China and India lead in greening of the world through la

Nature Sustainability 2, 122-129

DOI: 10.1038/s41893-019-0220-7

Citation Report

#	Article	IF	CITATIONS
1	Spatiotemporal variation and influencing factors of vegetation cover in the ecologically fragile areas of China from 2000 to 2015: a case study in Shaanxi Province. Environmental Science and Pollution Research, 2019, 26, 28977-28992.	2.7	23
2	No Proportional Increase of Terrestrial Gross Carbon Sequestration From the Greening Earth. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 2540-2553.	1.3	51
3	Spatiotemporal changes in ecologically functional land in China: A quantity-quality coupled perspective. Journal of Cleaner Production, 2019, 238, 117917.	4.6	14
4	Satellite-observed pantropical carbon dynamics. Nature Plants, 2019, 5, 944-951.	4.7	141
5	The Effects of Anthropogenic Land Use Changes on Climate in China Driven by Global Socioeconomic and Emission Scenarios. Earth's Future, 2019, 7, 784-804.	2.4	27
6	The Trend Reversal of Dust Aerosol Over East Asia and the North Pacific Ocean Attributed to Largeâ€scale Meteorology, Deposition, and Soil Moisture. Journal of Geophysical Research D: Atmospheres, 2019, 124, 10450-10466.	1.2	25
7	Identification of Natural and Anthropogenic Drivers of Vegetation Change in the Beijing-Tianjin-Hebei Megacity Region. Remote Sensing, 2019, 11, 1224.	1.8	17
8	Interannual and Seasonal Vegetation Changes and Influencing Factors in the Extra-High Mountainous Areas of Southern Tibet. Remote Sensing, 2019, 11, 1392.	1.8	14
9	Detected global agricultural greening from satellite data. Agricultural and Forest Meteorology, 2019, 276-277, 107652.	1.9	23
10	Emergy-Based Evaluation of Changes in Agrochemical Residues on the Qinghai–Tibet Plateau, China. Sustainability, 2019, 11, 3652.	1.6	4
11	Generation and Evaluation of LAI and FPAR Products from Himawari-8 Advanced Himawari Imager (AHI) Data. Remote Sensing, 2019, 11, 1517.	1.8	18
12	Exploring SMAP and OCO-2 observations to monitor soil moisture control on photosynthetic activity of global drylands and croplands. Remote Sensing of Environment, 2019, 232, 111314.	4.6	21
13	Designing near-natural planting patterns for plantation forests in China. Forest Ecosystems, 2019, 6, .	1.3	22
14	Urban drought challenge to 2030 sustainable development goals. Science of the Total Environment, 2019, 693, 133536.	3.9	147
15	Changes in the trends of vegetation net primary productivity in China between 1982 and 2015. Environmental Research Letters, 2019, 14, 124009.	2.2	36
16	Increase and Spatial Variation in Soil Infiltration Rates Associated with Fibrous and Tap Tree Roots. Water (Switzerland), $2019, 11, 1700$.	1.2	15
17	Grazing plays an important role in structuring alpha and beta components of taxonomic, functional, and phylogenetic diversity in semiarid sandy land of northern China. Global Ecology and Conservation, 2019, 20, e00790.	1.0	5
18	Development of 0.5-V Josephson junction array devices for quantum voltage standards. Chinese Physics B, 2019, 28, 068501.	0.7	4

#	Article	IF	CITATIONS
19	Tracking the Spatial–Temporal Evolution of Carbon Emissions in China from 1999 to 2015: A Land Use Perspective. Sustainability, 2019, 11, 4531.	1.6	11
20	Greening Implication Inferred from Vegetation Dynamics Interacted with Climate Change and Human Activities over the Southeast Qinghai–Tibet Plateau. Remote Sensing, 2019, 11, 2421.	1.8	23
21	It is difficult for China's greening through large-scale afforestation to cross the Hu Line. Science China Earth Sciences, 2019, 62, 1662-1664.	2.3	20
22	Novel evidence for a greater burden of ambient air pollution on cardiovascular disease. Haematologica, 2019, 104, 2349-2357.	1.7	88
23	Vegetation dynamics and ecosystem service values changes at national and provincial scales in Nepal from 2000 to 2017. Environmental Development, 2019, 32, 100464.	1.8	29
24	Vegetation change and its influence on runoff and sediment in different landform units, Wei River, China. Ecological Engineering, 2019, 141, 105609.	1.6	17
25	Remote Sensing Greenness and Urbanization in Ecohydrological Model Analysis: Asia and Australasia (1982–2015). Sensors, 2019, 19, 4693.	2.1	1
26	Numerical modeling of ozone damage to plants and its effects on atmospheric CO2 in China. Atmospheric Environment, 2019, 217, 116970.	1.9	16
28	Time Series of Landsat Imagery Shows Vegetation Recovery in Two Fragile Karst Watersheds in Southwest China from 1988 to 2016. Remote Sensing, 2019, 11, 2044.	1.8	26
29	Global 500†m clumping index product derived from MODIS BRDF data (2001†2017). Remote Sensing of Environment, 2019, 232, 111296.	4.6	49
30	Sap flow and responses to meteorological about the Larix principis-rupprechtii plantation in Gansu Xinlong mountain, northwestern China. Forest Ecology and Management, 2019, 451, 117519.	1.4	31
31	Slower vegetation greening faced faster social development on the landscape of the Belt and Road region. Science of the Total Environment, 2019, 697, 134103.	3.9	20
32	Photo-cross-linking of Anthracene as a Versatile Strategy to Design Shape Memory Polymers. Materials Today: Proceedings, 2019, 16, 1524-1530.	0.9	6
33	Research trends on bats in China: A twenty-first century review. Mammalian Biology, 2019, 98, 163-172.	0.8	17
34	Disturbance control can effectively restore the habitat of the giant panda (Ailuropoda melanoleuca). Biological Conservation, 2019, 238, 108233.	1.9	20
35	Plant functional diversity drives carbon storage following vegetation restoration in Loess Plateau, China. Journal of Environmental Management, 2019, 246, 668-678.	3.8	19
36	Animal diversity responding to different forest restoration schemes in the Qinling Mountains, China. Ecological Engineering, 2019, 136, 23-29.	1.6	17
37	Effects of drought on wildfires in forest landscapes of the Western Ghats, India. International Journal of Wildland Fire, 2019, 28, 431.	1.0	12

#	ARTICLE	IF	Citations
38	Tracking spatial–temporal landscape changes of impervious surface areas, bare lands, and inundation areas in China during 2001–2017. Land Degradation and Development, 2019, 30, 1802-1812.	1.8	6
39	The Implication of Land-Use/Land-Cover Change for the Declining Soil Erosion Risk in the Three Gorges Reservoir Region, China. International Journal of Environmental Research and Public Health, 2019, 16, 1856.	1.2	27
40	Coupling between the terrestrial carbon and water cycles—a review. Environmental Research Letters, 2019, 14, 083003.	2.2	118
41	Declines in mental health associated with air pollution and temperature variability in China. Nature Communications, 2019, 10, 2165.	5.8	112
42	The Nonradiative Effect Dominates Local Surface Temperature Change Caused by Afforestation in China. Journal of Climate, 2019, 32, 4445-4471.	1.2	42
43	Factors Affecting Long-Term Trends in Global NDVI. Forests, 2019, 10, 372.	0.9	67
44	Estimating Relations of Vegetation, Climate Change, and Human Activity: A Case Study in the 400 mm Annual Precipitation Fluctuation Zone, China. Remote Sensing, 2019, 11, 1159.	1.8	43
45	Atmospheric CO2 Concentration and Other Limiting Factors in the Growth of C3 and C4 Plants. Plants, 2019, 8, 92.	1.6	21
46	The spatial association of ecosystem services with land use and land cover change at the county level in China, 1995–2015. Science of the Total Environment, 2019, 669, 459-470.	3.9	185
47	The role of big data in China's sustainable forest management. Forestry Economics Review, 2019, 1, 96-105.	0.5	8
48	Will Human-Induced Vegetation Regreening Continually Decrease Runoff in the Loess Plateau of China?. Forests, 2019, 10, 906.	0.9	10
49	Changes in Soil Microbial Biomass, Community Composition, and Enzyme Activities After Half-Century Forest Restoration in Degraded Tropical Lands. Forests, 2019, 10, 1124.	0.9	10
50	China's Agricultural Irrigation and Water Conservancy Projects: A Policy Synthesis and Discussion of Emerging Issues. Sustainability, 2019, 11, 7027.	1.6	13
51	Water availability drives aboveground biomass and bird richness in forest restoration plantings to achieve carbon and biodiversity cobenefits. Ecology and Evolution, 2019, 9, 14379-14393.	0.8	6
52	Determination by MODIS satellite-based methods of recent global trends in land surface aridity and degradation. J Agricultural Meteorology, 2019, 75, 153-159.	0.8	10
53	Spatiotemporal Dynamics of Carbon Storage in Response to Urbanization: A Case Study in the Su-Xi-Chang Region, China. Processes, 2019, 7, 836.	1.3	26
55	Spatiotemporal Variation of Annual Runoff and Sediment Load in the Pearl River during 1953–2017. Sustainability, 2019, 11, 5007.	1.6	7
56	Global biosphere–climate interaction: a causal appraisal of observations and models over multiple temporal scales. Biogeosciences, 2019, 16, 4851-4874.	1.3	12

#	ARTICLE	IF	CITATIONS
58	Vegetation restoration in <scp>N</scp> orthern China: A contrasted picture. Land Degradation and Development, 2020, 31, 669-676.	1.8	81
59	Shifts of sediment transport regime caused by ecological restoration in the Middle Yellow River Basin. Science of the Total Environment, 2020, 698, 134261.	3.9	37
60	Estimation of biogenic VOC emissions and their corresponding impact on ozone and secondary organic aerosol formation in China. Atmospheric Research, 2020, 231, 104656.	1.8	121
61	Vegetation dynamics and their relationships with climatic factors in the Qinling Mountains of China. Ecological Indicators, 2020, 108, 105719.	2.6	71
62	Vegetation greening in Spain detected from long term data (1981–2015). International Journal of Remote Sensing, 2020, 41, 1709-1740.	1.3	16
63	Optimal mixed ownership: A contract view. Economics of Transition and Institutional Change, 2020, 28, 45-68.	0.4	1
64	How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal. Global Change Biology, 2020, 26, 219-241.	4.2	308
65	How afforestation affects the water cycle in drylands: A processâ€based comparative analysis. Global Change Biology, 2020, 26, 944-959.	4.2	109
66	Guanylateâ€binding proteinâ€2 inhibits colorectal cancer cell growth and increases the sensitivity to paclitaxel of paclitaxelâ€resistant colorectal cancer cells by interfering Wnt signaling. Journal of Cellular Biochemistry, 2020, 121, 1250-1259.	1.2	20
67	Assessment of Urban Heat Risk in Mountain Environments: A Case Study of Chongqing Metropolitan Area, China. Sustainability, 2020, 12, 309.	1.6	10
68	Forest management in southern China generates short term extensive carbon sequestration. Nature Communications, 2020, 11, 129.	5.8	259
69	Drivers of change in China's energy-related CO ₂ emissions. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29-36.	3.3	174
70	Pedoclimatic zone-based three-dimensional soil organic carbon mapping in China. Geoderma, 2020, 363, 114145.	2.3	53
71	Legacy effect of spring phenology on vegetation growth in temperate China. Agricultural and Forest Meteorology, 2020, 281, 107845.	1.9	65
72	Degradable dual superlyophobic lignocellulosic fibers for high-efficiency oil/water separation. Green Chemistry, 2020, 22, 504-512.	4.6	95
73	A comparative analysis of urban impervious surface and green space and their dynamics among 318 different size cities in China in the past 25 Âyears. Science of the Total Environment, 2020, 706, 135828.	3.9	57
74	Nature and the international: towards a materialist understanding of societal multiplicity. Globalizations, 2020, 17, 419-435.	1.9	13
75	The contrasting east–west pattern of vegetation restoration under the largeâ€scale ecological restoration programmes in southwest China. Land Degradation and Development, 2020, 31, 1688-1698.	1.8	19

#	Article	IF	CITATIONS
76	Increasing carbon storage in subtropical forests over the Yangtze River basin and its relations to the major ecological projects. Science of the Total Environment, 2020, 709, 136163.	3.9	32
77	Spatiotemporal changes in vegetation coverage and its causes in China since the Chinese economic reform. Environmental Science and Pollution Research, 2020, 27, 1144-1159.	2.7	46
78	Modeling changes in China's 2000–2030 carbon stock caused by land use change. Journal of Cleaner Production, 2020, 252, 119659.	4.6	58
79	A reporting framework for Sustainable Development Goal 15: Multi-scale monitoring of forest degradation using MODIS, Landsat and Sentinel data. Remote Sensing of Environment, 2020, 237, 111592.	4.6	45
80	Characteristics, drivers and feedbacks of global greening. Nature Reviews Earth & Environment, 2020, 1, 14-27.	12.2	889
81	Integrating remote sensing data with WRF model for improved 2-m temperature and humidity simulations in China. Dynamics of Atmospheres and Oceans, 2020, 89, 101127.	0.7	24
82	Evidence of causality between economic growth and vegetation dynamics and implications for sustainability policy in Chinese cities. Journal of Cleaner Production, 2020, 251, 119550.	4.6	20
83	Greening and browning of the coastal areas in mainland China: Spatial heterogeneity, seasonal variation and its influential factors. Ecological Indicators, 2020, 110, 105888.	2.6	23
84	Determining the contributions of climate change and human activities to vegetation dynamics in agro-pastural transitional zone of northern China from 2000 to 2015. Science of the Total Environment, 2020, 718, 134871.	3.9	103
85	New forest biomass carbon stock estimates in Northeast Asia based on multisource data. Global Change Biology, 2020, 26, 7045-7066.	4.2	20
86	Atmospheric Temperature and CO2: Hen-or-Egg Causality?. Sci, 2020, 2, 72.	1.8	4
87	Larch or Mongolian pine? Effects of tree species on soil properties and microbial biomass with the consideration of afforestation time. Ecological Engineering, 2020, 158, 106074.	1.6	5
88	Quantifying the impact of vegetation changes on global terrestrial runoff using the Budyko framework. Journal of Hydrology, 2020, 590, 125389.	2.3	51
89	Attribution of climate and human activities to vegetation change in China using machine learning techniques. Agricultural and Forest Meteorology, 2020, 294, 108146.	1.9	87
90	Evaluation of the MODIS LAI/FPAR Algorithm Based on 3D-RTM Simulations: A Case Study of Grassland. Remote Sensing, 2020, 12, 3391.	1.8	27
91	Postglacial evolution of forest and grassland in southeastern Gobi (Northern China). Quaternary Science Reviews, 2020, 248, 106611.	1.4	18
92	Toward High Precision XCO ₂ Retrievals From TanSat Observations: Retrieval Improvement and Validation Against TCCON Measurements. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032794.	1,2	25
93	Impact of recent vegetation greening on temperature and precipitation over China. Agricultural and Forest Meteorology, 2020, 295, 108197.	1.9	87

#	ARTICLE	IF	CITATIONS
94	Quantifying the impacts of lithology on vegetation restoration using a random forest model in a karst trough valley, China. Ecological Engineering, 2020, 156, 105973.	1.6	22
95	Spatiotemporal Analysis of Vegetation Changes Along the Belt and Road Initiative Region From 1982 to 2015. IEEE Access, 2020, 8, 122579-122588.	2.6	21
96	Effects of Climate Change on Land Cover Change and Vegetation Dynamics in Xinjiang, China. International Journal of Environmental Research and Public Health, 2020, 17, 4865.	1.2	29
97	Reconstructing the Seasonality and Trend in Global Leaf Area Index During 2001–2017 for Prognostic Modeling. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2020JG005698.	1.3	6
99	Vegetation responses to extreme climatic indices in coastal China from 1986 to 2015. Science of the Total Environment, 2020, 744, 140784.	3.9	37
100	Biophysical impacts of Earth greening largely controlled by aerodynamic resistance. Science Advances, 2020, 6, .	4.7	67
101	Rapid Urbanization and Agricultural Intensification Increase Regional Evaporative Water Consumption of the Loess Plateau. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033380.	1.2	16
102	The relative contribution of vegetation greening to the hydrological cycle in the Three-North region of China: A modelling analysis. Journal of Hydrology, 2020, 591, 125689.	2.3	43
103	Changes of Light Components and Impacts on Interannual Variations of Photosynthesis in China Over 2000–2017 by Using a Two‣eaf Light Use Efficiency Model. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2020JG005735.	1.3	8
104	Vegetation response to climate zone dynamics and its impacts on surface soil water content and albedo in China. Science of the Total Environment, 2020, 747, 141537.	3.9	27
105	The effect of forest on PM2.5 concentrations: A spatial panel approach. Forest Policy and Economics, 2020, 118, 102261.	1.5	25
106	Nonlinear Changes in Dryland Vegetation Greenness over East Inner Mongolia, China, in Recent Years from Satellite Time Series. Sensors, 2020, 20, 3839.	2.1	8
107	Assessing the Roles of Terrestrial Stilling and Solar Dimming in Land Surface Drying/Wetting across China. Water (Switzerland), 2020, 12, 1996.	1.2	1
108	China and India: Toward a sustainable world. Science, 2020, 369, 515-515.	6.0	15
109	Future greening of the Earth may not be as large as previously predicted. Agricultural and Forest Meteorology, 2020, 292-293, 108111.	1.9	24
110	Assessing the water footprint of afforestation in Inner Mongolia, China. Journal of Arid Environments, 2020, 182, 104257.	1.2	23
111	Ecological Civilization in China: Challenges and Strategies. Capitalism, Nature, Socialism, 2021, 32, 84-99.	0.9	10
112	Vegetation greening intensified soil drying in some semi-arid and arid areas of the world. Agricultural and Forest Meteorology, 2020, 292-293, 108103.	1.9	38

#	Article	IF	CITATIONS
113	Tracking Seasonal and Interannual Variability in Photosynthetic Downregulation in Response to Water Stress at a Temperate Deciduous Forest. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2018JG005002.	1.3	17
114	Spatio-Temporal Vegetation Dynamic and Persistence under Climatic and Anthropogenic Factors. Remote Sensing, 2020, 12, 2612.	1.8	20
115	Effects of payments for ecosystem services programs in China on rural household labor allocation and land use: Identifying complex pathways. Land Use Policy, 2020, 99, 105024.	2.5	28
116	Comparison of land surface phenology in the Northern Hemisphere based on AVHRR GIMMS3g and MODIS datasets. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 169, 1-16.	4.9	35
117	Identifying the Static and Dynamic Relationships Between Rural Population and Settlements in Jiangsu Province, China. Chinese Geographical Science, 2020, 30, 810-823.	1.2	11
118	Understanding the impacts of †Grain for Green†land management practice on land greening dynamics over the Loess Plateau of China. Land Use Policy, 2020, 99, 105084.	2.5	52
119	A Trend Analysis of Leaf Area Index and Land Surface Temperature and Their Relationship from Global to Local Scale. Land, 2020, 9, 388.	1.2	11
120	Controls of Climate and Land-Use Change on Terrestrial Net Primary Productivity Variation in a Subtropical Humid Basin. Remote Sensing, 2020, 12, 3525.	1.8	15
121	The constraints and driving forces of oasis development in arid region: a case study of the Hexi Corridor in northwest China. Scientific Reports, 2020, 10, 17708.	1.6	21
122	Greening and Browning Trends of Vegetation in India and Their Responses to Climatic and Non-Climatic Drivers. Climate, 2020, 8, 92.	1.2	52
123	Vegetation Changes and Their Response to Global Change Based on NDVI in the Koshi River Basin of Central Himalayas Since 2000. Sustainability, 2020, 12, 6644.	1.6	6
124	On the Origin of Deep Soil Water Infiltration in the Arid Sandy Region of China. Water (Switzerland), 2020, 12, 2409.	1.2	12
125	Attribution of Landâ€Use/Landâ€Cover Change Induced Surface Temperature Anomaly: How Accurate Is the Firstâ€Order Taylor Series Expansion?. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2020JG005787.	1.3	14
126	Earth's water reservoirs in a changing climate. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476, 20190458.	1.0	36
127	Eâ€greening the planet. Ecology Letters, 2020, 23, 1733-1735.	3.0	4
128	Modeling Subtropical Forest Changes under Climate Change and Close-to-Nature Silviculture: Is There a Tipping Point in an Uncertain Future in Southern China?. Sustainability, 2020, 12, 6992.	1.6	0
129	The Greening and Wetting of the Sahel Have Leveled off since about 1999 in Relation to SST. Remote Sensing, 2020, 12, 2723.	1.8	8
130	Greening and Browning Trends across Peru's Diverse Environments. Remote Sensing, 2020, 12, 2418.	1.8	7

