F ₃ Batteries. ACS Applied Energy Materials, 2020, 3, 5015-5023.	2.5	32
393	Mesoporous Silica Reinforced Hybrid Polymer Artificial Layer for High-Energy and Long-Cycling Lithium Metal Batteries. ACS Energy Letters, 2020, 5, 1644-1652.	8.8	74
394	Three-Dimensional Porous Carbon Skeleton Synthesized by a Template-Free and No-Post-Activation Process Applied for High-Performance Lithium–Sulfur Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 6964-6971.	3.2	9
395	Solid–Solution-Based Metal Alloy Phase for Highly Reversible Lithium Metal Anode. Journal of the American Chemical Society, 2020, 142, 8818-8826.	6.6	199
396	Template-assisted loading of Fe ₃ O ₄ nanoparticles inside hollow carbon "rooms―to achieve high volumetric lithium storage. Nanoscale, 2020, 12, 10816-10826.	2.8	27
397	Novel In Situ Gas Formation Analysis Technique Using a Multilayer Pouch Bag Lithium Ion Cell Equipped with Gas Sampling Port. Journal of the Electrochemical Society, 2020, 167, 060516.	1.3	23
398	A Mixed Lithium″on Conductive Li ₂ S/Li ₂ Se Protection Layer for Stable Lithium Metal Anode. Advanced Functional Materials, 2020, 30, 2001607.	7.8	158

#	Article	IF	CITATIONS
399	Enhancing interfacial stability in solid-state lithium batteries with polymer/garnet solid electrolyte and composite cathode framework. Journal of Energy Chemistry, 2021, 52, 210-217.	7.1	80
400	Manipulating interfacial stability of LiNi0.5Co0.3Mn0.2O2 cathode with sulfide electrolyte by nanosized LLTO coating to achieve high-performance all-solid-state lithium batterie. Journal of Energy Chemistry, 2021, 52, 202-209.	7.1	43
401	Multiscale Understanding and Architecture Design of High Energy/Power Lithiumâ€lon Battery Electrodes. Advanced Energy Materials, 2021, 11, 2000808.	10.2	143
402	Advances in Composite Polymer Electrolytes for Lithium Batteries and Beyond. Advanced Energy Materials, 2021, 11, 2000802.	10.2	162
403	Stabilization Perspective on Metal Anodes for Aqueous Batteries. Advanced Energy Materials, 2021, 11, 2000962.	10.2	106
404	Ambientâ€Temperature Allâ€Solidâ€State Sodium Batteries with a Laminated Composite Electrolyte. Advanced Functional Materials, 2021, 31, 2002144.	7.8	63
405	Optimizing the electrolyte salt of aqueous zinc-ion batteries based on a high-performance calcium vanadate hydrate cathode material. Journal of Energy Chemistry, 2021, 52, 377-384.	7.1	53
406	Quasi-solid electrolyte membranes with percolated metal–organic frameworks for practical lithium-metal batteries. Journal of Energy Chemistry, 2021, 52, 354-360.	7.1	22
407	Tribute to John B. Goodenough: From Magnetism to Rechargeable Batteries. Advanced Energy Materials, 2021, 11, 2000773.	10.2	11
408	Edge-enriched MoS2@C/rGO film as self-standing anodes for high-capacity and long-life lithium-ion batteries. Science China Materials, 2021, 64, 96-104.	3.5	30
409	Scalable Synthesis of LiFâ€rich 3D Architected Li Metal Anode via Direct Lithiumâ€Fluoropolymer Pyrolysis to Enable Fast Li Cycling. Energy and Environmental Materials, 2021, 4, 213-221.	7.3	16
410	Enabling high-performance all-solid-state lithium batteries with high ionic conductive sulfide-based composite solid electrolyte and ex-situ artificial SEI film. Journal of Energy Chemistry, 2021, 58, 17-24.	7.1	40
411	Fast Diagnosis of Failure Mechanisms and Lifetime Prediction of Li Metal Batteries. Small Methods, 2021, 5, e2000807.	4.6	17
412	Understanding all solid-state lithium batteries through in situ transmission electron microscopy. Materials Today, 2021, 42, 137-161.	8.3	64
413	Towards high-energy-density lithium-ion batteries: Strategies for developing high-capacity lithium-rich cathode materials. Energy Storage Materials, 2021, 34, 716-734.	9.5	149
414	A Multilayer Ceramic Electrolyte for Allâ€5olidâ€5tate Li Batteries. Angewandte Chemie - International Edition, 2021, 60, 3781-3790.	7.2	71
415	Cobalt sulfide embedded carbon nanofibers as a self-supporting template to improve lithium ion battery performances. Electrochimica Acta, 2021, 366, 137351.	2.6	29
416	Submicron interlayer for stabilizing thin Li metal powder electrode. Chemical Engineering Journal, 2021, 406, 126834.	6.6	12

#	Article	IF	CITATIONS
417	In-situ encapsulation of α-Fe2O3 nanoparticles into ZnFe2O4 micro-sized capsules as high-performance lithium-ion battery anodes. Journal of Materials Science and Technology, 2021, 75, 110-117.	5.6	31
418	Armed lithium metal anodes with functional skeletons. Materials Today Nano, 2021, 13, 100103.	2.3	38
419	Regulation of carbon distribution to construct high-sulfur-content cathode in lithium–sulfur batteries. Journal of Energy Chemistry, 2021, 56, 203-208.	7.1	89
420	Understanding the Cap between Academic Research and Industrial Requirements in Rechargeable Zincâ€ion Batteries. Batteries and Supercaps, 2021, 4, 60-71.	2.4	32
421	Plasma assisted synthesis of LiNi0.6Co0.2Mn0.2O2 cathode materials with good cyclic stability at subzero temperatures. Journal of Energy Chemistry, 2021, 56, 46-55.	7.1	16
422	Gallium-based anodes for alkali metal ion batteries. Journal of Energy Chemistry, 2021, 55, 557-571.	7.1	27
423	Lithium ion specific fluorescent reversible extraction-release based on spiropyran isomerization combining crown ether coordination and its bioimaging. Sensors and Actuators B: Chemical, 2021, 327, 128941.	4.0	19
424	Polyimide separators for rechargeable batteries. Journal of Energy Chemistry, 2021, 58, 170-197.	7.1	82
425	Fibrous Materials for Flexible Li–S Battery. Advanced Energy Materials, 2021, 11, 2002580.	10.2	85
426	Optimization of fluorinated orthoformate based electrolytes for practical high-voltage lithium metal batteries. Energy Storage Materials, 2021, 34, 76-84.	9.5	65
427	Interfacial passivation by room-temperature liquid metal enabling stable 5 V-class lithium-metal batteries in commercial carbonate-based electrolyte. Energy Storage Materials, 2021, 34, 12-21.	9.5	85
428	Hierarchical Compositeâ€Solidâ€Electrolyte with High Electrochemical Stability and Interfacial Regulation for Boosting Ultraâ€Stable Lithium Batteries. Advanced Functional Materials, 2021, 31, .	7.8	57
429	Fluorobenzene, A Lowâ€Density, Economical, and Bifunctional Hydrocarbon Cosolvent for Practical Lithium Metal Batteries. Advanced Functional Materials, 2021, 31, .	7.8	121
430	Regulating Interfacial Chemistry in Lithiumâ€lon Batteries by a Weakly Solvating Electrolyte**. Angewandte Chemie, 2021, 133, 4136-4143.	1.6	74
431	A Reduced-Order Electrochemical Model for All-Solid-State Batteries. IEEE Transactions on Transportation Electrification, 2021, 7, 464-473.	5.3	55
432	Recent Progress and Emerging Application Areas for Lithium–Sulfur Battery Technology. Energy Technology, 2021, 9, 2000694.	1.8	58
433	Advanced electrolyte design for stable lithium metal anode: From liquid to solid. Nano Energy, 2021, 80, 105516.	8.2	111
434	Ferroelectric polarization accelerates lithium-ion diffusion for dendrite-free and highly-practical lithium-metal batteries. Nano Energy, 2021, 79, 105481.	8.2	32

#	Article	IF	CITATIONS
435	Reducing the thickness of solid-state electrolyte membranes for high-energy lithium batteries. Energy and Environmental Science, 2021, 14, 12-36.	15.6	236
436	Review on organosulfur materials for rechargeable lithium batteries. Materials Horizons, 2021, 8, 471-500.	6.4	82
437	Rechargeable Sodiumâ€Based Hybrid Metalâ€ion Batteries toward Advanced Energy Storage. Advanced Functional Materials, 2021, 31, 2006457.	7.8	39
438	A high-energy and long-cycling lithium–sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites. Nature Nanotechnology, 2021, 16, 166-173.	15.6	392
439	A Selfâ€Sodiophilic Carbon Host Promotes the Cyclability of Sodium Anode. Advanced Functional Materials, 2021, 31, 2007556.	7.8	30
440	Surface electrochemistry approaches for understanding and creating smooth solid-electrolyte interphase and lithiophilic interfaces for lithium metal anodes. Current Opinion in Electrochemistry, 2021, 26, 100671.	2.5	8
441	Engineered heat dissipation and current distribution boron nitride-graphene layer coated on polypropylene separator for high performance lithium metal battery. Journal of Colloid and Interface Science, 2021, 583, 362-370.	5.0	31
442	A General Templateâ€Induced Sulfuration Approach for Preparing Bifunctional Hollow Sulfides for Highâ€Performance Al―and Liâ€ion Batteries. Energy Technology, 2021, 9, 2000900.	1.8	5
443	Regulating lithium deposition via bifunctional regular-random cross-linking network solid polymer electrolyte for Li metal batteries. Journal of Power Sources, 2021, 484, 229186.	4.0	28
444	Solid Electrolytes for Highâ€Temperature Stable Batteries and Supercapacitors. Advanced Energy Materials, 2021, 11, 2002869.	10.2	64
445	Allâ€Solidâ€State Batteries with a Limited Lithium Metal Anode at Room Temperature using a Garnetâ€Based Electrolyte. Advanced Materials, 2021, 33, e2002325.	11.1	99
446	A Multilayer Ceramic Electrolyte for Allâ€Solidâ€State Li Batteries. Angewandte Chemie, 2021, 133, 3825-3834.	1.6	13
447	Polymer electrolytes for sodium-ion batteries. Energy Storage Materials, 2021, 36, 10-30.	9.5	82
448	Artificial Solidâ€Electrolyte Interphase for Lithium Metal Batteries. Batteries and Supercaps, 2021, 4, 445-455.	2.4	56
449	Gradient Solid Electrolyte Interphase and Lithiumâ€ion Solvation Regulated by Bisfluoroacetamide for Stable Lithium Metal Batteries. Angewandte Chemie - International Edition, 2021, 60, 6600-6608.	7.2	249
450	The Insights of Lithium Metal Plating/Stripping in Porous Hosts: Progress and Perspectives. Energy Technology, 2021, 9, 2000700.	1.8	38
451	Li dendrites inhibition realized by lithiophilic and ion/electron conductive 3D skeleton for Li metal anodes. Chemical Engineering Journal, 2021, 421, 127872.	6.6	11
452	Honeycomb Inspired Lithiophilic Scaffold for Ultra-Stable, High-Areal-Capacity Metallic Deposition. Energy Storage Materials, 2021, 35, 378-387.	9.5	11

#	Article	IF	CITATIONS
453	Lithium metal batteries for high energy density: Fundamental electrochemistry and challenges. Journal of Energy Chemistry, 2021, 59, 666-687.	7.1	82
454	A mechanically robust self-healing binder for silicon anode in lithium ion batteries. Nano Energy, 2021, 81, 105654.	8.2	141
455	Competitive Solvation-Induced Concurrent Protection on the Anode and Cathode toward a 400 Wh kg ^{–1} Lithium Metal Battery. ACS Energy Letters, 2021, 6, 115-123.	8.8	53
456	Two-dimensional matrices confining metal single atoms with enhanced electrochemical reaction kinetics for energy storage applications. Energy and Environmental Science, 2021, 14, 1794-1834.	15.6	45
457	Novel Coreâ€Dual Shell Si@MoO ₂ @C Nanoparticles as Improved Anode Materials for Lithiumâ€lon Batteries. ChemElectroChem, 2021, 8, 675-680.	1.7	10
458	Nonâ€Flammable Liquid and Quasiâ€Solid Electrolytes toward Highlyâ€Safe Alkali Metalâ€Based Batteries. Advanced Functional Materials, 2021, 31, 2008644.	7.8	127
459	Highly Thermal Conductive Separator with Inâ€Built Phosphorus Stabilizer for Superior Niâ€Rich Cathode Based Lithium Metal Batteries. Advanced Energy Materials, 2021, 11, 2003285.	10.2	19
460	Inorganic Solid Electrolytes for Allâ€Solidâ€State Sodium Batteries: Fundamentals and Strategies for Battery Optimization. Advanced Functional Materials, 2021, 31, 2008165.	7.8	55
461	Spatially Controlled Lithium Deposition on Silverâ€Nanocrystalsâ€Decorated TiO ₂ Nanotube Arrays Enabling Ultrastable Lithium Metal Anode. Advanced Functional Materials, 2021, 31, 2009605.	7.8	40
462	Gradient Solid Electrolyte Interphase and Lithiumâ€lon Solvation Regulated by Bisfluoroacetamide for Stable Lithium Metal Batteries. Angewandte Chemie, 2021, 133, 6674-6682.	1.6	23
463	High-performance metal–iodine batteries enabled by a bifunctional dendrite-free Li–Na alloy anode. Journal of Materials Chemistry A, 2021, 9, 538-545.	5.2	18
464	Carbon materials for ion-intercalation involved rechargeable battery technologies. Chemical Society Reviews, 2021, 50, 2388-2443.	18.7	255
465	Multi-storey corridor structured host for a large area capacity and high rate metallic lithium anode. Electrochimica Acta, 2021, 365, 137341.	2.6	8
466	Recent Developments in Dendrite-Free Lithium-Metal Deposition through Tailoring of Micro- and Nanoscale Artificial Coatings. ACS Nano, 2021, 15, 29-46.	7.3	80
467	Toward the Scaleâ€Up of Solidâ€State Lithium Metal Batteries: The Gaps between Labâ€Level Cells and Practical Largeâ€Format Batteries. Advanced Energy Materials, 2021, 11, 2002360.	10.2	103
468	Promises and Challenges of Next-Generation "Beyond Li-ion―Batteries for Electric Vehicles and Grid Decarbonization. Chemical Reviews, 2021, 121, 1623-1669.	23.0	769
469	Titanium–oxo cluster reinforced gel polymer electrolyte enabling lithium–sulfur batteries with high gravimetric energy densities. Energy and Environmental Science, 2021, 14, 975-985.	15.6	69
470	Hierarchical porous N,Sâ€codoped carbon material derived from halogenated polymer for battery applications. Nano Select, 2021, 2, 581-590.	1.9	1

#	Article	IF	CITATIONS
471	Organic Cathode Materials for Lithiumâ€lon Batteries: Past, Present, and Future. Advanced Energy and Sustainability Research, 2021, 2, 2000044.	2.8	61
472	Fluoropyridine family: Bifunction as electrolyte solvent and additive to achieve dendrites-free lithium metal batteries. Journal of Materials Science and Technology, 2021, 74, 119-127.	5.6	14
473	A Solid‣tate Battery Cathode with a Polymer Composite Electrolyte and Low Tortuosity Microstructure by Directional Freezing and Polymerization. Advanced Energy Materials, 2021, 11, 2002387.	10.2	38
474	Regulating Interfacial Chemistry in Lithiumâ€lon Batteries by a Weakly Solvating Electrolyte**. Angewandte Chemie - International Edition, 2021, 60, 4090-4097.	7.2	373
475	Interconnected Twoâ€dimensional Arrays of Niobium Nitride Nanocrystals as Stable Lithium Host. Batteries and Supercaps, 2021, 4, 106-111.	2.4	7
476	Li ₂ Sâ€Based Liâ€lon Sulfur Batteries: Progress and Prospects. Small, 2021, 17, e1903934.	5.2	41
477	Implications of <i>in situ</i> chalcogen substitutions in polysulfides for rechargeable batteries. Energy and Environmental Science, 2021, 14, 5423-5432.	15.6	43
478	Solvate electrolytes for Li and Na batteries: structures, transport properties, and electrochemistry. Physical Chemistry Chemical Physics, 2021, 23, 21419-21436.	1.3	32
479	Modulating the electrical conductivity of a graphene oxide-coated 3D framework for guiding bottom-up lithium growth. Journal of Materials Chemistry A, 2021, 9, 1822-1834.	5.2	22
480	The role of polymers in lithium solid-state batteries with inorganic solid electrolytes. Journal of Materials Chemistry A, 2021, 9, 18701-18732.	5.2	47
481	Suppression of dendritic lithium-metal growth through concentrated dual-salt electrolyte and its accurate prediction. Journal of Materials Chemistry A, 2021, 9, 22833-22841.	5.2	10
482	Polyeutectic-based stable and effective electrolytes for high-performance energy storage systems. Energy and Environmental Science, 2021, 14, 931-939.	15.6	21
483	Stable alkali metal anodes enabled by crystallographic optimization – a review. Journal of Materials Chemistry A, 2021, 9, 20957-20984.	5.2	32
484	An Anode-Free Zn–MnO ₂ Battery. Nano Letters, 2021, 21, 1446-1453.	4.5	131
485	Electron leakage through heterogeneous LiF on lithium–metal battery anodes. Physical Chemistry Chemical Physics, 2021, 23, 3214-3218.	1.3	22
486	The lithium metal anode in Li–S batteries: challenges and recent progress. Journal of Materials Chemistry A, 2021, 9, 10012-10038.	5.2	45
487	Polymers in Lithiumâ€lon and Lithium Metal Batteries. Advanced Energy Materials, 2021, 11, 2003239.	10.2	160
488	Regulating the Solvation Structure of Nonflammable Electrolyte for Dendrite-Free Li-Metal Batteries. ACS Applied Materials & Interfaces, 2021, 13, 681-687.	4.0	17

#	Article	IF	CITATIONS
489	Growing Nanostructured CuO on Copper Foil via Chemical Etching to Upgrade Metallic Lithium Anode. ACS Applied Materials & Interfaces, 2021, 13, 6367-6374.	4.0	20
490	Carbon coated SiO nanoparticles embedded in hierarchical porous N-doped carbon nanosheets for enhanced lithium storage. Inorganic Chemistry Frontiers, 2021, 8, 4282-4290.	3.0	18
491	High transference number enabled by sulfated zirconia superacid for lithium metal batteries with carbonate electrolytes. Energy and Environmental Science, 2021, 14, 1420-1428.	15.6	23
492	Applications of Metal-organic Frameworks (MOFs) Materials in Lithium-ion Battery/Lithium-metal Battery Electrolytes. Acta Chimica Sinica, 2021, 79, 139.	0.5	10
493	A renewable future: a comprehensive perspective from materials to systems for next-generation batteries. Materials Chemistry Frontiers, 2021, 5, 3344-3377.	3.2	11
494	Conjugated cyclized-polyacrylonitrile encapsulated carbon nanotubes as core–sheath heterostructured anodes with favorable lithium storage. Journal of Materials Chemistry A, 2021, 9, 6962-6970.	5.2	21
495	Constructing nitrided interfaces for stabilizing Li metal electrodes in liquid electrolytes. Chemical Science, 2021, 12, 8945-8966.	3.7	72
496	A mini-review of advanced separator engineering in lithium metal batteries. Sustainable Energy and Fuels, 2021, 5, 5656-5671.	2.5	13
497	Interfacial chemistry in anode-free batteries: challenges and strategies. Journal of Materials Chemistry A, 2021, 9, 7396-7406.	5.2	65
498	Constructing multifunctional solid electrolyte interface via in-situ polymerization for dendrite-free and low N/P ratio lithium metal batteries. Nature Communications, 2021, 12, 186.	5.8	163
499	Influence of diluent concentration in localized high concentration electrolytes: elucidation of hidden diluent-Li ⁺ interactions and Li ⁺ transport mechanism. Journal of Materials Chemistry A, 2021, 9, 17459-17473.	5.2	28
500	Regulation methods for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous Zn-ion batteries. Energy and Environmental Science, 2021, 14, 5669-5689.	15.6	314
501	Identification of LiH and nanocrystalline LiF in the solid–electrolyte interphase of lithium metal anodes. Nature Nanotechnology, 2021, 16, 549-554.	15.6	171
502	100th Anniversary of Macromolecular Science Viewpoint: Solid Polymer Electrolytes in Cathode Electrodes for Lithium Batteries. Current Challenges and Future Opportunities. ACS Macro Letters, 2021, 10, 141-153.	2.3	20
503	<i>In situ</i> generation of a soft–tough asymmetric composite electrolyte for dendrite-free lithium metal batteries. Journal of Materials Chemistry A, 2021, 9, 4018-4025.	5.2	34
504	Insight into the Critical Role of Exchange Current Density on Electrodeposition Behavior of Lithium Metal. Advanced Science, 2021, 8, 2003301.	5.6	146
505	Strategies towards enabling lithium metal in batteries: interphases and electrodes. Energy and Environmental Science, 2021, 14, 5289-5314.	15.6	156
506	<i>In situ</i> polymerization process: an essential design tool for lithium polymer batteries. Energy and Environmental Science, 2021, 14, 2708-2788.	15.6	140

#	Article	IF	CITATIONS
507	Electrolyte Evolution and SEI Interfaces. New Developments in NMR, 2021, , 281-296.	0.1	0
508	Low-Sintering-Temperature Garnet Oxides by Conformal Sintering-Aid Coating. SSRN Electronic Journal, 0, , .	0.4	1
509	High-performance magnesium metal batteries <i>via</i> switching the passivation film into a solid electrolyte interphase. Energy and Environmental Science, 2021, 14, 4391-4399.	15.6	49
510	Cryogenic Electron Microscopy Reveals that Applied Pressure Promotes Short Circuits in Li Batteries. SSRN Electronic Journal, 0, , .	0.4	0
511	Multifunctional SnSe–C composite modified 3D scaffolds to regulate lithium nucleation and fast transport for dendrite-free lithium metal anodes. Journal of Materials Chemistry A, 2021, 9, 21695-21702.	5.2	18
512	A 3D-mixed ion/electron conducting scaffold prepared by <i>in situ</i> conversion for long-life lithium metal anodes. Nanoscale, 2021, 13, 3144-3152.	2.8	14
513	Highâ€Efficacy and Polymeric Solidâ€Electrolyte Interphase for Closely Packed Li Electrodeposition. Advanced Science, 2021, 8, 2003240.	5.6	39
514	Opportunities and Challenges of Lithium Ion Batteries in Automotive Applications. ACS Energy Letters, 2021, 6, 621-630.	8.8	471
515	Functional polymers in electrolyte optimization and interphase design for lithium metal anodes. Journal of Materials Chemistry A, 2021, 9, 13388-13401.	5.2	43
516	Quantification of the ion transport mechanism in protective polymer coatings on lithium metal anodes. Chemical Science, 2021, 12, 7023-7032.	3.7	7
517	A composite solid electrolyte with an asymmetric ceramic framework for dendrite-free all-solid-state Li metal batteries. Journal of Materials Chemistry A, 2021, 9, 9665-9674.	5.2	30
518	Stoichiometric tuning of lattice flexibility and Na diffusion in NaAlSiO ₄ : quasielastic neutron scattering experiment and <i>ab initio</i> molecular dynamics simulations. Journal of Materials Chemistry A, 2021, 9, 16129-16136.	5.2	4
519	In Situ Electrolyte Gelation to Prevent Chemical Crossover in Li Metal Batteries. Advanced Materials Interfaces, 2021, 8, 2002152.	1.9	2
520	Solid Polymer Electrolytes with High Conductivity and Transference Number of Li Ions for Liâ€Based Rechargeable Batteries. Advanced Science, 2021, 8, 2003675.	5.6	172
521	Deep Cycling for High apacity Liâ€Ion Batteries. Advanced Materials, 2021, 33, e2004998.	11.1	43
522	Optimizing Cycling Conditions for Anode-Free Lithium Metal Cells. Journal of the Electrochemical Society, 2021, 168, 020515.	1.3	72
523	Reactivity and Evolution of Ionic Phases in the Lithium Solid–Electrolyte Interphase. ACS Energy Letters, 2021, 6, 877-885.	8.8	22
524	Anion Texturing Towards Dendriteâ€Free Zn Anode for Aqueous Rechargeable Batteries. Angewandte Chemie, 2021, 133, 7289-7295.	1.6	59

#	Article	IF	CITATIONS
525	Ultra-high throughput manufacturing method for composite solid-state electrolytes. IScience, 2021, 24, 102055.	1.9	8
527	Electroless Formation of a Fluorinated Li/Na Hybrid Interphase for Robust Lithium Anodes. Journal of the American Chemical Society, 2021, 143, 2829-2837.	6.6	119
528	Understanding the Nature of Solidâ€Electrolyte Interphase on Lithium Metal in Liquid Electrolytes: A Review on Growth, Properties, and Applicationâ€Related Challenges. Batteries and Supercaps, 2021, 4, 909-922.	2.4	13
529	Interfacial Atomistic Mechanisms of Lithium Metal Stripping and Plating in Solidâ€State Batteries. Advanced Materials, 2021, 33, e2008081.	11.1	53
530	Investigation of fluorinated etherâ€containing electrolytes for high energyâ€density nickelâ€rich <scp> LiNi ₀ </scp> _. <scp> ₈ Co ₀ </scp> _. <scp> ₁ Mn ₀ </scp> _. <scp> _{1Energy Research, 2021, 45, 9936-9947.}</scp>	2.2	4
531	Case study of N-carboxyanhydrides in silicon-based lithium ion cells as a guideline for systematic electrolyte additive research. Cell Reports Physical Science, 2021, 2, 100327.	2.8	16
532	Multifunctional roles of carbonâ€based hosts for Liâ€metal anodes: A review. , 2021, 3, 303-329.		93
533	3D Artificial Solidâ€Electrolyte Interphase for Lithium Metal Anodes Enabled by Insulator–Metal–Insulator Layered Heterostructures. Advanced Materials, 2021, 33, e2006247.	11.1	147
534	The Formation/Decomposition Equilibrium of LiH and its Contribution on Anode Failure in Practical Lithium Metal Batteries. Angewandte Chemie - International Edition, 2021, 60, 7770-7776.	7.2	58
535	Failure mode of thick cathodes for Li-ion batteries: Variation of state-of-charge along the electrode thickness direction. Electrochimica Acta, 2021, 370, 137743.	2.6	30
536	Cost-effective hard–soft carbon composite anodes with promising potassium ions storage performance. Electrochimica Acta, 2021, 368, 137649.	2.6	30
537	Stamping Flexible Li Alloy Anodes. Advanced Materials, 2021, 33, e2005305.	11.1	58
538	Elevated Lithium Ion Regulation by a "Natural Silk―Modified Separator for Highâ€Performance Lithium Metal Anode. Advanced Functional Materials, 2021, 31, 2100537.	7.8	79
539	The Formation/Decomposition Equilibrium of LiH and its Contribution on Anode Failure in Practical Lithium Metal Batteries. Angewandte Chemie, 2021, 133, 7849-7855.	1.6	18
540	High Li ⁺ and Na ⁺ Conductivity in New Hybrid Solid Electrolytes based on the Porous MILâ€121 Metal Organic Framework. Advanced Energy Materials, 2021, 11, 2003542.	10.2	24
541	Lithiophilic and Antioxidative Copper Current Collectors for Highly Stable Lithium Metal Batteries. Advanced Functional Materials, 2021, 31, 2009805.	7.8	47
542	Crossover Effects in Batteries with Highâ€Nickel Cathodes and Lithiumâ€Metal Anodes. Advanced Functional Materials, 2021, 31, 2010267.	7.8	65
543	Anion Texturing Towards Dendriteâ€Free Zn Anode for Aqueous Rechargeable Batteries. Angewandte Chemie - International Edition, 2021, 60, 7213-7219.	7.2	209

