Quantifying Wavelength-Dependent Plasmonic Hot Car Metal/Semiconductor Interfaces

ACS Nano 13, 3629-3637 DOI: 10.1021/acsnano.9b00219

Citation Report

#	Article	IF	CITATIONS
1	Plasmonic CoO-Decorated Au Nanorods for Photoelectrocatalytic Water Oxidation. ACS Applied Nano Materials, 2019, 2, 5795-5803.	2.4	23
2	From Optical to Chemical Hot Spots in Plasmonics. Accounts of Chemical Research, 2019, 52, 2525-2535.	7.6	131
3	Accelerated site-selective photooxidation on Au nanoparticles <i>via</i> electrochemically-assisted plasmonic hole ejection. Nanoscale, 2019, 11, 19455-19461.	2.8	9
4	Active Far-Field Control of the Thermal Near-Field <i>via</i> Plasmon Hybridization. ACS Nano, 2019, 13, 9655-9663.	7.3	23
5	Electrochemical Fabrication of rGO-embedded Ag-TiO2 Nanoring/Nanotube Arrays for Plasmonic Solar Water Splitting. Nano-Micro Letters, 2019, 11, 97.	14.4	24
6	SERS Study of the Mechanism of Plasmon-Driven Hot Electron Transfer between Gold Nanoparticles and PCBM. Journal of Physical Chemistry C, 2019, 123, 29908-29915.	1.5	32
7	Plasmonic Gold Nanoprism–Cobalt Molecular Complex Dyad Mimics Photosystem-II for Visible–NIR Illuminated Neutral Water Oxidation. ACS Energy Letters, 2019, 4, 2428-2435.	8.8	19
8	Electronic Structure of the Plasmons in Metal Nanocrystals: Fundamental Limitations for the Energy Efficiency of Hot Electron Generation. ACS Energy Letters, 2019, 4, 2552-2568.	8.8	98
9	Plasmon-Driven C–N Bond Cleavage Across a Series of Viologen Derivatives. Journal of Physical Chemistry C, 2019, 123, 29306-29313.	1.5	10
10	Plasmonic hole ejection involved in plasmon-induced charge separation. Nanoscale Horizons, 2020, 5, 597-606.	4.1	37
11	Photophysical Effects behind the Efficiency of Hot Electron Injection in Plasmon-Assisted Catalysis: The Joint Role of Morphology and Composition. ACS Energy Letters, 2020, 5, 395-402.	8.8	36
12	Probing Hot Electron Behaviors by Surface-Enhanced Raman Spectroscopy. Cell Reports Physical Science, 2020, 1, 100184.	2.8	16
13	Single Particle Approaches to Plasmon-Driven Catalysis. Nanomaterials, 2020, 10, 2377.	1.9	19
14	Plasmon-Mediated Intramolecular Methyl Migration with Nanoscale Spatial Control. ACS Nano, 2020, 14, 17194-17202.	7.3	9
15	Challenges in Plasmonic Catalysis. ACS Nano, 2020, 14, 16202-16219.	7.3	203
16	Rare-Earth Single-Atom La–N Charge-Transfer Bridge on Carbon Nitride for Highly Efficient and Selective Photocatalytic CO ₂ Reduction. ACS Nano, 2020, 14, 15841-15852.	7.3	283
17	Efficient Hot Electron Transfer from Small Au Nanoparticles. Nano Letters, 2020, 20, 4322-4329.	4.5	92
18	Plasmonic hot electrons for sensing, photodetection, and solar energy applications: A perspective. Journal of Chemical Physics, 2020, 152, 220901.	1.2	141