#	Article	IF	Citations
131	Land Use Transition and Its Eco-Environmental Effects in the Beijing–Tianjin–Hebei Urban Agglomeration: A Production–Living–Ecological Perspective. Land, 2020, 9, 285.	1.2	83
132	Increasing Summer Rainfall and Asymmetrical Diurnal and Seasonal Warming Enhanced Vegetation Greenness in Temperate Deciduous Forests and Grasslands of Northern China. Remote Sensing, 2020, 12, 2569.	1.8	11
133	Prominent vegetation greening and its correlation with climatic variables in northern China. Environmental Monitoring and Assessment, 2020, 192, 636.	1.3	11
134	Evaluation of the Spatiotemporal Variations in the Eco-environmental Quality in China Based on the Remote Sensing Ecological Index. Remote Sensing, 2020, 12, 2462.	1.8	63
135	Projecting the future vegetation–climate system over East Asia and its RCP-dependence. Climate Dynamics, 2020, 55, 2725-2742.	1.7	8
136	Multi-Temporal Mapping of Soil Total Nitrogen Using Google Earth Engine across the Shandong Province of China. Sustainability, 2020, 12, 10274.	1.6	11
137	Dynamics in Stoichiometric Traits and Carbon, Nitrogen, and Phosphorus Pools across Three Different-Aged Picea asperata Mast. Plantations on the Eastern Tibet Plateau. Forests, 2020, 11, 1346.	0.9	4
138	Supporting SDG 15, Life on Land: Identifying the Main Drivers of Land Degradation in Honghe Prefecture, China, between 2005 and 2015. ISPRS International Journal of Geo-Information, 2020, 9, 710.	1.4	11
139	An Ongoing Blended Long-Term Vegetation Health Product for Monitoring Global Food Security. Agronomy, 2020, 10, 1936.	1.3	5
140	Driving forces of NPP change in debris flow prone area: A case study of a typical region in SW China. Ecological Indicators, 2020, 119, 106811.	2.6	14
141	Atmospheric Temperature and CO2: Hen-Or-Egg Causality?. Sci, 2020, 2, 83.	1.8	16
142	Variation of net primary productivity and its drivers in China's forests during 2000–2018. Forest Ecosystems, 2020, 7, .	1.3	52
143	Nearly Half of Global Vegetated Area Experienced Inconsistent Vegetation Growth in Terms of Greenness, Cover, and Productivity. Earth's Future, 2020, 8, e2020EF001618.	2.4	60
144	Atmospheric Temperature and CO2: Hen-or-Egg Causality?. Sci, 2020, 2, 77.	1.8	3
145	Vegetation Dynamics and Their Response to the Urbanization of the Beijing–Tianjin–Hebei Region, China. Sustainability, 2020, 12, 8550.	1.6	11
146	Atmospheric Temperature and CO2: Hen-or-Egg Causality?. Sci, 2020, 2, 81.	1.8	1
147	Large-scale afforestation significantly increases permanent surface water in China's vegetation restoration regions. Agricultural and Forest Meteorology, 2020, 290, 108001.	1.9	38
148	Evaluation of the CMIP6 planetary albedo climatology using satellite observations. Climate Dynamics, 2020, 54, 5145-5161.	1.7	18

#	Article	IF	Citations
149	The occupation of cropland by global urban expansion from 1992 to 2016 and its implications. Environmental Research Letters, 2020, 15, 084037.	2.2	62
150	Quantifying water provision service supply, demand and spatial flow for land use optimization: A case study in the YanHe watershed. Ecosystem Services, 2020, 43, 101117.	2.3	70
151	Assessing the Impacts of Vegetation Greenness Change on Evapotranspiration and Water Yield in China. Water Resources Research, 2020, 56, e2019WR027019.	1.7	84
152	Projected land-use changes in the Shared Socioeconomic Pathways: Insights and implications. Ambio, 2020, 49, 1972-1981.	2.8	13
153	Large scale reforestation of farmlands on sloping hills in South China karst. Landscape Ecology, 2020, 35, 1445-1458.	1.9	47
154	Attribution of Evapotranspiration Changes in Humid Regions of China from 1982 to 2016. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032404.	1.2	31
155	The Regional Impact of Ecological Restoration in the Arid Steppe on Dust Reduction over the Metropolitan Area in Northeastern China. Environmental Science & Echnology, 2020, 54, 7775-7786.	4.6	14
156	Modified regional biogenic VOC emissions with actual ozone stress and integrated land cover information: A case study in Yangtze River Delta, China. Science of the Total Environment, 2020, 727, 138703.	3.9	14
157	Long term variability of carbonaceous aerosols over Southeast Asia via reanalysis: Association with changes in vegetation cover and biomass burning. Atmospheric Research, 2020, 245, 105064.	1.8	24
158	Assessing spatiotemporal air environment degradation and improvement represented by PM2.5 in China using two-phase hybrid model. Sustainable Cities and Society, 2020, 59, 102180.	5.1	19
159	Ecological restoration is the dominant driver of the recent reversal of desertification in the Mu Us Desert (China). Journal of Cleaner Production, 2020, 268, 122241.	4.6	77
160	Long time series of remote sensing to monitor the transformation research of Kubuqi Desert in China. Earth Science Informatics, 2020, 13, 795-809.	1.6	17
161	Influence of sun zenith angle on canopy clumping and the resulting impacts on photosynthesis. Agricultural and Forest Meteorology, 2020, 291, 108065.	1.9	24
162	Accelerated terrestrial ecosystem carbon turnover and its drivers. Global Change Biology, 2020, 26, 5052-5062.	4.2	42
163	On the carbon cycle impact of combustion of harvested plant biomass vs. fossil carbon resources. Computers and Chemical Engineering, 2020, 140, 106942.	2.0	13
164	Assessment of varying changes of vegetation and the response to climatic factors using GIMMS NDVI3g on the Tibetan Plateau. PLoS ONE, 2020, 15, e0234848.	1.1	13
165	Changes in ecosystem service values in karst areas of China. Agriculture, Ecosystems and Environment, 2020, 301, 107026.	2.5	56
166	Effects of diffuse photosynthetically active radiation on gross primary productivity in a subtropical coniferous plantation vary in different timescales. Ecological Indicators, 2020, 115, 106403.	2.6	11

#	Article	IF	CITATIONS
167	Future river basin health assessment through reliability-resilience-vulnerability: Thresholds of multiple dryness conditions. Science of the Total Environment, 2020, 741, 140395.	3.9	26
168	Spatio-Temporal Variation in AOD and Correlation Analysis with PAR and NPP in China from 2001 to 2017. Remote Sensing, 2020, 12, 976.	1.8	12
169	Global detection of aridification or increasing wetness in arid regions from 2001 to 2013. Natural Hazards, 2020, 103, 2261-2276.	1.6	11
170	Combining habitat area and fragmentation change for ecological disturbance assessment in Jiangsu Province, China. Environmental Science and Pollution Research, 2020, 27, 20817-20830.	2.7	9
171	Optimization of Multi-Ecosystem Model Ensembles to Simulate Vegetation Growth at the Global Scale. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59, 962-978.	2.7	3
172	The Warburg-effects: basic metabolic processes with reference to cancer development and global photosynthesis. Plant Signaling and Behavior, 2020, 15, 1776477.	1.2	8
173	Modelling transition in land cover highlights forest losses and gains in Southeast Asia. Biodiversity and Conservation, 2020, 29, 2539-2551.	1.2	5
174	Increased control of vegetation on global terrestrial energy fluxes. Nature Climate Change, 2020, 10, 356-362.	8.1	152
175	Payoff of the Grain for Green policy. Journal of Applied Ecology, 2020, 57, 1180-1188.	1.9	12
176	Variation of gross primary production, evapotranspiration and water use efficiency for global croplands. Agricultural and Forest Meteorology, 2020, 287, 107935.	1.9	30
177	Global estimation of the climate change impact of logging residue utilization for biofuels. Forest Ecology and Management, 2020, 462, 118000.	1.4	10
178	Bare Earth's Surface Spectra as a Proxy for Soil Resource Monitoring. Scientific Reports, 2020, 10, 4461.	1.6	66
179	Biodiversity conservation in China: A review of recent studies and practices. Environmental Science and Ecotechnology, 2020, 2, 100025.	6.7	61
180	Soil Available Phosphorus Loss Caused by Periodical Understory Management Reduce Understory Plant Diversity in a Northern Subtropical Pinus massoniana Plantation Chronosequence. Forests, 2020, 11, 231.	0.9	9
181	Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature, 2020, 579, 80-87.	13.7	439
182	Contribution of vegetation change to the surface radiation budget: A satellite perspective. Global and Planetary Change, 2020, 192, 103225.	1.6	13
183	An Integrated Approach for Detection and Prediction of Greening Situation in a Typical Desert Area in China and Its Human and Climatic Factors Analysis. ISPRS International Journal of Geo-Information, 2020, 9, 364.	1.4	5
184	A Review of the Sustainability Concept and the State of SDG Monitoring Using Remote Sensing. Remote Sensing, 2020, 12, 1770.	1.8	81

#	ARTICLE	IF	CITATIONS
185	Region-specific nitrogen management indexes for sustainable cereal production in China. Environmental Research Communications, 2020, 2, 075002.	0.9	13
186	Spatial analysis of land-use management for gully land consolidation on the Loess Plateau in China. Ecological Indicators, 2020, 117, 106633.	2.6	20
187	Do anthropogenic factors affect the improvement of vegetation cover in resource-based region?. Journal of Cleaner Production, 2020, 271, 122705.	4.6	28
188	Promotion function of forest vegetation on the water & Carbon coupling cycle in karst critical zone: Insights from karst groundwater systems in south China. Journal of Hydrology, 2020, 590, 125246.	2.3	6
189	Terrestrial plants as a potential temporary sink of atmospheric microplastics during transport. Science of the Total Environment, 2020, 742, 140523.	3.9	109
190	The impacts of urbanization and climate change on urban vegetation dynamics in China. Urban Forestry and Urban Greening, 2020, 54, 126764.	2.3	65
191	From blue to green water and back again: Promoting tree, shrub and forest-based landscape resilience in the Sahel. Science of the Total Environment, 2020, 739, 140002.	3.9	21
192	Spatial and temporal variations in vegetation coverage observed using AVHRR GIMMS and Terra MODIS data in the mainland of China. International Journal of Remote Sensing, 2020, 41, 4238-4268.	1.3	34
193	Soil organic carbon turnover following forest restoration in south China: Evidence from stable carbon isotopes. Forest Ecology and Management, 2020, 462, 117988.	1.4	10
194	Evidence of Carbon Uptake Associated with Vegetation Greening Trends in Eastern China. Remote Sensing, 2020, 12, 718.	1.8	10
195	Global karst vegetation regime and its response to climate change and human activities. Ecological Indicators, 2020, 113, 106208.	2.6	35
197	Regime shift of the hydroclimate–vegetation system in the Yellow River Delta of China from 1982 through 2015. Environmental Research Letters, 2020, 15, 024017.	2.2	6
198	"Chinese Mode―of Combating Desertification. IOP Conference Series: Earth and Environmental Science, 2020, 435, 012033.	0.2	2
199	Contributions of National Key Forestry Ecology Projects to the forest vegetation carbon storage in China. Forest Ecology and Management, 2020, 462, 117981.	1.4	28
200	Mapping ecosystem services bundles for analyzing spatial trade-offs in inner Mongolia, China. Journal of Cleaner Production, 2020, 256, 120444.	4.6	82
201	Human activities alter response of alpine grasslands on Tibetan Plateau to climate change. Journal of Environmental Management, 2020, 262, 110335.	3.8	43
202	Bioactive carbon improves nitrogen fertiliser efficiency and ecological sustainability. Scientific Reports, 2020, 10, 3227.	1.6	9
203	Afforestation promotes the enhancement of forest LAI and NPP in China. Forest Ecology and Management, 2020, 462, 117990.	1.4	59

#	Article	IF	CITATIONS
204	Accuracy assessment of the global forest watch tree cover 2000 in China. International Journal of Applied Earth Observation and Geoinformation, 2020, 87, 102033.	1.4	18
205	Payoff from afforestation under the Three-North Shelter Forest Program. Journal of Cleaner Production, 2020, 256, 120461.	4.6	47
206	Determinants of soil organic carbon sequestration and its contribution to ecosystem carbon sinks of planted forests. Global Change Biology, 2020, 26, 3163-3173.	4.2	39
207	Biophysical controls on nocturnal sap flow in plantation forests in a semi-arid region of northern China. Agricultural and Forest Meteorology, 2020, 284, 107904.	1.9	36
208	Pollution Trends in China from 2000 to 2017: A Multi-Sensor View from Space. Remote Sensing, 2020, 12, 208.	1.8	32
209	Satellite Monitoring of Natural Reforestation Efforts in China's Drylands. One Earth, 2020, 2, 98-108.	3.6	24
210	The effects of climate factors and human activities on net primary productivity in Xinjiang. International Journal of Biometeorology, 2020, 64, 765-777.	1.3	31
211	Effects of atmospheric aerosols on terrestrial carbon fluxes and CO2 concentrations in China. Atmospheric Research, 2020, 237, 104859.	1.8	37
212	Fish assemblages respond to forest cover in small Amazonian basins. Limnologica, 2020, 81, 125757.	0.7	7
213	A load-carrier perspective examination on the change of ecological environment carrying capacity during urbanization process in China. Science of the Total Environment, 2020, 714, 136843.	3.9	58
214	Quantitatively Assessing and Attributing Land Use and Land Cover Changes on China's Loess Plateau. Remote Sensing, 2020, 12, 353.	1.8	29
215	Driving Factors of Land Change in China's Loess Plateau: Quantification Using Geographically Weighted Regression and Management Implications. Remote Sensing, 2020, 12, 453.	1.8	39
216	Largeâ€scale deforestation of mountainous areas during the 21 st Century in Zhejiang Province. Land Degradation and Development, 2020, 31, 1761-1774.	1.8	25
217	Responses of the Terrestrial Ecosystem Productivity to Droughts in China. Frontiers in Earth Science, 2020, 8, .	0.8	14
218	The control of wind strength on the barchan to parabolic dune transition. Earth Surface Processes and Landforms, 2020, 45, 2300-2313.	1.2	11
219	Response of the Water Conservation Function to Vegetation Dynamics in the Qinghai–Tibetan Plateau Based on MODIS Products. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 1675-1686.	2.3	13
220	Preface: Climate Change Impact on Plant Ecology. Climate, 2020, 8, 59.	1.2	1
221	Exploring Empirical Linkage of Water Level–Climate–Vegetation across the Three Georges Dam Areas. Water (Switzerland), 2020, 12, 965.	1.2	1

#	Article	IF	CITATIONS
222	Balancing Carbon Emission Reductions and Social Economic Development for Sustainable Development: Experience from 24 Countries. Chinese Geographical Science, 2020, 30, 379-396.	1.2	16
223	Monitoring tropical forest degradation and restoration with satellite remote sensing: A test using Sabah Biodiversity Experiment. Advances in Ecological Research, 2020, 62, 117-146.	1.4	15
224	Bioenergy in China: Evaluation of domestic biomass resources and the associated greenhouse gas mitigation potentials. Renewable and Sustainable Energy Reviews, 2020, 127, 109842.	8.2	136
225	An updated Vegetation Map of China (1:1000000). Science Bulletin, 2020, 65, 1125-1136.	4.3	64
226	Large and projected strengthening moisture limitation on end-of-season photosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9216-9222.	3.3	69
227	Characterizing Spatiotemporal Pattern of Vegetation Greenness Breakpoints on Tibetan Plateau Using GIMMS NDVI3g Dataset. IEEE Access, 2020, 8, 56518-56527.	2.6	6
228	Impacts of 1.5 °C and 2 °C Global Warming on Net Primary Productivity and Carbon Balance in China's Terrestrial Ecosystems. Sustainability, 2020, 12, 2849.	1.6	11
229	Opportunities for big data in conservation and sustainability. Nature Communications, 2020, 11, 2003.	5.8	49
230	Spatiotemporal Variability of Land Surface Albedo over the Tibet Plateau from 2001 to 2019. Remote Sensing, 2020, 12, 1188.	1.8	19
231	Analysis and accurate prediction of ambient PM2.5 in China using Multi-layer Perceptron. Atmospheric Environment, 2020, 232, 117534.	1.9	26
232	Evaluation of two generalized complementary functions for annual evaporation estimation on the Loess Plateau, China. Journal of Hydrology, 2020, 587, 124980.	2.3	19
233	Quantifying the Impacts of Anthropogenic Activities and Climate Variations on Vegetation Productivity Changes in China from 1985 to 2015. Remote Sensing, 2020, 12, 1113.	1.8	42
234	Biomass energy in China's terrestrial ecosystems: Insights into the nation's sustainable energy supply. Renewable and Sustainable Energy Reviews, 2020, 127, 109857.	8.2	51
235	Impact of Afforestation on Atmospheric Recharge to Groundwater in a Semiarid Area. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032185.	1.2	21
236	An analytical reductionist framework to separate the effects of climate change and human activities on variation in water use efficiency. Science of the Total Environment, 2020, 727, 138306.	3.9	47
237	Examining the effects of forest fire on terrestrial carbon emission and ecosystem production in India using remote sensing approaches. Science of the Total Environment, 2020, 725, 138331.	3.9	74
238	Changes of cropland evapotranspiration and its driving factors on the loess plateau of China. Science of the Total Environment, 2020, 728, 138582.	3.9	24
239	Directional Climate Trend, Intensified Intraannual Variability, and Changes in Land Cover Drive the Dynamics of Vegetation Greenness in Periâ€Urban China During 2001–2015. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005336.	1.3	6

#	Article	IF	CITATIONS
241	An assessment of potential climate impact during 1948–2010 using historical land use land cover change maps. International Journal of Climatology, 2021, 41, 295-315.	1.5	9
242	Predicting Vegetation Carbon Density Distribution in different Terrains in Subtropical Forests in China. Journal of Sustainable Forestry, 2021, 40, 473-490.	0.6	3
243	Spatio-temporal variations in landscape ecological risk related to road network in the Central Himalaya. Human and Ecological Risk Assessment (HERA), 2021, 27, 289-306.	1.7	32
244	From land productivity trends to land degradation assessment in Mozambique: Effects of climate, human activities and stakeholder definitions. Land Degradation and Development, 2021, 32, 49-65.	1.8	18
245	Not vegetation itself but mis-revegetation reduces water resources. Science China Earth Sciences, 2021, 64, 404-411.	2.3	23
246	Evaluation of temporal and spatial changes of global ecosystem health. Land Degradation and Development, 2021, 32, 1500-1512.	1.8	26
247	Combined high leaf hydraulic safety and efficiency provides drought tolerance in <i>Caragana</i> species adapted to low mean annual precipitation. New Phytologist, 2021, 229, 230-244.	3.5	63
248	Technical principles of atmospheric carbon dioxide reduction and conversion: economic considerations for some developing countries. Clean Technologies and Environmental Policy, 2021, 23, 475-482.	2.1	4
249	Sensitivity of vegetation dynamics to climate variability in a forest-steppe transition ecozone, north-eastern Inner Mongolia, China. Ecological Indicators, 2021, 120, 106833.	2.6	25
250	Carbon use efficiency of terrestrial ecosystems in desert/grassland biome transition zone: A case in Ningxia province, northwest China. Ecological Indicators, 2021, 120, 106971.	2.6	22
251	Soil organic carbon stocks in an investigated watershed transect linked to ecological restoration practices on the Loess Plateau. Land Degradation and Development, 2021, 32, 1148-1163.	1.8	10
252	Spatiotemporal tradeoffs and synergies in vegetation vitality and poverty transition in rocky desertification area. Science of the Total Environment, 2021, 752, 141770.	3.9	36
253	LAI-indicated vegetation dynamic in ecologically fragile region: A case study in the Three-North Shelter Forest program region of China. Ecological Indicators, 2021, 120, 106932.	2.6	43
254	Biomass and vegetation coverage survey in the Mu Us sandy land - based on unmanned aerial vehicle RGB images. International Journal of Applied Earth Observation and Geoinformation, 2021, 94, 102239.	1.4	30
255	An ecohydrological perspective of reconstructed vegetation in the semi-arid region in drought seasons. Agricultural Water Management, 2021, 243, 106488.	2.4	26
256	Vegetation controls on surface energy partitioning and water budget over China. Journal of Hydrology, 2021, 600, 125646.	2.3	15
257	A critical review on global trends in biogas scenario with its up-gradation techniques for fuel cell and future perspectives. International Journal of Hydrogen Energy, 2021, 46, 16734-16750.	3.8	63
258	Variations in precipitation extremes in the arid and semiâ€arid regions of China. International Journal of Climatology, 2021, 41, 1542-1554.	1.5	25