#	Article	IF	CITATIONS
544	Rational Construction of Sulfur-Deficient NiCo ₂ S _{4–<i>x</i>} Hollow Microspheres as an Effective Polysulfide Immobilizer toward High-Performance Lithium/Sulfur Batteries. ACS Applied Energy Materials, 2021, 4, 1687-1695.	2.5	34
545	Divalent Nonaqueous Metal-Air Batteries. Frontiers in Energy Research, 2021, 8, .	1.2	24
546	Understanding the Reductive Decomposition of Highly Concentrated Li Salt/Sulfolane Electrolytes during Li Deposition and Dissolution. ACS Applied Energy Materials, 2021, 4, 1851-1859.	2.5	24
547	Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature. Nature Energy, 2021, 6, 303-313.	19.8	386
548	Localized high concentration electrolytes decomposition under electron-rich environments. Journal of Chemical Physics, 2021, 154, 104702.	1.2	11
549	Highly mesoporous and chemically bonded Fe3O4/N-doped carbon nanocomposite with an outstanding cycling life as lithium-ion-battery anode. IOP Conference Series: Earth and Environmental Science, 2021, 687, 012145.	0.2	1
550	What Can be Expected from "Anodeâ€Free―Lithium Metal Batteries?. Advanced Energy and Sustainability Research, 2021, 2, 2000110.	2.8	36
551	Nitrogenâ€Doped Amorphous Zn–Carbon Multichannel Fibers for Stable Lithium Metal Anodes. Angewandte Chemie - International Edition, 2021, 60, 8515-8520.	7.2	115
552	Synchrotron Xâ€Ray Absorption Spectroscopy and Electrochemical Study of Bi ₂ O ₂ Se Electrode for Lithiumâ€∤Potassiumâ€ion Storage. Advanced Energy Materials, 2021, 11, 2100185.	10.2	29
553	Modulating Nanoinhomogeneity at Electrode–Solid Electrolyte Interfaces for Dendriteâ€Proof Solidâ€State Batteries and Longâ€Life Memristors. Advanced Energy Materials, 2021, 11, 2003811.	10.2	37
554	Open-Structured Nanotubes with Three-Dimensional Ion-Accessible Pathways for Enhanced Li ⁺ Conductivity in Composite Solid Electrolytes. ACS Applied Materials & Interfaces, 2021, 13, 13183-13190.	4.0	28
555	Rejuvenating dead lithium supply in lithium metal anodes by iodine redox. Nature Energy, 2021, 6, 378-387.	19.8	282
556	A Growing Appreciation for the Role of LiF in the Solid Electrolyte Interphase. Advanced Energy Materials, 2021, 11, 2100046.	10.2	401
557	Engineering Allâ€Purpose Amorphous Carbon Nanotubes with High N/Oâ€Coâ€Doping Content to Bridge the Alkaliâ€Ion Batteries and Li Metal Batteries. Small, 2021, 17, e2006566.	5.2	19
558	High performances of <scp>allâ€solidâ€state</scp> battery with designed composite cathode: An effect of conductive binders with <scp>singleâ€walled</scp> carbon nanotube additives. International Journal of Energy Research, 2021, 45, 11041-11052.	2.2	2
559	Unusual Inside–Outside Li Deposition within Three-Dimensional Honeycomb-like Hierarchical Nitrogen-Doped Framework for a Dendrite-Free Lithium Metal Anode. ACS Applied Energy Materials, 2021, 4, 2838-2846.	2.5	5
560	Robust Cycling of Ultrathin Li Metal Enabled by Nitrateâ€Preplanted Li Powder Composite. Advanced Energy Materials, 2021, 11, 2003769.	10.2	48
561	General Design Methodology for Organic Eutectic Electrolytes toward Highâ€Energyâ€Density Redox Flow Batteries. Advanced Materials, 2021, 33, e2008560.	11.1	25

#	Article	IF	CITATIONS
562	Structure Prototype Outperforming MXenes in Stability and Performance in Metalâ€Ion Batteries: A High Throughput Study. Advanced Energy Materials, 2021, 11, 2003633.	10.2	111
563	Structural Engineering of Covalent Organic Frameworks for Rechargeable Batteries. Advanced Energy Materials, 2021, 11, 2003054.	10.2	61
564	Vapor-pressured induced synthesis of chemically bonded Fe1-xS/N-doped carbon composite nanoflakes as high-capacity, ultralong-cycle-life, and high-rate lithium-ion-battery anode. IOP Conference Series: Earth and Environmental Science, 2021, 680, 012077.	0.2	0
565	Natural Clayâ€Based Materials for Energy Storage and Conversion Applications. Advanced Science, 2021, 8, e2004036.	5.6	56
566	Basics of teaching electrochemical impedance spectroscopy of electrolytes for ion-rechargeable batteries– part 1: a good practice on estimation of bulk resistance of solid polymer electrolytes. Chemistry Teacher International, 2021, 3, 105-115.	0.9	13
567	Ultra-high-voltage Ni-rich layered cathodes in practical Li metal batteries enabled by a sulfonamide-based electrolyte. Nature Energy, 2021, 6, 495-505.	19.8	323
568	Decoupling the origins of irreversible coulombic efficiency in anode-free lithium metal batteries. Nature Communications, 2021, 12, 1452.	5.8	111
569	Systematic Evaluation of Carbon Hosts for High-Energy Rechargeable Lithium-Metal Batteries. ACS Energy Letters, 0, , 1550-1559.	8.8	20
570	High-Energy Lateral Mapping (HELM) Studies of Inhomogeneity and Failure Mechanisms in NMC622/Li Pouch Cells. Chemistry of Materials, 2021, 33, 2378-2386.	3.2	16
571	Electrochemical Properties and Deposition/Dissolution Behavior of Li Metal Negative Electrode in VS ₄ /Li Battery. Electrochemistry, 2021, 89, 167-175.	0.6	6
572	Nitrogenâ€Doped Amorphous Zn–Carbon Multichannel Fibers for Stable Lithium Metal Anodes. Angewandte Chemie, 2021, 133, 8596-8601.	1.6	17
573	Opportunities for the State-of-the-Art Production of LIB Electrodes—A Review. Energies, 2021, 14, 1406.	1.6	55
574	Intrinsically Nonflammable Ionic Liquidâ€Based Localized Highly Concentrated Electrolytes Enable Highâ€Performance Liâ€Metal Batteries. Advanced Energy Materials, 2021, 11, 2003752.	10.2	85
575	A Saltâ€inâ€Metal Anode: Stabilizing the Solid Electrolyte Interphase to Enable Prolonged Battery Cycling. Advanced Functional Materials, 2021, 31, 2010602.	7.8	69
576	A High-Voltage Hybrid Solid Electrolyte Based on Polycaprolactone for High-Performance all-Solid-State Flexible Lithium Batteries. ACS Applied Energy Materials, 2021, 4, 2318-2326.	2.5	24
577	Thermodynamically and Physically Stable Dendrite-Free Li Interface with Layered Boron Nitride Separators. ACS Sustainable Chemistry and Engineering, 2021, 9, 4185-4193.	3.2	7
578	Challenges for and Pathways toward Li-Metal-Based All-Solid-State Batteries. ACS Energy Letters, 0, , 1399-1404.	8.8	228
579	Rapid Interfacial Exchange of Li Ions Dictates High Coulombic Efficiency in Li Metal Anodes. ACS Energy Letters, 0, , 1162-1169.	8.8	41

#	Article	IF	CITATIONS
580	Composite Lithium Protective Layer Formed In Situ for Stable Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2021, 13, 12099-12105.	4.0	38
581	Synchronized ion and electron transfer in a blue T-Nb2O5-x with solid-solution-like process for fast and high volumetric charge storage. Energy Storage Materials, 2021, 36, 213-221.	9.5	27
582	Stable cycling and uniform lithium deposition in anode-free lithium-metal batteries enabled by a high-concentration dual-salt electrolyte with high LiNO3 content. Journal of Power Sources, 2021, 490, 229504.	4.0	41
583	The Stack Pressure Dilemma in Sulfide Electrolyte Based Li Metal Solidâ€State Batteries: A Case Study with Li ₆ PS ₅ Cl Solid Electrolyte. Advanced Materials Interfaces, 2021, 8, 2100206.	1.9	42
584	Lithium Metal Batteries Enabled by Synergetic Additives in Commercial Carbonate Electrolytes. ACS Energy Letters, 2021, 6, 1839-1848.	8.8	200
585	Addressing Unfavorable Influence of Particle Cracking with a Strengthened Shell Layer in Ni-Rich Cathodes. ACS Applied Materials & Interfaces, 2021, 13, 18954-18960.	4.0	11
586	Flexible Nanocomposite Polymer Electrolyte Based on UV-Cured Polyurethane Acrylate for Lithium Metal Batteries. ACS Sustainable Chemistry and Engineering, 2021, 9, 5631-5641.	3.2	17
587	Recent Progress in Polyanionic Anode Materials for Li (Na)-Ion Batteries. Electrochemical Energy Reviews, 2021, 4, 447-472.	13.1	96
588	Group VI metallic pillars for assembly of expanded graphite anodes for high-capacity Na-ion batteries. Carbon, 2021, 175, 585-593.	5.4	14
589	Recent Advances of Freestanding Cathodes for Liâ€ S Batteries. Chemistry - an Asian Journal, 2021, 16, 1172-1183.	1.7	4
590	Thick electrode with thickness-independent capacity enabled by assembled two-dimensional porous nanosheets. Energy Storage Materials, 2021, 36, 265-271.	9.5	30
591	Designed high-performance lithium-ion battery electrodes using a novel hybrid model-data driven approach. Energy Storage Materials, 2021, 36, 435-458.	9.5	55
592	Metalâ€Organic Frameworks Nanocomposites with Different Dimensionalities for Energy Conversion and Storage. Advanced Energy Materials, 2022, 12, 2100346.	10.2	86
593	Vanadium Pentoxide Nanofibers/Carbon Nanotubes Hybrid Film for High-Performance Aqueous Zinc-Ion Batteries. Nanomaterials, 2021, 11, 1054.	1.9	26
594	Review on Multivalent Rechargeable Metal–Organic Batteries. Energy & Fuels, 2021, 35, 7624-7636.	2.5	28
595	Progress and Perspective on Rechargeable Magnesium–Sulfur Batteries. Small Methods, 2021, 5, e2001303.	4.6	19
596	Metal-organic frameworks enable broad strategies for lithium-sulfur batteries. National Science Review, 2021, 8, nwab055.	4.6	58
597	Operando XAS to Illustrate the Importance of Electronic Conductivity in Vanadyl Phosphate Systems. Journal of the Electrochemical Society, 2021, 168, 050502.	1.3	1

#	Article	IF	CITATIONS
598	Covalent Assembly of Twoâ€Dimensional COFâ€onâ€MXene Heterostructures Enables Fast Charging Lithium Hosts. Advanced Functional Materials, 2021, 31, 2101194.	7.8	83
599	The Electrolysis of Antiâ€Perovskite Li ₂ OHCl for Prelithiation of Highâ€Energyâ€Density Batteries. Angewandte Chemie, 2021, 133, 13123-13130.	1.6	4
600	Stabilizing ultrahigh-nickel layered oxide cathodes for high-voltage lithium metal batteries. Materials Today, 2021, 44, 15-24.	8.3	53
601	A biomass-derived biochar-supported NiS/C anode material for lithium-ion batteries. Ceramics International, 2021, 47, 20948-20955.	2.3	26
602	Dynamical SEI Reinforced by Openâ€Architecture MOF Film with Stereoscopic Lithiophilic Sites for Highâ€Performance Lithium–Metal Batteries. Advanced Functional Materials, 2021, 31, 2101034.	7.8	59
603	Floating solid-state thin films with dynamic structural colour. Nature Nanotechnology, 2021, 16, 795-801.	15.6	41
604	Magnetohydrodynamic Interfaceâ€Rearranged Lithium Ions Distribution for Uniform Lithium Deposition and Stable Lithium Metal Anode. ChemPhysChem, 2021, 22, 1027-1033.	1.0	1
605	Strategies to Boost Ionic Conductivity and Interface Compatibility of Inorganic - Organic Solid Composite Electrolytes. Energy Storage Materials, 2021, 36, 291-308.	9.5	82
606	Highly Potassiophilic Carbon Nanofiber Paper Derived from Bacterial Cellulose Enables Ultra-Stable Dendrite-Free Potassium Metal Anodes. ACS Applied Materials & Interfaces, 2021, 13, 17629-17638.	4.0	27
607	The Electrolysis of Antiâ€Perovskite Li ₂ OHCl for Prelithiation of Highâ€Energyâ€Density Batteries. Angewandte Chemie - International Edition, 2021, 60, 13013-13020.	7.2	25
608	Ampere-hour-scale zinc–air pouch cells. Nature Energy, 2021, 6, 592-604.	19.8	149
609	Recent advancements in Prussian blue analogues: Preparation and application in batteries. Energy Storage Materials, 2021, 36, 387-408.	9.5	137
610	Diversity-oriented synthesis of polymer membranes with ion solvation cages. Nature, 2021, 592, 225-231.	13.7	83
611	Covalently Interlinked Graphene Sheets with Sulfurâ€Chains Enable Superior Lithium–Sulfur Battery Cathodes at Fullâ€Mass Level. Advanced Functional Materials, 2021, 31, 2101326.	7.8	27
612	Nickel-manganese phosphate: An efficient battery-grade electrode for supercapattery devices. Ceramics International, 2021, 47, 11220-11230.	2.3	55
613	Dislocations in ceramic electrolytes for solid-state Li batteries. Scientific Reports, 2021, 11, 8949.	1.6	14
614	Bioinspired, Treeâ€Rootâ€Like Interfacial Designs for Structural Batteries with Enhanced Mechanical Properties. Advanced Energy Materials, 2021, 11, 2100997.	10.2	27
615	Tailoring Electrolyte Solvation Chemistry toward an Inorganic-Rich Solid-Electrolyte Interphase at a Li Metal Anode. ACS Energy Letters, 2021, 6, 2054-2063.	8.8	79

#	Article	IF	Citations
616	From Fundamental Understanding to Engineering Design of Highâ€Performance Thick Electrodes for Scalable Energy‣torage Systems. Advanced Materials, 2021, 33, e2101275.	11.1	89
617	Synergistic Composite Coating for Separators in Lithium Metal Batteries. ACS Applied Energy Materials, 2021, 4, 5237-5245.	2.5	13
618	Regulating alkali metal deposition behavior via Li/Na-philic Ni nanoparticles modified 3D hierarchical carbon skeleton. Chemical Engineering Journal, 2021, 412, 128661.	6.6	19
619	Engineering the Active Sites of Graphene Catalyst: From CO ₂ Activation to Activate Li-CO ₂ Batteries. ACS Nano, 2021, 15, 9841-9850.	7.3	71
620	A highly stable lithium metal anode enabled by Ag nanoparticle–embedded nitrogen-doped carbon macroporous fibers. Science Advances, 2021, 7, .	4.7	212
621	Phonons and lithium diffusion in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>LiAlO</mml:mi><mml:mn>2Physical Review B, 2021, 103, .</mml:mn></mml:msub></mml:math 	l:m∎a⊉ <td>nl:msub></td>	nl :m sub>
622	Cooperative stabilization of bi-electrodes with robust interphases for high-voltage lithium-metal batteries. Energy Storage Materials, 2021, 37, 521-529.	9.5	54
623	Crossroads in the renaissance of rechargeable aqueous zinc batteries. Materials Today, 2021, 45, 191-212.	8.3	171
624	Temperature Dependence of Lithium Anode Voiding in Argyrodite Solid-State Batteries. ACS Applied Materials & Interfaces, 2021, 13, 22708-22716.	4.0	38
625	Regulating the Stable Lithium and Polysulfide Deposition in Batteries by a Gold Nanoparticle Modified Vertical Graphene Host. Advanced Energy and Sustainability Research, 2021, 2, 2100044.	2.8	4
626	A Safer, Wide-Temperature Liquefied Gas Electrolyte Based on Difluoromethane. Journal of Power Sources, 2021, 493, 229668.	4.0	18
627	Stabilizing metal battery anodes through the design of solid electrolyte interphases. Joule, 2021, 5, 1119-1142.	11.7	233
628	A dynamic stability design strategy for lithium metal solid state batteries. Nature, 2021, 593, 218-222.	13.7	375
629	Establishing the Preferential Adsorption of Anionâ€Dominated Solvation Structures in the Electrolytes for Highâ€Energyâ€Density Lithium Metal Batteries. Advanced Functional Materials, 2021, 31, 2011109.	7.8	37
630	Practical Considerations for Testing Polymer Electrolytes for High-Energy Solid-State Batteries. ACS Energy Letters, 2021, 6, 2240-2247.	8.8	40
631	Ultrahighâ€Energyâ€Density Flexible Lithiumâ€Metal Full Cells based on Conductive Fibrous Skeletons. Advanced Energy Materials, 2021, 11, 2100531.	10.2	20
632	Electrochemical Characterization of Battery Materials in 2â€Electrode Halfâ€Cell Configuration: A Balancing Act Between Simplicity and Pitfalls. Batteries and Supercaps, 2021, 4, 1310-1322.	2.4	22
633	Physical Vapor Deposition of Cathode Materials for All Solid-State Li Ion Batteries: A Review. Frontiers in Energy Research, 2021, 9, .	1.2	19

#	Article	IF	CITATIONS
634	Challenges and needs for system-level electrochemical lithium-ion battery management and diagnostics. MRS Bulletin, 2021, 46, 420-428.	1.7	16
635	Phase-Separation-Induced Porous Lithiophilic Polymer Coating for High-Efficiency Lithium Metal Batteries. Nano Letters, 2021, 21, 4757-4764.	4.5	44
636	Early Battery Performance Prediction for Mixed Use Charging Profiles Using Hierarchal Machine Learning. Batteries and Supercaps, 2021, 4, 1186-1196.	2.4	10
637	New Insights on the Good Compatibility of Ether-Based Localized High-Concentration Electrolyte with Lithium Metal. , 2021, 3, 838-844.		50
638	Electrode ageing estimation and open circuit voltage reconstruction for lithium ion batteries. Energy Storage Materials, 2021, 37, 283-295.	9.5	124
639	Tailoring inorganic–polymer composites for the mass production of solid-state batteries. Nature Reviews Materials, 2021, 6, 1003-1019.	23.3	409
640	The chemical states of conjugated coordination polymers. CheM, 2021, 7, 1224-1243.	5.8	71
641	A Bifunctional-Modulated Conformal Li/Mn-Rich Layered Cathode for Fast-Charging, High Volumetric Density and Durable Li-Ion Full Cells. Nano-Micro Letters, 2021, 13, 118.	14.4	17
642	Shakedown, ratcheting and fatigue analysis of cathode coating in lithium-ion battery under steady charging-discharging process. Journal of the Mechanics and Physics of Solids, 2021, 150, 104366.	2.3	14
643	Revealing Anion Adsorption Mechanism for Coating Layer on Separator toward Practical Li Metal Batteries. ACS Applied Materials & Interfaces, 2021, 13, 23584-23591.	4.0	14
644	Free-standing ultrathin lithium metal–graphene oxide host foils with controllable thickness for lithium batteries. Nature Energy, 2021, 6, 790-798.	19.8	198
645	Enablement of long-lifespan lithium metal battery via building 3D LixGey alloy framework. Electrochimica Acta, 2021, 382, 138301.	2.6	4
646	A high-energy-density and long-life initial-anode-free lithium battery enabled by a Li2O sacrificial agent. Nature Energy, 2021, 6, 653-662.	19.8	175
647	Honeycomb-like Ni3(NO3)2(OH)4@Ni/Co-BTC composites as electrode materials for high performance supercapacitors. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 268, 115136.	1.7	8
648	Advances in Lithium–Sulfur Batteries: From Academic Research to Commercial Viability. Advanced Materials, 2021, 33, e2003666.	11.1	357
649	Ultralight Electrolyte for Highâ€Energy Lithium–Sulfur Pouch Cells. Angewandte Chemie - International Edition, 2021, 60, 17547-17555.	7.2	72
650	Comparative performance of ex situ artificial solid electrolyte interphases for Li metal batteries with liquid electrolytes. IScience, 2021, 24, 102578.	1.9	17
651	Probing the Formation of Lithium Metal in an Inert Atmosphere by Big Data-Driven <i>In Situ</i> Electron Microscopy. ACS Applied Energy Materials, 2021, 4, 7226-7232.	2.5	2

ARTICLE IF CITATIONS Constructing ultrathin TiO2 protection layers via atomic layer deposition for stable lithium metal 652 2.8 27 anode cycling. Journal of Alloys and Compounds, 2021, 865, 158748. Hybrid polyion complex micelles enabling high-performance lithium-metal batteries with universal cárbonates. Energy Storage Materials, 2021, 38, 509-519. Computational insights into the ionic transport mechanism and interfacial stability of the Li2OHCl 654 2.8 19 solid-state electrolyte. Journal of Materiomics, 2022, 8, 59-67. Rational design of MXene-based films for energy storage: Progress, prospects. Materials Today, 2021, 46, 183-211. Highly Stable Quasiâ€Solidâ€State Lithium Metal Batteries: Reinforced Li_{1.3}Al_{0.3}Ti_{1.7}(PO₄)₃/Li Interface by a 656 10.2 62 Protection Interlayer. Advanced Energy Materials, 2021, 11, 2101339. Lithium dendrite suppression by facile interfacial barium engineering for stable 5ÂV-class lithium metal batteries with carbonate-based electrolyte. Chemical Engineering Journal, 2021, 414, 128928. 6.6 Chemical welding of diamine molecules in graphene oxide nanosheets: Design of precisely controlled 658 interlayer spacings with the fast Li+ diffusion coefficient toward high-performance storage 2.6 10 application. Electrochimica Acta, 2021, 380, 138114. Lithium-Rich Anti-perovskite Li₂OHBr-Based Polymer Electrolytes Enabling an Improved Interfacial Stability with a Three-Dimensional-Structured Lithium Metal Anode in All-Solid-State Batteries. ACS Applied Materials & amp; Interfaces, 2021, 13, 28108-28117. 4.0 Ultralight Electrolyte for Highâ€Energy Lithiumâ€"Sulfur Pouch Cells. Angewandte Chemie, 2021, 133, 660 1.6 13 17688-17696. Optimization of Magnesiumâ€Doped Lithium Metal Anode for High Performance Lithium Metal Batteries 1.6 through Modeling and Experiment. Angewandte Chemie, 2021, 133, 16642-16649. Design considerations to prevent thermal hazards in cylindrical lithium-ion batteries: An analytical 662 3.9 11 study. Journal of Energy Storage, 2021, 38, 102525. High Li-Ion Conductivity Artificial Interface Enabled by Li-Grafted Graphene Oxide for Stable Li Metal 4.0 Pouch Cell. ACS Applied Materials & amp; Interfaces, 2021, 13, 29500-29510. Reviewâ€"recent advances in non-aqueous liquid electrolytes containing fluorinated compounds for 664 9.5 72 high energy density lithium-ion batteries. Energy Storage Materials, 2021, 38, 542-570. Enhanced Li⁺ Transport in Ionic Liquidâ€Based Electrolytes Aided by Fluorinated Ethers for 4.6 34 Highly Efficient Lithium Metal Batteries with Improved Rate Capability. Small Methods, 2021, 5, e2100168. A review on the stability and surface modification of layered transition-metal oxide cathodes. 666 8.3 132 Materials Today, 2021, 46, 155-182. Boosting cycle stability of NCM811 cathode material via 2D Mg-Al-LDO nanosheet coating for lithium-ion battery. Journal of Alloys and Compounds, 2021, 867, 159079. Aluminum-air batteries: A review of alloys, electrolytes and design. Journal of Power Sources, 2021, 668 4.0 74 498, 229762. Fast Charging of Energy-Dense Lithium Metal Batteries in Localized Ether-Based Highly Concentrated 1.3 Electrolytes. Journal of the Electrochemical Society, 2021, 168, 060548.

#	Article	IF	CITATIONS
670	Balancing interfacial reactions to achieve long cycle life in high-energy lithium metal batteries. Nature Energy, 2021, 6, 723-732.	19.8	285
671	Toward Lowâ€Temperature Lithium Batteries: Advances and Prospects of Unconventional Electrolytes. Advanced Energy and Sustainability Research, 2021, 2, 2100039.	2.8	17
672	News Feature: The tricky challenge holding back electric cars. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2109654118.	3.3	2
673	Design of safe, long-cycling and high-energy lithium metal anodes in all working conditions: Progress, challenges and perspectives. Energy Storage Materials, 2021, 38, 157-189.	9.5	52
674	Rationally optimized carbon fiber cloth as lithiophilic host for highly stable Li metal anodes. Materials Today Energy, 2021, 20, 100663.	2.5	25
675	Optimization of Magnesiumâ€Doped Lithium Metal Anode for High Performance Lithium Metal Batteries through Modeling and Experiment. Angewandte Chemie - International Edition, 2021, 60, 16506-16513.	7.2	28
676	Energy Storage Mechanism, Challenge and Design Strategies of Metal Sulfides for Rechargeable Sodium/Potassiumâ€ion Batteries. Advanced Functional Materials, 2021, 31, 2103912.	7.8	108
677	Lithium Host:Advanced architecture components for lithium metal anode. Energy Storage Materials, 2021, 38, 276-298.	9.5	89
678	Solid‣tate Post Li Metal Ion Batteries: A Sustainable Forthcoming Reality?. Advanced Energy Materials, 2021, 11, .	10.2	49
	;;;-		
679	Finding the right balance. Nature Energy, 2021, 6, 692-693.	19.8	1
679 680		19.8 2.8	1
	Finding the right balance. Nature Energy, 2021, 6, 692-693. A Reflection on Lithiumâ€lon Batteries from a Lithiumâ€Resource Perspective. Advanced Energy and		
680	 Finding the right balance. Nature Energy, 2021, 6, 692-693. A Reflection on Lithiumâ€lon Batteries from a Lithiumâ€Resource Perspective. Advanced Energy and Sustainability Research, 2021, 2, 2100062. Communicationâ€"Anode-Free Lithium Metal Batteries: A Case Study of Compression Effects on Coin 	2.8	7
680 681	 Finding the right balance. Nature Energy, 2021, 6, 692-693. A Reflection on Lithiumâ€lon Batteries from a Lithiumâ€Resource Perspective. Advanced Energy and Sustainability Research, 2021, 2, 2100062. Communication—Anode-Free Lithium Metal Batteries: A Case Study of Compression Effects on Coin Cell Performance. Journal of the Electrochemical Society, 2021, 168, 060532. Transforming Materials into Practical Automotive Lithiumâ€lon Batteries. Advanced Materials 	2.8 1.3	7 8
680 681 682	Finding the right balance. Nature Energy, 2021, 6, 692-693. A Reflection on Lithiumâ€ion Batteries from a Lithiumâ€Resource Perspective. Advanced Energy and Sustainability Research, 2021, 2, 2100062. Communication—Anode-Free Lithium Metal Batteries: A Case Study of Compression Effects on Coin Cell Performance. Journal of the Electrochemical Society, 2021, 168, 060532. Transforming Materials into Practical Automotive Lithiumâ€ion Batteries. Advanced Materials Technologies, 2021, 6, 2100152. Synthesis of the SnO2@C@GN hollow porous microspheres with superior cyclability for Li-ion	2.8 1.3 3.0	7 8 6
680 681 682 683	Finding the right balance. Nature Energy, 2021, 6, 692-693. A Reflection on Lithiumâ€lon Batteries from a Lithiumâ€Resource Perspective. Advanced Energy and Sustainability Research, 2021, 2, 2100062. Communicationâ€"Anode-Free Lithium Metal Batteries: A Case Study of Compression Effects on Coin Cell Performance. Journal of the Electrochemical Society, 2021, 168, 060532. Transforming Materials into Practical Automotive Lithiumâ€lon Batteries. Advanced Materials Technologies, 2021, 6, 2100152. Synthesis of the SnO2@C@CN hollow porous microspheres with superior cyclability for Liton batteries. Chemical Physics Letters, 2021, 772, 138566.	2.8 1.3 3.0 1.2	7 8 6 5
 680 681 682 683 684 	Finding the right balance. Nature Energy, 2021, 6, 692-693. A Reflection on Lithiumâ€kon Batteries from a Lithiumâ€Resource Perspective. Advanced Energy and Sustainability Research, 2021, 2, 2100062. Communicationâ€"Anode-Free Lithium Metal Batteries: A Case Study of Compression Effects on Coin Cell Performance. Journal of the Electrochemical Society, 2021, 168, 060532. Transforming Materials into Practical Automotive Lithiumâ€kon Batteries. Advanced Materials Technologies, 2021, 6, 2100152. Synthesis of the SnO2@C@GN hollow porous microspheres with superior cyclability for Li-ion batteries. Chemical Physics Letters, 2021, 772, 138566. Engineering current collectors for batteries with high specific energy. Joule, 2021, 5, 1301-1305. Status and Gap in Rechargeable Lithium Battery Supply Chain: Importance of Quantitative Failure	2.8 1.3 3.0 1.2 11.7	7 8 6 5 48

#	Article	IF	CITATIONS
688	Quantitatively Designing Porous Copper Current Collectors for Lithium Metal Anodes. ACS Applied Energy Materials, 2021, 4, 6454-6465.	2.5	17
689	Electrochemically driven dynamic plasmonics. Advanced Photonics, 2021, 3, .	6.2	10
690	Improving Cycle Life through Fast Formation Using a Superconcentrated Phosphonium Based Ionic Liquid Electrolyte for Anode-Free and Lithium Metal Batteries. ACS Applied Energy Materials, 2021, 4, 6399-6407.	2.5	16
691	Preparation of Threeâ€Dimensional Copperâ€Zinc Alloy Current Collector by Powder Metallurgy for Lithium Metal Battery Anode. ChemElectroChem, 2021, 8, 2479-2487.	1.7	14
692	Design Principle, Optimization Strategies, and Future Perspectives of Anode-Free Configurations for High-Energy Rechargeable Metal Batteries. Electrochemical Energy Reviews, 2021, 4, 601-631.	13.1	69
693	Currentâ€Density Regulating Lithium Metal Directional Deposition for Long Cycleâ€Life Li Metal Batteries. Angewandte Chemie - International Edition, 2021, 60, 19306-19313.	7.2	35
694	A Nearly Packagingâ€Free Design Paradigm for Light, Powerful, and Energyâ€Dense Primary Microbatteries. Advanced Materials, 2021, 33, e2101760.	11.1	17
695	Understanding the Roles of the Electrode/Electrolyte Interface for Enabling Stable Liâ^¥Sulfurized Polyacrylonitrile Batteries. ACS Applied Materials & Interfaces, 2021, 13, 31733-31740.	4.0	25
696	Tunable Porous Electrode Architectures for Enhanced Li-Ion Storage Kinetics in Thick Electrodes. Nano Letters, 2021, 21, 5896-5904.	4.5	66
697	Conformal Coating of a Carbon Film on 3D Hosts toward Stable Lithium Anodes. ACS Applied Energy Materials, 2021, 4, 7288-7297.	2.5	7
698	Pre-Solid Electrolyte Interphase-Covered Li Metal Anode with Improved Electro-Chemo-Mechanical Reliability in High-Energy-Density Batteries. ACS Applied Materials & Interfaces, 2021, 13, 34064-34073.	4.0	8
699	Challenges and key requirements of batteries for electric vertical takeoff and landing aircraft. Joule, 2021, 5, 1644-1659.	11.7	68
700	Toward an Understanding of SEI Formation and Lithium Plating on Copper in Anode-Free Batteries. Journal of Physical Chemistry C, 2021, 125, 16719-16732.	1.5	55
701	Hydrogenâ€Bonding Crosslinking MXene to Highly Robust and Ultralight Aerogels for Strengthening Lithium Metal Anode. Small Science, 2021, 1, 2100021.	5.8	41
702	A Highâ€Capacity, Longâ€Cycling Allâ€Solidâ€State Lithium Battery Enabled by Integrated Cathode/Ultrathin Solid Electrolyte. Advanced Energy Materials, 2021, 11, 2101612.	10.2	45
703	Nanocellulose and Its Derivatives toward Advanced Lithium Sulfur Batteries. , 2021, 3, 1130-1142.		13
704	Investigation of the LiBH ₄ Modification Effect on Cycling Stability and High-Rate Capacity of LiCoO ₂ Cathodes. ACS Applied Energy Materials, 2021, 4, 6933-6941.	2.5	7
705	Electrolyte Design for Lithium Metal Anodeâ€Based Batteries Toward Extreme Temperature Application. Advanced Science, 2021, 8, e2101051.	5.6	95