			_
#		IF	CITATIONS
19	Optical Excitation of a Nanoparticle Cu/p-NiO Photocathode Improves Reaction Selectivity for CO ₂ Reduction in Aqueous Electrolytes. Nano Letters, 2020, 20, 2348-2358.	4.5	82
20	Synergy between thermal and nonthermal effects in plasmonic photocatalysis. Nano Research, 2020, 13, 1268-1280.	5.8	43
21	Plasmon-Driven Chemistry in Ferri-/Ferrocyanide Gold Nanoparticle Oligomers: A SERS Study. Journal of the American Chemical Society, 2020, 142, 13120-13129.	6.6	20
22	Hot Electrons Generated in Chiral Plasmonic Nanocrystals as a Mechanism for Surface Photochemistry and Chiral Growth. Journal of the American Chemical Society, 2020, 142, 4193-4205.	6.6	58
23	Different behaviors between interband and intraband transitions generated hot carriers on g-C3N4/Au for photocatalytic H2 production. Applied Surface Science, 2020, 513, 145830.	3.1	26
24	Au grating on SiC substrate: simulation of high performance plasmonic Schottky barrier photodetector in visible and NIR regions. Journal Physics D: Applied Physics, 2020, 53, 175103.	1.3	11
25	Plasmon-enhanced hydrogen evolution reaction on a Ag-branched-nanowire/Pt nanoparticle/AgCl nanocomposite. Physical Chemistry Chemical Physics, 2021, 23, 16366-16375.	1.3	3
26	Localized surface plasmon resonance for enhanced electrocatalysis. Chemical Society Reviews, 2021, 50, 12070-12097.	18.7	112
27	Nanoscale structural characterization of plasmon-driven reactions. Nanophotonics, 2021, 10, 1657-1673.	2.9	20
28	Photoelectrochemical reduction rate of ferricyanide at different TiO2 forms: comparison of SECM and cyclic voltammetric results. Journal of Solid State Electrochemistry, 2021, 25, 1691-1698.	1.2	1
29	Highly Efficient Plasmon Induced Hot-Electron Transfer at Ag/TiO ₂ Interface. ACS Photonics, 2021, 8, 1497-1504.	3.2	30
30	Metalâ€ S emiconductor Heterostructures for Photoredox Catalysis: Where Are We Now and Where Do We Go?. Advanced Functional Materials, 2021, 31, 2101103.	7.8	41
31	Plasmonic Photoelectrochemistry: In View of Hot Carriers. Advanced Materials, 2021, 33, e2006654.	11.1	54
32	State-of-the-art progress in tracking plasmon-mediated photoredox catalysis. Pure and Applied Chemistry, 2021, 93, 509-524.	0.9	2
33	Hot carrier multiplication in plasmonic photocatalysis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	43
35	Kinetics and Mechanism of Plasmon-Driven Dehalogenation Reaction of Brominated Purine Nucleobases on Ag and Au. ACS Catalysis, 2021, 11, 8370-8381.	5.5	21
36	TiO2 film supported by vertically aligned gold nanorod superlattice array for enhanced photocatalytic hydrogen evolution. Chemical Engineering Journal, 2021, 417, 127900.	6.6	23
37	Harvesting Hot Holes in Plasmon-Coupled Ultrathin Photoanodes for High-Performance Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces, 2021, 13, 42741-42752.	4.0	24