#	Article	IF	CITATIONS
259	Decomposing the global carbon balance pressure index: evidence from 77 countries. Environmental Science and Pollution Research, 2021, 28, 7016-7031.	2.7	14
260	Improve forest restoration initiatives to meet Sustainable Development Goal 15. Nature Ecology and Evolution, 2021, 5, 10-13.	3.4	69
261	Understanding interactions among climate, water, and vegetation with the Budyko framework. Earth-Science Reviews, 2021, 212, 103451.	4.0	81
262	Simulations of spatial patterns and species distributions in sandy land using unmanned aerial vehicle images. Journal of Arid Environments, 2021, 186, 104410.	1.2	3
263	Divergent negative spring vegetation and summer runoff patterns and their driving mechanisms in natural ecosystems of northern latitudes. Journal of Hydrology, 2021, 592, 125848.	2.3	6
264	Integrating vegetation suitability in sustainable revegetation for the Loess Plateau, China. Science of the Total Environment, 2021, 759, 143572.	3.9	30
265	Precipitation dominates the transpiration of both the economic forest (Malus pumila) and ecological forest (Robinia pseudoacacia) on the Loess Plateau after about 15 years of water depletion in deep soil. Agricultural and Forest Meteorology, 2021, 297, 108244.	1.9	38
266	Terrain gradient variations in ecosystem services of different vegetation types in mountainous regions: Vegetation resource conservation and sustainable development. Forest Ecology and Management, 2021, 482, 118856.	1.4	90
267	Ecological civilization: China's effort to build a shared future for all life on Earth. National Science Review, 2021, 8, nwaa279.	4.6	27
268	Hydrological effects of change in vegetation components across global catchments. Journal of Hydrology, 2021, 595, 125775.	2.3	20
269	Nonlinear relationship of greening and shifts from greening to browning in vegetation with nature and human factors along the Silk Road Economic Belt. Science of the Total Environment, 2021, 766, 142553.	3.9	24
270	Contribution of karst ecological restoration engineering to vegetation greening in southwest China during recent decade. Ecological Indicators, 2021, 121, 107081.	2.6	79
271	The effects of urbanization on vegetation conditions in coastal zone of China. Progress in Physical Geography, 2021, 45, 564-579.	1.4	13
272	Global Land Surface Temperature Change (2003–2017) and Its Relationship with Climate Drivers: AIRS, MODIS, and ERA5-Land Based Analysis. Remote Sensing, 2021, 13, 44.	1.8	50
273	Evolution of NDVI secular trends and responses to climate change: A perspective from nonlinearity and nonstationarity characteristics. Remote Sensing of Environment, 2021, 254, 112247.	4.6	59
274	Exploring the coupling relationship between urbanization and energy eco-efficiency: A case study of 281 prefecture-level cities in China. Sustainable Cities and Society, 2021, 64, 102563.	5.1	70
275	Afforestation increases ecosystem productivity and carbon storage in China during the 2000s. Agricultural and Forest Meteorology, 2021, 296, 108227.	1.9	29
276	Vegetation structural change and CO2 fertilization more than offset gross primary production decline caused by reduced solar radiation in China. Agricultural and Forest Meteorology, 2021, 296, 108207.	1.9	44

#	Article	IF	CITATIONS
277	Lower land use intensity promoted soil macrofaunal biodiversity on a reclaimed coast after land use conversion. Agriculture, Ecosystems and Environment, 2021, 306, 107208.	2.5	9
278	Positive effects of ecological restoration policies on the vegetation dynamics in a typical ecologically vulnerable area of China. Ecological Engineering, 2021, 159, 106087.	1.6	35
279	Forestation does not necessarily reduce soil erosion in a karst watershed in southwestern China. Progress in Physical Geography, 2021, 45, 82-97.	1.4	11
280	Botanic garden solutions to the plant extinction crisis. Plants People Planet, 2021, 3, 22-32.	1.6	54
281	The human–environment nexus and vegetation–rainfall sensitivity in tropical drylands. Nature Sustainability, 2021, 4, 25-32.	11.5	60
282	Ecological restoration impact on total terrestrial water storage. Nature Sustainability, 2021, 4, 56-62.	11.5	121
283	Satellite Based Fraction of Absorbed Photosynthetically Active Radiation Is Congruent with Plant Diversity in India. Remote Sensing, 2021, 13, 159.	1.8	7
284	Health Effects of Green Spaces on Alleviating Mortality Attributable to Pm _{2·5} in China. SSRN Electronic Journal, 0, , .	0.4	0
285	Divergent processes and trends of desertification in Inner Mongolia and Mongolia. Land Degradation and Development, 2021, 32, 3684-3697.	1.8	20
286	Vegetation greening in China and its effect on summer regional climate. Science Bulletin, 2021, 66, 13-17.	4.3	41
287	Prototyping of LAI and FPAR Retrievals From GOES-16 Advanced Baseline Imager Data Using Global Optimizing Algorithm. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 6937-6950.	2.3	2
288	Effects of Vegetation Restoration on Regional Soil Moisture Content in the Humid Karst Areas—A Case Study of Southwest China. Water (Switzerland), 2021, 13, 321.	1.2	12
289	Progress and prospects of applied research on physical geography and the living environment in China over the past 70 years (1949–2019). Journal of Chinese Geography, 2021, 31, 3-45.	1.5	6
290	China's Key Forestry Ecological Development Programs: Implementation, Environmental Impact and Challenges. Forests, 2021, 12, 101.	0.9	31
291	Vegetation Cover Change and Its Attribution in China from 2001 to 2018. Remote Sensing, 2021, 13, 496.	1.8	23
292	Quantitatively distinguishing the impact of climate change and human activities on vegetation in mainland China with the improved residual method. GIScience and Remote Sensing, 2021, 58, 235-260.	2.4	34
293	Editorial for Special Issue: "Global Vegetation and Land Surface Dynamics in a Changing Climate― Land, 2021, 10, 45.	1.2	0
294	Dust Atmospheric Transport Over Long Distances. , 2022, , 259-300.		2

#	Article	IF	CITATIONS
295	Threats on the Prosperous Society and the Future of Capitalism. SSRN Electronic Journal, 0, , .	0.4	0
296	Increased new particle yields with largely decreased probability of survival to CCN size at the summit of Mt. Tai under reduced SO ₂ emissions. Atmospheric Chemistry and Physics, 2021, 21, 1305-1323.	1.9	8
297	Projection of irrigation water demand based on the simulation of synthetic crop coefficients and climate change. Hydrology and Earth System Sciences, 2021, 25, 637-651.	1.9	16
298	Understory Vegetation Composition and Stand Are Mainly Limited by Soil Moisture in Black Locust Plantations of Loess Plateau. Forests, 2021, 12, 195.	0.9	9
299	Effects of land use changes on the nonlinear trends of net primary productivity in arid and semiarid areas, China. Land Degradation and Development, 2021, 32, 2183-2196.	1.8	15
300	The impact of indicator selection on assessment of global greening. GIScience and Remote Sensing, 2021, 58, 372-385.	2.4	7
301	Female Board Directors and Corporate Environmental Investment: A Contingent View. Sustainability, 2021, 13, 1975.	1.6	8
302	On Change of Soil Moisture Distribution With Vegetation Reconstruction in Mu Us Sandy Land of China, With Newly Designed Lysimeter. Frontiers in Plant Science, 2021, 12, 609529.	1.7	16
303	Forest Changes by Precipitation Zones in Northern China after the Three-North Shelterbelt Forest Program in China. Remote Sensing, 2021, 13, 543.	1.8	17
304	Changes in the Tree-Ring Width-Derived Cumulative Normalized Difference Vegetation Index over Northeast China during 1825 to 2013 CE. Forests, 2021, 12, 241.	0.9	7
305	Social-ecological system management in drylands: experiences from Chinese Ecosystem Research Network. Current Opinion in Environmental Sustainability, 2021, 48, 93-102.	3.1	9
306	Vegetation dynamics and its response to driving factors in typical karst regions, Guizhou Province, China. Frontiers of Earth Science, 2021, 15, 167-183.	0.9	12
307	Spatiotemporal Patterns of Ecosystem Restoration Activities and Their Effects on Changes in Terrestrial Gross Primary Production in Southwest China. Remote Sensing, 2021, 13, 1209.	1.8	4
308	Integrate ecosystem services into socio-economic development to enhance achievement of sustainable development goals in the post-pandemic era. Geography and Sustainability, 2021, 2, 68-73.	1.9	48
310	Natural Climate Solutions for China: The Last Mile to Carbon Neutrality. Advances in Atmospheric Sciences, 2021, 38, 889-895.	1.9	43
311	Time and space catch up with restoration programs that ignore ecosystem service trade-offs. Science Advances, 2021, 7, .	4.7	69
312	Variations and controlling factors of vegetation dynamics on the Qingzang Plateau of China over the recent 20 years. Geography and Sustainability, 2021, 2, 74-85.	1.9	23
313	Spatiotemporal Variation of Vegetation Productivity and Its Feedback to Climate Change in Northeast China over the Last 30 Years. Remote Sensing, 2021, 13, 951.	1.8	7

#	ARTICLE	IF	CITATIONS
314	How Large-Scale Anthropogenic Activities Influence Vegetation Cover Change in China? A Review. Forests, 2021, 12, 320.	0.9	29
315	Multifaceted characteristics of dryland aridity changes in a warming world. Nature Reviews Earth & Environment, 2021, 2, 232-250.	12.2	281
316	Achieving Win–Win Solutions in Telecoupled Human–Land Systems. Land, 2021, 10, 272.	1.2	2
317	A long-term estimation of biogenic volatile organic compound (BVOC) emission in China from 2001–2016: the roles of land cover change and climate variability. Atmospheric Chemistry and Physics, 2021, 21, 4825-4848.	1.9	36
318	The Indirect Impact of Surface Vegetation Improvement on the Climate Response of Sand-Dust Events in Northern China. Atmosphere, 2021, 12, 339.	1.0	4
319	Disentangling the Regional Climate Impacts of Competing Vegetation Responses to Elevated Atmospheric CO 2. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034108.	1.2	6
320	Monitoring Vegetation Greenness in Response to Climate Variation along the Elevation Gradient in the Three-River Source Region of China. ISPRS International Journal of Geo-Information, 2021, 10, 193.	1.4	9
321	Patterns and determinants of woody encroachment in the eastern Eurasian steppe. Land Degradation and Development, 2021, 32, 3536-3549.	1.8	10
322	Where Are Global Vegetation Greening and Browning Trends Significant?. Geophysical Research Letters, 2021, 48, e2020GL091496.	1.5	58
323	Modulation of Compound Extremes of Low Soil Moisture and High Vapor Pressure Deficit by Irrigation in India. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034529.	1.2	13
324	Design and Experimental Evaluation of a Form Trimming Machine for Horticultural Plants. Applied Sciences (Switzerland), 2021, 11, 2230.	1.3	6
325	Global Solar Radiation Transfer and Its Loss in the Atmosphere. Applied Sciences (Switzerland), 2021, 11, 2651.	1.3	17
326	Mapping Land Use/Cover Dynamics of the Yellow River Basin from 1986 to 2018 Supported by Google Earth Engine. Remote Sensing, 2021, 13, 1299.	1.8	31
327	How trade-offs between ecological construction and urbanization expansion affect ecosystem services. Ecological Indicators, 2021, 122, 107253.	2.6	68
328	Responses of vegetation greenness and carbon cycle to extreme droughts in China. Agricultural and Forest Meteorology, 2021, 298-299, 108307.	1.9	46
329	Mapping the Dynamics of Winter Wheat in the North China Plain from Dense Landsat Time Series (1999) Tj ETQo	11.0.784 	1314 rgBT /○ 10 rgBT /○
330	Temporal Duration of the East Asian Summer Monsoon Substantially Affects Surface Energy Exchange over the Summer Monsoon Transition Zone of China. Journal of Climate, 2021, , 1-52.	1.2	3
331	The oxygen cycle and a habitable Earth. Science China Earth Sciences, 2021, 64, 511-528.	2.3	22

#	ARTICLE	IF	Citations
332	Mapping the deforestation footprint of nations reveals growing threat to tropical forests. Nature Ecology and Evolution, 2021, 5, 845-853.	3.4	142
333	Forest Greening Increases Land Surface Albedo During the Main Growing Period Between 2002 and 2019 in China. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033582.	1.2	11
334	Construction of a Landscape Ecological Network for a Large-Scale Energy and Chemical Industrial Base: A Case Study of Ningdong, China. Land, 2021, 10, 344.	1.2	13
335	A Satelliteâ€Based Assessment of the Relative Contribution of Hydroclimatic Variables on Vegetation Growth in Global Agricultural and Nonagricultural Regions. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033228.	1.2	6
336	Understanding global land degradation processes interacted with complex biophysics and socioeconomics from the perspective of the Normalized Difference Vegetation Index (1982–2015). Global and Planetary Change, 2021, 198, 103431.	1.6	17
337	Planning to Practice: Impacts of Large-Scale and Rapid Urban Afforestation on Greenspace Patterns in the Beijing Plain Area. Forests, 2021, 12, 316.	0.9	16
338	Spatiotemporal assessment of land use/land cover change and associated carbon emissions and uptake in the Mekong River Basin. Remote Sensing of Environment, 2021, 256, 112336.	4.6	45
339	Impacts of deep-rooted fruit trees on recharge of deep soil water using stable and radioactive isotopes. Agricultural and Forest Meteorology, 2021, 300, 108325.	1.9	27
340	Relationship between multi-scale climate factors and performance of ecological engineering on the Loess Plateau, China. Journal of Forestry Research, 2022, 33, 789-800.	1.7	6
341	Spatio-temporal changes of ecological vulnerability across the Qinghai-Tibetan Plateau. Ecological Indicators, 2021, 123, 107274.	2.6	112
342	Water Use by Chinese Pine Is Less Conservative but More Closely Regulated Than in Mongolian Scots Pine in a Plantation Forest, on Sandy Soil, in a Semi-Arid Climate. Frontiers in Plant Science, 2021, 12, 635022.	1.7	3
343	Monitoring impacts of ecological engineering on ecosystem services with geospatial techniques in karst areas of SW China. Geocarto International, 2022, 37, 5091-5115.	1.7	11
344	Scale consistency for investigating urbanization level, vegetation coverage, and their correlation. Urban Forestry and Urban Greening, 2021, 59, 126998.	2.3	10
345	Improved Global Maps of the Optimum Growth Temperature, Maximum Light Use Efficiency, and Gross Primary Production for Vegetation. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG005651.	1.3	14
346	An improved quality assessment framework to better inform large-scale forest restoration management. Ecological Indicators, 2021, 123, 107370.	2.6	8
347	Soil bacterial approach to assessing afforestation in the desertfied Northern China. Journal of Cleaner Production, 2021, 292, 125935.	4.6	10
348	Dynamic characteristics and driving factors of vegetation greenness under changing environments in Xinjiang, China. Environmental Science and Pollution Research, 2021, 28, 42516-42532.	2.7	28
349	An emerging impact of Eurasian spring snow cover on summer rainfall in Eastern China. Environmental Research Letters, 2021, 16, 054012.	2.2	9

#	Article	IF	CITATIONS
350	Climate Change in China Affects Runoff and Terrestrial Ecosystem Water Retention More Than Changes in Leaf Area Index and Land Use/Cover Over the Period 1982–2015. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG005902.	1.3	12
351	Remotely sensed tree canopy cover-based indicators for monitoring global sustainability and environmental initiatives. Environmental Research Letters, 2021, 16, 044047.	2.2	17
352	Determining deep root water uptake patterns with tree age in the Chinese loess area. Agricultural Water Management, 2021, 249, 106810.	2.4	26
353	Effects of anthropogenic revegetation on the water and carbon cycles of a desert steppe ecosystem. Agricultural and Forest Meteorology, 2021, 300, 108339.	1.9	29
354	Climate response and drought resilience of Nothofagus obliqua secondary forests across a latitudinal gradient in south-central Chile. Forest Ecology and Management, 2021, 485, 118962.	1.4	27
355	Water budget fluxes in catchments under grassland and <i>Eucalyptus</i> plantations of different ages. Canadian Journal of Forest Research, 2021, 51, 513-523.	0.8	15
356	Monitoring the Spatiotemporal Dynamics of Aeolian Desertification Using Google Earth Engine. Remote Sensing, 2021, 13, 1730.	1.8	9
357	Long-term changes in evapotranspiration over China and attribution to climatic drivers during 1980–2010. Journal of Hydrology, 2021, 595, 126037.	2.3	40
358	Restoration Efficacy of Picea likiangensis var. rubescens Rehder & E. H. Wilson Plantations on the Soil Microbial Community Structure and Function in a Subalpine Area. Microorganisms, 2021, 9, 1145.	1.6	1
359	A fragile soil moisture environment exacerbates the climate change-related impacts on the water use by Mongolian Scots pine (Pinus sylvestris var. mongolica) in northern China: Long-term observations. Agricultural Water Management, 2021, 251, 106857.	2.4	14
360	Vegetation dynamics and its linkage with climatic and anthropogenic factors in the Dawen River Watershed of China from 1999 through 2018. Environmental Science and Pollution Research, 2021, 28, 52887-52900.	2.7	7
361	Vegetation dynamics of coal mining city in an arid desert region of Northwest China from 2000 to 2019. Journal of Arid Land, 2021, 13, 534-547.	0.9	8
362	Combining sparse observations and reanalysis data for refining spatiotemporal variability in nearâ€surface air temperature lapse rates over China. International Journal of Climatology, 0, , .	1.5	2
363	Modelled land use and land cover change emissions $\hat{a}\in$ a spatio-temporal comparison of different approaches. Earth System Dynamics, 2021, 12, 635-670.	2.7	29
364	Aggravated risk of soil erosion with global warming – A global meta-analysis. Catena, 2021, 200, 105129.	2.2	50
365	Greening drylands despite warming consistent with carbon dioxide fertilization effect. Global Change Biology, 2021, 27, 3336-3349.	4.2	50
366	Not all forests are alike: the role of commercial forest in the conservation of landscape connectivity for the giant panda. Landscape Ecology, 2021, 36, 2549-2564.	1.9	7
367	Longâ€term land use/cover changes reduce soil erosion in an ionic rareâ€earth mineral area of southern China. Land Degradation and Development, 2021, 32, 4042-4055.	1.8	10