#	Article	IF	CITATIONS
706	Designing Cation–Solvent Fully Coordinated Electrolyte for Highâ€Energyâ€Density Lithium–Sulfur Full Cell Based On Solid–Solid Conversion. Angewandte Chemie, 2021, 133, 17867-17875.	1.6	11
707	Complex Growth Behavior of Li Dendrites in Al ₂ O ₃ Nanoparticlesâ€Driven Viscoelastic Electrolytes for Lithium Metal Batteries: Dynamic versus Quasistatic Rheology. Advanced Materials Interfaces, 2021, 8, 2100687.	1.9	5
708	Rapid failure mode classification and quantification in batteries: A deep learning modeling framework. Energy Storage Materials, 2022, 45, 1002-1011.	9.5	29
709	N, Oâ€Codoped Carbon Nanosheet Array Enabling Stable Lithium Metal Anode. Advanced Functional Materials, 2021, 31, 2102354.	7.8	45
710	In Situ Chemical Lithiation Transforms Diamondâ€Like Carbon into an Ultrastrong Ion Conductor for Dendriteâ€Free Lithiumâ€Metal Anodes. Advanced Materials, 2021, 33, e2100793.	11.1	82
711	Confronting the Challenges in Lithium Anodes for Lithium Metal Batteries. Advanced Science, 2021, 8, e2101111.	5.6	157
712	In Situâ€Formed Dualâ€Conductive Protecting Layer for Dendriteâ€Free Li Metal Anodes in Allâ€Solidâ€State Batteries. Energy Technology, 2021, 9, 2100087.	1.8	12
713	Intermetallic interphases in lithium metal and lithium ion batteries. InformaÄnÃ-Materiály, 2021, 3, 1083-1109.	8.5	35
714	Currentâ€Density Regulating Lithium Metal Directional Deposition for Long Cycleâ€Life Li Metal Batteries. Angewandte Chemie, 2021, 133, 19455-19462.	1.6	2
715	Effect of Building Block Connectivity and Ion Solvation on Electrochemical Stability and Ionic Conductivity in Novel Fluoroether Electrolytes. ACS Central Science, 2021, 7, 1232-1244.	5.3	34
716	Operando 2D Acoustic Characterization of Lithium-Ion Battery Spatial Dynamics. ACS Energy Letters, 2021, 6, 2960-2968.	8.8	24
717	A Chlorine-Free Electrolyte Based on Non-nucleophilic Magnesium Bis(diisopropyl)amide and Ionic Liquid for Rechargeable Magnesium Batteries. ACS Applied Materials & Interfaces, 2021, 13, 32957-32967.	4.0	19
718	Vertically aligned two-dimensional materials-based thick electrodes for scalable energy storage systems. Nano Research, 2021, 14, 3562-3575.	5.8	30
719	Self-sacrificial-reaction guided formation of hierarchical electronic/ionic conductive shell enabling high-performance nano-silicon anode. Chemical Engineering Journal, 2021, 415, 128998.	6.6	31
720	Low-Cost Li SPAN Batteries Enabled by Sustained Additive Release. ACS Applied Energy Materials, 2021, 4, 6422-6429.	2.5	2
721	Role of Lithiophilic Metal Sites in Lithium Metal Anodes. Energy & Fuels, 2021, 35, 12746-12752.	2.5	16
722	Ultrathin Ti3C2 nanowires derived from multi-layered bulks for high-performance hydrogen evolution reaction. Chinese Chemical Letters, 2022, 33, 557-561.	4.8	18
723	B-doped SiOx composite with three dimensional conductive network for high performance lithium-ion battery anode. Journal of Materiomics, 2021, 7, 802-809.	2.8	11

#	Article	IF	CITATIONS
724	Designing Cation–Solvent Fully Coordinated Electrolyte for Highâ€Energyâ€Density Lithium–Sulfur Full Cell Based On Solid–Solid Conversion. Angewandte Chemie - International Edition, 2021, 60, 17726-17734.	7.2	50
725	Ion–solvent chemistry in lithium battery electrolytes: From mono-solvent to multi-solvent complexes. Fundamental Research, 2021, 1, 393-398.	1.6	50
726	Highâ€Performance Cathode Materials for Potassiumâ€Ion Batteries: Structural Design and Electrochemical Properties. Advanced Materials, 2021, 33, e2100409.	11.1	48
727	Energy Density Theory of Lithium-Ion Capacitors. Journal of the Electrochemical Society, 2021, 168, 080503.	1.3	4
728	Energy storage selection and operation for night-time survival of small lunar surface systems. Acta Astronautica, 2021, 185, 308-318.	1.7	2
729	Degradation Diagnostics from the Subsurface of Lithiumâ€lon Battery Electrodes. Energy and Environmental Materials, 2022, 5, 662-669.	7.3	9
730	Enhancing the Cycling Stability for Lithium-Metal Batteries by Localized High-Concentration Electrolytes with 2-Fluoropyridine Additive. ACS Applied Energy Materials, 2021, 4, 10234-10243.	2.5	18
731	Stabilizing Ceramic-Based Electrolyte Interfaces with Self-Viscous Modification Strategy for Solid-State Lithium Batteries. Energy & amp; Fuels, 2021, 35, 13411-13418.	2.5	5
732	Thermally Stable and Nonflammable Electrolytes for Lithium Metal Batteries: Progress and Perspectives. Small Science, 2021, 1, 2100058.	5.8	81
733	Multifunctional polymer bottlebrush-based gel polymer electrolytes for lithium metal batteries. Materials Today Nano, 2021, 15, 100128.	2.3	8
734	Research progress on graphene-based materials for high-performance lithium-metal batteries. New Carbon Materials, 2021, 36, 711-728.	2.9	26
735	Self-Assembled Monolayers for Batteries. Journal of the American Chemical Society, 2021, 143, 12897-12912.	6.6	47
736	Covalent Organic Frameworks and Their Derivatives for Better Metal Anodes in Rechargeable Batteries. ACS Nano, 2021, 15, 12741-12767.	7.3	71
737	Sulfurâ€containing compounds as electrolyte additives for lithiumâ€ion batteries. InformaÄnÃ-MateriÃily, 2021, 3, 1364-1392.	8.5	60
738	An extra-wide temperature all-solid-state lithium-metal battery operating from â^'73 ℃ to 120 ℃. Energy Storage Materials, 2021, 39, 139-145.	9.5	29
739	Interfacial Defect of Lithium Metal in Solidâ€State Batteries. Angewandte Chemie - International Edition, 2021, 60, 21494-21501.	7.2	20
740	Nanoscale operation of Ni-Rich cathode surface by polycrystalline solid electrolytes Li3.2Zr0.4Si0.6O3.6 coating. Chemical Engineering Journal, 2021, 417, 129217.	6.6	14
741	Advanced Electrolyte Design for Highâ€Energyâ€Density Liâ€Metal Batteries under Practical Conditions. Angewandte Chemie, 2021, 133, 25828-25842.	1.6	31

#	Article	IF	Citations
742	The passivity of lithium electrodes in liquid electrolytes for secondary batteries. Nature Reviews Materials, 2021, 6, 1036-1052.	23.3	201
743	Two-Phase Transition Induced Amorphous Metal Phosphides Enabling Rapid, Reversible Alkali-Metal Ion Storage. ACS Nano, 2021, 15, 13486-13494.	7.3	23
744	Interfacial Defect of Lithium Metal in Solid‧tate Batteries. Angewandte Chemie, 2021, 133, 21664-21671.	1.6	7
745	Surface Modification of Nickelâ€Rich Cathode Materials by Ionically Conductive Materials at Room Temperature. Energy Technology, 2021, 9, 2100422.	1.8	4
746	Silicon Anodes with Improved Calendar Life Enabled By Multivalent Additives. Advanced Energy Materials, 2021, 11, 2101820.	10.2	17
747	Advanced Electrolytes Enabling Safe and Stable Rechargeable Liâ€Metal Batteries: Progress and Prospects. Advanced Functional Materials, 2021, 31, 2105253.	7.8	102
748	Advanced Electrolyte Design for Highâ€Energyâ€Density Liâ€Metal Batteries under Practical Conditions. Angewandte Chemie - International Edition, 2021, 60, 25624-25638.	7.2	81
749	Compact energy storage enabled by graphenes: Challenges, strategies and progress. Materials Today, 2021, 51, 552-565.	8.3	42
750	Commercializationâ€Driven Electrodes Design for Lithium Batteries: Basic Guidance, Opportunities, and Perspectives. Small, 2021, 17, e2102233.	5.2	38
751	Lithium solid-state batteries: State-of-the-art and challenges for materials, interfaces and processing. Journal of Power Sources, 2021, 502, 229919.	4.0	92
752	Review—Electrolyte and Electrode Designs for Enhanced Ion Transport Properties to Enable High Performance Lithium Batteries. Journal of the Electrochemical Society, 2021, 168, 090501.	1.3	33
753	An Aqueous Mg ²⁺ â€Based Dualâ€lon Battery with High Power Density. Advanced Functional Materials, 2021, 31, 2107523.	7.8	30
754	LiPO2F2 electrolyte additive for high-performance Li-rich cathode material. Journal of Energy Chemistry, 2021, 60, 564-571.	7.1	49
755	Ionâ€Conducting Channel Implanted Anode Matrix for Allâ€5olidâ€5tate Batteries with High Rate Capability and Stable Anode/Solid Electrolyte Interface. Advanced Energy Materials, 2021, 11, 2102045.	10.2	19
756	Facile "Lotus Blooming―Strategy to Synthesize a 3D Carbon Nanosheet/Carbon Nanotube Framework with Embedded Co Nanocrystals for High-Performance Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2021, 4, 11343-11352.	2.5	2
757	Understanding the Correlation between Lithium Dendrite Growth and Local Material Properties by Machine Learning. Journal of the Electrochemical Society, 2021, 168, 090523.	1.3	3
758	Stable artificial solid electrolyte interphase with lithium selenide and lithium chloride for dendrite-free lithium metal anodes. Journal of Power Sources, 2021, 506, 230158.	4.0	21
759	Quantification of Efficiency in Lithium Metal Negative Electrodes via Operando X-ray Diffraction. Chemistry of Materials, 2021, 33, 7537-7545.	3.2	17

\mathbf{C}	TAT	ON	Dr		DT
	TAT		IKE	PU.	I N

#	Article	IF	CITATIONS
760	Stable Anionâ€Đerived Solid Electrolyte Interphase in Lithium Metal Batteries. Angewandte Chemie, 2021, 133, 22865-22869.	1.6	32
761	1D Coreâ^'Shell MOFs derived CoP Nanoparticles-Embedded N-doped porous carbon nanotubes anchored with MoS2 nanosheets as efficient bifunctional electrocatalysts. Chemical Engineering Journal, 2021, 419, 129977.	6.6	56
762	Interfacial modification by lithiophilic oxide facilitating uniform and thin solid electrolyte interphase towards stable lithium metal anodes. Materials Today Energy, 2021, 21, 100748.	2.5	3
763	Porous polyimide separator promotes uniform lithium plating for lithiumâ€free cells. Electrochemical Science Advances, 2022, 2, e2100091.	1.2	5
764	In-situ TEM revisiting NH4V4O10 to unveil the unknown sodium storage mechanism as an anode material. Nano Energy, 2021, 87, 106182.	8.2	10
765	Elucidation of the influence of operating temperature in LiNi0.8Co0.15Al0.05O2/silicon and LiNi0.8Co0.15Al0.05O2/graphite pouch cells batteries cycle-life degradation. Journal of Energy Storage, 2021, 41, 102989.	3.9	7
766	Sifting weakly-coordinated solvents within solvation sheath through an electrolyte filter for high-voltage lithium-metal batteries. Energy Storage Materials, 2022, 44, 360-369.	9.5	14
767	Sensitivity Analysis and Joint Estimation of Parameters and States for All-Solid-State Batteries. IEEE Transactions on Transportation Electrification, 2021, 7, 1314-1323.	5.3	49
768	An electron-deficient carbon current collector for anode-free Li-metal batteries. Nature Communications, 2021, 12, 5537.	5.8	104
769	High-Capacity Anode Material for Lithium-Ion Batteries with a Core–Shell NiFe ₂ O ₄ /Reduced Graphene Oxide Heterostructure. ACS Omega, 2021, 6, 25269-25276.	1.6	10
770	Controlled Vertically Aligned Structures in Polymer Composites: Natural Inspiration, Structural Processing, and Functional Application. Advanced Materials, 2021, 33, e2103495.	11.1	62
771	Reclaiming Inactive Lithium with a Triiodide/Iodide Redox Couple for Practical Lithium Metal Batteries. Angewandte Chemie - International Edition, 2021, 60, 22990-22995.	7.2	52
772	Immobilizing Redoxâ€Active Tricycloquinazoline into a 2D Conductive Metal–Organic Framework for Lithium Storage. Angewandte Chemie - International Edition, 2021, 60, 24467-24472.	7.2	67
773	Recent progress of asymmetric solid-state electrolytes for lithium/sodium-metal batteries. EnergyChem, 2021, 3, 100058.	10.1	47
774	Lithium trapping in germanium nanopores during delithiation process. Applied Materials Today, 2021, 24, 101140.	2.3	1
775	A high-performance lithiated silicon–sulfur battery with pomegranate-structured electrodes. Journal of Power Sources, 2021, 506, 230174.	4.0	12
776	Enhancing Performance of Anode-Free Li-Metal Batteries by Addition of Ceramic Nanoparticles: Part I Journal of the Electrochemical Society, 2021, 168, 090541.	1.3	3
777	Decoration of carbon nanofibers with bimetal sulfides as interlayer for high performance lithium-sulfur battery. Materials Today Communications, 2021, 28, 102666.	0.9	5

#	ARTICLE	IF	CITATIONS
778	Self-leveling electrolyte enabled dendrite-free lithium deposition for safer and stable lithium metal batteries. Chemical Engineering Journal, 2021, 419, 129494.	6.6	11
779	In Situ Constructed Ionicâ€Electronic Dualâ€Conducting Scaffold with Reinforced Interface for Highâ€Performance Sodium Metal Anodes. Small, 2021, 17, e2104021.	5.2	17
780	Atomic layer deposition of electrocatalytic layer of MoS2 onto metal-based 3D-printed electrode toward tailoring hydrogen evolution efficiency. Applied Materials Today, 2021, 24, 101131.	2.3	8
781	Lithium Fluoride in Electrolyte for Stable and Safe Lithiumâ€Metal Batteries. Advanced Materials, 2021, 33, e2102134.	11.1	91
782	Revisiting lithium metal anodes from a dynamic and realistic perspective. EnergyChem, 2021, 3, 100063.	10.1	11
783	Modeling Current Density Non-Uniformities to Understand High-Rate Limitations in 3D Interdigitated Lithium-ion Batteries. Journal of the Electrochemical Society, 2021, 168, 100512.	1.3	3
784	Electrode Architecture Design to Promote Chargeâ€Transport Kinetics in High‣oading and Highâ€Energy Lithiumâ€Based Batteries. Small Methods, 2021, 5, e2100518.	4.6	27
785	High safety and cycling stability of ultrahigh energy lithium ion batteries. Cell Reports Physical Science, 2021, 2, 100584.	2.8	12
786	Assessing LiF as coating material for Li metal electrodes. Journal of Applied Electrochemistry, 2022, 52, 339-355.	1.5	1
787	Immobilizing Redoxâ€Active Tricycloquinazoline into a 2D Conductive Metalâ€Organic Framework for Lithium Storage. Angewandte Chemie, 2021, 133, 24672.	1.6	12
788	Neuromorphic System for Edge Information Encoding: Emulating Retinal Center-Surround Antagonism by Li-Ion-Mediated Highly Interactive Devices. Nano Letters, 2021, 21, 7938-7945.	4.5	14
789	Low-sintering-temperature garnet oxides by conformal sintering-aid coating. Cell Reports Physical Science, 2021, 2, 100569.	2.8	28
790	Engineering Polymer Glue towards 90% Zinc Utilization for 1000 Hours to Make Highâ€Performance Znâ€ion Batteries. Advanced Functional Materials, 2021, 31, 2107652.	7.8	115
791	A review of technologies and applications on versatile energy storage systems. Renewable and Sustainable Energy Reviews, 2021, 148, 111263.	8.2	192
792	Efficient polysulfides conversion on Mo2CTx MXene for high-performance lithium–sulfur batteries. Rare Metals, 2022, 41, 311-318.	3.6	40
793	Stable Anionâ€Derived Solid Electrolyte Interphase in Lithium Metal Batteries. Angewandte Chemie - International Edition, 2021, 60, 22683-22687.	7.2	125
794	Reclaiming Inactive Lithium with a Triiodide/Iodide Redox Couple for Practical Lithium Metal Batteries. Angewandte Chemie, 2021, 133, 23172.	1.6	10
795	High-energy-density Li–S battery with positive electrode of lithium polysulfides held by carbon nanotube sponge. Carbon, 2021, 182, 32-41.	5.4	17

	CITATION RE	PORT	
#	Article	IF	CITATIONS
796	Identifying Pitfalls in Lithium Metal Battery Characterization. Batteries and Supercaps, 2022, 5, .	2.4	5
797	A Microcapsuleâ€Assistant Selfâ€Healing Magnesium Battery Cathodes. Energy Technology, 2021, 9, 2100393.	1.8	2
798	Carbon materials for stable Li metal anodes: Challenges, solutions, and outlook. , 2021, 3, 957-975.		64
799	Molecular Layer Deposition of Crosslinked Polymeric Lithicone for Superior Lithium Metal Anodes. Energy Material Advances, 2021, 2021, .	4.7	27
800	High-Voltage and Wide-Temperature Lithium Metal Batteries Enabled by Ultrathin MOF-Derived Solid Polymer Electrolytes with Modulated Ion Transport. ACS Applied Materials & Interfaces, 2021, 13, 47163-47173.	4.0	42
801	Catalyzing polysulfide redox conversion for promoting the electrochemical performance of lithium-sulfur batteries by CoFe alloy. Chemical Engineering Journal, 2021, 421, 129997.	6.6	40
802	Advanced strategies for the development of porous carbon as a Li host/current collector for lithium metal batteries. Energy Storage Materials, 2021, 41, 448-465.	9.5	60
803	Electrospun Li-confinable hollow carbon fibers for highly stable Li-metal batteries. Chemical Engineering Journal, 2021, 422, 130017.	6.6	33
804	Tailoring electrolyte to enable high-rate and super-stable Ni-rich NCM cathode materials for Li-ion batteries. Nano Energy, 2021, 88, 106301.	8.2	86
805	Chlorinated dual-protective layers as interfacial stabilizer for dendrite-free lithium metal anode. Energy Storage Materials, 2021, 41, 485-494.	9.5	66
806	Advances and challenges in metal ion separation from water. Trends in Chemistry, 2021, 3, 819-831.	4.4	14
807	Gradient SEI layer induced by liquid alloy electrolyte additive for high rate lithium metal battery. Nano Energy, 2021, 88, 106237.	8.2	48
808	Rational design of biomimetic ant-nest solid polymer electrolyte for high-voltage Li-metal battery with robust mechanical and electrochemical performance. Energy Storage Materials, 2021, 41, 51-60.	9.5	35
809	The mystery and promise of multivalent metal-ion batteries. Current Opinion in Electrochemistry, 2021, 29, 100819.	2.5	17
810	Enhanced energy storage of aqueous zinc-carbon hybrid supercapacitors via employing alkaline medium and B, N dual doped carbon cathode. Journal of Colloid and Interface Science, 2021, 599, 556-565.	5.0	26
811	Si nanoparticles embedded in carbon nanofiber sheathed with Li6PS5Cl as an anode material for all-solid-state batteries. Journal of Power Sources, 2021, 510, 230425.	4.0	21
812	Decoupling the degradation factors of Ni-rich NMC/Li metal batteries using concentrated electrolytes. Energy Storage Materials, 2021, 41, 222-229.	9.5	16
813	Critical role of surface craters for improving the reversibility of Li metal storage in porous carbon frameworks. Nano Energy, 2021, 88, 106243.	8.2	16

#	ARTICLE	IF	CITATIONS
814	Regulating lithium deposition via electropolymerization of acrylonitrile in rechargeable lithium metal batteries. Nano Energy, 2021, 88, 106298.	8.2	16
815	Establishing a unified framework for ion solvation and transport in liquid and solid electrolytes. Trends in Chemistry, 2021, 3, 807-818.	4.4	27
816	Carbon-based materials for fast charging lithium-ion batteries. Carbon, 2021, 183, 721-734.	5.4	177
817	Functional polymers for lithium metal batteries. Progress in Polymer Science, 2021, 122, 101453.	11.8	39
818	Implanting MnO into a three-dimensional carbon network as superior anode materials for lithium-ion batteries. Chemical Engineering Journal Advances, 2021, 8, 100146.	2.4	8
819	Efficient utilization of scrapped LiFePO4 battery for novel synthesis of Fe2P2O7/C as candidate anode materials. Resources, Conservation and Recycling, 2021, 174, 105802.	5.3	35
820	Dendrite-free lithium deposition enabled by a vertically aligned graphene pillar architecture. Carbon, 2021, 185, 152-160.	5.4	14
821	Investigation of glass-ceramic lithium thiophosphate solid electrolytes using NMR and neutron scattering. Materials Today Physics, 2021, 21, 100478.	2.9	5
822	Stabilizing zinc deposition with sodium lignosulfonate as an electrolyte additive to improve the life span of aqueous zinc-ion batteries. Journal of Colloid and Interface Science, 2021, 601, 486-494.	5.0	38
823	Review on battery thermal management systems for energy-efficient electric vehicles. Renewable and Sustainable Energy Reviews, 2021, 151, 111611.	8.2	82
824	New insight into Li metal protection: Regulating the Li-ion flux via dielectric polarization. Nano Energy, 2021, 89, 106334.	8.2	13
825	Synthetic poly-dioxolane as universal solid electrolyte interphase for stable lithium metal anodes. Journal of Energy Chemistry, 2021, 62, 172-178.	7.1	26
826	Synergetic enhancement of sodium storage in gallium-based heterostructures. Nano Energy, 2021, 89, 106395.	8.2	15
827	Boosting lithium batteries under harsh operating conditions by a resilient ionogel with liquid-like ionic conductivity. Journal of Energy Chemistry, 2021, 62, 408-414.	7.1	10
828	Rational design of a carbonate-glyme hybrid electrolyte for practical anode-free lithium metal batteries. Energy Storage Materials, 2021, 42, 295-306.	9.5	16
829	A mismatch electrical conductivity skeleton enables dendrite–free and high stability lithium metal anode. Nano Energy, 2021, 89, 106421.	8.2	17
830	Synthesis of CeVO4-V2O5 nanowires by cation-exchange method for high-performance lithium-ion battery electrode. Journal of Alloys and Compounds, 2021, 887, 161237.	2.8	7
831	Stable all-solid-state lithium metal batteries with Li3N-LiF-enriched interface induced by lithium nitrate addition. Energy Storage Materials, 2021, 43, 229-237.	9.5	75

#	Article	IF	CITATIONS
832	Constructing in-situ polymerized electrolyte on lithiophilic anode for high-performance lithium–air batteries operating in ambient conditions. Energy Storage Materials, 2021, 43, 221-228.	9.5	35
833	Strong oxidation induced quinone-rich dopamine polymerization onto porous carbons as ultrahigh-capacity organic cathode for sodium-ion batteries. Energy Storage Materials, 2021, 43, 120-129.	9.5	26
834	Identification of high-risk agents and relationships in nickel, cobalt, and lithium trade based on resource-dependent networks. Resources Policy, 2021, 74, 102370.	4.2	10
835	Synergistic effect of lithiophilic Zn nanoparticles and N-doping for stable Li metal anodes. Journal of Energy Chemistry, 2022, 65, 439-447.	7.1	16
836	A model cathode for mechanistic study of organosulfide electrochemistry in Li-organosulfide batteries. Journal of Energy Chemistry, 2022, 66, 440-447.	7.1	15
837	Polar interaction of polymer host–solvent enables stable solid electrolyte interphase in composite lithium metal anodes. Journal of Energy Chemistry, 2022, 64, 172-178.	7.1	42
838	Multi-dimensional hybrid flexible films promote uniform lithium deposition and mitigate volume change as lithium metal anodes. Journal of Energy Chemistry, 2022, 65, 583-591.	7.1	6
839	3D TiO2/ZnO hybrid framework: Stable host for lithium metal anodes. Chemical Engineering Journal, 2022, 427, 132026.	6.6	22
840	Highly reversible cycling with Dendrite-Free lithium deposition enabled by robust SEI layer with low charge transfer activation energy. Applied Surface Science, 2022, 572, 151439.	3.1	8
841	A simple strategy that may effectively tackle the anode-electrolyte interface issues in solid-state lithium metal batteries. Chemical Engineering Journal, 2022, 427, 131001.	6.6	38
842	Composite separator based on PI film for advanced lithium metal batteries. Journal of Materials Science and Technology, 2022, 102, 264-271.	5.6	9
843	Phosphorus-modified Fe ₄ N@N,P co-doped graphene as an efficient sulfur host for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2021, 9, 6538-6546.	5.2	37
844	Stabilization of lithium metal anodes by conductive metal–organic framework architectures. Journal of Materials Chemistry A, 2021, 9, 12099-12108.	5.2	10
845	Recent Progress of Porous Materials in Lithiumâ€Metal Batteries. Small Structures, 2021, 2, 2000118.	6.9	61
846	An evaluation of solid-state electrolyte based on pectin and lithium bis (trifluoromethanesulphonyl)imide for lithium-ion batteries. Materials Today: Proceedings, 2021, 47, 819-824.	0.9	3
847	Ge nanocrystals tightly and uniformly distributed in a carbon matrix through nitrogen and oxygen bridging bonds for fast-charging high-energy-density lithium-ion batteries. Materials Advances, 2021, 2, 2068-2074.	2.6	3
848	One-step vapor-pressured induced synthesis of spherical-like Co9S8/N, S-codoped carbon nanocomposites with superior rate capability as lithium-ion-battery anode. E3S Web of Conferences, 2021, 261, 02048.	0.2	0
849	Application of super-concentrated phosphonium based ionic liquid electrolyte for anode-free lithium metal batteries. Sustainable Energy and Fuels, 2021, 5, 4141-4152.	2.5	11