CITATION REPORT

	Cı	CITATION REPORT	
#	Article	IF	CITATIONS
38	Tuning Redox Potential of Gold Nanoparticle Photocatalysts by Light. ACS Nano, 2020, 14, 7038-704	5. 7.3	25
39	Carrier depletion mediated exciton-surface plasmon coupling at the mesoporous TiO2/Ag interface. Applied Surface Science, 2022, 575, 151690.	3.1	3
40	Photocatalytic Water Oxidation Directly Using Plasmonics from Single Au Nanowires without the Contact with Semiconductors. ACS Catalysis, 2021, 11, 12940-12946.	5.5	8
41	Two-Dimensional Palladium Nanosheet Intercalated with Gold Nanoparticles for Plasmon-Enhanced Electrocatalysis. ACS Catalysis, 2021, 11, 13721-13732.	5.5	21
42	Schottky barrier photodetector utilizing tungsten grating nanostructure. Journal of Nanophotonics, 2020, 14, .	0.4	2
43	Transparent Ultramicroelectrodes for Studying Interfacial Charge-Transfer Kinetics of Photoelectrochemical Water Oxidation at TiO ₂ Nanorods with Scanning Electrochemical Microscopy. Analytical Chemistry, 2021, 93, 15886-15896.	3.2	4
44	Emerging materials for plasmon-assisted photoelectrochemical water splitting. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2022, 51, 100472.	5.6	44
45	Plasmon-induced hot-hole generation and extraction at nano-heterointerfaces for photocatalysis. Communications Materials, 2021, 2, .	2.9	49
46	Plasmon-Based Small-Molecule Activation: A New Dawn in the Field of Solar-Driven Chemical Transformation. ACS Catalysis, 2022, 12, 1052-1067.	5.5	15
47	Enhancing an internal electric field by a solid solution strategy for steering bulk-charge flow and boosting photocatalytic activity of Bi24O31Cl Br10–. Chinese Journal of Catalysis, 2022, 43, 485-49	96. 6.9	15
48	Mechanistic insight into deep holes from interband transitions in Palladium nanoparticle photocatalysts. IScience, 2022, 25, 103737.	1.9	5
49	Spectroscopic signatures of plasmon-induced charge transfer in gold nanorods. Journal of Chemical Physics, 2022, 156, 064702.	1.2	10
50	Experimental characterization techniques for plasmon-assisted chemistry. Nature Reviews Chemistry, 2022, 6, 259-274.	13.8	56
51	Photon Manipulation of Two-Dimensional Plasmons in Metal Oxide Nanosheets for Surface-Enhanced Spectroscopy and Ultrafast Optical Switching. Chemistry of Materials, 2022, 34, 2804-2812.	3.2	6
52	Investigation on the effect of temperature on photothermal glycerol reforming hydrogen production over Ag/TiO2 nanoflake catalyst. International Journal of Hydrogen Energy, 2022, 47, 16507-16517.	3.8	15
53	Hot Carrier Extraction from Plasmonic-Photonic Superimposed Heterostructures . Journal of Chemical Physics, 0, , .	1.2	1
54	Plasmonically enhanced electrochemistry boosted by nonaqueous solvent. Journal of Chemical Physics, 2022, 156, .	1.2	2
55	Heterogeneous Nanoplasmonic Amplifiers for Photocatalysis's Application: A Theoretical Study. Catalysts, 2022, 12, 771.	1.6	3

ARTICLE IF CITATIONS # Plasmonic heterogeneous catalysis for organic transformations. Journal of Photochemistry and 56 5.6 18 Photobiology C: Photochemistry Reviews, 2022, 52, 100539. Porous Plasmonic Au–Ag@Au Nanostructures for Photoelectrochemical Methanol Oxidation. ACS 2.4 Applied Nano Materials, 2022, 5, 13286-13294. Selective adsorption of cysteamine molecules on Au/TiO2 boosts visible light-driven photocatalytic 58 5.0 8 hydrogen evolution. Journal of Colloid and Interface Science, 2023, 633, 1033-1041. Electron Paramagnetic Resonance Quantifies Hot-Electron Transfer from Plasmonic Ag@SiO₂ to Cr⁶⁺/Cr⁵⁺/Cr³⁺. Journal of Physical Chemistry C, 2023, 127, 2045-2057. Mechanisms of Photothermalization in Plasmonic Nanostructures: Insights into the Steady State. 60 4.8 2 Annual Review of Physical Chemistry, 2023, 74, 521-545. Active Site Engineering on Plasmonic Nanostructures for Efficient Photocatalysis. ACS Nano, 2023, 17, 4193-4229. 7.3 Direct observation of the plasmon-enhanced palladium catalysis with single-molecule fluorescence 62 5.8 5 microscopy. Nano Research, 2023, 16, 8817-8826. Nanoâ€Impact Singleâ€Entity Electrochemistry Enables Plasmonâ€Enhanced Electrocatalysis**. Angewandte 1.6 Chemie, 2023, 135, . Nanoâ€Impact Singleâ€Entity Electrochemistry Enables Plasmonâ€Enhanced Electrocatalysis**. Angewandte 64 7.2 5 Chemie - International Edition, 2023, 62, . Nanoscale Raman Spectroscopy. Springer Handbooks, 2023, , 169-188. Surface plasmon resonance enhanced artificial photosynthesis of chemical fuels for energy storage., 71 0

CITATION REPORT

2023, , 333-349.