#	Article	IF	Citations
368	Greening trends and their relationship with agricultural land abandonment across Poland. Remote Sensing of Environment, 2021, 257, 112340.	4.6	29
369	Cropland redistribution to marginal lands undermines environmental sustainability. National Science Review, 2022, 9, nwab091.	4.6	71
370	Difference in hydraulic resistance between planted forest and naturally regenerated forest and its implications for ecosystem restoration in subtropical karst landscapes. Journal of Hydrology, 2021, 596, 126093.	2.3	10
371	Increased association between climate change and vegetation index variation promotes the coupling of dominant factors and vegetation growth. Science of the Total Environment, 2021, 767, 144669.	3.9	24
372	Editorial: Temporal Patterns and Mechanisms of Biodiversity Across Scales in East Asia. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	0
373	Human activity vs. climate change: Distinguishing dominant drivers on LAI dynamics in karst region of southwest China. Science of the Total Environment, 2021, 769, 144297.	3.9	45
374	How do government policies promote greening? Evidence from China. Land Use Policy, 2021, 104, 105389.	2.5	29
375	Feedback From Vegetation to Interannual Variations of Indian Summer Monsoon Rainfall. Water Resources Research, 2021, 57, e2020WR028750.	1.7	14
376	Land-use change and the livestock revolution increase the risk of zoonotic coronavirus transmission from rhinolophid bats. Nature Food, 2021, 2, 409-416.	6.2	59
377	Soil carbon accumulation with increasing temperature under both managed and natural vegetation restoration in calcareous soils. Science of the Total Environment, 2021, 767, 145298.	3.9	29
378	Global land use changes are four times greater than previously estimated. Nature Communications, 2021, 12, 2501.	5.8	442
379	Effects of Topography on Planted Trees in a Headwater Catchment on the Chinese Loess Plateau. Forests, 2021, 12, 792.	0.9	9
380	Socio-economic and ecological impacts of China's forest sector policies. Forest Policy and Economics, 2021, 127, 102454.	1.5	15
382	Vegetation greening in more than 94% of the Yellow River Basin (YRB) region in China during the 21st century caused jointly by warming and anthropogenic activities. Ecological Indicators, 2021, 125, 107479.	2.6	59
383	Climate change-induced greening on the Tibetan Plateau modulated by mountainous characteristics. Environmental Research Letters, 2021, 16, 064064.	2,2	16
384	Comparative study of desertification control policies and regulations in representative countries of the Belt and Road Initiative. Global Ecology and Conservation, 2021, 27, e01577.	1.0	13
385	Forest Quality Dynamic Change and Its Driving Factors Accompanied by Forest Transition in China. Forests, 2021, 12, 733.	0.9	9
386	The  Dual Circulation' development model of China: Background and insights. Rajagiri Management Journal, 2023, 17, 2-20.	1.8	8

#	Article	IF	CITATIONS
387	Continuously Vegetation Greening over Inner Mongolia for the Past Three Decades. Remote Sensing, 2021, 13, 2446.	1.8	4
388	Estimation of changes in bioclimatic potential values on the territory of Belarus using normalised difference vegetation index (NDVI). Journal of the Belarusian State University Geography and Geology, 2021, , 3-12.	0.3	0
389	Assessing vegetation condition across topography in Nainital district, India using temperature vegetation dryness index model. Modeling Earth Systems and Environment, 2022, 8, 2167-2181.	1.9	5
391	Identification of impact factors for differentiated patterns of NDVI change in the headwater source region of Brahmaputra and Indus, Southwestern Tibetan Plateau. Ecological Indicators, 2021, 125, 107604.	2.6	20
392	Climateâ€induced increase in terrestrial carbon storage in the Yangtze River Economic Belt. Ecology and Evolution, 2021, 11, 7211-7225.	0.8	7
393	The impact of large-scale afforestation on ecological environment in the Gobi region. Scientific Reports, 2021, 11, 14383.	1.6	10
394	Combining gradual and abrupt analysis to detect variation of vegetation greenness on the loess areas of China. Frontiers of Earth Science, 2022, 16, 368-380.	0.9	4
395	Comparing the longâ€term effects of artificial and natural vegetation restoration strategies: A caseâ€study of Wuqi and its adjacent counties in northern China. Land Degradation and Development, 2021, 32, 3930-3945.	1.8	17
396	Alleviating human poverty: A successful model promoting wildlife conservation in China. Conservation Science and Practice, 2021, 3, e511.	0.9	6
397	Performance stability of the MODIS and VIIRS LAI algorithms inferred from analysis of long time series of products. Remote Sensing of Environment, 2021, 260, 112438.	4.6	29
398	Forest thinning and organic matter manipulation drives changes in soil respiration in a Larix principis-rupprechtii plantation in China. Soil and Tillage Research, 2021, 211, 104996.	2.6	15
399	Water availability surpasses warmth in controlling global vegetation trends in recent decade: revealed by satellite time series. Environmental Research Letters, 2021, 16, 074028.	2.2	11
400	Situating China in the Global Effort to Combat Desertification. Land, 2021, 10, 702.	1.2	13
401	China urbanization process induced vegetation degradation and improvement in recent 20Âyears. Cities, 2021, 114, 103207.	2.7	41
402	Identifying the dominant local factors of 2000–2019 changes in dust loading over East Asia. Science of the Total Environment, 2021, 777, 146064.	3.9	25
403	The sustainability assessment of CO2 capture, utilization and storage (CCUS) and the conversion of cropland to forestland program (CCFP) in the Water–Energy–Food (WEF) framework towards China's carbon neutrality by 2060. Environmental Earth Sciences, 2021, 80, 1.	1.3	23
404	Ecosystem Water Use Efficiency in the Three-North Region of China Based on Long-Term Satellite Data. Sustainability, 2021, 13, 7977.	1.6	10
405	Potential distribution and habitat suitability of <i>Picea crassifolia</i> with climate change scenarios. Canadian Journal of Forest Research, 2021, 51, 1903-1915.	0.8	3

#	Article	IF	Citations
406	Assessment of vegetation growth and drought conditions using satellite-based vegetation health indices in Jing-Jin-Ji region of China. Scientific Reports, 2021, 11, 13775.	1.6	14
407	Quantifying the impacts of land-cover changes on global evapotranspiration based on the continuous remote sensing observations during 1982–2016. Journal of Hydrology, 2021, 598, 126231.	2.3	29
408	Monitoring Greenhouse Gases from Space. Remote Sensing, 2021, 13, 2700.	1.8	17
410	Estimating global maximum gross primary productivity of vegetation based on the combination of MODIS greenness and temperature data. Ecological Informatics, 2021, 63, 101307.	2.3	8
411	The First Global Carbon Dioxide Flux Map Derived from TanSat Measurements. Advances in Atmospheric Sciences, 2021, 38, 1433-1443.	1.9	22
412	Assessing the spatiotemporal dynamics of ecosystem water use efficiency across China and the response to natural and human activities. Ecological Indicators, 2021, 126, 107680.	2.6	33
413	Significant loss of soil inorganic carbon at the continental scale. National Science Review, 2022, 9, nwab120.	4.6	34
414	Impacts of climate change and anthropogenic activities on vegetation change: Evidence from typical areas in China. Ecological Indicators, 2021, 126, 107648.	2.6	78
415	Complex anthropogenic interaction on vegetation greening in the Chinese Loess Plateau. Science of the Total Environment, 2021, 778, 146065.	3.9	57
416	Impacts of Saline-Alkali Land Improvement on Regional Climate: Process, Mechanisms, and Implications. Remote Sensing, 2021, 13, 3407.	1.8	7
417	The Ongoing Greening in Southwest China despite Severe Droughts and Drying Trends. Remote Sensing, 2021, 13, 3374.	1.8	7
418	Quantifying the influences of natural and human factors on the water footprint of afforestation in desert regions of northern China. Science of the Total Environment, 2021, 780, 146577.	3.9	15
419	Does leakage exist in China's typical protected areas? Evidence from 13 national nature reserves. Environmental Science and Pollution Research, 2022, 29, 6822-6836.	2.7	4
420	Reconstruction of Historical Land Surface Albedo Changes in China From 850 to 2015 Using Land Use Harmonization Data and Albedo Lookâ€Up Maps. Earth and Space Science, 2021, 8, e2021EA001799.	1.1	7
421	Greater increases in China's dryland ecosystem vulnerability in drier conditions than in wetter conditions. Journal of Environmental Management, 2021, 291, 112689.	3.8	31
422	Spatiotemporal dynamics of ecosystem water use efficiency over the Chinese Loess Plateau base on long-time satellite data. Environmental Science and Pollution Research, 2022, 29, 2298-2310.	2.7	5
423	Factors controlling soil organic carbon and total nitrogen stocks following afforestation with Robinia pseudoacacia on cropland across China. Forest Ecology and Management, 2021, 494, 119274.	1.4	22
424	Vegetation responses to climate change in the Qilian Mountain Nature Reserve, Northwest China. Global Ecology and Conservation, 2021, 28, e01698.	1.0	32

#	Article	IF	CITATIONS
425	Quantifying Urban Vegetation Dynamics from a Process Perspective Using Temporally Dense Landsat Imagery. Remote Sensing, 2021, 13, 3217.	1.8	5
426	Land-use harmonization datasets for annual global carbon budgets. Earth System Science Data, 2021, 13, 4175-4189.	3.7	37
427	Do Forests help environmental development of Cities in China?. Environment, Development and Sustainability, 2022, 24, 6602-6629.	2.7	4
428	Linkage of microbial living communities and residues to soil organic carbon accumulation along a forest restoration gradient in southern China. Forest Ecosystems, 2021, 8, .	1.3	6
429	Impact of urban expansion on vegetation: The case of China (2000–2018). Journal of Environmental Management, 2021, 291, 112598.	3.8	51
430	Projections of desertification trends in Central Asia under global warming scenarios. Science of the Total Environment, 2021, 781, 146777.	3.9	51
431	Climate change and ecological engineering jointly induced vegetation greening in global karst regions from 2001 to 2020. Plant and Soil, 2022, 475, 193-212.	1.8	13
432	Assessing the large-scale plant–water relations in the humid, subtropical Pearl River basin of China. Hydrology and Earth System Sciences, 2021, 25, 4741-4758.	1.9	8
433	Accelerated increase in vegetation carbon sequestration in China after 2010: A turning point resulting from climate and human interaction. Global Change Biology, 2021, 27, 5848-5864.	4.2	127
434	China's deserts greening and response to climate variability and human activities. PLoS ONE, 2021, 16, e0256462.	1.1	11
435	Forest harvesting restriction and forest restoration in China. Forest Policy and Economics, 2021, 129, 102516.	1.5	20
436	Optimum machine learning algorithm selection for forecasting vegetation indices: MODIS NDVI & Lamp; EVI. Remote Sensing Applications: Society and Environment, 2021, 23, 100582.	0.8	5
437	The role of superficial geology in controlling groundwater recharge in the weathered crystalline basement of semi-arid Tanzania. Journal of Hydrology: Regional Studies, 2021, 36, 100833.	1.0	9
438	Inconsistency of Global Vegetation Dynamics Driven by Climate Change: Evidences from Spatial Regression. Remote Sensing, 2021, 13, 3442.	1.8	11
439	A framework for calculating the net benefits of ecological restoration programs in China. Ecosystem Services, 2021, 50, 101325.	2.3	22
440	The greening effect characterized by the Normalized Difference Vegetation Index was not coupled with phenological trends and tree growth rates in eight protected mountains of central Mexico. Forest Ecology and Management, 2021, 496, 119402.	1.4	10
441	Ecological restoration projects did not increase the value of all ecosystem services in Northeast China. Forest Ecology and Management, 2021, 495, 119340.	1.4	48
442	Isoprenoid emissions from natural vegetation increased rapidly in eastern China. Environmental Research, 2021, 200, 111462.	3.7	7

#	Article	IF	CITATIONS
443	Comment on "Recent global decline of CO ₂ fertilization effects on vegetation photosynthesis― Science, 2021, 373, eabg5673.	6.0	14
444	Decline in nutrient inputs from litterfall following forest plantation in subtropical China. Forest Ecology and Management, 2021, 496, 119445.	1.4	19
446	Mycorrhizal Distributions Impact Global Patterns of Carbon and Nutrient Cycling. Geophysical Research Letters, 2021, 48, e2021GL094514.	1.5	14
447	Projected Land Evaporation and Its Response to Vegetation Greening Over China Under Multiple Scenarios in the CMIP6 Models. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006327.	1.3	15
448	A Framework to Assess the Potential Uncertainties of Three FPAR Products. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006320.	1.3	4
449	Moisture and temperature influences on nonlinear vegetation trends in Serengeti National Park. Environmental Research Letters, 2021, 16, 094049.	2.2	3
450	Revegetation projects significantly improved ecosystem service values in the agro-pastoral ecotone of northern China in recent 20 years. Science of the Total Environment, 2021, 788, 147756.	3.9	59
451	Greening of the Qinghai–Tibet Plateau and Its Response to Climate Variations along Elevation Gradients. Remote Sensing, 2021, 13, 3712.	1.8	23
452	Impacts of global change on peak vegetation growth and its timing in terrestrial ecosystems of the continental US. Global and Planetary Change, 2021, 207, 103657.	1.6	15
453	Ecosystem restoration programs challenges under climate and land use change. Science of the Total Environment, 2022, 807, 150527.	3.9	24
454	Investigation of Particle Number Concentrations and New Particle Formation With Largely Reduced Air Pollutant Emissions at a Coastal Semiâ€Urban Site in Northern China. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035419.	1.2	11
455	Land cover and vegetation carbon stock changes in Greece: A 29-year assessment based on CORINE and Landsat land cover data. Science of the Total Environment, 2021, 786, 147408.	3.9	17
456	A decadal (2008–2017) daily evapotranspiration data set of 1Âkm spatial resolution and spatial completeness across the North China Plain using TSEB and data fusion. Remote Sensing of Environment, 2021, 262, 112519.	4.6	39
457	Long-Term Effects of Climate and Competition on Radial Growth, Recovery, and Resistance in Mongolian Pines. Frontiers in Plant Science, 2021, 12, 729935.	1.7	7
458	Review on plant terpenoid emissions worldwide and in China. Science of the Total Environment, 2021, 787, 147454.	3.9	30
459	Slowdown of the greening trend in natural vegetation with further rise in atmospheric CO ₂ . Biogeosciences, 2021, 18, 4985-5010.	1.3	49
460	Strength of association between vegetation greenness and its drivers across China between 1982 and 2015: Regional differences and temporal variations. Ecological Indicators, 2021, 128, 107831.	2.6	32
461	Spatially explicit changes in forest biomass carbon of China over the past 4 decades: Coupling long-term inventory and remote sensing data. Journal of Cleaner Production, 2021, 316, 128274.	4.6	9

#	Article	IF	Citations
462	Impact of thermal condition on vegetation feedback under greening trend of China. Science of the Total Environment, 2021, 785, 147380.	3.9	28
463	Response of NDVI of Natural Vegetation to Climate Changes and Drought in China. Land, 2021, 10, 966.	1.2	20
464	The low hydrologic resilience of Asian Water Tower basins to adverse climatic changes. Advances in Water Resources, 2021, 155, 103996.	1.7	18
465	Explicating the mechanisms of land cover change in the New Eurasian Continental Bridge Economic Corridor region in the 21st century. Journal of Chinese Geography, 2021, 31, 1403-1418.	1.5	3
466	Patterns and drivers of taxonomic, phylogenetic and functional diversity of understory bird communities in Chinese forests captured by camera traps. Global Ecology and Conservation, 2021, 30, e01790.	1.0	3
467	Declining human activity intensity on alpine grasslands of the Tibetan Plateau. Journal of Environmental Management, 2021, 296, 113198.	3.8	35
468	Trade-off between carbon sequestration and water loss for vegetation greening in China. Agriculture, Ecosystems and Environment, 2021, 319, 107522.	2.5	25
469	Analyzing ecological environment change and associated driving factors in China based on NDVI time series data. Ecological Indicators, 2021, 129, 107933.	2.6	94
470	Artificial forest conversion into grassland alleviates deep-soil desiccation in typical grass zone on China's Loess Plateau: Regional modeling. Agriculture, Ecosystems and Environment, 2021, 320, 107608.	2.5	14
471	Soil drying weakens the positive effect of climate factors on global gross primary production. Ecological Indicators, 2021, 129, 107953.	2.6	9
472	Dynamic changes of vegetation coverage in China-Myanmar economic corridor over the past 20Âyears. International Journal of Applied Earth Observation and Geoinformation, 2021, 102, 102378.	1.4	18
473	Evaluation of the influence of ENSO on tropical vegetation in long time series using a new indicator. Ecological Indicators, 2021, 129, 107872.	2.6	7
474	Response of hydrological systems to the intensity of ecological engineering. Journal of Environmental Management, 2021, 296, 113173.	3.8	13
475	Coupling analysis on ecological environment fragility and poverty in South China Karst. Environmental Research, 2021, 201, 111650.	3.7	53
476	Effects of vegetation restoration on soil properties along an elevation gradient in the karst region of southwest China. Agriculture, Ecosystems and Environment, 2021, 320, 107572.	2.5	32
477	Optimizing spatial layout of afforestation to realize the maximum benefit of water resources in arid regions: A case study of Alxa, China. Journal of Cleaner Production, 2021, 320, 128827.	4.6	9
478	Reflections on China's food security and land use policy under rapid urbanization. Land Use Policy, 2021, 109, 105699.	2.5	129
479	Particulate plastics-plant interaction in soil and its implications: A review. Science of the Total Environment, 2021, 792, 148337.	3.9	44

#	Article	IF	CITATIONS
480	The trend of vegetation greening and its drivers in the Agro-pastoral ecotone of northern China, 2000–2020. Ecological Indicators, 2021, 129, 108004.	2.6	40
481	Recent vegetation browning and its drivers on Tianshan Mountain, Central Asia. Ecological Indicators, 2021, 129, 107912.	2.6	22
482	Automatic cloud and cloud shadow detection in tropical areas for PlanetScope satellite images. Remote Sensing of Environment, 2021, 264, 112604.	4.6	21
483	The contribution of forest and grassland change was greater than that of cropland in human-induced vegetation greening in China, especially in regions with high climate variability. Science of the Total Environment, 2021, 792, 148408.	3.9	18
484	Evolution of soil salinization under the background of landscape patterns in the irrigated northern slopes of Tianshan Mountains, Xinjiang, China. Catena, 2021, 206, 105561.	2.2	36
485	Stand age and precipitation affect deep soil water depletion of economical forest in the loess area. Agricultural and Forest Meteorology, 2021, 310, 108636.	1.9	14
486	Ecology and environment of the Belt and Road under global climate change: A systematic review of spatial patterns, cost efficiency, and ecological footprints. Ecological Indicators, 2021, 131, 108237.	2.6	22
487	The hidden risk in China's cropland conversion from the perspective of slope. Catena, 2021, 206, 105536.	2.2	19
488	Modeling the response of ecological service value to land use change through deep learning simulation in Lanzhou, China. Science of the Total Environment, 2021, 796, 148981.	3.9	32
489	Effects of land-use management on soil erosion: A case study in a typical watershed of the hilly and gully region on the Loess Plateau of China. Catena, 2021, 206, 105551.	2.2	16
490	Oxygen footprint: An indicator of the anthropogenic ecosystem changes. Catena, 2021, 206, 105501.	2.2	8
491	Spatiotemporal change and driving factors of the Eco-Environment quality in the Yangtze River Basin from 2001 to 2019. Ecological Indicators, 2021, 131, 108214.	2.6	74
492	Identifying and understanding alternative states of dryland landscape: A hierarchical analysis of time series of fractional vegetation-soil nexuses in China's Hexi Corridor. Landscape and Urban Planning, 2021, 215, 104225.	3.4	16
493	Inconsistent changes in NPP and LAI determined from the parabolic LAI versus NPP relationship. Ecological Indicators, 2021, 131, 108134.	2.6	24
494	Attribution of streamflow changes across the globe based on the Budyko framework. Science of the Total Environment, 2021, 794, 148662.	3.9	18
495	Hotspots of land-use change in global biodiversity hotspots. Resources, Conservation and Recycling, 2021, 174, 105770.	5.3	33
496	Spatial correlations between landscape patterns and net primary productivity: A case study of the Shule River Basin, China. Ecological Indicators, 2021, 130, 108067.	2.6	31
497	Satellite view of vegetation dynamics and drivers over southwestern China. Ecological Indicators, 2021, 130, 108074.	2.6	13