	CITATION RE	PORT	
#	Article	IF	CITATIONS
850	<i>In situ</i> TEM investigation of large crystal formation in lithiated SnO ₂ anode assisted by electron beam irradiation. Journal of Materials Chemistry A, 2021, 9, 22301-22312.	5.2	2
851	Rapid ionic conductivity of ternary composite electrolytes for superior solid-state batteries with high-rate performance and long cycle life operated at room temperature. Journal of Materials Chemistry A, 2021, 9, 18338-18348.	5.2	23
852	Fundamental Linkage Between Structure, Electrochemical Properties, and Chemical Compositions of LiNi _{1–<i>x</i>–<i>y</i>} Mn <i>_x</i> Co <i>_y</i> O ₂ Cathode Materials. ACS Applied Materials & Interfaces, 2021, 13, 2622-2629.	4.0	19
853	Glycolide additives enrich organic components in the solid electrolyte interphase enabling stable ultrathin lithium metal anodes. Materials Chemistry Frontiers, 2021, 5, 2791-2797.	3.2	21
854	Biomass-based materials for green lithium secondary batteries. Energy and Environmental Science, 2021, 14, 1326-1379.	15.6	157
855	Review on Li Deposition in Working Batteries: From Nucleation to Early Growth. Advanced Materials, 2021, 33, e2004128.	11.1	205
856	Sulfur vacancies in Co ₉ S _{8â^'x} /N-doped graphene enhancing the electrochemical kinetics for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2021, 9, 10704-10713.	5.2	53
857	Rapid Oxidation and Reduction of Lithium for Improved Cycling Performance and Increased Homogeneity. ACS Applied Materials & Interfaces, 2021, 13, 2654-2661.	4.0	9
858	Understanding multi-scale battery degradation with a macro-to-nano zoom through its hierarchy. Journal of Materials Chemistry A, 2021, 9, 19886-19893.	5.2	14
859	Highâ€Safety and Highâ€Energyâ€Density Lithium Metal Batteries in a Novel Ionicâ€Liquid Electrolyte. Advanced Materials, 2020, 32, e2001741.	11.1	176
860	The Failure of Solid Electrolyte Interphase on Li Metal Anode: Structural Uniformity or Mechanical Strength?. Advanced Energy Materials, 2020, 10, 1903645.	10.2	182
861	Reasonable Design of High-Energy-Density Solid-State Lithium-Metal Batteries. Matter, 2020, 2, 805-815.	5.0	130
862	New Concepts in Electrolytes. Chemical Reviews, 2020, 120, 6783-6819.	23.0	554
863	Self-Propagating Enabling High Lithium Metal Utilization Ratio Composite Anodes for Lithium Metal Batteries. Nano Letters, 2021, 21, 791-797.	4.5	63
864	High-Efficiency Lithium Metal Anode Enabled by a Concentrated/Fluorinated Ester Electrolyte. ACS Applied Materials & Interfaces, 2020, 12, 27794-27802.	4.0	31
865	Integration of Localized Electric-Field Redistribution and Interfacial Tin Nanocoating of Lithium Microparticles toward Long-Life Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2021, 13, 650-659.	4.0	24
866	Designing solid-state electrolytes for safe, energy-dense batteries. Nature Reviews Materials, 2020, 5, 229-252.	23.3	1,167
867	Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries. Energy and Environmental Science, 2020, 13, 1429-1461.	15.6	366

#	Article	IF	CITATIONS
868	In Situ Analysis of NMCâ^£graphite Li-Ion Batteries by Means of Complementary Electrochemical Methods. Journal of the Electrochemical Society, 2020, 167, 090528.	1.3	17
869	Fluorinated Acetic Anhydrides as Electrolyte Additives to Improve Cycling Performance of the Lithium Metal Anode. Journal of the Electrochemical Society, 2020, 167, 110506.	1.3	8
870	Tailored Solid Polymer Electrolytes by Montmorillonite with High Ionic Conductivity for Lithium-Ion Batteries. Nanoscale Research Letters, 2019, 14, 366.	3.1	18
872	Failure mechanism of lithium metal anode under practical conditions. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 228501.	0.2	8
873	A high-performance lithiated silicon–sulfur battery enabled by fluorinated ether electrolytes. Journal of Materials Chemistry A, 2021, 9, 25426-25434.	5.2	7
874	Stabilizing electrode–electrolyte interfaces to realize high-voltage Li LiCoO ₂ batteries by a sulfonamide-based electrolyte. Energy and Environmental Science, 2021, 14, 6030-6040.	15.6	84
875	Electronic Structure of Anode Material Li ₂ TiSiO ₅ and Its Structural Evolution during Lithiation. Journal of Physical Chemistry C, 2021, 125, 3733-3744.	1.5	3
876	Gradient solid electrolyte interphase induced by bisfluoroacetamide for stable lithium metal batteries. Journal of Energy Chemistry, 2021, , .	7.1	2
877	Recent Advances in Fluorinated Graphene from Synthesis to Applications: Critical Review on Functional Chemistry and Structure Engineering. Advanced Materials, 2022, 34, e2101665.	11.1	90
878	On the crystallography and reversibility of lithium electrodeposits at ultrahigh capacity. Nature Communications, 2021, 12, 6034.	5.8	70
879	Pressure-tailored lithium deposition and dissolution in lithium metal batteries. Nature Energy, 2021, 6, 987-994.	19.8	208
880	Cooperative Shielding of Bi-Electrodes via In Situ Amorphous Electrode–Electrolyte Interphases for Practical High-Energy Lithium-Metal Batteries. Journal of the American Chemical Society, 2021, 143, 16768-16776.	6.6	68
881	Communication—Binder Effects on Cycling Performance of High Areal Capacity SPAN Electrodes. Journal of the Electrochemical Society, 2021, 168, 110504.	1.3	4
882	The case for fluoride-ion batteries. Joule, 2021, 5, 2823-2844.	11.7	28
883	Thermodynamic Regulation of Dendrite-Free Li Plating on Li ₃ Bi for Stable Lithium Metal Batteries. Nano Letters, 2021, 21, 8664-8670.	4.5	25
884	Recent Advances and Perspectives in Lithiumâ^'Sulfur Pouch Cells. Molecules, 2021, 26, 6341.	1.7	12
885	Stable electrode–electrolyte interfaces constructed by fluorine- and nitrogen-donating ionic additives for high-performance lithium metal batteries. Energy Storage Materials, 2022, 45, 1-13.	9.5	62
886	Doctorâ€Blade Casting Fabrication of Ultrathin Li Metal Electrode for Highâ€Energyâ€Đensity Batteries. Advanced Energy Materials, 2021, 11, 2102259.	10.2	40

#	Article	IF	CITATIONS
887	A Selfâ€Healable Sulfide/Polymer Composite Electrolyte for Longâ€Life, Lowâ€Lithiumâ€Excess Lithiumâ€Metal Batteries. Advanced Functional Materials, 2022, 32, 2106680.	7.8	28
888	Multisalt chemistry in ion transport and interface of lithium metal polymer batteries. Energy Storage Materials, 2022, 44, 263-277.	9.5	17
889	Cobalt Coordinated Cyano Covalent-Organic Framework for High-Performance Potassium-Organic Batteries. ACS Applied Materials & Interfaces, 2021, 13, 48913-48922.	4.0	36
890	Understanding the Effects of Alloy Films on the Electrochemical Behavior of Lithium Metal Anodes with Operando Optical Microscopy. Journal of the Electrochemical Society, 2021, 168, 100517.	1.3	10
891	Enabling High-Voltage Lithium Metal Batteries Under Practical Conditions. SSRN Electronic Journal, 0,	0.4	0
892	Lithium-Ion Batteries for Electric Vehicle Application. Annals of Chemical Science Research, 2020, 2, .	0.1	0
893	Hybrid Electric Propulsion. Mechanical Engineering, 2020, 142, 54-55.	0.0	0
894	Preferential Stripping of a Lithium Protrusion Resulting in Recovery of a Planar Electrode. Journal of the Electrochemical Society, 2020, 167, 100553.	1.3	5
896	Strategic Approaches to the Dendritic Growth and Interfacial Reaction of Lithium Metal Anode. Chemistry - an Asian Journal, 2021, 16, 4010-4017.	1.7	17
897	Steric Effect Tuned Ion Solvation Enabling Stable Cycling of High-Voltage Lithium Metal Battery. Journal of the American Chemical Society, 2021, 143, 18703-18713.	6.6	205
898	Selfâ€Healing: An Emerging Technology for Nextâ€Generation Smart Batteries. Advanced Energy Materials, 2022, 12, 2102652.	10.2	47
899	Anionâ€Rectifying Polymeric Single Lithiumâ€lon Conductors. Advanced Functional Materials, 2022, 32, 2107753.	7.8	25
900	High-Safety and Dendrite-Free Lithium Metal Batteries Enabled by Building a Stable Interface in a Nonflammable Medium-Concentration Phosphate Electrolyte. ACS Applied Materials & Interfaces, 2021, 13, 50869-50877.	4.0	25
901	Simultaneously in-situ fabrication of lithium fluoride and sulfide enriched artificial solid electrolyte interface facilitates high stable lithium metal anode. Chemical Engineering Journal, 2022, 433, 133193.	6.6	14
902	Cryogenic electron microscopy reveals that applied pressure promotes short circuits in Li batteries. IScience, 2021, 24, 103394.	1.9	18
903	Progress on continuum modeling of lithium–sulfur batteries. Sustainable Energy and Fuels, 2021, 5, 5946-5966.	2.5	10
904	Solid polymer electrolyte with in-situ generated fast Li+ conducting network enable high voltage and dendrite-free lithium metal battery. Energy Storage Materials, 2022, 44, 93-103.	9.5	77
905	The high-performance MoO3â^'x/MXene cathodes for zinc-ion batteries based on oxygen vacancies and electrolyte engineering. Nano Energy, 2022, 91, 106651.	8.2	56

#	Article	IF	CITATIONS
906	Bifunctional composite separator with redistributor and anion absorber for dendrites-free and fast-charging lithium metal batteries. Chemical Engineering Journal, 2022, 430, 132971.	6.6	17
907	Acylamino-functionalized crosslinker to synthesize all-solid-state polymer electrolytes for high-stability lithium batteries. Chemical Engineering Journal, 2022, 430, 132948.	6.6	17
908	Three-dimensional porous ceramic framework reinforcing composite electrolyte. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 228203.	0.2	4
909	Physical issues in solid garnet batteries. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 228804.	0.2	4
910	Scalable fabrication of a large-area lithium/graphene anode towards a long-life 350 W h kg ^{â^'1} lithium metal pouch cell. Journal of Materials Chemistry A, 2021, 9, 25558-25566.	5.2	14
911	Building Efficient Ion Pathway in Highly Densified Thick Electrodes with High Gravimetric and Volumetric Energy Densities. Nano Letters, 2021, 21, 9339-9346.	4.5	31
912	Regulating Interfacial Lithium Ion by Artificial Protective Overlayers for Highâ€Performance Lithium Metal Anodes. Chemistry - A European Journal, 2021, , .	1.7	3
913	A Designed Lithiophilic Carbon Channel on Separator to Regulate Lithium Deposition Behavior. Small, 2022, 18, e2104390.	5.2	8
914	Cryo-EM for battery materials and interfaces: Workflow, achievements, and perspectives. IScience, 2021, 24, 103402.	1.9	16
915	Multifunctional Separator Allows Stable Cycling of Potassium Metal Anodes and of Potassium Metal Batteries. Advanced Materials, 2022, 34, e2105855.	11.1	45
916	Limitations of Ultrathin Al ₂ O ₃ Coatings on LNMO Cathodes. ACS Omega, 2021, 6, 30644-30655.	1.6	9
917	Physicochemically dendrite-suppressed three-dimensional fluoridation solid-state electrolyte for high-rate lithium metal battery. Cell Reports Physical Science, 2021, 2, 100644.	2.8	18
918	Perovskite Solid-State Electrolytes for Lithium Metal Batteries. Batteries, 2021, 7, 75.	2.1	24
919	Understanding Solid Electrolyte Interphase Nucleation and Growth on Lithium Metal Surfaces. Batteries, 2021, 7, 73.	2.1	3
920	An ultra-thin polymer electrolyte based on single-helical-structured agarose for high performance solid-state lithium batteries. Journal of Materials Chemistry A, 2021, 9, 26939-26948.	5.2	10
921	Facile Li-Ion Conduction and Synergistic Electrochemical Performance Via Dual Functionalization of Flexible Solid Electrolyte for Li Metal Batteries. SSRN Electronic Journal, 0, , .	0.4	0
922	Lithiophilic NiF2 coating inducing LiF-rich solid electrolyte interphase by a novel NF3 plasma treatment for highly stable Li metal anode. Electrochimica Acta, 2022, 402, 139561.	2.6	9
923	Gravity-driven Poly(ethylene glycol)@Li1.5Al0.5Ge1.5(PO4)3 asymmetric solid polymer electrolytes for all-solid-state lithium batteries. Journal of Power Sources, 2022, 518, 230756.	4.0	16

	CITATION	CITATION REPORT	
#	Article	IF	Citations
924	Recent progress of magnetic field application in lithium-based batteries. Nano Energy, 2022, 92, 106703.	8.2	55
925	Architecture design principles for stable electrodeposition behavior-towards better alkali metal (Li/Na/K) anodes. Energy Storage Materials, 2022, 45, 48-73.	9.5	34
926	Inhibiting Dendrite Growth via Regulating the Electrified Interface for Fast-Charging Lithium Metal Anode. ACS Central Science, 2021, 7, 2029-2038.	5.3	24
927	Powerful qua-functional electrolyte additive for lithium metal batteries. Green Energy and Environment, 2022, 7, 361-364.	4.7	5
928	Supramolecular "flame-retardant―electrolyte enables safe and stable cycling of lithium-ion batteries. Energy Storage Materials, 2022, 45, 182-190.	9.5	25
929	High Energy Density Rechargeable Batteries Based on Li Metal Anodes. The Role of Unique Surface Chemistry Developed in Solutions Containing Fluorinated Organic Co-solvents. Journal of the American Chemical Society, 2021, 143, 21161-21176.	6.6	69
930	Cost-Efficient Film-Forming Additive for High-Voltage Lithium–Nickel–Manganese Oxide Cathodes. ACS Omega, 2021, 6, 31330-31338.	1.6	7
931	Understanding the Role of π-Conjugated Polymers as Binders in Enabling Designs for High-Energy/High-Rate Lithium Metal Batteries. Journal of the Electrochemical Society, 2021, 168, 110541.	1.3	5
932	In Situ Formed Lithiophilic LixNbyO in a Carbon Nanofiber Network for Dendrite-Free Li-Metal Anodes. ACS Applied Materials & Interfaces, 2021, 13, 56498-56509.	4.0	6
933	SnF ₂ â€Catalyzed Formation of Polymerized Dioxolane as Solid Electrolyte and its Thermal Decomposition Behavior. Angewandte Chemie, 2022, 134, .	1.6	6
934	Cycling Performance of NMC811 Anode-Free Pouch Cells with 65 Different Electrolyte Formulations. Journal of the Electrochemical Society, 2021, 168, 120508.	1.3	19
935	3D Carbon-Based Porous Anode with a Pore-Size Gradient for High-Performance Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2021, 13, 55227-55234.	4.0	17
936	Lithiophilic Carbon Nanofiber/Graphene Nanosheet Composite Scaffold Prepared by a Scalable and Controllable Biofabrication Method for Ultrastable Dendriteâ€Free Lithiumâ€Metal Anodes. Small, 2022, 18, e2104735.	5.2	10
937	Quantitatively analyzing the failure processes of rechargeable Li metal batteries. Science Advances, 2021, 7, eabj3423.	4.7	84
938	Li + solvation mediated interfacial kinetic of alloying matrix for stable Li anodes. Energy and Environmental Materials, 0, , .	7.3	0
939	Horizontally arranged zinc platelet electrodeposits modulated by fluorinated covalent organic framework film for high-rate and durable aqueous zinc ion batteries. Nature Communications, 2021, 12, 6606.	5.8	369
940	A Powerful Protocol Based on Anode-Free Cells Combined with Various Analytical Techniques. Accounts of Chemical Research, 2021, 54, 4474-4485.	7.6	17
941	An optimized combination inspired by the wooden-barrel effect for Li-S pouch cells. Cell Reports Physical Science, 2021, 2, 100659.	2.8	3

#	ARTICLE	IF	Citations
942	Enhanced Electrochemical Performance of Ni-Rich Cathodes by Neutralizing Residual Lithium with Acid Compounds. ACS Applied Materials & Interfaces, 2021, 13, 55072-55079.	4.0	5
943	Anode Material Options Toward 500 Wh kg ^{â^'1} Lithium–Sulfur Batteries. Advanced Science, 2022, 9, e2103910.	5.6	63
944	Stable lithium metal anode achieved by shortening diffusion path on solid electrolyte interface derived from Cu2O lithiophilic layer. Chemical Engineering Journal, 2022, 433, 133689.	6.6	10
945	SnF ₂ â€Catalyzed Formation of Polymerized Dioxolane as Solid Electrolyte and its Thermal Decomposition Behavior. Angewandte Chemie - International Edition, 2022, 61, .	7.2	42
946	Dual impact of superior SEI and separator wettability to inhibit lithium dendrite growth. Rare Metals, 2022, 41, 353-355.	3.6	26
947	Interfacial nitrogen engineering of robust silicon/MXene anode toward high energy solid-state lithium-ion batteries. Journal of Energy Chemistry, 2022, 67, 727-735.	7.1	46
948	Gradient Structure Design of a Floatable Host for Preferential Lithium Deposition. Nano Letters, 2021, 21, 10252-10259.	4.5	10
949	3D Printed Multilayer Graphite@SiO Structural Anode for High‣oading Lithiumâ€ŀon Battery. Batteries and Supercaps, 2022, 5, .	2.4	5
950	Enhanced compatibility of a polymer-based electrolyte with Li-metal for stable and dendrite-free all-solid-state Li-metal batteries. Journal of Materials Chemistry A, 2021, 9, 27304-27319.	5.2	17
951	Modeling of Lithium-ion Batteries via Tensor-Network-Based Volterra Model. IFAC-PapersOnLine, 2021, 54, 509-515.	0.5	3
952	Strategies for improving rechargeable lithium-ion batteries: From active materials to CO ₂ emissions. Nanotechnology Reviews, 2021, 10, 1993-2026.	2.6	9
953	Lithium/Graphene Composite Anode with 3D Structural LiF Protection Layer for High-Performance Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2022, 14, 2871-2880.	4.0	22
954	Women in Electrochemistry- Contributions, Challenges and Potential Solutions. Journal of the Electrochemical Society, 0, , .	1.3	0
955	Nano silica aerogel-induced formation of an organic/alloy biphasic interfacial layer enables construction of stable high-energy lithium metal batteries. Green Energy and Environment, 2022, , .	4.7	5
956	A scalable, ecofriendly, and cost-effective lithium metal protection layer from a Post-it note. RSC Advances, 2021, 12, 346-354.	1.7	3
957	A Li-based MOF-derived multifunctional PEO polymer solid-state electrolyte for lithium energy storage. New Journal of Chemistry, 2022, 46, 3747-3753.	1.4	8
958	Upgrading Carbonate Electrolytes for Ultraâ€ s table Practical Lithium Metal Batteries. Angewandte Chemie, 2022, 134, e202116214.	1.6	9
959	A gradient topology host for a dendrite-free lithium metal anode. Nano Energy, 2022, 94, 106937.	8.2	41

ARTICLE IF CITATIONS Solid polymer electrolytes based on polysiloxane with anion-trapping boron moieties for 960 1.8 12 all-solid-state lithium metal batteries. Polymer, 2022, 240, 124517. Ultra-small ZnS quantum dots embedded in N-doped carbon matrix for high-performance Li-ion battery anode. Composites Part B: Engineering, 2022, 231, 109548. Electrochemo-mechanical effects as a critical design factor for all-solid-state batteries. Current 962 5.6 32 Opinion in Solid State and Materials Science, 2022, 26, 100977. Ab-initio investigation on the interface improvement by doping boron and carbon in LiMn2O4/LiPON all 1.4 solid state battery. Journal of Solid State Chemistry, 2022, 306, 122797. Recent progress and perspectives on designing high-performance thick electrodes for all-solid-state 964 6.8 53 lithium batteries. ETransportation, 2022, 11, 100152. Tuning interface stability of nickel-rich LiNi0.9Co0.05Mn0.05O2 cathode via a novel bis(vinylsulphonyl)methane additive. Journal of Power Sources, 2022, 521, 230917. 4.0 External pressure: An overlooked metric in evaluating next-generation battery performance. Current 966 2.5 3 Opinion in Electrochemistry, 2022, 31, 100916. Threading the MOF-derived mesoporous carbon host with CNT network: An effective modification 967 6.6 10 layer for high-areal-capacity Li metal anodes. Chemical Engineering Journal, 2022, 431, 134194. Self-Adaptive 3D Skeleton with Charge Dissipation Capability for Practical Li Metal Pouch Cells. Nano 968 8.2 19 Energy, 2022, 93, 106805. Fluorine enhanced nucleophilicity of TiO2 nanorod arrays: A general approach for dendrite-free 969 8.2 anodes towards high-performance metal batteries. Nano Energy, 2022, 93, 106837. Gradient lithiation to load controllable, high utilization lithium in graphitic carbon host for 970 8.2 14 high-energy batteries. Nano Energy, 2022, 93, 106808. 3D cubic framework of fluoride perovskite SEI inducing uniform lithium deposition for air-stable and 971 6.6 dendrite-free lithium metal anodes. Chemical Engineering Journal, 2022, 431, 134266. An epitaxial coating with preferred orientation stabilizing High-Energy Ni-Rich NCA cathodes. Applied 972 3.1 8 Surface Science, 2022, 579, 152183. Structural design of Ni-silicate/CNT hybrid films as anode materials for highly reversible lithium and 1.7 sodium storage. Sustainable Materials and Technologies, 2022, 31, e00375 Regulating lithium metal interface using seed-coating layer for high-power batteries. Chemical 974 12 6.6 Engineering Journal, 2022, 433, 134380. Solvation chemistry of rare earth nitrates in carbonate electrolyte for advanced lithium metal batteries. Chemical Engineering Journal, 2022, 433, 134468. Current status and challenges for practical flowless Znâ€"Br batteries. Current Opinion in 976 2.512 Electrochemistry, 2022, 32, 100898. A Li–In alloy anode and Nb₂CT_{<i>X</i>}artificial solid-electrolyte interphase 5.2 for practical Li metal batteries. Journal of Materials Chemistry A, 2022, 10, 4157-4169.

#	Article	IF	CITATIONS
978	Oxidative Stabilization of Dilute Ether Electrolytes via Anion Modification. ACS Energy Letters, 2022, 7, 675-682.	8.8	15
980	Talcum-doped composite separator with superior wettability and heatproof properties for high-rate lithium metal batteries. Chinese Chemical Letters, 2023, 34, 107087.	4.8	4
981	Molecular reactivity and interface stability modification in inâ€situ gel electrolyte for high performance quasiâ€solidâ€state lithium metal batteries. Energy and Environmental Materials, 0, , .	7.3	3
982	A nonflammable phosphate-based localized high-concentration electrolyte for safe and high-voltage lithium metal batteries. Sustainable Energy and Fuels, 2022, 6, 1281-1288.	2.5	11
983	Singleâ€Atom Reversible Lithiophilic Sites toward Stable Lithium Anodes. Advanced Energy Materials, 2022, 12, .	10.2	49
984	Principles and Challenges of Lithium–Sulfur Batteries. Modern Aspects of Electrochemistry, 2022, , 1-18.	0.2	1
985	In Situ Construction of Efficient Interface Layer with Lithiophilic Nanoseeds toward Dendriteâ€Free and Low N/P Ratio Li Metal Batteries. Advanced Science, 2022, 9, e2104391.	5.6	19
986	Highly Oriented {010} Crystal Plane Induced by Boron in Cobalt-Free Li- and Mn-Rich Layered Oxide. ACS Applied Materials & Interfaces, 2022, 14, 2711-2719.	4.0	11
987	Designing gradient solid electrolyte interphase for stable lithium metal batteries. Green Energy and Environment, 2022, 7, 1129-1131.	4.7	5
988	Influence of electrolyte structural evolution on battery applications: Cationic aggregation from dilute to high concentration. Aggregate, 2022, 3, .	5.2	37
989	Regulating the Interfacial Electric Field for a Stable Lithium Metal Anode. ACS Sustainable Chemistry and Engineering, 2022, 10, 956-966.	3.2	4
990	Petroleum coke derived porous carbon/NiCoP with efficient reviving catalytic and adsorptive activity as sulfur host for high performance lithium—sulfur batteries. Nano Research, 2022, 15, 4058-4067.	5.8	10
991	A dual conducting network corbelled hydrated vanadium pentoxide cathode for high-rate aqueous zinc-ion batteries. Nanoscale, 2022, 14, 1008-1013.	2.8	10
992	Upgrading Carbonate Electrolytes for Ultraâ€stable Practical Lithium Metal Batteries. Angewandte Chemie - International Edition, 2022, 61, e202116214.	7.2	38
993	Enhanced Li-storage performance of In-doped Li1.21[Mn0.54Ni0.125Co0.125]O2 as Li- and Mn-rich cathode materials for lithium-ion batteries. Journal of Applied Electrochemistry, 2022, 52, 461-475.	1.5	7
994	Fibrous skeletonâ€framed, flexible highâ€energyâ€density quasiâ€solidâ€state lithium metal batteries. , 2022, 1,		21
995	Highly Fluorinated Al-Centered Lithium Salt Boosting the Interfacial Compatibility of Li-Metal Batteries. ACS Energy Letters, 2022, 7, 591-598.	8.8	34
996	Investigating lithium metal anodes with nonaqueous electrolytes for safe and high-performance batteries. Sustainable Energy and Fuels, 2022, 6, 954-970.	2.5	11

#	Article	IF	CITATIONS
997	Solvent sieving separators implement dual electrolyte for high-voltage lithium-metal batteries. Nano Research, 2023, 16, 4901-4907.	5.8	4
998	Fluoride-ion conversion alloy for fluoride-ion batteries. Journal of Materials Chemistry A, 2022, 10, 3743-3749.	5.2	4
999	MXenes as an emerging class of two-dimensional materials for advanced energy storage devices. Journal of Materials Chemistry A, 2022, 10, 4558-4584.	5.2	33
1000	Mechanistic and nanoarchitectonics insight into Li–host interactions in carbon hosts for reversible Li metal storage. Nano Energy, 2022, 95, 106999.	8.2	22
1001	Nonreactive Electrolyte Additives for Stable Lithium Metal Anodes. ACS Applied Energy Materials, 2022, 5, 3-13.	2.5	12
1002	Diluted High oncentration Electrolyte Based on Phosphate for Highâ€Performance Lithiumâ€Metal Batteries. Batteries and Supercaps, 2022, 5, .	2.4	12
1003	To Pave the Way for Large-Scale Electrode Processing of Moisture-Sensitive Ni-Rich Cathodes. Journal of the Electrochemical Society, 2022, 169, 020521.	1.3	15
1004	High strength hydrogels enable dendrite-free Zn metal anodes and high-capacity Zn–MnO ₂ batteries <i>via</i> a modified mechanical suppression effect. Journal of Materials Chemistry A, 2022, 10, 3122-3133.	5.2	17
1005	Electrospun Nanofibers Enabled Advanced Lithium–Sulfur Batteries. Accounts of Materials Research, 2022, 3, 149-160.	5.9	13
1006	Specific Adsorption Reinforced Interface Enabling Stable Lithium Metal Electrode. Advanced Functional Materials, 2022, 32, .	7.8	13
1007	Rational solvent molecule tuning for high-performance lithium metal battery electrolytes. Nature Energy, 2022, 7, 94-106.	19.8	336
1008	Nonvolatile and Nonflammable Sulfolane-Based Electrolyte Achieving Effective and Safe Operation of the Li–O ₂ Battery in Open O ₂ Environment. Nano Letters, 2022, 22, 815-821.	4.5	16
1009	New insights on MXene and its advanced hybrid materials for lithium-ion batteries. Sustainable Energy and Fuels, 2022, 6, 971-1013.	2.5	18
1010	Suspension electrolyte with modified Li+ solvation environment for lithium metal batteries. Nature Materials, 2022, 21, 445-454.	13.3	155
1011	A Fiberâ€Based 3D Lithium Host for Lean Electrolyte Lithium Metal Batteries. Advanced Science, 2022, 9, e2104829.	5.6	15
1012	Highly stable lithium metal composite anode with a flexible 3D lithiophilic skeleton. Nano Energy, 2022, 95, 107013.	8.2	19
1013	An efficient gel polymer electrolyte for dendrite-free and long cycle life lithium metal batteries. Energy Storage Materials, 2022, 46, 352-365.	9.5	34
1014	Lithiophilic sites dependency of lithium deposition in Li metal host anodes. Nano Energy, 2022, 94, 106883.	8.2	41

#	Article	IF	CITATIONS
1015	Non-flammable liquid polymer-in-salt electrolyte enabling secure and dendrite-free lithium metal battery. Chemical Engineering Journal, 2022, 434, 134647.	6.6	19
1016	Highly efficient interface stabilization for ambient-temperature quasi-solid-state sodium metal batteries. Chemical Engineering Journal, 2022, 434, 134679.	6.6	15
1017	Organic-inorganic composite SEI for a stable Li metal anode by in-situ polymerization. Nano Energy, 2022, 95, 106983.	8.2	83
1018	Lithiophilic perovskite-CaTiO3 engineered separator for dendrite-suppressing 5ÂV-class lithium metal batteries with commercial carbonate-based electrolyte. Applied Surface Science, 2022, 583, 152430.	3.1	8
1019	Hydrogenated borophene nanosheets based multifunctional quasi-solid-state electrolytes for lithium metal batteries. Journal of Colloid and Interface Science, 2022, 615, 79-86.	5.0	13
1020	Scalable hierarchical lithiophilic engineering of metal foam enables stable lithium metal batteries. Chemical Engineering Journal, 2022, 435, 134643.	6.6	23
1021	Stable Li metal anode in a lithiophilic shuttle. Nanoscale, 2022, 14, 3935-3945.	2.8	1
1022	Operando Synchrotron Studies of Inhomogeneity during Anode-Free Plating of Li Metal in Pouch Cell Batteries. Journal of the Electrochemical Society, 2022, 169, 020571.	1.3	12
1023	Pushing the limit of 3d transition metal-based layered oxides that use both cation and anion redox for energy storage. Nature Reviews Materials, 2022, 7, 522-540.	23.3	92
1024	A 3D interconnected metal-organic framework-derived solid-state electrolyte for dendrite-free lithium metal battery. Energy Storage Materials, 2022, 47, 262-270.	9.5	66
1025	Probing Mechanical Properties of Solid-Electrolyte Interphases on Li Nuclei by In Situ AFM. Journal of the Electrochemical Society, 2022, 169, 020563.	1.3	9
1026	A review of concepts and contributions in lithium metal anode development. Materials Today, 2022, 53, 173-196.	8.3	74
1027	Carbon/Cr2O3 nanocrystal Composites as an Anode with Improved Lithium Storage Performance. International Journal of Electrochemical Science, 0, , ArticleID:220311.	0.5	0
1028	Facile Li-ion conduction and synergistic electrochemical performance via dual functionalization of flexible solid electrolyte for Li metal batteries. Journal of Membrane Science, 2022, 648, 120349.	4.1	11
1029	Designing polymer coatings for lithium metal protection. Nanotechnology, 2022, 33, 112501.	1.3	2
1030	MXenes and their derivatives for advanced aqueous rechargeable batteries. Materials Today, 2022, 52, 225-249.	8.3	39
1031	A Successive Conversion–Deintercalation Delithiation Mechanism for Practical Composite Lithium Anodes. Journal of the American Chemical Society, 2022, 144, 212-218.	6.6	66
1032	The Stable 3D Zn Electrode for High-Power Density Zn Metal Batteries. Journal of the Electrochemical Society, 2021, 168, 120529.	1.3	3