#	Article	IF	CITATIONS
498	Vegetation greening partly offsets the water erosion risk in China from 1999 to 2018. Geoderma, 2021, 401, 115319.	2.3	22
499	Synthesized remote sensing-based desertification index reveals ecological restoration and its driving forces in the northern sand-prevention belt of China. Ecological Indicators, 2021, 131, 108230.	2.6	21
500	Effects and implications of ecological restoration projects on ecosystem water use efficiency in the karst region of Southwest China. Ecological Engineering, 2021, 170, 106356.	1.6	20
501	Long-term water balance variation after revegetation on the southeastern edge of the Tengger Desert. Ecological Indicators, 2021, 131, 108216.	2.6	2
502	Assessing the impact of land conversion and management measures on the net primary productivity in the Bailong River Basin, in China. Catena, 2021, 207, 105672.	2.2	13
503	The spatiotemporal pattern and influencing factors of land surface temperature change in China from 2003 to 2019. International Journal of Applied Earth Observation and Geoinformation, 2021, 104, 102537.	1.4	14
504	Assessment of the water-energy-food nexus under spatial and social complexities: A case study of Guangdong-Hong Kong-Macao. Journal of Environmental Management, 2021, 299, 113664.	3.8	16
505	Do ecological restoration programs reduce forest fragmentation? Case study of the Three Gorges Reservoir Area, China. Ecological Engineering, 2021, 172, 106410.	1.6	10
506	Spatio-temporal changes in urban green space in 107 Chinese cities (1990–2019): The role of economic drivers and policy. International Journal of Applied Earth Observation and Geoinformation, 2021, 103, 102525.	1.4	12
507	A machine learning approach to monitoring and forecasting spatio-temporal dynamics of land cover in Cox's Bazar district, Bangladesh from 2001 to 2019. Environmental Challenges, 2021, 5, 100237.	2.0	12
508	How to optimize ecological compensation to alleviate environmental injustice in different cities in the Yellow River Basin? A case of integrating ecosystem service supply, demand and flow. Sustainable Cities and Society, 2021, 75, 103341.	5.1	68
509	The linkage between renewable energy potential and sustainable development: Understanding solar energy variability and photovoltaic power potential in Tibet, China. Sustainable Energy Technologies and Assessments, 2021, 48, 101551.	1.7	9
510	New insights of global vegetation structural properties through an analysis of canopy clumping index, fractional vegetation cover, and leaf area index. Science of Remote Sensing, 2021, 4, 100027.	2.2	10
511	Estimation of the relative contributions of forest areal expansion and growth to China's forest stand biomass carbon sequestration from 1977 to 2018. Journal of Environmental Management, 2021, 300, 113757.	3.8	16
512	Statistical inference for trends in spatiotemporal data. Remote Sensing of Environment, 2021, 266, 112678.	4.6	23
513	Spatial-temporal pattern of land use conflict in China and its multilevel driving mechanisms. Science of the Total Environment, 2021, 801, 149697.	3.9	72
514	Congenital anomalies associated with ambient temperature variability during fetal organogenesis period of pregnancy: Evidence from 4.78 million births. Science of the Total Environment, 2021, 798, 149305.	3.9	6
515	Climatic and edaphic factors affecting soil bacterial community biodiversity in different forests of China. Catena, 2021, 207, 105675.	2.2	15

#	Article	IF	CITATIONS
516	Mismatches between vegetation greening and primary productivity trends in South Asia – A satellite evidence. International Journal of Applied Earth Observation and Geoinformation, 2021, 104, 102561.	1.4	9
517	Land use and land cover change-induced changes of sediment connectivity and their effects on sediment yield in a catchment on the Loess Plateau in China. Catena, 2021, 207, 105688.	2.2	24
518	Complex effects of moisture conditions and temperature enhanced vegetation growth in the Arid/humid transition zone in Northern China. Science of the Total Environment, 2022, 805, 150152.	3.9	9
519	The spatiotemporal change of cropland and its impact on vegetation dynamics in the farming-pastoral ecotone of northern China. Science of the Total Environment, 2022, 805, 150286.	3.9	23
520	Interannual variability of vegetation sensitivity to climate in China. Journal of Environmental Management, 2022, 301, 113768.	3.8	24
521	Effects of global greening phenomenon on water sustainability. Catena, 2022, 208, 105732.	2.2	10
522	Vegetation changes in coal mining areas: Naturally or anthropogenically Driven?. Catena, 2022, 208, 105712.	2.2	17
523	Decadal change and inter-annual variability of net primary productivity on the Tibetan Plateau. Climate Dynamics, 2021, 56, 1837-1857.	1.7	12
524	High risk of growth cessation of planted larch under extreme drought. Environmental Research Letters, 2021, 16, 014040.	2.2	14
525	Balancing ecological conservation with socioeconomic development. Ambio, 2021, 50, 1117-1122.	2.8	23
526	Predicting the future redistribution of Chinese white pine Pinus armandii Franch. Under climate change scenarios in China using species distribution models. Global Ecology and Conservation, 2021, 25, e01420.	1.0	15
527	Spatiotemporal Pattern of Vegetation Ecology Quality and Its Response to Climate Change between 2000–2017 in China. Sustainability, 2021, 13, 1419.	1.6	10
528	Generating Long Time Series of High Spatiotemporal Resolution FPAR Images in the Remote Sensing Trend Surface Framework. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-15.	2.7	3
529	Improved Mapping of Long-Term Forest Disturbance and Recovery Dynamics in the Subtropical China Using All Available Landsat Time-Series Imagery on Google Earth Engine Platform. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 2754-2768.	2.3	23
530	Experimental plant research and the discovery of carbon dioxide-mediated global greening: a tribute to Wilhelm Pfeffer (1845–1920). Journal of Plant Biochemistry and Biotechnology, 2021, 30, 407-420.	0.9	2
531	Observations and Modeling of GHG Concentrations and Fluxes Over India. , 2020, , 73-92.		13
532	Climate change weakens the positive effect of human activities on karst vegetation productivity restoration in southern China. Ecological Indicators, 2020, 115, 106392.	2.6	65
533	Complex causes and consequences of rangeland greening in South America – multiple interacting natural and anthropogenic drivers and simultaneous ecosystem degradation and recovery trends. Geography and Sustainability, 2020, 1, 304-316.	1.9	8

#	Article	IF	CITATIONS
534	Forecast of biofuel production and consumption in top CO2 emitting countries using a novel grey model. Journal of Cleaner Production, 2020, 276, 123997.	4.6	65
535	Spatiotemporal scale and integrative methods matter for quantifying the driving forces of land cover change. Science of the Total Environment, 2020, 739, 139622.	3.9	25
536	A Semiprognostic Phenology Model for Simulating Multidecadal Dynamics of Global Vegetation Leaf Area Index. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001935.	1.3	7
537	Contributions of ecological programs to vegetation restoration in arid and semiarid China. Environmental Research Letters, 2020, 15, 114046.	2.2	47
538	Substantial decline in atmospheric aridity due to irrigation in India. Environmental Research Letters, 2020, 15, 124060.	2.2	20
539	The effects of cropping intensity and cropland expansion of Brazilian soybean production on green water flows. Environmental Research Communications, 2020, 2, 071001.	0.9	3
540	Discovering forest height changes based on spaceborne lidar data of ICESat-1 in 2005 and ICESat-2 in 2019: a case study in the Beijing-Tianjin-Hebei region of China. Forest Ecosystems, 2020, 7, .	1.3	17
541	Fluorescence Scheimpflug LiDAR developed for the three-dimension profiling of plants. Optics Express, 2020, 28, 9269.	1.7	17
542	Relative Contribution of Growing Season Length and Amplitude to Long-Term Trend and Interannual Variability of Vegetation Productivity over Northeast China. Forests, 2020, 11, 112.	0.9	9
543	Greening Trends of Southern China Confirmed by GRACE. Remote Sensing, 2020, 12, 328.	1.8	3
544	The MODIS Global Vegetation Fractional Cover Product 2001–2018: Characteristics of Vegetation Fractional Cover in Grasslands and Savanna Woodlands. Remote Sensing, 2020, 12, 406.	1.8	30
545	Model Inter-Comparison Study for Asia (MICS-Asia) phase III: multimodel comparison of reactive nitrogen deposition over China. Atmospheric Chemistry and Physics, 2020, 20, 10587-10610.	1.9	23
546	Summarizing the state of the terrestrial biosphere in few dimensions. Biogeosciences, 2020, 17, 2397-2424.	1.3	12
547	The global long-term microwave Vegetation Optical Depth Climate Archive (VODCA). Earth System Science Data, 2020, 12, 177-196.	3.7	129
548	Revisiting the global hydrological cycle: is it intensifying?. Hydrology and Earth System Sciences, 2020, 24, 3899-3932.	1.9	87
549	New measures of deep soil water recharge during the vegetation restoration process in semi-arid regions of northern China. Hydrology and Earth System Sciences, 2020, 24, 5875-5890.	1.9	15
550	Aeolian Soils on the Eastern Side of the Horqin Sandy Land, China: A Provenance and Sedimentary Environment Reconstruction Perspective. SSRN Electronic Journal, 0, , .	0.4	0
551	China's Natural Forest Protection Program: evolution, impact and challenges. International Forestry Review, 2021, 23, 338-350.	0.3	6

#	Article	IF	Citations
552	Vegetation Greenness Variations and Response to Climate Change in the Arid and Semi-Arid Transition Zone of the Mongo-Lian Plateau during 1982–2015. Remote Sensing, 2021, 13, 4066.	1.8	14
553	Drivers and Environmental Impacts of Vegetation Greening in a Semi-Arid Region of Northwest China since 2000. Remote Sensing, 2021, 13, 4246.	1.8	2
554	A global increase in tree cover extends the growing season length as observed from satellite records. Science of the Total Environment, 2022, 806, 151205.	3.9	3
555	Correlation assessment of NDVI and land use dynamics with water resources for the southern margin of Mu Us Sandy Land, China. Environmental Science and Pollution Research, 2022, 29, 17049-17061.	2.7	8
556	Satellite remote sensing analysis to monitor revegetation in the Yangtze River Basin, China. Land Degradation and Development, 0 , , .	1.8	2
557	Editorial: Impacts of Habitat Transformation on Species, Biodiversity and Ecosystems in Asia. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	0
558	Spatial heterogeneity of changes in cropland ecosystem water use efficiency and responses to drought in China. Environmental Science and Pollution Research, 2021, , 1.	2.7	2
559	Natural infrastructure in sustaining global urban freshwater ecosystem services. Nature Sustainability, 2021, 4, 1068-1075.	11.5	62
560	Spatiotemporal dynamics of vegetation in China from 1981 to 2100 from the perspective of hydrothermal factor analysis. Environmental Science and Pollution Research, 2022, 29, 14219-14230.	2.7	10
561	Determinizing the contributions of human activities and climate change on greening in the Beijing–Tianjin–Hebei Region, China. Scientific Reports, 2021, 11, 21201.	1.6	15
562	Landâ€based measures to mitigate climate change: Potential and feasibility by country. Global Change Biology, 2021, 27, 6025-6058.	4.2	114
563	Quantifying impacts of climate dynamics and land-use changes on water yield service in the agro-pastoral ecotone of northern China. Science of the Total Environment, 2022, 809, 151153.	3.9	38
564	Contribution of Recycled Moisture to Precipitation: A Modified Dâ€Excessâ€Based Model. Geophysical Research Letters, 2021, 48, e2021GL095909.	1.5	15
565	Temporal Pattern Analysis of Cropland Phenology in Shandong Province of China Based on Two Long-Sequence Remote Sensing Data. Remote Sensing, 2021, 13, 4071.	1.8	2
566	Thinning promotes the nitrogen and phosphorous cycling in forest soils. Agricultural and Forest Meteorology, 2021, 311, 108665.	1.9	24
567	Mapping spatio-temporal patterns in global tree cover heterogeneity: Links with forest degradation and recovery. International Journal of Applied Earth Observation and Geoinformation, 2021, 104, 102583.	1.4	1
568	Response of global land evapotranspiration to climate change, elevated CO2, and land use change. Agricultural and Forest Meteorology, 2021, 311, 108663.	1.9	39
569	Application of Remote Sensing Technology in Ecological Research. Open Journal of Natural Science, 2019, 07, 175-179.	0.1	0

#	ARTICLE	IF	CITATIONS
571	Improvement of subsoil physicochemical and microbial properties by short-term fallow practices. PeerJ, 2019, 7, e7501.	0.9	4
572	Geo-Spatial Technology for Land Resources Management in Nigeria. Advances in Environmental Engineering and Green Technologies Book Series, 2020, , 62-87.	0.3	0
573	Comprehensive Analytical Study of the Greenhouse Effect of the Atmosphere. Atmospheric and Climate Sciences, 2020, 10, 40-80.	0.1	3
574	Land Use Change and Its Impact on Landscape Ecological Risk in Typical Areas of the Yellow River Basin in China. International Journal of Environmental Research and Public Health, 2021, 18, 11301.	1.2	24
575	Vegetation greening weakened the capacity of water supply to China's South-to-North Water Diversion Project. Hydrology and Earth System Sciences, 2021, 25, 5623-5640.	1.9	17
576	Transition of rural landscape patterns in Southwest China's mountainous area: a case study based on the Three Gorges Reservoir Area. Environmental Earth Sciences, 2021, 80, 1.	1.3	8
577	The roles of leaf area index and albedo in vegetation induced temperature changes across China using modelling and observations. Climate Dynamics, 0 , 1 .	1.7	4
578	Greening-induced increase in evapotranspiration over Eurasia offset by CO ₂ -induced vegetational stomatal closure. Environmental Research Letters, 2021, 16, 124008.	2.2	25
579	Climate-Forced Changes of Bioproductivity of Terrestrial Ecosystems in Belarus. Izvestiya - Atmospheric and Oceanic Physics, 2020, 56, 1080-1089.	0.2	2
580	Forest effects on runoff under climate change in the Upper Dongjiang River Basin: insights from annual to intra-annual scales. Environmental Research Letters, 2021, 16, 014032.	2.2	13
581	Isoprene Mixing Ratios Measured at Twenty Sites in China During 2012–2014: Comparison With Model Simulation. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033523.	1.2	14
582	Polarization of Light Reflected by Grass: Modeling Using Visible-Sunlit Areas. Photogrammetric Engineering and Remote Sensing, 2020, 86, 745-752.	0.3	1
583	Global trends in vegetation fractional cover: Hotspots for change in bare soil and non-photosynthetic vegetation. Agriculture, Ecosystems and Environment, 2022, 324, 107719.	2.5	13
584	How can massive ecological restoration programs interplay with social-ecological systems? A review of research in the South China karst region. Science of the Total Environment, 2022, 807, 150723.	3.9	56
585	Assessing the degree of soil erosion in karst mountainous areas by extenics. Catena, 2022, 209, 105800.	2.2	9
586	Eco-socialism and the political ecology of forest conservation in the Greater Khingan Range, China. Political Geography, 2022, 93, 102533.	1.3	14
587	Terrestrial ecological restoration in China: identifying advances and gaps. Environmental Sciences Europe, 2021, 33, .	2.6	23
588	Drivers and impacts of changes in China's drylands. Nature Reviews Earth & Environment, 2021, 2, 858-873.	12.2	255

#	Article	IF	CITATIONS
589	Enhanced surface urban heat islands due to divergent urban-rural greening trends. Environmental Research Letters, 2021, 16, 124071.	2.2	12
590	Can Current Earth Observation Technologies Provide Useful Information on Soil Organic Carbon Stocks for Environmental Land Management Policy?. Sustainability, 2021, 13, 12074.	1.6	9
591	Research Trends and Focus on the Deserts of Northern China: A Bibliometric Analysis During 1986–2020. Frontiers in Earth Science, 2021, 9, .	0.8	1
592	Watershed-Based Management for Sustainable Freshwater Resources. Encyclopedia of the UN Sustainable Development Goals, 2021, , 1-12.	0.0	0
593	Seasonal and long-term variations in leaf area of Congolese rainforest. Remote Sensing of Environment, 2022, 268, 112762.	4.6	10
594	Biogas production potential in India, the latest biogas upgradation techniques and future application in a fuel cell., 2022,, 215-231.		1
595	Evaluation of the policy-driven ecological network in the Three-North Shelterbelt region of China. Landscape and Urban Planning, 2022, 218, 104305.	3.4	67
596	Climate-growth relations of congeneric tree species vary across a tropical vegetation gradient in Brazil. Dendrochronologia, 2022, 71, 125913.	1.0	5
597	Climate, topography and anthropogenic effects on desert greening: A 40-year satellite monitoring in the Tengger desert, northern China. Catena, 2022, 209, 105851.	2.2	20
598	Climate Change and Ecological Projects Jointly Promote Vegetation Restoration in Three-River Source Region of China. Chinese Geographical Science, 2021, 31, 1108-1122.	1.2	17
599	Assessing the Spatiotemporal Evolution of Anthropogenic Impacts on Remotely Sensed Vegetation Dynamics in Xinjiang, China. Remote Sensing, 2021, 13, 4651.	1.8	23
600	Greater loss and fragmentation of savannas than forests over the last three decades in Yunnan Province, China. Environmental Research Letters, 2022, 17, 014003.	2.2	2
601	Investigating the surface wettability and surface free energy of sodium silicate-impregnated poplar wood. Wood Material Science and Engineering, 2023, 18, 141-150.	1.1	6
602	Regional differentiation in the ecological effects of land cover change in China. Land Degradation and Development, 2022, 33, 346-357.	1.8	10
603	Changes in Dry-Season Water Availability and Attributions in the Yellow River Basin, China. Frontiers in Environmental Science, 0, 9, .	1.5	6
604	Disentangling the roles of land-use-related drivers on vegetation greenness across China. Environmental Research Letters, 2021, 16, 124033.	2.2	7
605	Route Planning of Helicopters Spraying Operations in Multiple Forest Areas. Forests, 2021, 12, 1658.	0.9	9
606	Impact evaluation of a payments for ecosystem services program on vegetation quantity and quality restoration in Inner Mongolia. Journal of Environmental Management, 2022, 303, 114113.	3.8	12

#	Article	IF	Citations
607	Weakened dust activity over China and Mongolia from 2001 to 2020 associated with climate change and land-use management. Environmental Research Letters, 2021, 16, 124056.	2.2	18
608	Thermal and moisture response to land surface changes across different ecosystems over Heilong-Amur River Basin. Science of the Total Environment, 2022, 818, 151799.	3.9	9
609	Ecological restoration and rising CO ₂ enhance the carbon sink, counteracting climate change in northeastern China. Environmental Research Letters, 2022, 17, 014002.	2.2	9
610	Patterns of nitrogen and phosphorus pools in terrestrial ecosystems in China. Earth System Science Data, 2021, 13, 5337-5351.	3.7	31
611	Spatial-Temporal Variation Characteristics and Influencing Factors of Vegetation in the Yellow River Basin from 2000 to 2019. Atmosphere, 2021, 12, 1576.	1.0	9
612	Examining the competing effects of contemporary land management vs. land cover changes on global air quality. Atmospheric Chemistry and Physics, 2021, 21, 16479-16497.	1.9	1
613	Response of vegetation dynamics to drought at the eco-geographical region scale across China. Arabian Journal of Geosciences, 2021, 14 , 1 .	0.6	1
614	Contributions of climate change and human activities to vegetation dynamics in Qilian Mountain National Park, northwest China. Global Ecology and Conservation, 2021, 32, e01947.	1.0	22
615	Spatial variation analysis of urban forest vegetation carbon storage and sequestration in built-up areas of Beijing based on i-Tree Eco and Kriging. Urban Forestry and Urban Greening, 2021, 66, 127413.	2.3	25
616	Estimation and Spatiotemporal Variation Analysis of Net Primary Productivity in the Upper Luanhe River Basin in China From 2001 to 2017 Combining With a Downscaling Method. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 353-363.	2.3	3
617	Very Rapid Forest Cover Change in Sichuan Province, China: 40 Years of Change Using Images From Declassified Spy Satellites and Landsat. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 10964-10976.	2.3	8
618	Greening Pattern in China Would Be More Likely to Affect Summer Surface Ozone Over the Megacity Clusters. SSRN Electronic Journal, 0, , .	0.4	0
619	A New Indicator for Global Food Security Assessment: Harvested Area Rather Than Cropland Area. Chinese Geographical Science, 2022, 32, 204-217.	1.2	29
620	A Framework for Multivariate Analysis of Land Surface Dynamics and Driving Variables—A Case Study for Indo-Gangetic River Basins. Remote Sensing, 2022, 14, 197.	1.8	4
621	Incorporating Vegetation Type Transformation with NDVI Time-Series to Study the Vegetation Dynamics in Xinjiang. Sustainability, 2022, 14, 582.	1.6	3
622	Increased Water Use Efficiency in China and Its Drivers During 2000–2016. Ecosystems, 2022, 25, 1476-1492.	1.6	15
623	A Multi-Perspective Assessment Method with a Dynamic Benchmark for Human Activity Impacts on Alpine Ecosystem under Climate Change. Remote Sensing, 2022, 14, 208.	1.8	7
624	Ecological restoration intensifies evapotranspiration in the Kubuqi Desert. Ecological Engineering, 2022, 175, 106504.	1.6	15

#	Article	IF	CITATIONS
625	Assessing effects of the Returning Farmland to Forest Program on vegetation cover changes at multiple spatial scales: The case of northwest Yunnan, China. Journal of Environmental Management, 2022, 304, 114303.	3.8	22
626	Expressing carbon storage in economic terms: The case of the upper Omo Gibe Basin in Ethiopia. Science of the Total Environment, 2022, 808, 152166.	3.9	12
627	Acidification of soil due to forestation at the global scale. Forest Ecology and Management, 2022, 505, 119951.	1.4	12
628	Greenup dates change across a temperate forest-grassland ecotone in northeastern China driven by spring temperature and tree cover. Agricultural and Forest Meteorology, 2022, 314, 108780.	1.9	4
629	Prediction of the van Genuchten model soil hydraulic parameters for the 5-m soil profile in China's Loess Plateau. Catena, 2022, 210, 105889.	2.2	7
630	Satellite evidence for China's leading role in restoring vegetation productivity over global karst ecosystems. Forest Ecology and Management, 2022, 507, 120000.	1.4	44
631	Aeolian soils on the eastern side of the Horqin Sandy Land, China: A provenance and sedimentary environment reconstruction perspective. Catena, 2022, 210, 105945.	2.2	4
632	The spatiotemporal response of China's vegetation greenness to human socio-economic activities. Journal of Environmental Management, 2022, 305, 114304.	3.8	24
633	Planted forests intensified soil microbial metabolic nitrogen and phosphorus limitation on the Loess Plateau, China. Catena, 2022, 211, 105982.	2.2	10
634	Controlling factors of soil organic carbon and nitrogen in lucerne grasslands in a semiarid environment. Catena, 2022, 211, 105983.	2.2	4
635	Quality Analysis of the VIIRS LAI/FPAR Time-Series. , 2020, , .		0
637	Precipitation and Anthropogenic Activities Jointly Green the China–Mongolia–Russia Economic Corridor. Remote Sensing, 2022, 14, 187.	1.8	12
638	Air Pollution and Greenhouse Gases Emissions: Implications in Food Production and Food Security. , 2022, , 107-133.		1
639	Fractional contribution of global warming and regional urbanization to intensifying regional heatwaves across Eurasia. Climate Dynamics, 2022, 59, 1521-1537.	1.7	13
640	From expansion to shrinkage: Exploring the evolution and transition of karst rocky desertification in karst mountainous areas of Southwest China. Land Degradation and Development, 2023, 34, 5662-5672.	1.8	6
641	The Dominant Driving Force of Forest Change in the Yangtze River Basin, China: Climate Variation or Anthropogenic Activities?. Forests, 2022, 13, 82.	0.9	11
642	Increased Interception Induced by Vegetation Restoration Counters Ecosystem Carbon and Water Exchange Efficiency in China. Earth's Future, 2022, 10, .	2.4	6
643	The Development Process, Current Situation and Prospects of the Conversion of Farmland to Forests and Grasses Project in China. Journal of Resources and Ecology, 2022, 13, .	0.2	4

#	Article	IF	CITATIONS
644	Forest cover change in China from 2000 to 2016. International Journal of Remote Sensing, 2022, 43, 593-606.	1.3	17
645	CPSDv0: a forest stand structure database for plantation forests in China. Big Earth Data, 2023, 7, 212-230.	2.0	6
646	Natureâ€based framework for sustainable afforestation in global drylands under changing climate. Global Change Biology, 2022, 28, 2202-2220.	4.2	30
647	Interval association of remote sensing ecological index in China based on concept lattice. Environmental Science and Pollution Research, 2022, 29, 34194-34208.	2.7	9
648	China's Terrestrial Carbon Sink Over 2010–2015 Constrained by Satellite Observations of Atmospheric CO ₂ and Land Surface Variables. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	1.3	8
649	Landsat-based multi-decadal spatio-temporal assessment of the vegetation greening and browning trend in the Eastern Indian Himalayan Region. Remote Sensing Applications: Society and Environment, 2022, 25, 100695.	0.8	6
650	A new global land productivity dynamic product based on the consistency of various vegetation biophysical indicators. Big Earth Data, 2022, 6, 36-53.	2.0	10
651	Climate Variability Masked Greening Effects on Water Yield in the Yangtze River Basin During 2001–2018. Water Resources Research, 2022, 58, .	1.7	22
652	Contribution of ecological conservation programs and climate change to hydrological regime change in the source region of the Yangtze River in China. Regional Environmental Change, 2022, 22, 1.	1.4	10
653	Green Finance. , 2022, , 493-533.		0
654	Spatio-temporal Variations of Temperature and Precipitation During 1951–2019 in Arid and Semiarid Region, China. Chinese Geographical Science, 2022, 32, 285-301.	1.2	8
655	Multi-spatiotemporal heterogeneous legacy effects of climate on terrestrial vegetation dynamics in China. GIScience and Remote Sensing, 2022, 59, 164-183.	2.4	15
656	Global long-term mapping of surface temperature shows intensified intra-city urban heat island extremes. Global Environmental Change, 2022, 72, 102441.	3.6	34
657	Analysis of Co-Pyrolysis of Wood Sawdust and Peanut Shell Mixtures as a Renewable Energy Combination. SSRN Electronic Journal, 0, , .	0.4	0
658	Integrating satellite-based passive microwave and optically sensed observations to evaluating the spatio-temporal dynamics of vegetation health in the red soil regions of southern China. GIScience and Remote Sensing, 2022, 59, 215-233.	2.4	4
659	Climate, CO2, and Anthropogenic Drivers of Accelerated Vegetation Greening in the Haihe River Basin. Remote Sensing, 2022, 14, 268.	1.8	9
660	Spatial Heterogeneity of Driving Factors of Wind Erosion Prevention Services in Northern China by Large-Scale Human Land-Use Management. Land, 2022, 11, 111.	1.2	2
661	Feasible carbonâ€trade model for lowâ€carbon density ecosystem. Journal of Applied Ecology, 2022, 59, 1086-1097.	1.9	2

#	Article	IF	CITATIONS
662	The global carbon sink potential of terrestrial vegetation can be increased substantially by optimal land management. Communications Earth & Environment, 2022, 3, .	2.6	65
663	Effect of Vegetation Seasonal Cycle Alterations to Aerosol Dry Deposition on Pm2.5 Concentrations in China. SSRN Electronic Journal, 0, , .	0.4	O
664	Satellite evidence of canopy-height dependence of forest drought resistance in southwestern China. Environmental Research Letters, 2022, 17, 025005.	2.2	5
666	Dynamic Landscape Fragmentation and the Driving Forces on Haitan Island, China. Land, 2022, 11, 136.	1.2	10
667	Reasons to rename the UNCCD: Review of transformation of the political concept through the influence of science. Environment, Development and Sustainability, 2023, 25, 2058-2078.	2.7	4
668	Qinghai-Tibetan Plateau Greening and Human Well-Being Improving: The Role of Ecological Policies. Sustainability, 2022, 14, 1652.	1.6	10
669	Ancient introgression underlying the unusual mitoâ€nuclear discordance and coat phenotypic variation in the Moupin pika. Diversity and Distributions, 2022, 28, 2593-2609.	1.9	4
670	Have China's national forest reserves designated since 1990 conserved forests effectively?. Journal of Environmental Management, 2022, 306, 114485.	3.8	11
671	The role of climate change and vegetation greening on evapotranspiration variation in the Yellow River Basin, China. Agricultural and Forest Meteorology, 2022, 316, 108842.	1.9	54
672	Large discrepancies of global greening: Indication of multi-source remote sensing data. Global Ecology and Conservation, 2022, 34, e02016.	1.0	13
673	Greening the city: Thriving for biodiversity and sustainability. Science of the Total Environment, 2022, 817, 153032.	3.9	25
674	Inter-comparisons of mean, trend and interannual variability of global terrestrial gross primary production retrieved from remote sensing approach. Science of the Total Environment, 2022, 822, 153343.	3.9	12
675	A data-driven estimate of litterfall and forest carbon turnover and the drivers of their inter-annual variabilities in forest ecosystems across China. Science of the Total Environment, 2022, 821, 153341.	3.9	4
676	Quantitatively Assessing the Impact of Driving Factors on Vegetation Cover Change in China's 32 Major Cities. Remote Sensing, 2022, 14, 839.	1.8	10
677	Climate Rather Than Vegetation Changes Dominate Changes in Effective Vegetation Available Water Capacity. Water Resources Research, 2022, 58, .	1.7	11
678	Widespread decline in winds promoted the growth of vegetation. Science of the Total Environment, 2022, 825, 153682.	3.9	19
679	Exploring the Ecological Climate Effects Based on Five Land Use Types: A Case Study of the Huang-Huai-Hai River Basin in China. Land, 2022, 11, 265.	1.2	5
680	Spatio-Temporal Change of Multiple Ecosystem Services and Their Driving Factors: A Case Study in Beijing, China. Forests, 2022, 13, 260.	0.9	9

#	Article	IF	CITATIONS
681	Lithologic control of microbial-derived carbon in forest soils. Soil Biology and Biochemistry, 2022, 167, 108600.	4.2	18
682	A large but transient carbon sink from urbanization and rural depopulation in China. Nature Sustainability, 2022, 5, 321-328.	11.5	130
683	Effects of Afforestation Projects on Tradeoffs between Ecosystem Services: A Case Study of the Guanting Reservoir Basin, China. Forests, 2022, 13, 232.	0.9	6
684	Large-scale forest conservation and restoration programs significantly contributed to land surface greening in China. Environmental Research Letters, 2022, 17, 024023.	2.2	8
685	Variability, Trend, and Extremes of the South American Vegetationâ€Climate System: Results From a Coupled Regional Model. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	0
686	NDVI-based ecological dynamics of forest vegetation and its relationship to climate change in Romania during 1987–2018. Ecological Indicators, 2022, 136, 108629.	2.6	41
687	Growing-season vegetation coverage patterns and driving factors in the China-Myanmar Economic Corridor based on Google Earth Engine and geographic detector. Ecological Indicators, 2022, 136, 108620.	2.6	36
688	Optimization of stand structure in Robinia pseudoacacia Linn. based on soil and water conservation improvement function. Ecological Indicators, 2022, 136, 108671.	2.6	7
689	Quantifying Influences of Natural and Anthropogenic Factors on Vegetation Changes Based on Geodetector: A Case Study in the Poyang Lake Basin, China. Remote Sensing, 2021, 13, 5081.	1.8	32
690	Analysis on Land-Use Change and Its Driving Mechanism in Xilingol, China, during 2000–2020 Using the Google Earth Engine. Remote Sensing, 2021, 13, 5134.	1.8	27
692	Quantifying the Influence of Climate Variability on Vegetation Variation from the Perspective of Vegetation Resilience in China. SSRN Electronic Journal, 0, , .	0.4	0
693	å§å…´å®‰å²æž—è‰äº∉"™å¸¦è‰åœ°é€€åŒ−æˆå›åˆ†æžåŠå…¶åº"对对ç−. Scientia Sinica Vitae, 2022, , .	0.1	0
694	Hydrological feedback from projected Earth greening in the 21st century., 2022, 1, 100007.		12
695	Warming, increase in precipitation, and irrigation enhance greening in High Mountain Asia. Communications Earth & Environment, 2022, 3, .	2.6	15
696	The Increasing Role of Vegetation Transpiration in Soil Moisture Loss across China under Global Warming. Journal of Hydrometeorology, 2022, 23, 253-274.	0.7	10
697	Where Anthropogenic Activity Occurs, Anthropogenic Activity Dominates Vegetation Net Primary Productivity Change. Remote Sensing, 2022, 14, 1092.	1.8	12
698	Asynchronized erosion effects due to climate and human activities on the central Chinese Loess Plateau during the Anthropocene and its implications for future soil and water management. Earth Surface Processes and Landforms, 2022, 47, 1238-1251.	1.2	1
699	Remote Sensing of Ecosystem Water Use Efficiency in Different Ecozones of the North China Plain. Sustainability, 2022, 14, 2526.	1.6	2

#	Article	IF	Citations
700	Human ignitions on private lands drive USFS cross-boundary wildfire transmission and community impacts in the western US. Scientific Reports, 2022, 12, 2624.	1.6	18
701	Enhanced summertime ozone and SOA from biogenic volatile organic compound (BVOC) emissions due to vegetation biomass variability during 1981–2018 in China. Atmospheric Chemistry and Physics, 2022, 22, 2351-2364.	1.9	41
702	Dynamic Dust Source Regions and the Associated Natural and Anthropogenic Dust Emissions at the Global Scale. Frontiers in Earth Science, 2022, 10, .	0.8	0
703	Land cover change and multiple remotely sensed datasets consistency in China. Ecosystem Health and Sustainability, 2022, 8, .	1.5	11
704	Calibration and Validation of SWAT Model by Using Hydrological Remote Sensing Observables in the Lake Chad Basin. Remote Sensing, 2022, 14, 1511.	1.8	21
705	Estimation of China's terrestrial ecosystem carbon sink: Methods, progress and prospects. Science China Earth Sciences, 2022, 65, 641-651.	2.3	155
707	Assessing Landsat-8 and Sentinel-2 spectral-temporal features for mapping tree species of northern plantation forests in Heilongjiang Province, China. Forest Ecosystems, 2022, 9, 100032.	1.3	10
708	Human activities modulate greening patterns: a case study for southern Xinjiang in China based on long time series analysis. Environmental Research Letters, 2022, 17, 044012.	2.2	8
709	Land Cover and Land Use Mapping of the East Asian Summer Monsoon Region from 1982 to 2015. Land, 2022, 11, 391.	1.2	6
710	Estimation of China's Contribution to Global Greening over the Past Three Decades. Land, 2022, 11, 393.	1.2	1
711	Ecosystem Service Values in the Dongting Lake Eco-Economic Zone and the Synergistic Impact of Its Driving Factors. International Journal of Environmental Research and Public Health, 2022, 19, 3121.	1.2	8
712	Land Management Contributes significantly to observed Vegetation Browning in Syria during 2001–2018. Biogeosciences, 2022, 19, 1515-1525.	1.3	6
713	Change Trend and Restoration Potential of Vegetation Net Primary Productivity in China over the Past 20 Years. Remote Sensing, 2022, 14, 1634.	1.8	16
714	Photosynthetic trends in India derived from remote sensing measurements during 2000–2019: vegetation dynamics and key climate drivers. Geocarto International, 2022, 37, 11813-11829.	1.7	6
715	Water Erosion and Its Controlling Factors in the Anthropocene., 2022,, 82-109.		0
716	CO ₂ fertilization of terrestrial photosynthesis inferred from site to global scales. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2115627119.	3.3	51
717	Satellite observed vegetation dynamics and drivers in the Namib sand sea over the recent 20 years. Ecohydrology, 2022, 15, .	1.1	2
718	1 km land use/land cover change of China under comprehensive socioeconomic and climate scenarios for 2020–2100. Scientific Data, 2022, 9, 110.	2.4	19

#	Article	IF	CITATIONS
719	Improved Water Savings and Reduction in Moist Heat Stress Caused by Efficient Irrigation. Earth's Future, 2022, 10 , .	2.4	8
720	Response of Vegetation Phenology to the Interaction of Temperature and Precipitation Changes in Qilian Mountains. Remote Sensing, 2022, 14, 1248.	1.8	22
721	Vegetation-related dry deposition of global PM2.5 from satellite observations. Journal of Chinese Geography, 2022, 32, 589-604.	1.5	5
722	Vegetation dynamics in response to climate change and human activities in the Hulun Lake basin from 1981 to 2019. Ecological Indicators, 2022, 136, 108700.	2.6	20
723	The trend shift caused by ecological restoration accelerates the vegetation greening of China's drylands since the 1980s. Environmental Research Letters, 2022, 17, 044062.	2.2	17
724	Spatial Variations in Vegetation Greening in 439 Chinese Cities From 2001 to 2020 Based on Moderate Resolution Imaging Spectroradiometer Enhanced Vegetation Index Data. Frontiers in Ecology and Evolution, 2022, 10, .	1.1	5
725	Groundwater Variability Across India, Under Contrasting Human and Natural Conditions. Earth's Future, 2022, 10, .	2.4	4
726	Increasing Tibetan Plateau terrestrial evapotranspiration primarily driven by precipitation. Agricultural and Forest Meteorology, 2022, 317, 108887.	1.9	88
727	Effects of Vegetation Changes and Multiple Environmental Factors on Evapotranspiration Across China Over the Past 34ÂYears. Earth's Future, 2022, 10, .	2.4	22
728	Impacts of Land Use Changes on Net Primary Productivity in Urban Agglomerations under Multi-Scenarios Simulation. Remote Sensing, 2022, 14, 1755.	1.8	30
729	Examining Vegetation Change and Associated Spatial Patterns in Wuyishan National Park at Different Protection Levels. Remote Sensing, 2022, 14, 1712.	1.8	9
730	Patterns and causes of winter wheat and summer maize rotation area change over the North China Plain. Environmental Research Letters, 2022, 17, 044056.	2.2	4
731	Ecosystem services trade-offs and synergies in China, 2000–2015. International Journal of Environmental Science and Technology, 2023, 20, 3221-3236.	1.8	10
733	Deep learning projects future warming-induced vegetation growth changes under SSP scenarios. Advances in Climate Change Research, 2022, 13, 251-257.	2.1	9
734	Spatiotemporal evolution and driving mechanisms of vegetation in the Yellow River Basin, China during 2000–2020. Ecological Indicators, 2022, 138, 108832.	2.6	46
735	Impacts of mixed forests on controlling soil erosion in China. Catena, 2022, 213, 106147.	2.2	14
736	Dense canopies browning overshadowed by global greening dominant in sparse canopies. Science of the Total Environment, 2022, 826, 154222.	3.9	9
737	A nature-based solution in forest management to improve ecosystem services and mitigate their trade-offs. Journal of Cleaner Production, 2022, 351, 131557.	4.6	23