#	Article	IF	CITATIONS
1033	Organic-Inorganic Composite SEI for a Stable Li Metal Anode by In-Situ Polymerization. SSRN Electronic Journal, 0, , .	0.4	0
1034	Lithium Nitrate as a Surplus Lithium Source for Anode-Free Cell with Ni-Rich (NMC811) Cathode. SSRN Electronic Journal, 0, , .	0.4	0
1035	Highly Efficient Interface Stabilization for Ambient-Temperature Solid-State Sodium Metal Batteries. SSRN Electronic Journal, 0, , .	0.4	0
1036	Interphase control for high performance lithium metal batteries using ether aided ionic liquid electrolyte. Energy and Environmental Science, 2022, 15, 1907-1919.	15.6	62
1037	Understanding Multi-Scale Battery Materials Degradation Via Three-Dimensional Imaging, Interface Analysis, and Computational Modeling. SSRN Electronic Journal, 0, , .	0.4	0
1038	Artificial Cathode Electrolyte Interphase for Improving High Voltage Cycling Stability of Thick Electrode with Co-Free 5 V Spinel Oxides. SSRN Electronic Journal, 0, , .	0.4	0
1039	A dendrite-suppressed and utilization-improved metallic Li anode enabled by lithiophilic nano-Pb decoration on carbon cloth. Journal of Materials Chemistry A, 2022, 10, 8424-8431.	5.2	9
1040	Vo2/Graphene Oxide Composite as a Cathode Material with High Rate Performance for Hybrid Mg-Li Batteries. SSRN Electronic Journal, 0, , .	0.4	Ο
1041	Perovskite-Type La0.6sr0.4co0.2fe0.8o3-î" as an Artificial Interphase Layer for Dendrite-Free Li Metal Anodes. SSRN Electronic Journal, 0, , .	0.4	0
1042	Regulating Interfacial Structure Enables High-Voltage Dilute Ether Electrolytes. SSRN Electronic Journal, 0, , .	0.4	0
1043	An Environmental Sustainability Analysis Tool for Next Generation Lithium Ion Batteries of Electric Vehicles. Procedia CIRP, 2022, 105, 489-494.	1.0	2
1044	Multicoated composites of nano silicon and graphene nanoplatelets as anodes in Li-ion batteries. Materials Advances, 0, , .	2.6	1
1045	Electrolyte design implications of ion-pairing in low-temperature Li metal batteries. Energy and Environmental Science, 2022, 15, 1647-1658.	15.6	89
1046	Suppressing Surface Lattice Oxygen Evolution by Fluorinated Graphene-Scaffolded Lithium-Rich Manganese-Based Cathode for Enhanced Stability. SSRN Electronic Journal, 0, , .	0.4	0
1047	Timely Thermal Runaway Prognosis for Battery Systems in Real-World Electric Vehicles Based on Temperature Abnormality. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2023, 11, 120-130.	3.7	10
1048	Challenges and advances in wide-temperature rechargeable lithium batteries. Energy and Environmental Science, 2022, 15, 1711-1759.	15.6	138
1049	Influence of external stack pressure on the performance of Li-S pouch cell. JPhys Energy, 2022, 4, 014004.	2.3	5
1050	Practical Highâ€Voltage Lithium Metal Batteries Enabled by Tuning the Solvation Structure in Weakly Solvating Electrolyte. Small, 2022, 18, e2107492.	5.2	73

		15	C
#	ARTICLE Microstructure of Lithium Dendrites Revealed by Room-Temperature Electron Microscopy. Journal of	IF	CITATIONS
1051	the American Chemical Society, 2022, 144, 4124-4132.	6.6	12
1052	Lattice Spacing, Morphology, Properties, and Quasi—In Situ Impedance of Ternary Lithium-Ion Batteries at a Low Temperature. Energies, 2022, 15, 1410.	1.6	0
1053	Synergistic Effect of TMSPi and FEC in Regulating the Electrode/Electrolyte Interfaces in Nickel-Rich Lithium Metal Batteries. ACS Applied Materials & amp; Interfaces, 2022, 14, 11517-11527.	4.0	24
1054	Conversion of Li ₂ FeSbO ₅ to the Fe(III)/Fe(V) Phase LiFeSbO ₅ via Topochemical Lithium Extraction. Chemistry of Materials, 2022, 34, 2468-2475.	3.2	4
1055	Controlling Li deposition below the interface. EScience, 2022, 2, 47-78.	25.0	110
1056	The pathway toward practical application of lithium-metal anodes for non-aqueous secondary batteries. National Science Review, 2022, 9, .	4.6	9
1057	Unveiling the Cation Exchange Reaction between the NASICON Li _{1.5} Al _{0.5} Ge _{1.5} (PO ₄) ₃ Solid Electrolyte and the pyr13TFSI Ionic Liquid. Journal of the American Chemical Society, 2022, 144, 3442-3448.	6.6	15
1058	Double interface regulation: Toward highly stable lithium metal anode with high utilization. InformaÄnÃ-MateriA¡ly, 2022, 4, .	8.5	21
1059	Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries. Science, 2022, 375, 739-745.	6.0	368
1060	Dualâ€Functional Organotelluride Additive for Highly Efficient Sulfur Redox Kinetics and Lithium Regulation in Lithium–Sulfur Batteries. Energy and Environmental Materials, 2023, 6, .	7.3	20
1061	Advances in carbon materials for stable lithium metal batteries. New Carbon Materials, 2022, 37, 1-24.	2.9	31
1062	A Combined Lithium Intercalation and Plating Mechanism Using Conductive Carbonâ€Fiber Electrodes. Batteries and Supercaps, 0, , .	2.4	1
1063	A Better Zn-Ion Storage Device: Recent Progress for Zn-Ion Hybrid Supercapacitors. Nano-Micro Letters, 2022, 14, 64.	14.4	65
1064	Operating Highâ€Energy Lithiumâ€Metal Pouch Cells with Reduced Stack Pressure Through a Rational Lithiumâ€Host Design. Advanced Energy Materials, 2022, 12, .	10.2	10
1065	Elastic Binder for High-Performance Sulfide-Based All-Solid-State Batteries. ACS Energy Letters, 2022, 7, 1374-1382.	8.8	27
1066	Gradient Architecture Design in Scalable Porous Battery Electrodes. Nano Letters, 2022, 22, 2521-2528.	4.5	37
1067	A Symmetryâ€Based Kinematic Theory for Nanocrystal Morphology Design. Angewandte Chemie - International Edition, 2022, 61, .	7.2	10
1068	Facile, Atom-Economic, Chemical Thinning Strategy for Ultrathin Lithium Foils. Nano Letters, 2022, 22, 3047-3053.	4.5	16

#	Article	IF	CITATIONS
1069	Ternary Deep Eutectic Solvent (DES) with a Regulated Rate-Determining Step for Efficient Recycling of Lithium Cobalt Oxide. ACS Omega, 2022, 7, 11452-11459.	1.6	32
1070	Vertically Aligned MXene Nanosheet Arrays for Highâ€Rate Lithium Metal Anodes. Advanced Energy Materials, 2022, 12, .	10.2	61
1071	Promoting Mechanistic Understanding of Lithium Deposition and Solidâ€Electrolyte Interphase (SEI) Formation Using Advanced Characterization and Simulation Methods: Recent Progress, Limitations, and Future Perspectives. Advanced Energy Materials, 2022, 12, .	10.2	47
1072	Liquid-phase sintering enabling mixed ionic-electronic interphases and free-standing composite cathode architecture toward high energy solid-state battery. Nano Research, 2022, 15, 6156-6167.	5.8	10
1073	Eine symmetriebasierte kinematische Theorie für das Design von Nanokristallâ€Morphologien. Angewandte Chemie, 0, , .	1.6	0
1074	Advancing to 4.6ÂV Review and Prospect in Developing Highâ€Energyâ€Density LiCoO ₂ Cathode for Lithiumâ€Ion Batteries. Small Methods, 2022, 6, e2200148.	4.6	41
1075	In Situ Investigation of Lithium Metal–Solid Electrolyte Anode Interfaces with ToF‣IMS. Advanced Materials Interfaces, 2022, 9, .	1.9	39
1076	Building Practical Highâ€Voltage Cathode Materials for Lithiumâ€Ion Batteries. Advanced Materials, 2022, 34, e2200912.	11.1	86
1077	Regulating the Architecture of a Solid Electrolyte Interface on a Li-Metal Anode of a Li–O ₂ Battery by a Dithiobiuret Additive. , 2022, 4, 682-691.		5
1078	Polymer-Stabilized Liquid Metal Nanoparticles as a Scalable Current Collector Engineering Approach Enabling Lithium Metal Anodes. ACS Applied Energy Materials, 2022, 5, 3615-3625.	2.5	6
1079	Nitrile Electrolyte Strategy for 4.9 <scp>V lass Lithiumâ€Metal</scp> Batteries Operating in Flame. Energy and Environmental Materials, 2023, 6, .	7.3	10
1080	In Situ Growth of W2C/WS2 with Carbon-Nanotube Networks for Lithium-Ion Storage. Nanomaterials, 2022, 12, 1003.	1.9	8
1081	Building a House for Stabilizing Lithiumâ \in Metal Anodes. Batteries and Supercaps, 0, , .	2.4	2
1082	Rigid and Flexible SEI Layer Formed Over a Crossâ€Linked Polymer for Enhanced Ultrathin Li Metal Anode Performance. Advanced Energy Materials, 2022, 12, .	10.2	42
1083	A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments. Nature Communications, 2022, 13, 1510.	5.8	93
1084	Carbon dots for ultrastable solidâ€state batteries. SmartMat, 2022, 3, 286-297.	6.4	19
1085	Synergistical Stabilization of Li Metal Anodes and LiCoO ₂ Cathodes in High-Voltage Liâ^¥LiCoO ₂ Batteries by Potassium Selenocyanate (KSeCN) Additive. ACS Energy Letters, 2022, 7, 1364-1373.	8.8	49
1086	Battery technology and recycling alone will not save the electric mobility transition from future cobalt shortages. Nature Communications, 2022, 13, 1341.	5.8	107

#	Article	IF	CITATIONS
1087	Crystalline Porous Materials-based Solid-State Electrolytes for Lithium Metal Batteries. EnergyChem, 2022, 4, 100073.	10.1	18
1088	Regulated lithium deposition behavior by chlorinated hybrid solid-electrolyte-interphase for stable lithium metal anode. Chemical Engineering Journal, 2022, 442, 136297.	6.6	20
1089	Exploring the characteristics of technological knowledge interaction dynamics in the field of solid-state batteries: A patent-based approach. Journal of Cleaner Production, 2022, 353, 131689.	4.6	10
1090	Spatial Control of Lithium Deposition by Controlling the Lithiophilicity with Copper(I) Oxide Boundaries. Energy and Environmental Materials, 2023, 6, .	7.3	2
1091	A Robust Li-Intercalated Interlayer with Strong Electron Withdrawing Ability Enables Durable and High-Rate Li Metal Anode. ACS Energy Letters, 2022, 7, 1594-1603.	8.8	36
1092	A Tipâ€Inhibitor Interphase Embedded with Soluble Polysulfides for Highâ€Voltage Li Metal Batteries. Energy and Environmental Materials, 2023, 6, .	7.3	2
1093	Insideâ€Outside Li Deposition Achieved by the Unusual Strategy of Constructing the Hierarchical Lithiophilicity for Dendriteâ€Free and Durable Li Metal Anode. Batteries and Supercaps, 0, , .	2.4	2
1094	Artificial cathode electrolyte interphase for improving high voltage cycling stability of thick electrode with Co-free 5 V spinel oxides. Energy Storage Materials, 2022, 49, 77-84.	9.5	22
1095	Diffusion Limited Current Density: A Watershed in Electrodeposition of Lithium Metal Anode. Advanced Energy Materials, 2022, 12, .	10.2	42
1096	Quantification of lithium dendrite and solid electrolyte interphase (SEI) in lithium-ion batteries. Journal of Power Sources, 2022, 529, 231219.	4.0	26
1097	Natural protein as novel additive of a commercial electrolyte for Long-Cycling lithium metal batteries. Chemical Engineering Journal, 2022, 437, 135283.	6.6	7
1098	In-situ formation of a nanoscale lithium aluminum alloy in lithium metal for high-load battery anode. Energy Storage Materials, 2022, 48, 384-392.	9.5	22
1099	Restructuring NiO to LiNiO2: Ultrastable and reversible anodes for lithium-ion batteries. Chemical Engineering Journal, 2022, 437, 135292.	6.6	14
1100	Covalent organic framework film protected zinc anode for highly stable rechargeable aqueous zinc-ion batteries. Energy Storage Materials, 2022, 48, 82-89.	9.5	83
1101	Rationally designed alloy phases for highly reversible alkali metal batteries. Energy Storage Materials, 2022, 48, 223-243.	9.5	20
1102	Commercial carbon cloth: An emerging substrate for practical lithium metal batteries. Energy Storage Materials, 2022, 48, 172-190.	9.5	50
1103	Lithium nitrate as a surplus lithium source for anode-free cell with Ni-rich (NMC811) cathode. Journal of Power Sources, 2022, 532, 231303.	4.0	15
1104	Surface-roughened current collectors for anode-free all-solid-state batteries. Journal of Energy Chemistry, 2022, 70, 248-257.	7.1	14

	Сіта	tion Report	
#	Article	IF	CITATIONS
1105	Retarding Li dendrites growth via introducing porous g-C3N4 into polymer electrolytes for solid-state lithium metal batteries. Journal of Alloys and Compounds, 2022, 909, 164825.	2.8	15
1106	A localized high-concentration electrolyte with lithium bis(fluorosulfonyl) imide (LiFSI) salt and F-containing cosolvents to enhance the performance of Li LiNi0.8Co0.1Mn0.1O2 lithium metal batteries. Chemical Engineering Journal, 2022, 439, 135534.	6.6	21
1107	Designing safer lithium-based batteries with nonflammable electrolytes: A review. EScience, 2021, 1, 163-177.	25.0	147
1108	Investigation of Fast-Charging and Degradation Processes in 3D Silicon–Graphite Anodes. Nanomaterials, 2022, 12, 140.	1.9	9
1109	Effect of Yield Stress on Stability of Block Copolymer Electrolytes against Lithium Metal Electrodes. ACS Applied Energy Materials, 2022, 5, 852-861.	2.5	8
1110	Enhanced Performance of Allâ€Solidâ€State Li Metal Battery Based on Polyether Electrolytes with LiNO ₃ Additive. Macromolecular Chemistry and Physics, 2022, 223, .	1.1	4
1111	Carbon Nanotube Based Metal–Organic Framework Hybrids From Fundamentals Toward Applications. Small, 2022, 18, e2104628.	5.2	33
1112	Flexible, solid-state, fiber-network-reinforced composite solid electrolyte for long lifespan solid lithium-sulfurized polyacrylonitrile battery. Nano Research, 2022, 15, 3290-3298.	5.8	10
1113	Probe the Localized Electrochemical Environment Effects and Electrode Reaction Dynamics for Metal Batteries using In Situ 3D Microscopy. Advanced Energy Materials, 2022, 12, .	10.2	14
1114	Dynamic spatial progression of isolated lithium during battery operations. Nature, 2021, 600, 659-663.	13.7	111
1115	An Artificial SEI Layer Based on an Inorganic Coordination Polymer with Selfâ€Healing Ability for Longâ€Lived Rechargeable Lithiumâ€Metal Batteries. Batteries and Supercaps, 2022, 5, .	2.4	8
1116	Lithiophilic 3D Copperâ€Based Magnetic Current Collector for Lithiumâ€Free Anode to Realize Deep Lithium Deposition. Advanced Functional Materials, 2022, 32, .	7.8	43
1117	Enriched Cavities to ZIF-8-Derived Porous Carbon for Reversible Metallic Lithium Storage. ACS Applied Energy Materials, 2021, 4, 14520-14525.	2.5	5
1118	Effects of Polymer Coating Mechanics at Solidâ€Electrolyte Interphase for Stabilizing Lithium Metal Anodes. Advanced Energy Materials, 2022, 12, .	10.2	30
1120	Highâ€Polarity Fluoroalkyl Ether Electrolyte Enables Solvationâ€Free Li ⁺ Transfer for Highâ€Rate Lithium Metal Batteries. Advanced Science, 2022, 9, e2104699.	5.6	54
1121	Remedies to Avoid Failure Mechanisms of Lithium-Metal Anode in Li-Ion Batteries. Inorganics, 2022, 10, 5.	1.2	4
1122	Nitrate additives for lithium batteries: Mechanisms, applications, and prospects. EScience, 2021, 1, 108-123.	25.0	98
1123	Advances in <scp>host selection</scp> and <scp>interface regulation</scp> of polymer electrolytes. Journal of Polymer Science, 2022, 60, 743-765.	2.0	8

#	Article	IF	CITATIONS
1124	Multilayered Solid Polymer Electrolytes with Sacrificial Coating for Suppressing Lithium Dendrite Growth. ACS Applied Materials & Interfaces, 2022, 14, 484-491.	4.0	4
1125	A Mott–Schottky Heterogeneous Layer for Li–S Batteries: Enabling Both High Stability and Commercialâ€Sulfur Utilization. Advanced Energy Materials, 2022, 12, .	10.2	74
1126	Hybridization of 2D Nanomaterials with 3D Graphene Architectures for Electrochemical Energy Storage and Conversion. Advanced Functional Materials, 2022, 32, .	7.8	26
1127	Allâ€inâ€One Structured Lithiumâ€Metal Battery. Advanced Science, 2022, , 2200547.	5.6	5
1128	Stable and conductive carbon networks enabling high-performance silicon anodes for lithium-ion batteries. Cell Reports Physical Science, 2022, 3, 100862.	2.8	9
1130	Perovskite-type La0.6Sr0.4Co0.2Fe0.8O3â^´l´as an artificial interphase layer for dendrite-free Li metal anodes. Chemical Engineering Journal, 2022, 444, 136340.	6.6	1
1131	3D Correlative Imaging of Lithium Ion Concentration in a Vertically Oriented Electrode Microstructure with a Density Gradient. Advanced Science, 2022, 9, e2105723.	5.6	6
1132	Multidimensional <scp>Co₃O₄</scp> NiO heterojunctions with richâ€boundaries incorporated into reduced graphene oxide network for expanding the range of lithiophilic host. InformaÄnÃ-Materiály, 2022, 4, .	8.5	19
1133	Electrolyte-free graphite electrode with enhanced interfacial conduction using Li+-conductive binder for high-performance all-solid-state batteries. Energy Storage Materials, 2022, 49, 481-492.	9.5	10
1134	Solid state lithium metal batteries – Issues and challenges at the lithium-solid electrolyte interface. Current Opinion in Solid State and Materials Science, 2022, 26, 100999.	5.6	29
1135	Stable cycling of high nickel Li-metal batteries with limited Li anode in fluorine rich flame retardant electrolytes. Applied Surface Science, 2022, 593, 153434.	3.1	3
1137	Chemomechanical Interactions Dictate Lithium Surface Diffusion Kinetics in the Solid Electrolyte Interphase. Langmuir, 2022, 38, 5472-5480.	1.6	8
1138	Introduction to electrochemical energy storage technologies. , 2022, , 3-10.		2
1139	Enhanced performances of lithium metal batteries by synergistic effect of low concentration bisalt electrolyte. Journal of Materials Chemistry A, 2022, 10, 12035-12046.	5.2	16
1140	Design and developments in ceramic materials for electrochemical applications. , 2022, , 353-377.		0
1141	A microgrid-patterned silicon electrode as an electroactive lithium host. Energy and Environmental Science, 2022, 15, 2581-2590.	15.6	12
1142	Design of nanostructured sulfur cathodes for high-performance lithium–sulfur batteries. , 2022, , 425-452.		0
1143	Electrolyte additive enabled low temperature lithium metal batteries. Materials Chemistry Frontiers, 2022, 6, 1405-1413.	3.2	4

#	Article	IF	Citations
1144	Boosting the Zn-ion energy storage capability of graphene sandwiched nanoporous VO _{<i>x</i>} derived from MXene. Nanoscale, 2022, 14, 8640-8648.	2.8	9
1145	Defect-Abundant Commercializable 3d Carbon Papers for Fabricating Composite Li Anode with High Loading and Long Life. SSRN Electronic Journal, 0, , .	0.4	0
1146	Rational design of a self-supporting skeleton decorated with dual lithiophilic Sn-containing and N-doped carbon tubes for dendrite-free lithium metal anodes. Journal of Materials Chemistry A, 2022, 10, 11458-11469.	5.2	2
1147	Lithium metal anode. , 2022, , 489-497.		0
1148	Phase-Separation-Induced Porous Polymer Membrane with Uniform Lithium-Ion Transport for Stable Lithium Metal Batteries. SSRN Electronic Journal, 0, , .	0.4	0
1149	Formulating energy density for designing practical lithium–sulfur batteries. Nature Energy, 2022, 7, 312-319.	19.8	342
1150	Cellulose nanofiberâ€derived carbon aerogel for advanced roomâ€temperature sodium–sulfur batteries. , 2023, 5, .		15
1151	Understanding and modifications on lithium deposition in lithium metal batteries. Rare Metals, 2022, 41, 2800-2818.	3.6	18
1152	Toward Practical Highâ€Energyâ€Density Lithium–Sulfur Pouch Cells: A Review. Advanced Materials, 2022, 34, e2201555.	11.1	112
1153	Surface Coupling between Mechanical and Electric Fields Empowering Niâ€Rich Cathodes with Superior Cyclabilities for Lithiumâ€Ion Batteries. Advanced Science, 2022, 9, e2200622.	5.6	30
1154	Synthesis of carbon nanotubes-supported porous silicon microparticles in low-temperature molten salt for high-performance Li-ion battery anodes. Nano Research, 2022, 15, 6184-6191.	5.8	22
1155	Rational design of Prussian blue analogue-derived manganese-iron oxides-based hybrids as high-performance Li-ion-battery anodes. Chinese Chemical Letters, 2023, 34, 107447.	4.8	0
1156	Enhancing performance of anode-free Li-metal batteries by addition of ceramic nanoparticles Part II. Journal of Solid State Electrochemistry, 2022, 26, 2027-2038.	1.2	1
1157	Ionic Liquidâ€Based Redox Active Electrolytes for Supercapacitors. Advanced Functional Materials, 2022, 32, .	7.8	40
1158	Thermal Management of Electrified Propulsion Systems. , 2022, , 224-255.		0
1159	Implanting an ion-selective "skin―in electrolyte towards high-energy and safe lithium-sulfur battery. Matter, 2022, 5, 2225-2237.	5.0	14
1160	Regulating Li-Ion Distribution by the Electrical Double Layer Effect for Dendrite-Free and High-Rate Capability Lithium Metal Batteries. ACS Applied Energy Materials, 2022, 5, 6174-6182.	2.5	2
1161	High-performance lithium-ion batteries with gel polymer electrolyte based on ultra-thin PVDF film. Ionics, 2022, 28, 3269-3276.	1.2	1

#	Article	IF	CITATIONS
1162	Redox-homogeneous, gel electrolyte-embedded high-mass-loading cathodes for high-energy lithium metal batteries. Nature Communications, 2022, 13, 2541.	5.8	22
1163	Synergistic chemical and electrochemical strategy for high-performance Zn//MnO2 batteries. Chinese Chemical Letters, 2023, 34, 107493.	4.8	21
1164	Tailoring Electrolytes to Enable Low-Temperature Cycling of Ni-Rich NCM Cathode Materials for Li-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 5867-5874.	2.5	4
1165	Fluorinated ether electrolyte with controlled solvation structure for high voltage lithium metal batteries. Nature Communications, 2022, 13, 2575.	5.8	147
1166	Stable Cycling of Lithium-Metal Batteries in Hydrofluoroether-Based Localized High-Concentration Electrolytes with 2-Fluoropyridine Additive. ACS Applied Energy Materials, 2022, 5, 5742-5749.	2.5	10
1167	Electrified Aircraft Propulsion. , 2022, , .		5
1168	<scp>Electronegativityâ€Induced Singleâ€Ion</scp> Conducting Polymer Electrolyte for <scp>Solidâ€State</scp> Lithium Batteries. Energy and Environmental Materials, 2023, 6, .	7.3	11
1169	Metal carbodiimides-derived organic-inorganic interface protective layer for practical high energy lithium metal batteries. Journal of Power Sources, 2022, 536, 231479.	4.0	7
1170	Suppressing Surface Lattice Oxygen Evolution by Fluorinated Graphene-Scaffolded Lithium-Rich Manganese-Based Cathode for Enhanced Stability. Energy Storage Materials, 2022, 49, 555-563.	9.5	10
1171	Forming Solid-Electrolyte Interphases with Rich Grain Boundaries on 3D Lithiophilic Skeleton for Low-Temperature Lithium Metal Batteries. Energy Storage Materials, 2022, 49, 454-462.	9.5	19
1172	One-step calcination reaction to synthesize Li2MnO3 coating layers for LiNi0.8Co0.1Mn0.1O2 to improve cycling performances under high-voltage for Li-ion batteries. Applied Surface Science, 2022, 595, 153479.	3.1	7
1173	Predicting the Ion Desolvation Pathway of Lithium Electrolytes and Their Dependence on Chemistry and Temperature. Journal of Physical Chemistry Letters, 2022, 13, 4426-4433.	2.1	12
1174	Advanced inorganic/polymer hybrid electrolytes for all-solid-state lithium batteries. Journal of Advanced Ceramics, 2022, 11, 835-861.	8.9	45
1175	Salt–solvent synchro-constructed robust electrolyte–electrode interphase for high-voltage lithium metal batteries. Journal of Materials Chemistry A, 2022, 10, 19903-19913.	5.2	10
1176	Fluorinating the Solid Electrolyte Interphase by Rational Molecular Design for Practical Lithiumâ€Metal Batteries. Angewandte Chemie, 2022, 134, .	1.6	10
1177	Fluorinating the Solid Electrolyte Interphase by Rational Molecular Design for Practical Lithiumâ€Metal Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	68
1178	In-Situ Electrodeposition of Nanostructured Carbon Strengthened Interface for Stabilizing Lithium Metal Anode. ACS Nano, 2022, 16, 9883-9893.	7.3	34
1180	Electrocatalytic Selenium Redox Reaction for Highâ€Mass‣oading Zincâ€5elenium Batteries with Improved Kinetics and Selenium Utilization. Advanced Energy Materials, 2022, 12, .	10.2	29

#	Article	IF	CITATIONS
1181	Liâ^'N Interaction Induced Deep Eutectic Gel Polymer Electrolyte for High Performance Lithiumâ€Metal Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	45
1182	Defect-abundant commercializable 3D carbon papers for fabricating composite Li anode with high loading and long life. Energy Storage Materials, 2022, 50, 407-416.	9.5	4
1183	Li–N Interaction Induced Deep Eutectic Gel Polymer Electrolyte for High Performance Lithiumâ€Metal Batteries. Angewandte Chemie, 0, , .	1.6	0
1184	Fullerene-Derivative C60-(OLi)n Modified Separators toward Stable Wide-Temperature Lithium Metal Batteries. Chemical Engineering Journal, 2022, 446, 137207.	6.6	9
1185	CF ₄ Plasmaâ€Generated LiFâ€Li ₂ C ₂ Artificial Layers for Dendriteâ€Free Lithiumâ€Metal Anodes. Advanced Science, 2022, 9, .	5.6	37
1186	Review of room-temperature liquid metals for advanced metal anodes in rechargeable batteries. Energy Storage Materials, 2022, 50, 473-494.	9.5	35
1187	Li7P3S11 electrolyte for all-solid-state lithium-ion batteries: structure, synthesis, and applications. Chemical Engineering Journal, 2022, 446, 137041.	6.6	17
1188	Metallic nanosponges for energy storage and conversion applications. Journal of Materials Chemistry A, 2022, 10, 14221-14246.	5.2	8
1189	Processing of Lithium Metal for the Production of Post-Lithium-Ion Batteries Using a Pulsed Nanosecond Fiber Laser. SSRN Electronic Journal, 0, , .	0.4	1
1190	Li alloy anodes for high-rate and high-areal-capacity solid-state batteries. Journal of Materials Chemistry A, 2022, 10, 12350-12358.	5.2	33
1191	The Origin of Fast Lithiumâ€lon Transport in the Inorganic Solid Electrolyte Interphase on Lithium Metal Anodes. Small Structures, 2022, 3, .	6.9	42
1192	A High-Capacity Polyethylene Oxide-Based All-Solid-State Battery Using a Metal–Organic Framework Hosted Silicon Anode. ACS Applied Materials & Interfaces, 2022, 14, 24798-24805.	4.0	15
1193	Janus Electrolyte with Modified Li ⁺ Solvation for Highâ€Performance Solidâ€State Lithium Batteries. Advanced Functional Materials, 2022, 32, .	7.8	30
1194	3D electrode architectures for high energy and high power lithium-ion batteries. , 2022, , .		0
1195	Water-Soluble Conductive Composite Binder for High-Performance Silicon Anode in Lithium-Ion Batteries. Batteries, 2022, 8, 54.	2.1	8
1196	Electrochemical Polishing: An Effective Strategy for Eliminating Li Dendrites. Advanced Functional Materials, 2022, 32, .	7.8	9
1197	<i>In-Situ</i> Construction of Ceramic–Polymer All-Solid-State Electrolytes for High-Performance Room-Temperature Lithium Metal Batteries. , 2022, 4, 1297-1305.		13
1198	Regulating interfacial structure enables high-voltage dilute ether electrolytes. Cell Reports Physical Science, 2022, 3, 100919.	2.8	12

#	Article	IF	CITATIONS
1199	In-situ forming lithiophilic-lithiophobic gradient interphases for dendrite-free all-solid-state Li metal batteries. Nano Energy, 2022, 99, 107395.	8.2	10
1200	In situ growth of S-doped ZnO thin film enabling dendrite-free zinc anode for high-performance aqueous zinc-ion batteries. Journal of Alloys and Compounds, 2022, 918, 165486.	2.8	15
1202	The Role of Active Passivated Interface in Poly (Ethylene Oxide) Electrolyte for 4.2 V Solid-State Lithium Metal Batteries. SSRN Electronic Journal, 0, , .	0.4	0
1203	Percolated Sulfide in Saltâ€Concentrated Polymer Matrices Extricating Highâ€Voltage Allâ€Solidâ€State Lithiumâ€metal Batteries. Advanced Science, 2022, 9, .	5.6	24
1204	Enabling Sustainable Lithium Metal Electrodes via Cholesteric Liquid Crystalline Cellulose Nanocrystal Nanomembranes. Advanced Energy Materials, 2022, 12, .	10.2	2
1205	Effects of Carbonate Solvents and Lithium Salts in High-Concentration Electrolytes on Lithium Anode. Journal of the Electrochemical Society, 2022, 169, 060548.	1.3	5
1206	Are Porous Polymers Practical to Protect Liâ€Metal Anodes? ―Current Strategies and Future Opportunities. Advanced Functional Materials, 2022, 32, .	7.8	17
1207	A Superior Carbonate Electrolyte for Stable Cycling Li Metal Batteries Using High Ni Cathode. ACS Energy Letters, 2022, 7, 2282-2288.	8.8	32
1208	Stabilizing Lithiophilic Sites Via Bimetallic Oxide Heterointerfaces. Advanced Materials Interfaces, 2022, 9, .	1.9	8
1209	Kinetics or Transport: Whither Goes the Solid-State Battery Cathode?. ACS Applied Materials & Interfaces, 2022, 14, 29754-29765.	4.0	14
1210	Protein-modified SEI formation and evolution in Li metal batteries. Journal of Energy Chemistry, 2022, 73, 248-258.	7.1	16
1211	One-Dimensional Porous Li-Confinable Hosts for High-Rate and Stable Li-Metal Batteries. ACS Nano, 2022, 16, 11892-11901.	7.3	22
1212	Sodiophilic skeleton based on the packing of hard carbon microspheres for stable sodium metal anode without dead sodium. Journal of Energy Chemistry, 2022, 73, 400-406.	7.1	11
1213	Projecting Recent Advancements in Battery Technology to Nextâ€Generation Electric Vehicles. Energy Technology, 2022, 10, .	1.8	8
1214	Ion motion and charge transfer through a solid-electrolyte interphase: an atomistic view. Journal of Solid State Electrochemistry, 0, , .	1.2	1
1215	Towards Solidâ€&tate Magnesium Batteries: Ligandâ€Assisted Superionic Conductivity. Batteries and Supercaps, 2022, 5, .	2.4	16
1216	Tuning the Metal lons of Prussian Blue Analogues in Separators to Enable High-Power Lithium Metal Batteries. Nano Letters, 2022, 22, 4861-4869.	4.5	8
1217	Stable Solvent-Derived Inorganic-Rich Solid Electrolyte Interphase (SEI) for High-Voltage Lithium-Metal Batteries. ACS Applied Materials & Interfaces, 2022, 14, 28014-28020.	4.0	14

#	Article	IF	CITATIONS
1218	Mechanically and thermally robust microporous copolymer separators for lithium ion batteries. Electrochimica Acta, 2022, 425, 140705.	2.6	3
1219	Electrode-customized separator membranes based on self-assembled chiral nematic liquid crystalline cellulose nanocrystals as a natural material strategy for sustainable Li-metal batteries. Energy Storage Materials, 2022, 50, 783-791.	9.5	6
1220	Cycle life prediction of NiCo2O4//activated carbon asymmetric supercapacitors. Journal of Energy Storage, 2022, 53, 105035.	3.9	6
1221	Generation of a highly conductive and stable solid electrolyte interphase at lithium anode under additional electric filed. Chemical Engineering Journal, 2022, 446, 137435.	6.6	5
1222	Modification of Cu current collectors for lithium metal batteries – A review. Progress in Materials Science, 2022, 130, 100996.	16.0	56
1223	Eco-friendly aerosol multicoated silicon anodes in lithium-ion batteries. Materials Letters, 2022, 324, 132677.	1.3	2
1224	Deciphering the role of LiNO ₃ additives in Li–S batteries. Materials Horizons, 2022, 9, 2325-2334.	6.4	29
1225	Targeted Stabilization of Solid Electrolyte Interphase and Cathode Electrolyte Interphase in High-Voltage Lithium-Metal Batteries by an Asymmetric Sustained-Release Strategy. SSRN Electronic Journal, 0, , .	0.4	0
1226	Halide sublattice dynamics drive Li-ion transport in antiperovskites. Journal of Materials Chemistry A, 2022, 10, 15731-15742.	5.2	3
1227	Sandwich-Structural Ionogel Electrolyte with Core-Shell Ionic-Conducting Nanocomposites for Stable Li Metal Battery. SSRN Electronic Journal, 0, , .	0.4	0
1228	In Situ Construction of Hybrid Artificial Sei with Fluorinated Siloxane to Enable Dendrite-Free Li Metal Anodes. SSRN Electronic Journal, 0, , .	0.4	0
1229	Influence of amorphous carbon interlayers on nucleation and early growth of lithium metal at the current collector-solid electrolyte interface. Journal of Materials Chemistry A, 2022, 10, 15535-15542.	5.2	8
1230	Materials, electrodes and electrolytes advances for next-generation lithium-based anode-free batteries. Oxford Open Materials Science, 2022, 2, .	0.5	5
1231	Failure Analysis of High-Energy-Density Lithium‒Sulfur Pouch Cells. SSRN Electronic Journal, 0, , .	0.4	0
1232	Recent progress in fundamental understanding of selenium-doped sulfur cathodes during charging and discharging with various electrolytes. , 2022, , 235-260.		0
1233	Future prospects for lithium-sulfur batteries: The criticality of solid electrolytes. , 2022, , 327-351.		0
1234	Solid-State Nanocomposite lonogel Electrolyte with In-Situ Formed Ionic Channels for Uniform Ion-Flux and Suppressing Dendrite Formation in Lithium Metal Batteries. SSRN Electronic Journal, 0, , .	0.4	0
1235	Layered Oxide Cathode-Inspired Secondary Hard Carbon Microsphere Anode Material for High-Power and Long-Life Rechargeable Batteries. SSRN Electronic Journal, 0, , .	0.4	0

# 1236	ARTICLE Constructing Selfâ€Adapting Electrostatic Interface on Lithium Metal Anode for Stable 400ÂWhÂkg ^{â^`1} Pouch Cells. Advanced Energy Materials, 2022, 12, .	IF 10.2	CITATIONS 37
1237	A Solutionâ€Processable Highâ€Modulus Crystalline Artificial Solid Electrolyte Interphase for Practical Lithium Metal Batteries. Advanced Energy Materials, 2022, 12, .	10.2	10
1238	Magnetic Actuation Enables Programmable Lithium Metal Engineering. Advanced Energy Materials, 2022, 12, .	10.2	27
1239	Rational Design of Woodâ€Structured Thick Electrode for Electrochemical Energy Storage. Advanced Functional Materials, 2022, 32, .	7.8	33
1240	Cu–V bimetallic selenide with synergistic effect for high-rate and long-life sodium storage. Journal of Materials Research, 2022, 37, 3308-3317.	1.2	2
1241	Combined Effects of Uniform Applied Pressure and Electrolyte Additives in Lithium-Metal Batteries. ACS Applied Energy Materials, 2022, 5, 8273-8281.	2.5	9
1242	<scp>Highâ€Energy</scp> Lithiumâ€Ion Batteries: Recent Progress and a Promising Future in Applications. Energy and Environmental Materials, 2023, 6, .	7.3	77
1243	Solvent selection criteria for temperature-resilient lithium–sulfur batteries. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	17
1244	Regulation of Dendrite-Free Li Plating via Lithiophilic Sites on Lithium-Alloy Surface. ACS Applied Materials & Interfaces, 2022, 14, 33952-33959.	4.0	15
1245	Formation of NaFâ€Rich Solid Electrolyte Interphase on Na Anode through Additiveâ€Induced Anionâ€Enriched Structure of Na ⁺ Solvation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	35
1246	Formation of NaFâ€Rich Solid Electrolyte Interphase on Na Anode through Additiveâ€Induced Anionâ€Enriched Structure of Na ⁺ Solvation. Angewandte Chemie, 2022, 134, .	1.6	17
1247	Unraveling the Stable Cathode Electrolyte Interface in all Solidâ€State Thinâ€Film Battery Operating at 5ÂV. Advanced Energy Materials, 2022, 12, .	10.2	15
1248	Progress and perspective of high-voltage lithium cobalt oxide in lithium-ion batteries. Journal of Energy Chemistry, 2022, 74, 283-308.	7.1	33
1249	High voltage and robust lithium metal battery enabled by highly-fluorinated interphases. Energy Storage Materials, 2022, 51, 317-326.	9.5	22
1250	Dynamic Ionic Transport Actuated by Nanospinbarâ€Dispersed Colloidal Electrolytes Toward Dendriteâ€Free Electrodeposition. Advanced Functional Materials, 2022, 32, .	7.8	6
1251	Dual Design of the Surface via an Ion Conductor Coating and In Situ Electrochemical Diffusion Enabling a Long Life for a Ni-Rich Cathode. ACS Applied Energy Materials, 2022, 5, 9181-9188.	2.5	5
1252	Application of Ag-based materials in high-performance lithium metal anode: A review. Journal of Materials Science and Technology, 2023, 133, 165-182.	5.6	18
1253	<scp>3D Freeâ€Standing</scp> Carbon Nanofibers Modified by Lithiophilic Metals Enabling <scp>Dendriteâ€Free</scp> Anodes for Li Metal Batteries. Energy and Environmental Materials, 2023, 6, .	7.3	2

#	Article	IF	CITATIONS
1254	An X-ray Photoelectron Spectroscopy Primer for Solid Electrolyte Interphase Characterization in Lithium Metal Anodes. ACS Energy Letters, 2022, 7, 2540-2546.	8.8	46
1255	High-performance prelithiated Si-S full cell enabled by trifluorobenzene modified diluted high-concentration electrolyte. Materials Today Energy, 2022, 28, 101069.	2.5	1
1256	Research progress on high-temperature resistant polymer separators for lithium-ion batteries. Energy Storage Materials, 2022, 51, 638-659.	9.5	28
1257	Regulating dissolution chemistry of nitrates in carbonate electrolyte for high-stable lithium metal batteries. Journal of Energy Chemistry, 2022, 73, 422-428.	7.1	7
1258	Li-Compound Anodes: A Classification for High-Performance Li-Ion Battery Anodes. ACS Nano, 2022, 16, 13704-13714.	7.3	14
1259	Surface engineering of mesoporous TiO2 nanosheets for boosting lithium storage. Research on Chemical Intermediates, 2022, 48, 3883-3895.	1.3	1
1260	Customized design of electrolytes for high-safety and high-energy-density lithium batteries. EnergyChem, 2022, 4, 100082.	10.1	4
1261	Commercially Viable Hybrid Li-Ion/Metal Batteries with High Energy Density Realized by Symbiotic Anode and Prelithiated Cathode. Nano-Micro Letters, 2022, 14, .	14.4	8
1262	A VO2/graphene oxide composite as a cathode material with high rate performance for hybrid Mg-Li batteries. Journal of Alloys and Compounds, 2022, 924, 166414.	2.8	7
1263	Rational design of a topological polymeric solid electrolyte for high-performance all-solid-state alkali metal batteries. Nature Communications, 2022, 13, .	5.8	99
1264	Lean-electrolyte lithium-sulfur batteries: Recent advances in the design of cell components. Chemical Engineering Journal, 2022, 450, 138209.	6.6	19
1265	A Multifunctional Separator Based on Dilithium Tetraaminophthalocyanine Self-Assembled on Rgo with Improved Cathode and Anode Performance in Li-S Batteries. SSRN Electronic Journal, 0, , .	0.4	0
1266	A Successive "Conversion-Deposition" Mechanism Achieved by Micro-Crystalline Cu2o Modified Current Collector for Composite Lithium Anode. SSRN Electronic Journal, 0, , .	0.4	0
1267	The Role of Ion Transport in the Failure of High Areal Capacity Li Metal Batteries. ACS Energy Letters, 2022, 7, 2701-2710.	8.8	16
1268	Growth and design strategies of organic dendritic networks. Discover Materials, 2022, 2, .	1.0	2
1269	Recent Developments and Future Prospects of Transition Metal Compounds as Electrode Materials for Potassiumâ€lon Hybrid Capacitors. Advanced Materials Technologies, 2023, 8, .	3.0	11
1270	Air/Water Stability Problems and Solutions for Lithium Batteries. Energy Material Advances, 2022, 2022, .	4.7	18
1271	Interfacial Chemistry with ZnO: <i>In Operando</i> Work Functions in Heterocells. ACS Applied Energy Materials, 2022, 5, 9811-9822.	2.5	4

#	Article	IF	Citations
1272	Influence of the Ambient Storage of LiNi0.8Mn0.1Co0.1O2 Powder and Electrodes on the Electrochemical Performance in Li-ion Technology. Batteries, 2022, 8, 79.	2.1	2
1273	Composite Polymer Electrolytes for Lithium Batteries. ChemistrySelect, 2022, 7, .	0.7	2
1274	Advanced Nonflammable Organic Electrolyte Promises Safer Liâ€Metal Batteries: From Solvation Structure Perspectives. Advanced Materials, 2023, 35, .	11.1	35
1275	Interface Crystallographic Optimization of Crystal Plane for Stable Metallic Lithium Anode. ACS Applied Materials & Interfaces, 2022, 14, 38696-38705.	4.0	11
1276	Inorganicâ€Rich and Flexible Solidâ€Electrolyte Interphase Formed Over Dipoleâ€Dipole Interaction for Highly Stable Lithiumâ€Metal Anodes. Advanced Functional Materials, 2022, 32, .	7.8	7
1277	Emerging catalytic materials for practical lithium-sulfur batteries. Journal of Energy Chemistry, 2023, 76, 127-145.	7.1	43
1278	Rollâ€Toâ€Roll Fabrication of Zeroâ€Volumeâ€Expansion Lithiumâ€Composite Anodes to Realize Highâ€Energyâ€Density Flexible and Stable Lithiumâ€Metal Batteries. Advanced Materials, 2022, 34, .	11.1	27
1279	Understanding Synthesis–Structure–Performance Correlations of Nanoarchitectured Activated Carbons for Electrochemical Applications and Carbon Capture. Advanced Functional Materials, 2022, 32, .	7.8	32
1280	Functional Polymer Materials for Advanced Lithium Metal Batteries: A Review and Perspective. Polymers, 2022, 14, 3452.	2.0	3
1281	Electrolyte Engineering for High-Voltage Lithium Metal Batteries. Research, 2022, 2022, .	2.8	20
1282	Powering 10-Ah-level Li-S pouch cell via a smart "skin― Matter, 2022, 5, 2523-2525.	5.0	3
1283	The Crucial Role of Electrode Potential of a Working Anode in Dictating the Structural Evolution of Solid Electrolyte Interphase. Angewandte Chemie, 0, , .	1.6	1
1284	A Diluted Electrolyte for Long-Life Sulfurized Polyacrylonitrile-Based Anode-Free Li-S Batteries. Polymers, 2022, 14, 3312.	2.0	4
1285	Failure analysis of high-energy-density lithium‒sulfur pouch cells. Energy Storage Materials, 2022, 53, 315-321.	9.5	29
1286	Nanocomposite of Conducting Polymer and Li Metal for Rechargeable High Energy Density Batteries. ACS Applied Materials & Interfaces, 2022, 14, 37709-37715.	4.0	2
1287	Crossover Effects in Lithiumâ€Metal Batteries with a Localized High Concentration Electrolyte and Highâ€Nickel Cathodes. Advanced Materials, 2022, 34, .	11.1	41
1288	Nonâ€Flammable Ester Electrolyte with Boosted Stability Against Li for Highâ€Performance Li Metal Batteries. Angewandte Chemie, 2022, 134, .	1.6	8
1289	Modifying surface of Ni foam via hierarchical lithiophilic nanoarrays for stable lithium metal anodes. Electrochimica Acta, 2022, 430, 141035.	2.6	7

#	Article	IF	CITATIONS
1290	Celluloseâ€Acetate Coating by Integrating Ester Group with Zinc Salt for Dendriteâ€Free Zn Metal Anodes. Small, 2022, 18, .	5.2	22
1292	Rationalized design of hyperbranched trans-scale graphene arrays for enduring high-energy lithium metal batteries. Science Advances, 2022, 8, .	4.7	14
1293	Dual Passivation of Cathode and Anode through Electrode–Electrolyte Interface Engineering Enables Long-Lifespan Li Metal–SPAN Batteries. ACS Energy Letters, 2022, 7, 2866-2875.	8.8	30
1294	Constructing Lowâ€Solvation Electrolytes for Nextâ€Generation Lithiumâ€Ion Batteries. Batteries and Supercaps, 2022, 5, .	2.4	5
1295	Nonâ€Flammable Ester Electrolyte with Boosted Stability Against Li for Highâ€Performance Li Metal Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	55
1296	The Crucial Role of Electrode Potential of a Working Anode in Dictating the Structural Evolution of Solid Electrolyte Interphase. Angewandte Chemie - International Edition, 2022, 61, .	7.2	39
1297	Inhibiting intercrystalline reactions of anode with electrolytes for long-cycling lithium batteries. Science Advances, 2022, 8, .	4.7	40
1298	Processing of lithium metal for the production of post-lithium-ion batteries using a pulsed nanosecond fiber laser. Results in Materials, 2022, 15, 100305.	0.9	5
1299	Investigating graphdiyne based materials for rechargeable batteries. Nano Today, 2022, 46, 101588.	6.2	8
1300	Construction of hierarchically porous carbon spheres supported nonprecious metal single-atom electrocatalysts for oxygen reduction reaction. Journal of Power Sources, 2022, 545, 231913.	4.0	2
1301	Constructing low N/P ratio sodium-based batteries by reversible Na metal electrodeposition on sodiophilic zinc-metal-decorated hard carbons. Journal of Power Sources, 2022, 544, 231862.	4.0	3
1302	3D artificial electron and ion conductive pathway enabled by MgH2 nanoparticles supported on g-C3N4 towards dendrite-free Li metal anode. Energy Storage Materials, 2022, 52, 220-229.	9.5	6
1303	Nonflammable, localized high-concentration electrolyte towards a high-safety lithium metal battery. Energy Storage Materials, 2022, 52, 355-364.	9.5	46
1304	High-throughput screening of protective layers to stabilize the electrolyte-anode interface in solid-state Li-metal batteries. Nano Energy, 2022, 102, 107640.	8.2	12
1305	Revealing the lithium dendrite deposition/dissolution progression based on Monte Carlo method. Journal of Energy Storage, 2022, 55, 105473.	3.9	4
1306	The role of active passivated interface in poly (ethylene oxide) electrolyte for 4.2ÂV solid-state lithium metal batteries. Chemical Engineering Journal, 2023, 451, 138680.	6.6	3
1307	State of Health Trajectory Prediction Based on Multi-Output Gaussian Process Regression for Lithium-Ion Battery. Batteries, 2022, 8, 134.	2.1	4
1308	lon Transport Kinetics in Lowâ€Temperature Lithium Metal Batteries. Advanced Energy Materials, 2022, 12,	10.2	94

#	Article	IF	CITATIONS
1309	Chemo-Mechanical Effects of Stack Pressure and Temperature on Anode-Free Lithium Metal Batteries. Journal of the Electrochemical Society, 2022, 169, 090530.	1.3	3
1310	A multifunctional subassembly of carbon nanotube paper for stable lithium metal anodes. Materials Today Energy, 2022, 29, 101134.	2.5	1
1311	Rational design of electrolyte solvation structure for stable cycling and fast charging lithium metal batteries. Journal of Power Sources, 2022, 548, 232106.	4.0	9
1312	Failure analysis and design principles of silicon-based lithium-ion batteries using micron-sized porous silicon/carbon composite. Journal of Power Sources, 2022, 548, 232063.	4.0	8
1313	Porous polymer membrane with uniform lithium-ion transport via phase separation for stable lithium metal batteries. Journal of Power Sources, 2022, 547, 232018.	4.0	6
1314	Targeted stabilization of solid electrolyte interphase and cathode electrolyte interphase in high-voltage lithium-metal batteries by an asymmetric sustained-release strategy. Journal of Power Sources, 2022, 548, 232045.	4.0	3
1315	Enabling dendrite-free charging for lithium batteries based on transport-reaction competition mechanism in CHAIN framework. Journal of Energy Chemistry, 2022, 75, 408-421.	7.1	11
1316	lon coordination to improve ionic conductivity in polymer electrolytes for high performance solid-state batteries. Nano Energy, 2022, 103, 107763.	8.2	9
1317	Planar and dendrite-free zinc deposition enabled by exposed crystal plane optimization of zinc anode. Energy Storage Materials, 2022, 53, 273-304.	9.5	63
1318	Enabling an electron/ion conductive composite lithium anode for solid-state lithium-metal batteries with garnet electrolyte. Energy Storage Materials, 2022, 53, 204-211.	9.5	10
1319	Sandwich-structural ionogel electrolyte with core–shell ionic-conducting nanocomposites for stable Li metal battery. Chemical Engineering Journal, 2023, 451, 138993.	6.6	5
1320	A multifunctional separator based on dilithium tetraaminophthalocyanine self-assembled on rGO with improved cathode and anode performance in Li–S batteries. Carbon, 2023, 201, 307-317.	5.4	6
1321	Sea-urchin-like iron-cobalt phosphide as an advanced anode material for lithium ion batteries. Materials Advances, 2022, 3, 7235-7240.	2.6	4
1322	Low-tortuous and dense single-particle-layer electrode for high-energy lithium-sulfur batteries. Energy and Environmental Science, 2022, 15, 3842-3853.	15.6	24
1323	A solid–solution-based Li–Mg alloy for highly stable lithium metal anodes. Sustainable Energy and Fuels, 2022, 6, 4137-4145.	2.5	2
1324	Eco-friendly electrolytes <i>via</i> a robust bond design for high-energy Li metal batteries. Energy and Environmental Science, 2022, 15, 4349-4361.	15.6	53
1325	The Effect of Porosity of Activated Carbon Cloth Cathodes on the Cyclic Performance of Li-S Cells. SSRN Electronic Journal, 0, , .	0.4	0
1326	Solid electrolytes for solid-state Li/Na–metal batteries: inorganic, composite and polymeric materials. Chemical Communications, 2022, 58, 12035-12045.	2.2	10

#	Article	IF	Citations
π 1327	Unveiling solvation structure and desolvation dynamics of hybrid electrolytes for ultralong cyclability and facile kinetics of Zn–Al alloy anodes. Energy and Environmental Science, 2022, 15, 4572-4583.	15.6	22
1328	Anion chemical composition of poly(ethylene oxide)-based sulfonylimide and sulfonate lithium ionomers controls ion aggregation and conduction. Journal of Materials Chemistry C, 2022, 10, 14569-14579.	2.7	5
1329	Controlled Prelithiation of Siloxene Nanosheet Anodes Enables High Performance 5v-Class Lithium-Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
1330	Atomistic insights into the morphology of deposited Li. Journal of Materials Chemistry A, 2022, 10, 18577-18591.	5.2	3
1331	Metal–organic frameworks and their derivatives for metal-ion (Li, Na, K and Zn) hybrid capacitors. Chemical Science, 2022, 13, 11981-12015.	3.7	31
1332	Modification in the microstructure of sodium carboxymethylcellulose/polyvinyl alcohol polyblend films through the incorporation of <scp> NaNO ₃ </scp> for energy storage applications. International Journal of Energy Research, 2022, 46, 22845-22866.	2.2	8
1333	Limited Lithium Loading Promises Improved Lithium-Metal Anodes in Interface-Modified 3D Matrixes. ACS Applied Materials & Interfaces, 2022, 14, 41065-41071.	4.0	10
1334	Anionic Coordination Manipulation of Multilayer Solvation Structure Electrolyte for Highâ€Rate and Lowâ€Temperature Lithium Metal Battery. Advanced Energy Materials, 2022, 12, .	10.2	42
1335	Saltâ€inâ€Salt Reinforced Carbonate Electrolyte for Li Metal Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	20
1336	Moisture-assistant chlorinated separator with dual-protective interface for ultralong-life and high-rate lithium metal batteries. Chemical Engineering Journal, 2023, 453, 139348.	6.6	12
1337	Degradation and Speciation of Li Salts during XPS Analysis for Battery Research. ACS Energy Letters, 2022, 7, 3270-3275.	8.8	47
1338	Stabilizing lithium plating in polymer electrolytes by concentration-polarization-induced phase transformation. Joule, 2022, 6, 2372-2389.	11.7	15
1339	Saltâ€inâ€Salt Reinforced Carbonate Electrolyte for Li Metal Batteries. Angewandte Chemie, 2022, 134, .	1.6	0
1340	Lithiumâ€Metal Batteries: From Fundamental Research to Industrialization. Advanced Materials, 2023, 35,	11.1	36
1341	Molecular understanding of interphase formation via operando polymerization on lithium metal anode. Cell Reports Physical Science, 2022, 3, 101057.	2.8	6
1342	A Singleâ€Layer Piezoelectric Composite Separator for Durable Operation of Li Metal Anode at High Rates. Energy and Environmental Materials, 2024, 7, .	7.3	2
1343	Improvement Strategies toward Stable Lithiumâ€Metal Anodes for Highâ€Energy Batteries. Batteries and Supercaps, 2022, 5, .	2.4	4
1344	Recent Progress in Developing a LiOHâ€Based Reversible Nonaqueous Lithium–Air Battery. Advanced Materials, 2023, 35, .	11.1	7

#	Article	IF	CITATIONS
1345	Revealing Lithium Battery Gas Generation for Safer Practical Applications. Advanced Functional Materials, 2022, 32, .	7.8	32
1346	Quantification of reversible and irreversible lithium in practical lithium-metal batteries. Nature Energy, 2022, 7, 1031-1041.	19.8	34
1347	Synthesis of MoS ₂ @Nâ€MXene/C Heterogeneous Nanosheets and its Enhanced Pseudocapacitance Effects for NIBs. ChemElectroChem, 2022, 9, .	1.7	1
1348	Unlocking Stable Multiâ€Electron Cycling in NMC811 Thinâ€Films between 1.5 – 4.7 V. Advanced Energy Materials, 2022, 12, .	10.2	12
1349	Probing the Functionality of LiFSI Structural Derivatives as Additives for Li Metal Anodes. ACS Energy Letters, 2022, 7, 3378-3385.	8.8	12
1350	Solid Electrolyte–Cathode Interface Dictates Reaction Heterogeneity and Anode Stability. ACS Applied Materials & Interfaces, 2022, 14, 45308-45319.	4.0	12
1351	Hybrid diluents enable localized high-concentration electrolyte with balanced performance for high-voltage lithium-metal batteries. Chinese Chemical Letters, 2023, 34, 107852.	4.8	7
1352	Rechargeable Batteries for Grid Scale Energy Storage. Chemical Reviews, 2022, 122, 16610-16751.	23.0	340
1353	Facile Electroless Plating Method to Fabricate a Nickel–Phosphorus-Modified Copper Current Collector for a Lean Lithium-Metal Anode. ACS Applied Materials & Interfaces, 2022, 14, 45433-45443.	4.0	9
1354	Serrated lithium fluoride nanofibers-woven interlayer enables uniform lithium deposition for lithium-metal batteries. National Science Review, 2022, 9, .	4.6	31
1355	A Selfâ€Standing Flexible Gel Polymer Electrolyte for Dendriteâ€Free Lithiumâ€Metal Batteries. Batteries and Supercaps, 0, , .	2.4	3
1356	Highly Reversible Lithium Host Materials for Highâ€Energyâ€Density Anodeâ€Free Lithium Metal Batteries. Advanced Functional Materials, 2022, 32, .	7.8	23
1357	Tuning the Solvent Alkyl Chain to Tailor Electrolyte Solvation for Stable Li-Metal Batteries. ACS Applied Materials & Interfaces, 2022, 14, 44470-44478.	4.0	21
1358	Role of Interfaces in Solidâ \in State Batteries. Advanced Materials, 2023, 35, .	11.1	29
1359	Principles of the Battery Data Genome. Joule, 2022, 6, 2253-2271.	11.7	26
1360	A Nonflammable Highâ€Voltage 4.7 V Anodeâ€Free Lithium Battery. Advanced Materials, 2022, 34, .	11.1	24
1361	Interfacial high-concentration electrolyte for stable lithium metal anode: Theory, design, and demonstration. Nano Research, 2023, 16, 8321-8328.	5.8	2
1362	Effect of Solvents on a Li ₁₀ GeP ₂ S ₁₂ -Based Composite Electrolyte via Solution Method for Solid-State Battery Applications. ACS Applied Materials & amp; Interfaces, 2022, 14, 46627-46634.	4.0	9