#	Article	IF	CITATIONS
738	Assessment of ecological restoration projects under water limits: Finding a balance between nature and human needs. Journal of Environmental Management, 2022, 311, 114849.	3.8	14
739	Distribution of ecological restoration projects associated with land use and land cover change in China and their ecological impacts. Science of the Total Environment, 2022, 825, 153938.	3.9	56
740	Synergistic effects of biogenic volatile organic compounds and soil nitric oxide emissions on summertime ozone formation in China. Science of the Total Environment, 2022, 828, 154218.	3.9	8
741	Interactive influences of meteorological and socioeconomic factors on ecosystem service values in a river basin with different geomorphic features. Science of the Total Environment, 2022, 829, 154595.	3.9	44
742	Effect of vegetation seasonal cycle alterations to aerosol dry deposition on PM2.5 concentrations in China. Science of the Total Environment, 2022, 828, 154211.	3.9	7
743	Pixel-scale historical-baseline-based ecological quality: Measuring impacts from climate change and human activities from 2000 to 2018 in China. Journal of Environmental Management, 2022, 313, 114944.	3.8	17
744	Analysis on Natural Runoff Effect of NDVI Change in the Yongding River Mountain Area From 1982 to $2015., 2021,,$		0
745	Quantifying the impacts of land cover change on hydrological responses in the Mahanadi river basin in India. Hydrology and Earth System Sciences, 2021, 25, 6339-6357.	1.9	9
746	Variation of Soil Organic Carbon Density with Plantation Age and Initial Vegetation Types in the Liupan Mountains Areas of Northwest China. Forests, 2021, 12, 1811.	0.9	2
747	Examining the efficacy of revegetation practices in ecosystem restoration programs: insights from a hotspot of sandstorm in northern China. Frontiers of Earth Science, 2021, 15, 922-935.	0.9	1
748	Increasing collaboration between China and India in the environmental sciences to foster global sustainability. Ambio, 2022, 51, 1474-1484.	2.8	7
7 50	Spatiotemporal patterns of vegetation conversion under the Grain for Green Program in southwest China. Conservation Science and Practice, 2022, 4, .	0.9	3
751	Land Use Effects on Climate: Current State, Recent Progress, and Emerging Topics. Current Climate Change Reports, 2021, 7, 99-120.	2.8	51
753	Integrated livestock sector nitrogen pollution abatement measures could generate net benefits for human and ecosystem health in China. Nature Food, 2022, 3, 161-168.	6.2	39
754	Quantitative contribution of the Grain for Green Program to vegetation greening and its spatiotemporal variation across the Chinese Loess Plateau. Land Degradation and Development, 2022, 33, 1878-1891.	1.8	12
755	ä¸å›½é™†åœ°ç"Ÿæ€ç³»ç»Ÿç¢³æ±‡ä¼°ç®— <bold>: </bold> æ−¹æ³• <bold>ã€</bold> 进展 <bold>ã€&a SCIENTIA SINICA Terrae, 2022, 52, 1010-1020.</bold>	mp dt ‡/bold	l&æmp;gt;åæ
756	Influence of spring Arctic sea ice melt on Eurasian surface air temperature. Climate Dynamics, 2022, 59, 3305-3316.	1.7	4
757	Large scale rocky desertification reversal in South China karst. Progress in Physical Geography, 2022, 46, 661-675.	1.4	17

#	Article	IF	CITATIONS
758	Diverse responses of vegetation phenology to changes in temperature and precipitation in Northern China. Geocarto International, 2022, 37, 12561-12579.	1.7	2
7 59	Greening and browning trends in a tropical forest hotspot: Accounting for fragment size and vegetation indices. Remote Sensing Applications: Society and Environment, 2022, 26, 100751.	0.8	2
760	Eco-compensation in China: achievement, experience, and improvement. Environmental Science and Pollution Research, 2022, 29, 60867-60884.	2.7	3
761	Global and Regional Trends and Drivers of Fire Under Climate Change. Reviews of Geophysics, 2022, 60,	9.0	182
762	Characteristics and trends of rainstorm activities and their impacts on seasonal vegetation variations in coastal China. Ecological Indicators, 2022, 138, 108851.	2.6	5
763	Variations in water-balance components and carbon stocks in poplar plantations with differing water inputs over a whole rotation: implications for sustainable forest management under climate change. Agricultural and Forest Meteorology, 2022, 320, 108958.	1.9	14
764	Spatiotemporal variations in evapotranspiration and its influencing factors in the semiarid Hailar river basin, Northern China. Environmental Research, 2022, 212, 113275.	3.7	7
766	Drought and water-use efficiency are dominant environmental factors affecting greenness in the Yellow River Basin, China. Science of the Total Environment, 2022, 834, 155479.	3.9	15
768	An ecological alliance against air pollution and cardiovascular disease., 2022, 1, 19-23.		0
769	Vegetation Dynamics and its Response to Climate Change in the Yellow River Basin, China. Frontiers in Environmental Science, 2022, 10, .	1.5	9
770	Projections of the Net Primary Production of Terrestrial Ecosystem and Spatiotemporal Responses to Climate Change in the Yangtze River Economic Belt. Diversity, 2022, 14, 327.	0.7	2
771	Revegetation Does Not Decrease Water Yield in the Loess Plateau of China. Geophysical Research Letters, 2022, 49, .	1.5	42
772	Water Uptake Pattern by Coniferous Forests in Two Habitats Linked to Precipitation Changes in Subtropical Monsoon Climate Region, China. Forests, 2022, 13, 708.	0.9	1
773	A Geometric-Based LSGDM Method for Tourism Project Decision Optimization with Trust–Distrust Relationships. Entropy, 2022, 24, 588.	1.1	1
774	Planted forest is catching up with natural forest in China in terms of carbon density and carbon storage. Fundamental Research, 2022, 2, 688-696.	1.6	12
775	Vegetation change enhanced the positive global surface radiation budget. Advances in Space Research, 2022, 70, 324-335.	1.2	2
776	Spatial–temporal dynamics and recovery mechanisms of dried soil layers under <i>Robinia pseudoacacia</i> forest based on inâ€situ field data from 2017 to 2020. Land Degradation and Development, 2022, 33, 2500-2511.	1.8	3
777	The Carbon Neutral Potential of Forests in the Yangtze River Economic Belt of China. Forests, 2022, 13, 721.	0.9	3

#	Article	IF	Citations
778	Human activities have markedly altered the pattern and trend of net primary production in the Ili River basin of Northwest China under current climate change. Land Degradation and Development, 2022, 33, 2585-2595.	1.8	4
779	Phylotype diversity within soil fungal functional groups drives ecosystem stability. Nature Ecology and Evolution, 2022, 6, 900-909.	3.4	75
780	Zoning of precipitation regimes on the Qinghai–Tibet Plateau and its surrounding areas responded by the vegetation distribution. Science of the Total Environment, 2022, 838, 155844.	3.9	11
781	CO ₂ fertilization is spatially distinct from stomatal conductance reduction in controlling ecosystem water-use efficiency increase. Environmental Research Letters, 2022, 17, 054048.	2.2	10
782	Dynamic Simulation of Land Use/Cover Change and Assessment of Forest Ecosystem Carbon Storage under Climate Change Scenarios in Guangdong Province, China. Remote Sensing, 2022, 14, 2330.	1.8	46
783	Trends in land surface temperature and its drivers over the High Mountain Asia. Egyptian Journal of Remote Sensing and Space Science, 2022, 25, 717-729.	1.1	10
784	Land-Use Conversion Altered Topsoil Properties and Stoichiometry in a Reclaimed Coastal Agroforestry System. Agronomy, 2022, 12, 1143.	1.3	4
785	Climate warming outweighs vegetation greening in intensifying flash droughts over China. Environmental Research Letters, 2022, 17, 054041.	2.2	12
786	Warm–Wet Climate Trend Enhances Net Primary Production of the Main Ecosystems in China during 2000–2021. Atmosphere, 2022, 13, 738.	1.0	3
787	How Eco-Efficiency Is the Forestry Ecological Restoration Program? The Case of the Sloping Land Conversion Program in the Loess Plateau, China. Land, 2022, 11, 712.	1.2	6
788	Social-ecological system changes in China from 1990 to 2018. Ecological Indicators, 2022, 139, 108926.	2.6	4
789	How to Balance Green and Grain in Marginal Mountainous Areas?. Earth's Future, 2022, 10, .	2.4	15
790	Green manufacturing of silicate materials using desert sand as a raw-material resource. Construction and Building Materials, 2022, 338, 127539.	3.2	15
791	Straw checkboard or Afforestation?â€"Assessment and comparison of combined benefits of two typical sand fixing models. Journal of Cleaner Production, 2022, 358, 131924.	4.6	7
792	Assessment of the effects of ecological restoration projects on soil wind erosion in northern China in the past two decades. Catena, 2022, 215, 106360.	2.2	28
793	Ecosystem service evaluation and optimisation in the Shule River Basin, China. Catena, 2022, 215, 106320.	2.2	6
794	China's pathways to synchronize the emission reductions of air pollutants and greenhouse gases: Pros and cons. Resources, Conservation and Recycling, 2022, 184, 106392.	5.3	13
795	Land use and cover changes on the Loess Plateau: A comparison of six global or national land use and cover datasets. Land Use Policy, 2022, 119, 106165.	2.5	21

#	Article	IF	CITATIONS
796	Long-term observed evapotranspiration and its variation caused by anthropogenic controls in an ecofragile region. Agriculture, Ecosystems and Environment, 2022, 335, 108008.	2.5	3
797	Topography regulates the responses of water partitioning to climate and vegetation seasonality. Science of the Total Environment, 2022, 838, 156028.	3.9	3
798	Ecological Engineering Projects Shifted the Dominance of Human Activity and Climate Variability on Vegetation Dynamics. Remote Sensing, 2022, 14, 2386.	1.8	7
799	Carbon–water coupling and its relationship with environmental and biological factors in a planted <i>Caragana liouana</i> shrub community in desert steppe, northwest China. Journal of Plant Ecology, 2022, 15, 947-960.	1.2	3
800	Land Use/Cover Changes and Surface Temperature Dynamics Over Abaminus Watershed, Northwest Ethiopia. Air, Soil and Water Research, 2022, 15, 117862212210979.	1.2	5
801	Dynamic changes and transitions of agricultural landscape patterns in mountainous areas: A case study from the hinterland of the Three Gorges Reservoir Area. Journal of Chinese Geography, 2022, 32, 1039-1058.	1.5	18
802	Quality Assessment and Rehabilitation of Mountain Forest in the Chongli Winter Olympic Games Area, China. Forests, 2022, 13, 783.	0.9	4
803	Identifying the Impacts of Climate Change and Human Activities on Vegetation Cover Changes: A Case Study of the Yangtze River Basin, China. International Journal of Environmental Research and Public Health, 2022, 19, 6239.	1.2	6
804	Improved estimation of global gross primary productivity during 1981–2020 using the optimized P model. Science of the Total Environment, 2022, 838, 156172.	3.9	5
805	Identification of priority areas for afforestation in the Loess Plateau region of China. Ecological Indicators, 2022, 140, 108998.	2.6	12
806	The Potential for Carbon Sequestration by Afforestation Can Be Limited in Dryland River Basins Under the Pressure of High Human Activity. SSRN Electronic Journal, 0, , .	0.4	0
807	Spatio-temporal patterns of oasis dynamics in China's drylands between 1987 and 2017. Environmental Research Letters, 2022, 17, 064044.	2.2	11
808	Climate controls on evolution of grassland ecosystems since late Cenozoic: A phytolith perspective. Earth-Science Reviews, 2022, 231, 104059.	4.0	7
809	The Relative Roles of Climate Variation and Human Activities in Vegetation Dynamics in Coastal China from 2000 to 2019. Remote Sensing, 2022, 14, 2485.	1.8	6
810	Unraveling the Multiple Drivers of Greening-Browning and Leaf Area Variability in a Socioeconomically Sensitive Drought-Prone Region. Climate, 2022, 10, 70.	1.2	3
811	Is There Spatial Dependence or Spatial Heterogeneity in the Distribution of Vegetation Greening and Browning in Southeastern China?. Forests, 2022, 13, 840.	0.9	9
812	Bundling evaluating changes in ecosystem service under karst rocky desertification restoration: projects a case study of Huajiang-Guanling, Guizhou province, Southwest China. Environmental Earth Sciences, 2022, 81, .	1.3	5
813	Regional asymmetry in the response of global vegetation growth to springtime compound climate events. Communications Earth & Environment, 2022, 3, .	2.6	19

#	Article	IF	CITATIONS
814	Water Deficit May Cause Vegetation Browning in Central Asia. Remote Sensing, 2022, 14, 2574.	1.8	7
815	Attribution of NDVI Dynamics over the Globe from 1982 to 2015. Remote Sensing, 2022, 14, 2706.	1.8	11
816	Globally ubiquitous negative effects of nitrogen dioxide on crop growth. Science Advances, 2022, 8, .	4.7	21
817	Large contribution of woody plant expansion to recent vegetative greening of the Northern Great Plains. Journal of Biogeography, 2022, 49, 1443-1454.	1.4	3
818	Dynamics arising from the impact of largeâ€scale afforestation on ecosystem services. Land Degradation and Development, 2022, 33, 3186-3198.	1.8	8
819	Land Management Explains the Contrasting Greening Pattern Across Chinaâ€Russia Border Based on Paired Land Use Experiment Approach. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	1.3	3
820	Soil moisture regulates warming responses of autumn photosynthetic transition dates in subtropical forests. Global Change Biology, 2022, 28, 4935-4946.	4.2	13
821	Spatiotemporal changes and driving factors of vegetation in 14 different climatic regions in the global from 1981 to 2018. Environmental Science and Pollution Research, 2022, 29, 75322-75337.	2.7	4
822	Comparison of PM10 emission from co-combustion of Platanus orientalis leaf and wood in different seasons with coal. Fuel Processing Technology, 2022, 234, 107334.	3.7	3
823	Ecological Restoration Programs Dominate Vegetation Greening in China. SSRN Electronic Journal, 0, ,	0.4	0
825	Applying C:N ratio to assess the rationality of estimates of carbon sequestration in terrestrial ecosystems and nitrogen budgets. , 2022, 1 , .		11
826	Spatial and temporal dynamics of desertification and its driving mechanism in Hexi region. Land Degradation and Development, 2022, 33, 3539-3556.	1.8	12
827	Key Areas of Ecological Restoration in Inner Mongolia Based on Ecosystem Vulnerability and Ecosystem Service. Remote Sensing, 2022, 14, 2729.	1.8	13
828	A Study on the Vulnerability of the Gross Primary Production of Rubber Plantations to Regional Short-Term Flash Drought over Hainan Island. Forests, 2022, 13, 893.	0.9	4
829	Humanâ€Climate Coupled Changes in Vegetation Community Complexity of China Since 1980s. Earth's Future, 2022, 10, .	2.4	4
830	Separating climate change and vegetation dynamics contributions to soil drying over drylands of Chinaâ€A case study in the West Liao River basin. Ecohydrology, 0, , .	1.1	1
831	Vegetation Responses to Climate Change and Anthropogenic Activity in China, 1982 to 2018. International Journal of Environmental Research and Public Health, 2022, 19, 7391.	1.2	10
832	Temporal and Spatial Changes in Vegetation Ecological Quality and Driving Mechanism in Kökyar Project Area from 2000 to 2021. Sustainability, 2022, 14, 7668.	1.6	11

#	Article	IF	Citations
833	Land-use change emissions based on high-resolution activity data substantially lower than previously estimated. Environmental Research Letters, 2022, 17, 064050.	2.2	15
834	The Response of Radiative Forcing to High Spatiotemporally Resolved Landâ€Use Change and Transition From 1982 to 2010 in China. Geophysical Research Letters, 2022, 49, .	1.5	0
835	Effects of Human Activities on Urban Vegetation: Explorative Analysis of Spatial Characteristics and Potential Impact Factors. Remote Sensing, 2022, 14, 2999.	1.8	2
836	Climatic Niche of Vegetation Greenness Is Likely to Be Conservative in Degraded Land. Land, 2022, 11, 894.	1.2	1
837	Modeling Potential Impacts on Regional Climate Due to Land Surface Changes across Mongolia Plateau. Remote Sensing, 2022, 14, 2947.	1.8	5
838	Record-breaking dust loading during two mega dust storm events over northern China in March 2021: aerosol optical and radiative properties and meteorological drivers. Atmospheric Chemistry and Physics, 2022, 22, 7905-7932.	1.9	48
839	Increased Global Vegetation Productivity Despite Rising Atmospheric Dryness Over the Last Two Decades. Earth's Future, 2022, 10, .	2.4	32
840	Study on Eco-Environmental Effects of Land-Use Transitions and Their Influencing Factors in the Central and Southern Liaoning Urban Agglomeration: A Production–Living–Ecological Perspective. Land, 2022, 11, 937.	1.2	15
841	Ecosystem service supply–demand and socioecological drivers at different spatial scales in Zhejiang Province, China. Ecological Indicators, 2022, 140, 109058.	2.6	26
842	Estimating hydrological consequences of vegetation greening. Journal of Hydrology, 2022, 611, 128018.	2.3	18
843	Exploring the accuracy and completeness patterns of global land-cover/land-use data in OpenStreetMap. Applied Geography, 2022, 145, 102742.	1.7	17
844	Evaluating the impact of different normalization strategies on the construction of drought condition indices. Agricultural and Forest Meteorology, 2022, 323, 109045.	1.9	6
845	Quantifying the contributions of climate change and human activities to vegetation dynamic in China based on multiple indices. Science of the Total Environment, 2022, 838, 156553.	3.9	33
846	Assessment of vegetation change on the Mongolian Plateau over three decades using different remote sensing products. Journal of Environmental Management, 2022, 317, 115509.	3.8	20
847	Mega Asian dust event over China on 27–31 March 2021 observed with space-borne instruments and ground-based polarization lidar. Atmospheric Environment, 2022, 285, 119238.	1.9	18
848	Increased ecohydrological drying over terrestrial ecosystems. Atmospheric Research, 2022, 277, 106308.	1.8	0
849	Estimation and validation of 30Âm fractional vegetation cover over China through integrated use of Landsat 8 and Gaofen 2 data. Science of Remote Sensing, 2022, 6, 100058.	2.2	12
850	Watershed-Based Management for Sustainable Freshwater Resources. Encyclopedia of the UN Sustainable Development Goals, 2022, , 1007-1018.	0.0	0

#	Article	IF	CITATIONS
851	Next Generation Application of Dpsir for Sustainable Policy Implementation. SSRN Electronic Journal, $0, , .$	0.4	0
852	Hydrological implications of large-scale afforestation in tropical biomes for climate change mitigation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, .	1.8	12
853	Climate drivers of the variations of vegetation productivity in India. Environmental Research Letters, 2022, 17, 084023.	2.2	10
854	Natural forest growth and human induced ecosystem disturbance influence water yield in forests. Communications Earth & Environment, 2022, 3, .	2.6	2
855	Reforestation in Southern China Enhances the Convective Afternoon Rainfall During the Post-flood Season. Frontiers in Environmental Science, 0, 10 , .	1.5	2
856	Shrubification along Pipeline Corridors in Permafrost Regions. Forests, 2022, 13, 1093.	0.9	1
857	Spatio-Temporal Evolution of Sandy Land and its Impact on Soil Wind Erosion in the Kubuqi Desert in Recent 30ÂYears. Frontiers in Environmental Science, 0, 10, .	1.5	1
858	Contrasting Trends in Water Use Efficiency of the Alpine Grassland in Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	12
859	Measuring the control of landscape modifications on surface temperature in India. Geocarto International, 2024, 37, 15736-15753.	1.7	4
860	Interactions of Environmental Variables and Water Use Efficiency in the Matopiba Region via Multivariate Analysis. Sustainability, 2022, 14, 8758.	1.6	3
861	Divergent trends of ecosystemâ€scale photosynthetic efficiency between arid and humid lands across the globe. Global Ecology and Biogeography, 2022, 31, 1824-1837.	2.7	10
862	Human activities changed organic carbon transport in Chinese rivers during 2004-2018. Water Research, 2022, 222, 118872.	5.3	13
863	Contributions of Climatic and Anthropogenic Drivers to Net Primary Productivity of Vegetation in the Mongolian Plateau. Remote Sensing, 2022, 14, 3383.	1.8	13
864	Biophysical impacts of northern vegetation changes on seasonal warming patterns. Nature Communications, 2022, 13, .	5.8	26
865	Untangling the effects of climate change and land use/cover change on spatiotemporal variation of evapotranspiration over China. Journal of Hydrology, 2022, 612, 128189.	2.3	16
866	Impacts of Changes in Land Use and Land Cover Between 2001 and 2018 on Summertime O ₃ Formation in North China Plain and Surrounding Areas–A Case Study. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	4
867	Temporal Variation of Soil Moisture and Its Influencing Factors in Karst Areas of Southwest China from 1982 to 2015. Water (Switzerland), 2022, 14, 2185.	1.2	4
868	Evolution and Climate Drivers of NDVI of Natural Vegetation during the Growing Season in the Arid Region of Northwest China. Forests, 2022, 13, 1082.	0.9	5