#	Article	IF	Citations
1363	Highly Stable Lithium Metal Batteries by Regulating the Lithium Nitrate Chemistry with a Modified Eutectic Electrolyte. Advanced Energy Materials, 2022, 12, .	10.2	22
1364	Poly(ethylene oxide)â€Based Composite Electrolyte with Lithiumâ€Doped Highâ€Entropy Oxide Ceramic Enabled Robust Solidâ€State Lithiumâ€Metal Batteries. Chemistry - an Asian Journal, 2022, 17, .	1.7	3
1365	Towards the Intercalation and Lithium Plating Mechanism for High Safety and Fast-Charging Lithium-ion Batteries: A Review. , 0, 1, .		1
1366	Biomass-Derived Materials for Lithium Secondary Batteries. , 2022, , 1-7.		0
1367	Non-sticky Li-alloy leaves for long-lasting secondary batteries. Energy and Environmental Science, 2022, 15, 5251-5260.	15.6	6
1368	Realizing a high voltage lithium metal battery in ether-based electrolyte by regulating the cathode electrolyte interphase. Energy Advances, 2022, 1, 872-876.	1.4	2
1369	Designing and tuning the components of random terpolymers toward Ampere-hour-scale organic lithium batteries. Journal of Materials Chemistry A, 2022, 10, 23562-23569.	5.2	1
1370	Towards fast-charging high-energy lithium-ion batteries: From nano- to micro-structuring perspectives. Chemical Engineering Journal, 2023, 454, 140003.	6.6	14
1371	A Carboxylic Ester-Based Electrolyte with Additive to Improve Performance of Lithium Batteries at Ultra-Low Temperature. Journal of the Electrochemical Society, 2022, 169, 100539.	1.3	3
1372	Lithium quantified, dead or alive. Nature Energy, 2022, 7, 1005-1006.	19.8	1
1373	Working Principles of Lithium Metal Anode in Pouch Cells. Advanced Energy Materials, 2022, 12, .	10.2	39
1374	Untangling Degradation Chemistries of Lithium‣ulfur Batteries Through Interpretable Hybrid Machine Learning. Angewandte Chemie - International Edition, 2022, 61, .	7.2	23
1375	Untangling Degradation Chemistries of Lithiumâ€5ulfur Batteries Through Interpretable Hybrid Machine Learning. Angewandte Chemie, 2022, 134, .	1.6	9
1376	In-situ construction of hybrid artificial SEI with fluorinated siloxane to enable dendrite-free Li metal anodes. Journal of Materiomics, 2022, , .	2.8	1
1377	Correlation between Electrolyte Chemistry and Solid Electrolyte Interphase for Reversible Ca Metal Anodes. Angewandte Chemie - International Edition, 2022, 61, .	7.2	9
1378	Thermally Stable Polymerâ€Rich Solid Electrolyte Interphase for Safe Lithium Metal Pouch Cells. Angewandte Chemie - International Edition, 2022, 61, .	7.2	51
1379	MXene conversion to V2S3 heterostructure in CS2 ambient: A novel approach for sodium-ion battery anodes. Materials Today Energy, 2022, 30, 101184.	2.5	9
1380	Thermally Stable Polymerâ€Rich Solid Electrolyte Interphase for Safe Lithium Metal Pouch Cells. Angewandte Chemie, 2022, 134, .	1.6	4

#	Article	IF	CITATIONS
1381	Impact of LiF Particle Morphology on Overpotential and Structure of Li Metal Deposition. Journal of the Electrochemical Society, 2022, 169, 100523.	1.3	9
1383	Sulfonate Functionalized Turbostratic Carbon Derived from <i>Borassus flabellifer</i> Flower: A Ultrathin Protective Layer to Mitigate the Dendrite Formation on the Metallic Lithium Anode. ACS Sustainable Chemistry and Engineering, 2022, 10, 14151-14162.	3.2	1
1384	Tailoring electrolyte enables high-voltage Ni-rich NCM cathode against aggressive cathode chemistries for Li-ion batteries. Science Bulletin, 2022, 67, 2225-2234.	4.3	24
1385	Correlation between Electrolyte Chemistry and Solid Electrolyte Interphase for Reversible Ca Metal Anodes. Angewandte Chemie, 0, , .	1.6	0
1386	Orderâ€structured solidâ€state electrolytes. SusMat, 2022, 2, 660-678.	7.8	7
1387	Homogenous metallic deposition regulated by abundant lithiophilic sites in nickel/cobalt oxides nanoneedle arrays for lithium metal batteries. Journal of Energy Chemistry, 2023, 77, 11-18.	7.1	5
1388	Locking Active Li Metal through Localized Redistribution of Fluoride Enabling Stable Liâ€Metal Batteries. Advanced Materials, 2023, 35, .	11.1	26
1389	Suppressing Chemical Corrosions of Lithium Metal Anodes. Advanced Energy Materials, 2022, 12, .	10.2	11
1390	Concentrated ternary ether electrolyte allows for stable cycling of a lithium metal batteryÂwith commercial mass loading highâ€nickel NMC and thin anodes. , 2023, 5, .		9
1391	Perspective—Lithium Metal Nucleation and Growth on Conductive Substrates: A Multi-Scale Understanding from Atomistic, Nano-, Meso-, to Micro-Scales. Journal of the Electrochemical Society, 2022, 169, 112505.	1.3	4
1392	Elucidating the suppression of lithium dendrite growth with a void-reduced anti-perovskite solid-state electrolyte pellet for stable lithium metal anodes. Journal of Energy Chemistry, 2023, 77, 62-69.	7.1	4
1393	How to Promote the Industrial Application of SiO <i>_x</i> Anode Prelithiation: Capability, Accuracy, Stability, Uniformity, Cost, and Safety. Advanced Energy Materials, 2022, 12, .	10.2	22
1394	Tailoring grain boundary structures and chemistry of Li7La3Zr2O12 solid electrolytes for enhanced air stability. Energy Storage Materials, 2023, 54, 543-552.	9.5	19
1395	Tradeâ€offs between ionâ€conducting and mechanical properties: The case of polyacrylate electrolytes. , 2023, 5, .		10
1396	A cascade protection strategy from cathode to anode with high air stability for ultralong life Li-air batteries in ambient conditions. Energy Storage Materials, 2023, 54, 508-516.	9.5	4
1397	Fluoro-organosulfur catholytes to boost lithium primary battery energy. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	3
1398	Advanced Material Engineering to Tailor Nucleation and Growth towards Uniform Deposition for Anode‣ess Lithium Metal Batteries. Small, 2022, 18, .	5.2	9
1399	An additive-enabled ether-based electrolyte to realize stable cycling of high-voltage anode-free lithium metal batteries. Energy Storage Materials, 2023, 54, 450-460.	9.5	19

ARTICLE IF CITATIONS Performance Improvement of Lithium Metal Batteries Enabled By LiBF₃CN as a New 1400 1.3 4 Electrolyte Additive. Journal of the Electrochemical Society, 2022, 169, 110506. Recent progress in constructing halogenated interfaces for highly stable lithium metal anodes. 1401 Energy Storage Materials, 2023, 54, 732-775. The effect of porosity of activated carbon cloth cathodes on the cyclic performance of Liâ \in S cells. 1402 4.0 4 Journal of Power Sources, 2022, 552, 232250. Constructing inorganic-rich solid electrolyte interphase via abundant anionic solvation sheath in 1403 commercial carbonate electrolytes. Nano Energy, 2022, 104, 107881. Influence of loading rate and out of plane direction dependence on deformation and electro-mechanical failure behavior of a lithium-ion pouch cell. Journal of Energy Storage, 2022, 56, 1404 3.9 16 105906. First-principles study on selenium-doped Li10GeP2S12 solid electrolyte: Effects of doping on moisture 1405 1.7 stability and Li-ion transport properties. Materials Today Chemistry, 2022, 26, 101223. Mortise-tenon joints reinforced Janus composite solid-state electrolyte with fast kinetics for 1406 9.5 13 high-voltage lithium metal battery. Energy Storage Materials, 2023, 54, 294-303. Solid-state nanocomposite ionogel electrolyte with in-situ formed ionic channels for uniform ion-flux and suppressing dendrite formation in lithium metal batteries. Energy Storage Materials, 1407 2023, 54, 40-50 Constructing a 700 Wh kgâ^{^1}-level rechargeable lithium-sulfur pouch cell. Journal of Energy 1408 7.1 48 Chemistry, 2023, 76, 181-186. Visualizing electrode assembly movement and lithiation heterogeneity in lithium-metal batteries using 1409 operando energy dispersive X-ray diffraction. Journal of Power Sources, 2023, 553, 232273. Power Distribution and Propulsion System for an All-Electric Short-Range Commuter Aircraftâ€"A Case 1410 2.6 10 Study. IEEE Access, 2022, 10, 114514-114539. From anode to cell: synergistic protection strategies and perspectives for stabilized Zn metal in mild 1411 9.5 aqueous electrolytes. Energy Storage Materials, 2023, 54, 623-640. A systematic evaluation of charge-discharge behaviors, performance, and rate-capability of Al-ion 1412 2.6 9 batteries. Electrochimica Acta, 2023, 437, 141508. Enhancing the reversibility of Li deposition/dissolution in sulfur batteries using high-concentration electrolytes to develop anode-less batteries with lithium sulfide cathode. Journal of Power Sources, 1413 4.0 2023, 554, 232323. Separators with reactive metal oxide coatings for dendrite-free lithium metal anodes. Journal of 1414 9 4.0 Power Sources, 2023, 555, 232336. Layered oxide cathode-inspired secondary hard carbon microsphere anode material for high-power 1415 and long-life rechargeable batteries. Chemical Engineering Journal, 2023, 454, 140252. Reversible lithium plating in the pores of a graphite electrode delivers additional capacity for existing lithium-ion batteries enabled by a compatible electrolyte. Chemical Engineering Journal, 2023, 454, 1416 6.6 3 140290. Controlled prelithiation of siloxene nanosheet anodes enables high performance 5ÂV-class lithium-ion 1417 6.6 batteries. Chemical Engineering Journal, 2023, 454, 140136.

#	Article	IF	CITATIONS
1418	电解液è°f控实现é«~电压é«~é•ë,‰åfé•;循çŽ⁻稳定. Chinese Science Bulletin, 2022, , .	0.4	0
1419	Anion modification for stable solid electrolyte interphase in anode-free lithium metal batteries. Materials Today Energy, 2022, , 101199.	2.5	1
1420	The Mechanism of Li Deposition on the Cu Substrates in the Anodeâ€Free Li Metal Batteries. Small, 2023, 19, .	5.2	10
1421	Focus on the Electroplating Chemistry of Li Ions in Nonaqueous Liquid Electrolytes: Toward Stable Lithium Metal Batteries. Electrochemical Energy Reviews, 2022, 5, .	13.1	29
1422	Realization of a 594ÂWh kg ^{â^'1} Lithiumâ€Metal Battery Using a Lithiumâ€Free V ₂ O ₅ Cathode with Enhanced Performances by Nanoarchitecturing. Small, 2023, 19, .	5.2	2
1423	Understanding and Improving Mechanical Stability in Electrodeposited Cu and Bi for Dynamic Windows Based on Reversible Metal Electrodeposition. Advanced Energy Materials, 2023, 13, .	10.2	4
1424	Long-life lithium-metal batteries with dendrite-free anodes enabled by Zn(TFSI)2 additive. Journal of Alloys and Compounds, 2023, 936, 168108.	2.8	3
1425	An improved 9 micron thick separator for a 350 Wh/kg lithium metal rechargeable pouch cell. Nature Communications, 2022, 13, .	5.8	48
1426	Lithium hexamethyldisilazide as electrolyte additive for efficient cycling of high-voltage non-aqueous lithium metal batteries. Nature Communications, 2022, 13, .	5.8	54
1427	Role of Bicontinuous Structure in Elastomeric Electrolytes for Highâ€Energy Solidâ€5tate Lithiumâ€Metal Batteries. Advanced Materials, 2023, 35, .	11.1	19
1428	Structural and Chemical Evolutions of Li/Electrolyte Interfaces in Liâ€Metal Batteries: Tracing Compositional Changes of Electrolytes under Practical Conditions. Advanced Science, 2023, 10, .	5.6	17
1429	Prospective strategies for extending long-term cycling performance of anode-free lithium metal batteries. Energy Storage Materials, 2023, 54, 689-712.	9.5	11
1430	3D-Printed Porous GO Framework Enabling Dendrite-Free Lithium-Metal Anodes. ACS Applied Energy Materials, 2022, 5, 15666-15672.	2.5	7
1431	Graphene coupled flower-like oxidized-polyacrylonitrile as high-performance anodes for sustainable lithium-ion batteries. Chemical Communications, 2023, 59, 1082-1085.	2.2	2
1432	Reserve lithium-ion batteries: Deciphering in situ lithiation of lithium-ion free vanadium pentoxide cathode with graphitic anode. Carbon, 2023, 203, 561-570.	5.4	13
1433	A new approach to stabilize the electrochemical performance of Li metal batteries through the structure alteration of CNT scaffolds. Carbon, 2023, 203, 426-435.	5.4	10
1434	Revealing the accelerated reaction kinetic of Ni-rich cathodes by activated carbons for high performance lithium-ion batteries. Carbon, 2023, 203, 445-454.	5.4	2
1435	Stimulating Zn2+ permselectivity for prominent zinc anode reversibility by designing a self-assembled artificial layer. Chemical Engineering Journal, 2023, 455, 140827.	6.6	3

	CITATION REF	CITATION REPORT	
#	Article	IF	CITATIONS
1436	Heterogeneities affect solid-state battery cathode dynamics. Energy Storage Materials, 2023, 55, 312-321.	9.5	6
1437	Positively-charged nanofiltration membrane constructed by polyethyleneimine/layered double hydroxide for Mg2+/Li+ separation. Desalination, 2023, 548, 116256.	4.0	15
1438	Selective and uniform Li-ion boosting polymer electrolytes for dendrite-less quasi-solid-state batteries. Journal of Membrane Science, 2023, 668, 121258.	4.1	5
1439	Lithiophilic single-atom Co on carbon nanosheets synergistically modulates Li deposition enable dendrite-free lithium metal batteries. Journal of Power Sources, 2023, 556, 232474.	4.0	10
1440	Electrochemoâ€Mechanical Stresses and Their Measurements in Sulfideâ€Based Allâ€Solidâ€State Batteries: A Review. Advanced Energy Materials, 2023, 13, .	10.2	20
1441	Clarifying the Relationship between the Lithium Deposition Coverage and Microstructure in Lithium Metal Batteries. Journal of the American Chemical Society, 2022, 144, 21961-21971.	6.6	21
1442	Boosting the capability of Li2C2O4 as cathode pre-lithiation additive for lithium-ion batteries. Nano Research, 2023, 16, 3872-3878.	5.8	11
1443	Sulfurâ€doped hard carbon hybrid anodes with dual lithiumâ€ion/metal storage bifunctionality for highâ€energyâ€density lithiumâ€ion batteries. , 2023, 5, .		5
1444	Revealing the Intrinsic Uneven Electrochemical Reactions of Li Metal Anode in Ahâ€Level Laminated Pouch Cells. Advanced Functional Materials, 2023, 33, .	7.8	12
1445	Formulation and Characterization of PS-Poly(ionic liquid) Triblock Electrolytes for Sodium Batteries. ACS Applied Polymer Materials, 2022, 4, 8977-8986.	2.0	5
1446	An Inorganicâ€Dominate Molecular Diluent Enables Safe Localized High Concentration Electrolyte for Highâ€Voltage Lithiumâ€Metal Batteries. Advanced Functional Materials, 2023, 33, .	7.8	19
1447	Aero Gas Turbines. , 2022, , 3-34.		0
1448	Realization of superior ionic conductivity by manipulating the atomic rearrangement in Al-doped Li7La3Zr2O12. Ceramics International, 2022, , .	2.3	3
1449	Diluent decomposition-assisted formation of LiF-rich solid-electrolyte interfaces enables high-energy Li-metal batteries. Journal of Energy Chemistry, 2023, 78, 71-79.	7.1	26
1450	Ultraâ€Thin Singleâ€Particleâ€Layer Sodium Betaâ€Aluminaâ€Based Composite Polymer Electrolyte Membrane fo Sodiumâ€Metal Batteries. Advanced Functional Materials, 2023, 33, .	^r 7.8	15
1451	Effect of polymerizing on lithium-ion transport in electrolyte. Ionics, 2023, 29, 591-601.	1.2	2
1452	Overcoming the Intrinsic Limitations of Fast Charging Lithiumâ€lon Batteries Using Integrated Acoustic Streaming. Advanced Energy and Sustainability Research, 2023, 4, .	2.8	2
1453	Reinforced interface endows the lithium anode with stable cycle at high-temperature of 80 oC. Journal of Energy Chemistry, 2022, , .	7.1	1

#	Article	IF	CITATIONS
1454	Embedding the high entropy alloy nanoparticles into carbon matrix toward high performance Li-ion batteries. Journal of Alloys and Compounds, 2023, 938, 168610.	2.8	6
1455	Dielectric relaxation studies of poly(ethylene oxide) with the addition of salt or nanofiller. Polymer International, 2023, 72, 935-948.	1.6	3
1456	The Anion-Dominated Dynamic Coordination Field in the Electrolytes for High-Performance Lithium Metal Batteries. Energy Storage Materials, 2023, 55, 773-781.	9.5	17
1457	Columnar Lithium Deposition Guided by Graphdiyne Nanowalls toward a Stable Lithium Metal Anode. ACS Applied Materials & Interfaces, 2022, 14, 55700-55708.	4.0	3
1458	Titration Mass Spectroscopy (TMS): A Quantitative Analytical Technology for Rechargeable Batteries. Nano Letters, 2022, 22, 9972-9981.	4.5	14
1459	High Loading Sulfur Cathodes by Reactiveâ€Type Polymer Tubes for Highâ€Performance Lithiumâ€Sulfur Batteries. Advanced Functional Materials, 2023, 33, .	7.8	7
1460	Coupling of multiscale imaging analysis and computational modeling for understanding thick cathode degradation mechanisms. Joule, 2023, 7, 201-220.	11.7	16
1461	Processable Potassium–Carbon Nanotube Film with a Three-Dimensional Structure for Ultrastable Metallic Potassium Anodes. ACS Applied Materials & Interfaces, 2022, 14, 55577-55586.	4.0	6
1462	Enhanced Electrolyte Transport and Kinetics Mitigate Graphite Exfoliation and Li Plating in Fastâ€Charging Liâ€Ion Batteries. Advanced Energy Materials, 2023, 13, .	10.2	8
1463	Perspective—Morphology and Dynamics of Metal Dendrites in Batteries Revealed by X-ray Computed Tomography. Journal of the Electrochemical Society, 0, , .	1.3	0
1464	Tailoring lithium concentration in alloy anodes for long cycling and high areal capacity in sulfide-based all solid-state batteries. EScience, 2023, 3, 100087.	25.0	11
1465	Room-Temperature Pseudo-Solid-State Iron Fluoride Conversion Battery with High Ionic Conductivity. ACS Applied Materials & Interfaces, 2023, 15, 893-902.	4.0	0
1466	Research Progresses of Liquid Electrolytes in Lithiumâ€ion Batteries. Small, 2023, 19, .	5.2	47
1467	Exploiting the Steric Effect and Low Dielectric Constant of 1,2-Dimethoxypropane for 4.3 V Lithium Metal Batteries. ACS Energy Letters, 2023, 8, 179-188.	8.8	33
1468	3D Carbon Materials for High-Performance Electric Energy Storage Facilities. ACS Applied Energy Materials, 2023, 6, 1-11.	2.5	4
1469	Building lithium metal batteries under lean electrolyte conditions: Challenges and progress. Energy Storage Materials, 2023, 55, 708-726.	9.5	16
1470	Lithiophilic Wetting Agent Inducing Interfacial Fluorination for Longâ€Lifespan Anodeâ€Free Lithium Metal Batteries. Advanced Energy Materials, 2023, 13, .	10.2	15
1471	A Novel Approach to Open "Dead Space―and Modify Interfacial Features of Carbon Nanotube Assemblies by a Microwave Shock. Advanced Functional Materials, 2023, 33, .	7.8	2

#	Article	IF	CITATIONS
1472	Suppression of Fe-Cation Migration by Indium Substitution in LiFe _{2–<i>x</i>} In <i>_x</i> SbO ₆ Cathode Materials. Chemistry of Materials, 2023, 35, 337-346.	3.2	2
1473	Bifunctional sulfonated covalent polymers as the modulator for oriented and highly reversible zinc plating. Science China Chemistry, 2023, 66, 289-296.	4.2	6
1474	Nanometric MnO ₂ and MnO ₂ â€Graphene Oxide Materials Enabled by a Solventâ€Assisted Synthesis and Their Application in Asymmetric Supercapacitors. Energy Technology, 2023, 11, .	1.8	3
1475	Bifunctional Fluorinated Anthraquinone Additive for Improving Kinetics and Interfacial Chemistry in Rechargeable Li–S Batteries. ACS Applied Energy Materials, 2022, 5, 15719-15728.	2.5	3
1476	Enhanced Performance of Lithium Polymer Batteries Based on the Nickel-Rich LiNi _{0.8} Mn _{0.1} Co _{0.1} O ₂ Cathode Material and Dual Salts. ACS Applied Energy Materials, 2022, 5, 15768-15779.	2.5	4
1477	Advanced Composite Lithium Metal Anodes with 3D Frameworks: Preloading Strategies, Interfacial Optimization, and Perspectives. Small, 2023, 19, .	5.2	10
1478	Mechanical Evolution of Solid Electrolyte Interphase on Metallic Lithium Studied by in situ Atomic Force Microscopy. Journal of the Electrochemical Society, 2023, 170, 010534.	1.3	3
1479	Deciphering the Thermal Failure Mechanism of Anodeâ€Free Lithium Metal Pouch Batteries. Advanced Energy Materials, 2023, 13, .	10.2	14
1480	Nitrogen-Doped Carbon Sponge Derived from the Self-Assembly of a Poly(amic acid) for High Performance Oxygen Reduction Reaction. New Journal of Chemistry, 0, , .	1.4	2
1481	Regulating Electronic Structure of Fe–N ₄ Single Atomic Catalyst via Neighboring Sulfur Doping for High Performance Lithium–Sulfur Batteries. Advanced Functional Materials, 2023, 33, .	7.8	39
1482	A Comparison of Carbonate-Based and Ether-Based Electrolyte Systems for Lithium Metal Batteries. Journal of the Electrochemical Society, 2023, 170, 010535.	1.3	13
1483	Gas induced formation of inactive Li in rechargeable lithium metal batteries. Nature Communications, 2023, 14, .	5.8	16
1484	Ultrasmooth and Dense Lithium Deposition Toward Highâ€Performance Lithiumâ€Metal Batteries. Advanced Materials, 0, , 2210130.	11.1	11
1486	Enabling 420ÂWhÂkg ^{â^'1} Stable Lithiumâ€Metal Pouch Cells by Lanthanum Doping. Advanced Materials, 0, , 2211032.	11.1	20
1487	Anode-free Na metal batteries developed by nearly fully reversible Na plating on the Zn surface. Nanoscale, 2023, 15, 3255-3262.	2.8	11
1488	Dual-Salt Localized High-Concentration Electrolyte for Long Cycle Life Silicon-Based Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2023, 15, 3586-3598.	4.0	12
1489	Electrolyte engineering for highly inorganic solid electrolyte interphase in high-performance lithium metal batteries. CheM, 2023, 9, 682-697.	5.8	33
1490	Highly Thermostable Interphase Enables Boosting Highâ€Temperature Lifespan for Metallic Lithium Batteries. Small, 2023, 19, .	5.2	7

#	Article	IF	CITATIONS
1491	Multifunctional surface-engineering of 3D-lithiophilic nanocarbon scaffold for high-voltage anode-minimized lithium metal batteries. Chemical Engineering Journal, 2023, 458, 141478.	6.6	1
1492	Reversible Lithium Electroplating for High-Energy Rechargeable Batteries. Journal of the Electrochemical Society, 0, , .	1.3	3
1493	Hydrofluoric Acidâ€Removable Additive Optimizing Electrode Electrolyte Interphases with Li ⁺ Conductive Moieties for 4.5ÂV Lithium Metal Batteries. Advanced Functional Materials, 2023, 33, .	7.8	20
1494	Understanding the failure process of sulfide-based all-solid-state lithium batteries via operando nuclear magnetic resonance spectroscopy. Nature Communications, 2023, 14, .	5.8	25
1495	A 3D multifunctional host anode from commercial carbon cloth for lithium metal batteries. Journal of Materials Chemistry A, 2023, 11, 4205-4219.	5.2	10
1496	Passivating Lithiated Graphite via Targeted Repair of SEI to Inhibit Exothermic Reactions in Earlyâ^'stage of Thermal Runaway. Angewandte Chemie, 0, , .	1.6	0
1497	Elucidating binder-free magnetron sputtered molybdenum-tungsten-disulfide thin films for battery-supercapacitor devices. Journal of Alloys and Compounds, 2023, 942, 168929.	2.8	9
1498	Correlating the Formation Protocols of Solid Electrolyte Interphases with Practical Performance Metrics in Lithium Metal Batteries. ACS Energy Letters, 2023, 8, 869-877.	8.8	14
1499	Passivating Lithiated Graphite via Targeted Repair of SEI to Inhibit Exothermic Reactions in Earlyâ€Stage of Thermal Runaway for Safer Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2023, 62, .	7.2	12
1500	First principles study on Li metallic phase nucleation at grain boundaries in a lithium lanthanum titanium oxide (LLTO) solid electrolyte. Journal of Materials Chemistry A, 2023, 11, 2889-2898.	5.2	2
1501	Electrochemical Characterization of Degradation Modes of High-Voltage Li _{<i>x</i>} Ni _{0.33} Mn _{0.33} Co _{0.33} O ₂ Electrodes. ACS Energy Letters, 2023, 8, 917-926.	8.8	1
1502	LSCF perovskite oxide in situ grown on reduced graphene oxide as high-performance bifunctional catalyst for zinc-air battery. Diamond and Related Materials, 2023, 132, 109668.	1.8	3
1503	Ultrathin hierarchical porous Cu current collector fabricated by anodic oxidation in complexing agent system for stable anode-free Lithium metal batteries. Electrochimica Acta, 2023, 442, 141895.	2.6	5
1504	Understanding Li creep in Li-metal pouch cells and the role of separator integrity. Journal of Power Sources, 2023, 559, 232650.	4.0	2
1505	A Polymeric/inorganic Composite Coatings on the Separator for High-energy Lithium Metal Battery. , 2022, , .		0
1506	Spatially Confined LiF Nanoparticles in an Aligned Polymer Matrix as the Artificial SEI Layer for Lithium Metal Anodes. Nano Letters, 2023, 23, 276-282.	4.5	23
1507	Dendriteâ€Free 3D Lithium Metal Anode Formed in a Cellulose Based Separator for Lithiumâ€Metal Batteries. ChemElectroChem, 2023, 10, .	1.7	4
1508	Symmetric Cells as an Analytical Tool for Battery Research: Assembly, Operation, and Data Analysis Strategies. Journal of the Electrochemical Society, 2023, 170, 020521.	1.3	6

#	Article	IF	CITATIONS
1509	A successive "conversion-deposition―mechanism achieved by micro-crystalline Cu2O modified current collector for composite lithium anode. Journal of Industrial and Engineering Chemistry, 2023, 120, 285-292.	2.9	2
1510	Interfacial Anchored Sesame Ball-like Ag/C To Guide Lithium Even Plating and Stripping Behavior. ACS Applied Materials & Interfaces, 2023, 15, 1934-1943.	4.0	2
1511	A non-academic perspective on the future of lithium-based batteries. Nature Communications, 2023, 14,	5.8	135
1512	Ni ₃ S ₄ /SnS/Graphene Oxide/Carbon Nanotube Composites as Anodes for Na-Ion Batteries. ACS Applied Nano Materials, 2023, 6, 1996-2008.	2.4	2
1513	Revealing the Multifunctions of Li ₃ N in the Suspension Electrolyte for Lithium Metal Batteries. ACS Nano, 2023, 17, 3168-3180.	7.3	38
1514	Influencing Factors on Liâ€ion Conductivity and Interfacial Stability of Solid Polymer Electrolytes, Exampled by Polycarbonates, Polyoxalates and Polymalonates. Angewandte Chemie, 2023, 135, .	1.6	3
1515	Realizing Holistic Charging–Discharging for Dendrite-Free Lithium Metal Anodes via Constructing Three-Dimensional Li ⁺ Conductive Networks. ACS Applied Materials & Interfaces, 2023, 15, 6666-6675.	4.0	2
1516	Enabling Allâ€Solidâ€State Li Metal Batteries Operated at 30 °C by Molecular Regulation of Polymer Electrolyte. Advanced Energy Materials, 2023, 13, .	10.2	33
1517	Research progress on the construction of synergistic electrocatalytic ORR/OER self-supporting cathodes for zinc–air batteries. Journal of Materials Chemistry A, 2023, 11, 4400-4427.	5.2	33
1518	A fabrication of stable lithium metal anodes using HF scavenging films. Chemical Communications, 2023, 59, 2819-2822.	2.2	1
1519	High-areal-capacity anode-free all-solid-state lithium batteries enabled by interconnected carbon-reinforced ionic-electronic composites. Journal of Materials Chemistry A, 2023, 11, 12713-12718.	5.2	10
1520	Surface-patterned graphite electrode with hybrid polymer/garnet electrolyte for all-solid-state batteries. Materials Today Sustainability, 2023, 22, 100338.	1.9	1
1521	Elucidating Concentration-Dependent Energy Limitations in Li Primary Battery Fluoro-organosulfur Catholytes. Journal of Physical Chemistry C, 2023, 127, 1722-1732.	1.5	1
1522	Composite lithium metal anodes for solid-state battery applications. , 2023, , 81-94.		1
1523	Application of 2D MXene in Organic Electrode Materials for Rechargeable Batteries: Recent Progress and Perspectives. Advanced Functional Materials, 2023, 33, .	7.8	13
1524	Improved Cycling of Li NMC811 Batteries under Practical Conditions by a Localized High oncentration Electrolyte. Small, 2023, 19, .	5.2	2
1525	The mechanism of external pressure suppressing dendrites growth in Li metal batteries. Journal of Energy Chemistry, 2023, 79, 489-494.	7.1	9
1526	Ultrathin electrochemical layer tailoring of lithiophilic materials with 3D hierarchical configuration for lithium metal batteries: Sn/Cu ₆ Sn ₅ @Cu ₂₊₁ O nanowires on Cu foam. Journal of Materials Chemistry A, 2023, 11, 6144-6156.	5.2	1

#	Article	IF	CITATIONS
1527	High-mass loading Bi2O2CO3 nanoflakes with crystalline structure transition as cathode for alkaline zinc battery. Journal of Solid State Electrochemistry, 0, , .	1.2	0
1528	Chemical Crossover Accelerates Degradation of Lithium Electrode in High Energy Density Rechargeable Lithium–Oxygen Batteries. Advanced Energy Materials, 2023, 13, .	10.2	16
1529	Nanotwinned Copper Foil for "Zero Excess―Lithium–Metal Batteries. ACS Applied Energy Materials, 2023, 6, 2140-2150.	2.5	5
1530	Electro-Chemo-Mechanical Challenges and Perspective in Lithium Metal Batteries. Applied Mechanics Reviews, 2023, 75, .	4.5	10
1531	A compact interphase involving a reversible redox couple stabilizes a 4.6 V LiCoO ₂ cathode. Journal of Materials Chemistry A, 2023, 11, 8766-8775.	5.2	3
1532	Composition and Structure Design of Poly(vinylidene fluoride)â€Based Solid Polymer Electrolytes for Lithium Batteries. Advanced Functional Materials, 2023, 33, .	7.8	18
1533	Nonâ€Flammable Electrolyte with Lithium Nitrate as the Only Lithium Salt for Boosting Ultraâ€Stable Cycling and Fireâ€Safety Lithium Metal Batteries. Advanced Functional Materials, 2023, 33, .	7.8	24
1534	Deep and Comprehensive Study on the Impact of Different Phosphazeneâ€Based Flameâ€Retardant Additives on Electrolyte Properties, Performance, and Durability of Highâ€Voltage LMNOâ€Based Lithiumâ€ion Batteries. Energy Technology, 2023, 11, .	1.8	3
1535	Intermolecular Interactions Mediated Nonflammable Electrolyte for Highâ€Voltage Lithium Metal Batteries in Wide Temperature. Advanced Energy Materials, 2023, 13, .	10.2	28
1536	Safety perceptions of solid-state lithium metal batteries. ETransportation, 2023, 16, 100239.	6.8	12
1537	Suppressing Universal Cathode Crossover in High‣nergy Lithium Metal Batteries via a Versatile Interlayer Design**. Angewandte Chemie - International Edition, 2023, 62, .	7.2	5
1538	Uncovering the degradation mechanism induced by ion-diffusion kinetics in large-format lithium-ion pouch cells. Journal of Energy Chemistry, 2023, 83, 98-105.	7.1	5
1539	Cork: Enabler of sustainable and efficient coaxial structural batteries. Heliyon, 2023, 9, e15063.	1.4	0
1540	Suppressing Universal Cathode Crossover in Highâ€Energy Lithium Metal Batteries via a Versatile Interlayer Design**. Angewandte Chemie, 2023, 135, .	1.6	0
1541	Robust polyethylene sensor complex for multi-dimensional monitoring. Chemical Engineering Journal, 2023, 463, 142407.	6.6	1
1542	Anchoring polysulfide with artificial solid electrolyte interphase for dendrite-free and low N/P ratio Li-S batteries. Journal of Energy Chemistry, 2023, 80, 32-39.	7.1	8
1543	Delineating the relationship between separator parameters and practical lithium metal batteries characteristics. Journal of Power Sources, 2023, 566, 232931.	4.0	5
1544	Suppressing storage-induced degradation of Li7La3Zr2O12 via encapsulation with hydrophobicity-tailored polymer nanolayer. Electrochimica Acta, 2023, 453, 142358.	2.6	1

#	Article	IF	CITATIONS
1545	Tailoring electrolyte solvation to push the capacity limit of layered oxide cathodes via polarized ferroelectric polymers. Acta Materialia, 2023, 252, 118923.	3.8	1
1546	Recent research progress of alloy-containing lithium anodes in lithium-metal batteries. Current Opinion in Solid State and Materials Science, 2023, 27, 101079.	5.6	7
1547	Effect of nano Al2O3 addition on cycling performance of poly(ether block amide) based solid-state lithium metal batteries. , 2023, 2, 167-176.		1
1548	Enhanced microstructure stability of LiNi0.8Co0.1Mn0.1O2 cathode with negative thermal expansion shell for long-life battery. Journal of Colloid and Interface Science, 2023, 640, 1005-1014.	5.0	4
1549	In-situ synthesis of FeS/N, S co-doped carbon composite with electrolyte-electrode synergy for rapid sodium storage. Journal of Colloid and Interface Science, 2023, 640, 791-800.	5.0	15
1550	Versatile solid polymer electrolytes from clickable poly(glycidyl propargyl ether) for lithium metal batteries. Journal of Energy Storage, 2023, 65, 107348.	3.9	1
1551	Bifunctional non-nucleophilic electrolyte enables long-life magnesium batteries via elimination of passive film on Mg anode. Chemical Engineering Journal, 2023, 462, 141998.	6.6	3
1552	Nickel vacancy tuning to tame polysulfide for Li–S batteries. New Journal of Chemistry, 2023, 47, 4313-4320.	1.4	0
1553	Tuning desolvation kinetics of in-situ weakly solvating polyacetal electrolytes for dendrite-free lithium metal batteries. Journal of Energy Chemistry, 2023, 79, 340-347.	7.1	7
1554	Electrode-level strategies enabling kinetics-controlled metallic Li confinement by the heterogeneity of interfacial activity and porosity. Energy Storage Materials, 2023, 56, 515-523.	9.5	4
1555	Roles of Trimethyl Borate in Constructing an Interphase on Li Anode: Angel or Demon?. ACS Applied Materials & Interfaces, 2023, 15, 6768-6776.	4.0	0
1556	Influencing Factors on Liâ€ion Conductivity and Interfacial Stability of Solid Polymer Electrolytes, Exampled by Polycarbonates, Polyoxalates and Polymalonates. Angewandte Chemie - International Edition, 2023, 62, .	7.2	19
1557	Direct regeneration of degraded lithium-ion battery cathodes with a multifunctional organic lithium salt. Nature Communications, 2023, 14, .	5.8	73
1558	Electrolytes in Organic Batteries. Chemical Reviews, 2023, 123, 1712-1773.	23.0	57
1559	Understanding and quantifying capacity loss in storage aging of Ahâ€level Li metal pouch cells. InformaÄnÃ-Materiály, 2023, 5, .	8.5	3
1560	A "tug-of-war―effect tunes Li-ion transport and enhances the rate capability of lithium metal batteries. Chemical Science, 2023, 14, 2745-2754.	3.7	10
1561	Evaluation of Cathode Electrodes in Lithiumâ€lon Battery: Pitfalls and the Befitting Counter Electrode. Small, 2023, 19, .	5.2	3
1562	Growing single-crystalline seeds on lithiophobic substrates to enable fast-charging lithium-metal batteries. Nature Energy, 2023, 8, 340-350.	19.8	52

ARTICLE IF CITATIONS In situ 3D crosslinked gel polymer electrolyte for ultra-long cycling, high-voltage, and high-safety 1563 9.5 18 lithium metal batteries. Energy Storage Materials, 2023, 57, 92-101. Advanced twoâ€dimensional materials toward polysulfides regulation of metal–sulfur batteries. 1564 6.4 SmartMat, 2023, 4, . Artificial Graphite Paper as a Corrosionâ€Resistant Current Collector for Longâ€Life Lithium Metal 1565 7 7.8 Batteries. Advanced Functional Materials, 2023, 33, . Irreversible Structural Changes in Lithium Electrodes Accelerate Capacity Fading in 1566 2.5 Lithium-Metal-Based Rechargeable Batteries. ACS Applied Energy Materials, 2023, 6, 2524-2530. Construction of Lithium Metal Anode with High Lithium Utilization and its Application in 1567 0.1 0 Lithium-Sulfur Batteries. Hans Journal of Nanotechnology, 2023, 13, 7-28. Catalytically Induced Robust Inorganicâ€Rich Cathode Electrolyte Interphase for 4.5ÂV Li | |NCM622 Batteries. Advanced Functional Materials, 2023, 33, . 7.8 Investigating microstructure evolution of lithium metal during plating and stripping via operando 1569 5.8 12 X-ray tomographic microscopy. Nature Communications, 2023, 14, . Recent Advances in the Structural Design of Silicon/Carbon Anodes for Lithium Ion Batteries: A 1.2 Review. Coatings, 2023, 13, 436. Current Status and Future Perspective on Lithium Metal Anode Production Methods. Advanced Energy 1571 10.2 38 Materials, 2023, 13, . Non-polar ether-based electrolyte solutions for stable high-voltage non-aqueous lithium metal 5.8 batteries. Nature Communications, 2023, 14, . Solvent-Free and Long-Cycling Garnet-Based Lithium-Metal Batteries. ACS Energy Letters, 2023, 8, 1573 8.8 9 1468-1476. All-fluorinated electrolyte directly tuned Li+ solvation sheath enabling high-quality passivated interfaces for robust Li metal battery under high voltage operation. Energy Storage Materials, 2023, 1574 9.5 57, 249-259. Solvent versus Anion Chemistry: Unveiling the Structure-Dependent Reactivity in Tailoring 1575 3.6 14 Electrochemical Interphases for Lithium-Metal Batteries. Jacs Au, 2023, 3, 953-963. Enhanced Cycling Stability of Lithiumâ€Rich Cathode Materials Achieved by inâ€situ Formation of 2.4 LiErO₂ Coating. Batteries and Supercaps, 2023, 6, . LiF-Rich Interfaces and HF Elimination Achieved by a Multifunctional Additive Enable High-Performance Li/LiNi_{0.8}Co_{0.1}Mn_{0.1}O₂Batteries. ACS Applied 1577 4.0 6 Materials & amp; Interfaces, 2023, 15, 11777-11786. A Permselective Coating Protects Lithium Anode toward a Practical Lithium–Sulfur Battery. ACS Nano, 2023, 17, 4453-4462. Flexible solid-state lithium-sulfur batteries based on structural designs. Energy Storage Materials, 1579 9.5 11 2023, 57, 429-459. A Fluorinatedâ€Polyimideâ€Based Composite Nanofibrous Separator with Homogenized Pore Size for Wideâ€Temperature Lithium Metal Batteries. Small Structures, 2023, 4, .

#	Article	IF	CITATIONS
1581	Stability of solid electrolyte interphases and calendar life of lithium metal batteries. Energy and Environmental Science, 2023, 16, 1548-1559.	15.6	11
1582	Anion-enrichment interface enables high-voltage anode-free lithium metal batteries. Nature Communications, 2023, 14, .	5.8	67
1583	Li-growth and SEI engineering for anode-free Li-metal rechargeable batteries: A review of current advances. Energy Storage Materials, 2023, 57, 508-539.	9.5	39
1584	Engineering Li Metal Anode for Garnet-Based Solid-State Batteries. Accounts of Chemical Research, 2023, 56, 667-676.	7.6	13
1585	Improved reversibility of lithium deposition and stripping with high areal capacity under practical conditions through enhanced wettability of the polyolefin separator to highly concentrated electrolytes. Energy Advances, 2023, 2, 503-507.	1.4	7
1586	Data-driven electrolyte design for lithium metal anodes. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	21
1587	Investigating the Influence of Polymer Binders on Liquid Phase Transport and Tortuosity Through Lithium-Ion Electrodes. Journal of the Electrochemical Society, 2023, 170, 030518.	1.3	1
1588	Revealing the importance of suppressing formation of lithium hydride and hydrogen in Li anode protection. , 2023, 2, 337-347.		4
1589	Spatially controlled lithium deposition on Li Cu P arrays enabling highly stable lithium metal batteries. Journal of Materials Science and Technology, 2023, 152, 212-219.	5.6	3
1590	Timely or early? Breaking away from cobalt-reliant lithium-ion batteries. , 2023, 1, 100004.		0
1591	Current Status and Enhancement Strategies for All-Solid-State Lithium Batteries. Accounts of Materials Research, 2023, 4, 472-483.	5.9	21
1592	Challenges of Stable Ion Pathways in Cathode Electrode for Allâ€Solidâ€State Lithium Batteries: A Review. Advanced Energy Materials, 2023, 13, .	10.2	22
1593	Real-time nondestructive methods for examining battery electrode materials. Applied Physics Reviews, 2023, 10, .	5.5	3
1594	Silicaâ€Modified 3D Porous Copper Current Collectors Toward Stable Lithium Metal Anodes. Energy Technology, 2023, 11, .	1.8	1
1595	Strategies and Challenge of Thick Electrodes for Energy Storage: A Review. Batteries, 2023, 9, 151.	2.1	8
1596	Constructing mutual-philic electrode/non-liquid electrolyte interfaces in electrochemical energy storage systems: Reasons, progress, and perspectives. Energy Storage Materials, 2023, 58, 48-73.	9.5	8
1597	Dynamic Ion Sieve as the Buffer Layer for Regulating Li ⁺ Flow in Lithium Metal Batteries. Advanced Functional Materials, 2023, 33, .	7.8	11
1598	Rate-Dependent Failure Mechanisms and Mitigating Strategies of Anode-Free Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2023, 15, 12967-12975.	4.0	1

#	Article	IF	Citations
1599	Solid Interhalogen Compounds with Effective Br ⁰ Fixing for Stable Highâ€energy Zinc Batteries. Angewandte Chemie - International Edition, 2023, 62, .	7.2	9
1600	Solid Interhalogen Compounds with Effective Br ⁰ Fixing for Stable Highâ€energy Zinc Batteries. Angewandte Chemie, 2023, 135, .	1.6	3
1601	A Perspective on the Critical Design Criteria for Anode-free Li Metal Batteries. , 0, 1, .		0
1602	Ion Transport Regulated Lithium Metal Batteries Achieved by Electrospun ZIF/PAN Composite Separator with Suitable Electrolyte Wettability. Batteries, 2023, 9, 166.	2.1	5
1603	Determining the Role of Ion Transport Throughput in Solidâ€ S tate Lithium Batteries. Angewandte Chemie, 2023, 135, .	1.6	0
1604	Determining the Role of Ion Transport Throughput in Solidâ€State Lithium Batteries. Angewandte Chemie - International Edition, 2023, 62, .	7.2	8
1605	Recent progress in advanced organosulfur cathode materials for rechargeable lithium batteries. Materials Today, 2023, 65, 100-121.	8.3	7
1606	Lithium salt-regulated dual-stabilized elastomeric quasi-solid electrolyte for high-voltage lithium metal batteries. Journal of Materials Chemistry A, 2023, 11, 8308-8319.	5.2	2
1607	A ZnO decorated 3D copper foam as a lithiophilic host to construct composite lithium metal anodes for Li–O2 batteries. Rare Metals, 2023, 42, 1969-1982.	3.6	2
1608	Effect of LLZO on the <i>in situ</i> polymerization of acrylate solid-state electrolytes on cathodes. RSC Advances, 2023, 13, 8130-8135.	1.7	2
1609	Weakly Solvating Cyclic Ether Electrolyte for High-Voltage Lithium Metal Batteries. ACS Energy Letters, 2023, 8, 1752-1761.	8.8	29
1610	The Influences of DMF Content in Composite Polymer Electrolytes on Li ⁺ â€Conductivity and Interfacial Stability with Liâ€Metal. Advanced Functional Materials, 2023, 33, .	7.8	15
1611	Less is more: a perspective on thinning lithium metal towards high-energy-density rechargeable lithium batteries. Chemical Society Reviews, 2023, 52, 2553-2572.	18.7	36
1612	Multifunctional Coatings on Sulfideâ€Based Solid Electrolyte Powders with Enhanced Processability, Stability, and Performance for Solidâ€ S tate Batteries. Advanced Materials, 2023, 35, .	11.1	14
1613	Ultraâ€Thin Lithium Silicide Interlayer for Solidâ€State Lithiumâ€Metal Batteries. Advanced Materials, 2023, 35, .	11.1	8
1614	The Proofâ€of oncept of Anodeâ€Free Rechargeable Mg Batteries. Advanced Science, 2023, 10, .	5.6	5
1615	Compression promotes the formation of {110} textures during homoepitaxial deposition of lithium. Energy Storage Materials, 2023, 58, 155-164.	9.5	6
1616	Metalâ€Organic Framework Composites and Their Derivatives as Efficient Electrodes for Energy Storage Applications: Recent Progress and Future Perspectives. Chemical Record, 2023, 23, .	2.9	4

#	Article	IF	CITATIONS
1617	Thin and Homogenous Surface Functionalization of Lithium Metal Anodes by Defined Molecular Treatment. Journal of the Electrochemical Society, 2023, 170, 030537.	1.3	0
1618	Cyclopentylmethyl Ether, a Nonâ€Fluorinated, Weakly Solvating and Wide Temperature Solvent for Highâ€Performance Lithium Metal Battery. Angewandte Chemie, 2023, 135, .	1.6	1
1619	Cyclopentylmethyl Ether, a Nonâ€Fluorinated, Weakly Solvating and Wide Temperature Solvent for Highâ€Performance Lithium Metal Battery. Angewandte Chemie - International Edition, 2023, 62, .	7.2	22
1620	Nanoconfined Expansion Behavior of Hollow MnS@Carbon Anode with Extended Lithiation Cyclic Stability. Advanced Functional Materials, 2023, 33, .	7.8	6
1621	Revealing Structural Insights of Solid Electrolyte Interphase in Highâ€Concentrated Nonâ€Flammable Electrolyte for Li Metal Batteries by Cryoâ€TEM. Small, 2023, 19, .	5.2	4
1622	Advances in Cathodes for High-Performance Magnesium-Sulfur Batteries: A Critical Review. Batteries, 2023, 9, 203.	2.1	4
1623	A Selfâ€Reconfigured, Dualâ€Layered Artificial Interphase Toward Highâ€Currentâ€Density Quasiâ€Solidâ€State Lithium Metal Batteries. Advanced Materials, 2023, 35, .	11.1	20
1624	Localized high-concentration electrolytes for lithium metal batteries: progress and prospect. Frontiers of Chemical Science and Engineering, 2023, 17, 1354-1371.	2.3	2
1625	The TWh challenge: Next generation batteries for energy storage and electric vehicles. , 2023, 1, 100015.		12
1626	Reconstruction of Solid Electrolyte Interphase with SrI ₂ Reactivates Dead Li for Durable Anodeâ€Free Liâ€Metal Batteries. Angewandte Chemie, 2023, 135, .	1.6	2
1627	Reconstruction of Solid Electrolyte Interphase with SrI ₂ Reactivates Dead Li for Durable Anodeâ€Free Liâ€Metal Batteries. Angewandte Chemie - International Edition, 2023, 62, .	7.2	13
1628	From laboratory innovations to materials manufacturing for lithium-based batteries. Nature Energy, 2023, 8, 329-339.	19.8	69
1629	A LaCl3-based lithium superionic conductor compatible with lithium metal. Nature, 2023, 616, 77-83.	13.7	84
1630	Design Principles for Fluorinated Interphase Evolution via Conversion-Type Alloying Processes for Anticorrosive Lithium Metal Anodes. Nano Letters, 2023, 23, 3582-3591.	4.5	10
1631	Achieving Practical Highâ€Energyâ€Density Lithiumâ€Metal Batteries by a Dualâ€Anion Regulated Electrolyte. Advanced Materials, 2023, 35, .	11.1	21
1632	Structure Property and Reaction Mechanism of Boron-Based High-Voltage Electrolyte Additives via First-Principles Calculations. ACS Applied Energy Materials, 2023, 6, 4271-4282.	2.5	1
1633	Mitigating Concentration Polarization through Acid–Base Interaction Effects for Long-Cycling Lithium Metal Anodes. Nano Letters, 2023, 23, 3369-3376.	4.5	4
1634	Carbide-mediated catalytic hydrogenolysis: defects in graphene on a carbonaceous lithium host for liquid and all-solid-state lithium metal batteries. Energy and Environmental Science, 2023, 16, 2505-2517.	15.6	10

#	Article	IF	CITATIONS
1635	Noncombustible 7µm-thick solid polymer electrolyte for highly energy density solid state lithium batteries. Nano Energy, 2023, 112, 108448.	8.2	11
1636	Multifunctional solvent molecule design enables high-voltage Li-ion batteries. Nature Communications, 2023, 14, .	5.8	32
1637	Constructing 3D Skeleton on Commercial Copper Foil via Electrophoretic Deposition of Lithiophilic Building Blocks for Stable Lithium Metal Anodes. Nanomaterials, 2023, 13, 1400.	1.9	2
1638	Extremely Tough, Stretchable Gel Electrolytes with Strong Interpolymer Hydrogen Bonding Prepared Using Concentrated Electrolytes to Stabilize Lithiumâ€Metal Anodes. Advanced Materials, 2023, 35, .	11.1	8
1639	Lithium Plating and Stripping: Toward Anodeâ€Free Solidâ€State Batteries. Advanced Energy and Sustainability Research, 0, , .	2.8	2
1640	Developing a MXene quantum dot-based separator for Li–S batteries. Journal of Materials Chemistry A, 2023, 11, 10425-10434.	5.2	9
1641	A non-Newtonian fluid quasi-solid electrolyte designed for long life and high safety Li-O2 batteries. Nature Communications, 2023, 14, .	5.8	13
1642	Mechanistic understanding of lithium-anode protection by organosulfide-based solid-electrolyte interphases and its implications. Journal of Materials Chemistry A, 2023, 11, 9772-9783.	5.2	3
1643	Synthesis, structural and electrochemical properties of V4O9 cathode for lithium batteries. Frontiers in Chemistry, 0, 11, .	1.8	1
1644	Self-Assembly Monolayer Inspired Stable Artificial Solid Electrolyte Interphase Design for Next-Generation Lithium Metal Batteries. Nano Letters, 2023, 23, 4014-4022.	4.5	10
1645	Artificial Interphase Design Employing Inorganic–Organic Components for High-Energy Lithium-Metal Batteries. ACS Applied Materials & Interfaces, 0, , .	4.0	0
1646	Polymer-ceramic composite solid-state electrolytes. , 2023, , 119-156.		0
1647	Lithium Ferrocyanide Catholyte for Highâ€Energy and Lowâ€cost Aqueous Redox Flow Batteries**. Angewandte Chemie - International Edition, 2023, 62, .	7.2	5
1648	Lithium Ferrocyanide Catholyte for Highâ€Energy and Lowâ€cost Aqueous Redox Flow Batteries. Angewandte Chemie, 0, , .	1.6	0
1649	Boronâ€Doped Electrolytes as Interfacial Modifiers for Highâ€Rate Stable Lithium Metal Batteries. Advanced Functional Materials, 2023, 33, .	7.8	2
1668	Highly Soluble Lithium Nitrate-Containing Additive for Carbonate-Based Electrolyte in Lithium Metal Batteries. ACS Energy Letters, 2023, 8, 2440-2446.	8.8	7
1678	Interface engineering of MXene-based heterostructures for lithium-sulfur batteries. Nano Research, 2023, 16, 9158-9178.	5.8	14
1690	High-Energy-Density, Long-Life Li-Metal Batteries via Application of External Pressure. ACS Energy Letters, 2023, 8, 2970-2978.	8.8	6

#	Article	IF	CITATIONS
1709	Recent developments in zinc metal anodes, cathodes, and electrolytes for zinc-ion hybrid capacitors. Sustainable Energy and Fuels, 2023, 7, 3776-3795.	2.5	5
1711	Targeted Functionalization of Cyclic Ether Solvents for Controlled Reactivity in High-Voltage Lithium Metal Batteries. ACS Energy Letters, 2023, 8, 3180-3187.	8.8	8
1717	Stress and Manufacturability in Solid-State Lithium-Ion Batteries. International Journal of Precision Engineering and Manufacturing - Green Technology, 2023, 10, 1093-1137.	2.7	2
1728	Recent progress and strategic perspectives of inorganic solid electrolytes: fundamentals, modifications, and applications in sodium metal batteries. Chemical Society Reviews, 2023, 52, 4933-4995.	18.7	23
1753	Electrospinning techniques for inorganic–organic composite electrolytes of all-solid-state lithium metal batteries: a brief review. Journal of Materials Chemistry A, 2023, 11, 16539-16558.	5.2	4
1757	Insights into the solvation chemistry in liquid electrolytes for lithium-based rechargeable batteries. Chemical Society Reviews, 2023, 52, 5255-5316.	18.7	24
1760	Construction of single-ion conducting polymeric protective layer for high-charging rate Li-metal batteries. MRS Communications, 0, , .	0.8	0
1775	Dendrite inhibited and dead lithium activated dual-function additive for lithium metal batteries. Chemical Communications, 0, , .	2.2	0
1789	lssues impeding the commercialization of laboratory innovations for energy-dense Si-containing lithium-ion batteries. Nature Energy, 2023, 8, 921-933.	19.8	14
1803	Electrolyte designs for safer lithium-ion and lithium-metal batteries. Journal of Materials Chemistry A, 0, , .	5.2	0
1804	Single-atom site catalysis in Li–S batteries. Physical Chemistry Chemical Physics, 2023, 25, 25942-25960.	1.3	1
1843	Printed Solid-State Batteries. Electrochemical Energy Reviews, 2023, 6, .	13.1	1
1855	From Diesel to Electric Bimodal Train: Case Study in Italy for Decarbonization of Railway Lines. , 2023, ,		0
1904	A review of solid-state lithium metal batteries through in-situ solidification. Science China Chemistry, 0, , .	4.2	1
1909	Insight into Lithium–sulfur batteries performance enhancement: from metal nanoparticles to metal nanoparticles to metal nanoclusters to single metal atoms. Tungsten, 0, , .	2.0	1
1910	From Liquid to Solid-State Lithium Metal Batteries: Fundamental Issues and Recent Developments. Nano-Micro Letters, 2024, 16, .	14.4	1
1914	Interfacial engineering of lithium metal anodes: what is left to uncover?. Energy Advances, 0, , .	1.4	0
1938	Na Metal Anode for Liquid and Solid-state Na Batteries. Energy and Environmental Science, 0, , .	15.6	2

ARTICLE IF CITATIONS # Carbon-based electrocatalysts for rechargeable Zn–air batteries: design concepts, recent progress 1940 15.6 2 and future perspectives. Energy and Environmental Science, 0, , . Designing electrolytesÂand interphases for high-energy lithium batteries. Nature Reviews Chemistry, 2024, 8, 30-44. 13.8 Solid-state composite electrolytes: turning the natural moat into a thoroughfare. Materials 1981 3.2 0 Chemistry Frontiers, 2024, 8, 1250-1281. Design Strategies for Aqueous Zinc Metal Batteries with High Zinc Utilization: From Metal Anodes to 14.4 Anode-Free Structures. Nano-Micro Letters, 2024, 16, . A Review on Engineering Design for Enhancing Interfacial Contact in Solid-State Lithium–Sulfur 1988 14.4 1 Batteries. Nano-Micro Letters, 2024, 16, . The Cadmium in Soil and Plants., 2024, , 3-29. 1990 Metal electrodes for next-generation rechargeable batteries. , 2024, 1, 79-92. 2025 0 Recent advances in electrolyte molecular design for alkali metal batteries. Chemical Science, 2024, 15, 4238-4274. 2068 Graphene-Based Lithium/Sodium Metal Anodes. Engineering Materials, 2024, , 371-390. 0.3 0

CITATION REPORT