#	Article	IF	CITATIONS
869	Influence of Anthropogenic Activities and Major Natural Factors on Vegetation Changes in Global Alpine Regions. Land, 2022, 11, 1084.	1.2	0
870	Quantitative Analysis of Natural and Anthropogenic Factors Influencing Vegetation NDVI Changes in Temperate Drylands from a Spatial Stratified Heterogeneity Perspective: A Case Study of Inner Mongolia Grasslands, China. Remote Sensing, 2022, 14, 3320.	1.8	16
871	Dryness controls temperature-optimized gross primary productivity across vegetation types. Agricultural and Forest Meteorology, 2022, 323, 109073.	1.9	3
872	Predicting land change trends and water consumption in typical arid regions using multi-models and multiple perspectives. Ecological Indicators, 2022, 141, 109110.	2.6	7
873	Compound events and associated impacts in China. IScience, 2022, 25, 104689.	1.9	22
874	Impact of climatic changes and anthropogenic activities on ecosystem net primary productivity in India during 2001–2019. Ecological Informatics, 2022, 70, 101732.	2.3	16
875	Impacts of climate change and human activities on vegetation NDVI in China's Mu Us Sandy Land during 2000–2019. Ecological Indicators, 2022, 142, 109164.	2.6	33
876	Population-environment dynamics across world's top 100 urban agglomerations: With implications for transitioning toward global urban sustainability. Journal of Environmental Management, 2022, 319, 115630.	3.8	11
877	Vegetation cover changes in China induced by ecological restoration-protection projects and land-use changes from 2000 to 2020. Catena, 2022, 217, 106530.	2.2	45
878	Interannual trends of vegetation and responses to climate change and human activities in the Great Mekong Subregion. Global Ecology and Conservation, 2022, 38, e02215.	1.0	4
879	Impacts of urban expansion on natural habitats in global drylands. Nature Sustainability, 2022, 5, 869-878.	11.5	57
880	Spatiotemporal Heterogeneity Monitoring of Cropland Evolution and Its Impact on Grain Production Changes in the Southern Sanjiang Plain of Northeast China. Land, 2022, 11, 1159.	1.2	0
881	Evolution Modes, Types, and Social-Ecological Drivers of Ecologically Critical Areas in the Sichuan–Yunnan Ecological Barrier in the Last 15 Years. International Journal of Environmental Research and Public Health, 2022, 19, 9206.	1.2	3
882	Changes in and Patterns of the Tradeoffs and Synergies of Production-Living-Ecological Space: A Case Study of Longli County, Guizhou Province, China. Sustainability, 2022, 14, 8910.	1.6	15
883	Contrasting Forest Loss and Gain Patterns in Subtropical China Detected Using an Integrated LandTrendr and Machine-Learning Method. Remote Sensing, 2022, 14, 3238.	1.8	7
884	Global Pattern of Ecosystem Respiration Tendencies and Its Implications on Terrestrial Carbon Sink Potential. Earth's Future, 2022, 10, .	2.4	5
885	Dryland mechanisms could widely control ecosystem functioning in a drier and warmer world. Nature Ecology and Evolution, 2022, 6, 1064-1076.	3.4	28
886	Divergent dynamics between grassland greenness and gross primary productivity across China. Ecological Indicators, 2022, 142, 109100.	2.6	5

#	Article	IF	Citations
887	Multi-faceted analyses of seasonal trends and drivers of land surface variables in Indo-Gangetic river basins. Science of the Total Environment, 2022, 847, 157515.	3.9	4
888	Variation of soil organic carbon and bulk density during afforestation regulates soil hydraulic properties. Journal of Mountain Science, 2022, 19, 2322-2332.	0.8	1
889	A long-term reconstructed TROPOMI solar-induced fluorescence dataset using machine learning algorithms. Scientific Data, 2022, 9, .	2.4	17
890	Quantifying Vegetation Vulnerability to Climate Variability in China. Remote Sensing, 2022, 14, 3491.	1.8	3
891	The Spatial and Temporal Evolution of Ecological Environment Quality in Karst Ecologically Fragile Areas Driven by Poverty Alleviation Resettlement. Land, 2022, 11, 1150.	1.2	5
892	The contribution of human activities to runoff and sediment changes in the Mang River basin of the Loess Plateau, China. Land Degradation and Development, 2023, 34, 28-41.	1.8	4
893	Temporal Changes in Land Use, Vegetation, and Productivity in Southwest China. Land, 2022, 11, 1331.	1.2	2
894	Analysis of the Spatial Adaptability of Gross Ecosystem Production, Gross Domestic Production, and Population Density in Chinese Mainland. Land, 2022, 11, 1295.	1.2	2
895	Variation in Vegetation and Its Driving Force in the Pearl River Delta Region of China. International Journal of Environmental Research and Public Health, 2022, 19, 10343.	1.2	7
896	Wind-proof and sand-fixing effects of Artemisia ordosica with different coverages in the Mu Us Sandy Land, northern China. Journal of Arid Land, 2022, 14, 877-893.	0.9	2
897	Association of winter vegetation activity across the indo-gangetic plain with the subsequent Indian summer monsoon rainfall. Climate Dynamics, 0, , .	1.7	1
898	Profoundly entwined ecosystem services, land-use change and human well-being into sustainability management in Yushu, Qinghai-Tibet Plateau. Journal of Chinese Geography, 2022, 32, 1745-1765.	1.5	9
899	The Impact of Fine Particulate Matter 2.5 on the Cardiovascular System: A Review of the Invisible Killer. Nanomaterials, 2022, 12, 2656.	1.9	24
900	Linear and Non-Linear Vegetation Trend Analysis throughout Iran Using Two Decades of MODIS NDVI Imagery. Remote Sensing, 2022, 14, 3683.	1.8	23
901	Spatio-Temporal Changes in Vegetation in the Last Two Decades (2001–2020) in the Beijing–Tianjin–Hebei Region. Remote Sensing, 2022, 14, 3958.	1.8	5
902	Largeâ€Scale Afforestation Enhances Precipitation by Intensifying the Atmospheric Water Cycle Over the Chinese Loess Plateau. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	19
903	Spatiotemporal Patterns and Drivers of the Carbon Budget in the Yangtze River Delta Region, China. Land, 2022, 11, 1230.	1.2	1
904	Possible future movement of the Hu line based on IPCC CMIP6 scenarios. Environmental Research Communications, 2022, 4, 095008.	0.9	1

#	ARTICLE	IF	CITATIONS
905	Comparison of the influences of vegetation stem parameters on hydraulic variables and sediment transport capacity. International Soil and Water Conservation Research, 2022, , .	3.0	1
906	Spatiotemporal pattern of global forest change over the past 60 years and the forest transition theory. Environmental Research Letters, 2022, 17, 084022.	2.2	21
907	气候åãŒ−下陆地产氧é‡åãŒ−. SCIENTIA SINICA Terrae, 2022, 52, 2166-2180.	0.1	1
908	Nonlinear Thermal Responses Outweigh Water Limitation in the Attenuated Effect of Climatic Warming on Photosynthesis in Northern Ecosystems. Geophysical Research Letters, 2022, 49, .	1.5	5
909	Vegetation Dynamics under Rapid Urbanization in the Guangdong–Hong Kong–Macao Greater Bay Area Urban Agglomeration during the Past Two Decades. Remote Sensing, 2022, 14, 3993.	1.8	7
910	Variations in terrestrial oxygen sources under climate change. Science China Earth Sciences, 2022, 65, 1810-1823.	2.3	4
911	Effects of the Gully Land Consolidation Project on Runoff and Peak Flow Rate on the Loess Plateau, China. Water (Switzerland), 2022, 14, 2582.	1.2	1
912	Causes for the increases in both evapotranspiration and water yield over vegetated mainland China during the last two decades. Agricultural and Forest Meteorology, 2022, 324, 109118.	1.9	20
913	A review of the relationship between China's key forestry ecology projects and carbon market under carbon neutrality. Trees, Forests and People, 2022, 9, 100311.	0.8	4
914	Converted vegetation type regulates the vegetation greening effects on land surface albedo in arid regions of China. Agricultural and Forest Meteorology, 2022, 324, 109119.	1.9	15
915	Hidden challenges behind ecosystem services improvement claims. IScience, 2022, 25, 104928.	1.9	4
916	Spatiotemporal evolution of urban-agricultural-ecological space in China and its driving mechanism. Journal of Cleaner Production, 2022, 371, 133684.	4.6	12
917	Evolution of the freshwater provisioning services under climate change and vegetation restoration influences. Ecological Indicators, 2022, 143, 109362.	2.6	2
918	Asymmetric daytime and nighttime surface temperature feedback induced by crop greening across Northeast China. Agricultural and Forest Meteorology, 2022, 325, 109136.	1.9	15
919	Evaluation and simulation of landscape evolution and its ecological effects under vegetation restoration in the northern sand prevention belt, China. Catena, 2022, 218, 106555.	2.2	22
920	Ecological restoration programs dominate vegetation greening in China. Science of the Total Environment, 2022, 848, 157729.	3.9	52
921	Expanding vegetated areas by human activities and strengthening vegetation growth concurrently explain the greening of Seoul. Landscape and Urban Planning, 2022, 227, 104518.	3.4	19
922	Optimization of management by analyzing ecosystem service value variations in different watersheds in the Three-River Headwaters Basin. Journal of Environmental Management, 2022, 321, 115956.	3.8	15

#	Article	IF	CITATIONS
923	An Analysis of Spatio-Temporal Relationship between Satellite-Based Land Surface Temperature and Station-Based Near-Surface Air Temperature over Brazil. Remote Sensing, 2022, 14, 4420.	1.8	5
924	China's sustainable development evolution and its driving mechanism. Ecological Indicators, 2022, 143, 109390.	2.6	4
925	Quantifying the effect of vegetation greening on evapotranspiration and its components on the Loess Plateau. Journal of Hydrology, 2022, 613, 128446.	2.3	11
926	Does large-scale ecological restoration threaten food security in China? A moderated mediation model. Ecological Indicators, 2022, 143, 109372.	2.6	9
927	Is ecological vulnerability assessment based on the VSD model and AHP-Entropy method useful for loessial forest landscape protection and adaptative management? A case study of Ziwuling Mountain Region, China. Ecological Indicators, 2022, 143, 109379.	2.6	23
928	Effects of satellite LAI data on modelling land surface temperature and related energy budget in the Noah-MP land surface model. Journal of Hydrology, 2022, 613, 128351.	2.3	2
929	Evaluating the future terrestrial ecosystem contributions to carbon neutrality in Qinghai-Tibet Plateau. Journal of Cleaner Production, 2022, 374, 133914.	4.6	9
930	Spatiotemporal dynamics and driving factors of county-level carbon storage in the Loess Plateau: A case study in Qingcheng County, China. Ecological Indicators, 2022, 144, 109460.	2.6	10
931	Sustained vegetation greening enhanced ecosystem water-use efficiency in the Loess Plateau of China in recent 20Ayears. Ecological Engineering, 2022, 184, 106768.	1.6	13
932	Changes in summer biogenic volatile organic compound emission and secondary organic aerosols over the 2001–2018 period over China: Roles of leaf biomass, meteorology, and anthropogenic emission variability. Atmospheric Research, 2022, 280, 106450.	1.8	3
933	Basin management inspiration from impacts of alternating dry and wet conditions on water production and carbon uptake in Murray-Darling Basin. Science of the Total Environment, 2022, 851, 158359.	3.9	3
934	Responses of vegetation to changes in terrestrial water storage and temperature in global mountainous regions. Science of the Total Environment, 2022, 851, 158416.	3.9	10
935	Continuous monitoring of nighttime light changes based on daily NASA's Black Marble product suite. Remote Sensing of Environment, 2022, 282, 113269.	4.6	14
936	Soil-Moisture-Dependent Nocturnal Water Use Strategy and its Responses to Meteorological Factors in a Seasonal-Arid Poplar Plantation. SSRN Electronic Journal, 0, , .	0.4	0
937	A mid-20 th century inventory-based estimate of global terrestrial vegetation carbon stocks. Journal of Land Use Science, 2022, 17, 429-453.	1.0	1
938	A 21-Year Time Series of Global Leaf Chlorophyll Content Maps From MODIS Imagery. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-13.	2.7	9
939	Evapotranspiration., 2022,,.		0
940	Early-middleÂHoloceneÂenvironmentÂevolutionÂinÂtheÂhinterlandÂofÂtheÂBadainÂJaranÂDesert:ÂAÂmuti-pro SSRN Electronic Journal, 0, , .	xyÂreçons 0.4	tructionÂonÂ

#	Article	IF	CITATIONS
941	Estimation of Fractional Plant Lifeform Cover for the Conterminous United States Using Landsat Imagery and Airborne LiDAR. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-14.	2.7	2
942	Geographic variation in growth and wood traits of <i>Neolamarckia cadamba</i> in China. Forestry Research, 2022, 2, 0-0.	0.5	1
943	The impact of the armed conflict in Afghanistan on vegetation dynamics. Science of the Total Environment, 2023, 856, 159138.	3.9	3
944	Analysis of Vegetation Growth Trends in Urban Areas Using Dense Landsat Time Series: A Case Study of Tianjin, China. , 2022, , .		1
945	Vegetation Dynamics in the Qinling-Daba Mountains through Climate Warming with Land-Use Policy. Forests, 2022, 13, 1361.	0.9	5
946	Impact of Saline-Alkali Land Greening on the Local Surface Temperature—A Multiscale Assessment Based on Remote Sensing. Remote Sensing, 2022, 14, 4246.	1.8	1
947	The impacts of natural and anthropogenic factors on vegetation change in the Yellow-Huai-Hai River Basin. Frontiers in Earth Science, $0,10,10$	0.8	3
948	Elevations change fungal communities of the bulk soil, rhizosphere and root of (i) Rhododendron delavayi (i) Franch (Ericaceae) by affecting soil properties in a karst area, southwest China. Archives of Agronomy and Soil Science, 2023, 69, 1817-1832.	1.3	O
949	Spatiotemporal Variations in Vegetation Canopy Interception in China Based on a Revised Gash Model. Forests, 2022, 13, 1404.	0.9	2
950	Optimizing the Land Use and Land Cover Pattern to Increase Its Contribution to Carbon Neutrality. Remote Sensing, 2022, 14, 4751.	1.8	17
951	Heterogeneity of Increases in Net Primary Production under Intensified Human Activity and Climate Variability on the Loess Plateau of China. Remote Sensing, 2022, 14, 4706.	1.8	9
952	土å£ <bold>-</bold> æĕ¢« <bold>-</bold> æ°´æ−‡è Terrae, 2022, , .	€¦åĵ过ç΅	与机å^¶ç
953	Links across ecological scales: Plant biomass responses to elevated <scp>CO₂</scp> . Global Change Biology, 2022, 28, 6115-6134.	4.2	22
954	Irrigation and warming drive the decreases in surface albedo over High Mountain Asia. Scientific Reports, 2022, 12, .	1.6	3
955	Acceleration of vegetation phenological changes. Global Change Biology, 0, , .	4.2	1
956	Effects of green spaces on alleviating mortality attributable to PM2.5 in China. Environmental Science and Pollution Research, 2023, 30, 14402-14412.	2.7	7
957	Climatology of Dust Aerosols over the Jianghan Plain Revealed with Space-Borne Instruments and MERRA-2 Reanalysis Data during 2006–2021. Remote Sensing, 2022, 14, 4414.	1.8	7
958	Surface warming in global cities is substantially more rapid than in rural background areas. Communications Earth & Environment, 2022, 3, .	2.6	38

#	Article	IF	CITATIONS
959	Drivers for decoupling carbon footprint pressure from economic growth in China's provinces. Geography and Sustainability, 2022, 3, 258-267.	1.9	9
960	Characteristics and modelling of sap flow of degraded <scp><i>Populus simonii</i></scp> in areas where the ecology is vulnerable. Land Degradation and Development, 2023, 34, 493-505.	1.8	4
962	Plant biomass allocation is mediated by precipitation use efficiency in arid and semiarid ecosystems. Land Degradation and Development, 2023, 34, 221-233.	1.8	4
963	Spatial-Temporal Evolution Characteristics and Driving Force Analysis of NDVI in the Minjiang River Basin, China, from 2001 to 2020. Water (Switzerland), 2022, 14, 2923.	1.2	3
964	Vegetation Dynamics in Response to Climate Change and Human Activities in a Typical Alpine Region in the Tibetan Plateau. International Journal of Environmental Research and Public Health, 2022, 19, 12359.	1.2	9
965	A Reconstruction of Irrigated Cropland Extent in China from 2000 to 2019 Using the Synergy of Statistics and Satellite-Based Datasets. Land, 2022, 11, 1686.	1.2	3
966	Remoteâ€Sensing Derived Trends in Gross Primary Production Explain Increases in the CO ₂ Seasonal Cycle Amplitude. Global Biogeochemical Cycles, 2022, 36, .	1.9	4
967	Future Land Use/Land Cover Change Has Nontrivial and Potentially Dominant Impact on Global Gross Primary Productivity. Earth's Future, 2022, 10, .	2.4	18
968	Increased forest coverage will induce more carbon fixation in vegetation than in soil during 2015–2060 in China based on CMIP6. Environmental Research Letters, 2022, 17, 105002.	2.2	6
969	A comprehensive review on coupled processes and mechanisms of soil-vegetation-hydrology, and recent research advances. Science China Earth Sciences, 2022, 65, 2083-2114.	2.3	17
970	Ecological Civilization in the making: the †construction†of China†s climate-forestry nexus. Environmental Sociology, 2023, 9, 6-19.	1.7	6
971	Optimality principles explaining divergent responses of alpine vegetation to environmental change. Global Change Biology, 2023, 29, 126-142.	4.2	11
972	Object-based change detection for vegetation disturbance and recovery using Landsat time series. GIScience and Remote Sensing, 2022, 59, 1706-1721.	2.4	12
973	Satellite greenness and solarâ€induced chlorophyll fluorescence reveal reverse desertification in Gurbantunggut Desert. Ecological Applications, 0, , .	1.8	1
974	Result of a year-long animal survey in a state-owned forest farm in Beijing, China. Biodiversity Data Journal, $0,10,1$	0.4	0
975	Land degradation neutrality: A review of progress and perspectives. Ecological Indicators, 2022, 144, 109530.	2.6	24
976	Empirical analysis of the influences of meteorological factors on the interannual variations in carbon fluxes of a Quercus variabilis plantation. Agricultural and Forest Meteorology, 2022, 326, 109190.	1.9	4
977	Improvement of ecosystem quality in National Key Ecological Function Zones in China during 2000–2015. Journal of Environmental Management, 2022, 324, 116406.	3.8	13

#	ARTICLE	IF	CITATIONS
978	Revisit the Performance of MODIS and VIIRS Leaf Area Index Products from the Perspective of Time-Series Stability. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 8958-8973.	2.3	5
979	Desertification in China: Role of Natural Succession in the Sustainable Revegetation of Drylands. Earth and Environmental Sciences Library, 2022, , 615-631.	0.3	0
980	Ecological Policies Dominated the Ecological Restoration over the Core Regions of Kubuqi Desert in Recent Decades. Remote Sensing, 2022, 14, 5243.	1.8	2
981	Prevalence and drivers of abrupt vegetation shifts in global drylands. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	24
982	Implementation of Dynamic Effective Rooting Depth in Evapotranspiration Model Deepens Understanding of Evapotranspiration Partitioning Under Soil Moisture Gradients in China. Water Resources Research, 2022, 58, .	1.7	5
983	A Comparative Analysis of Farmland Occupation by Urban Sprawl and Rural Settlement Expansion in China. Land, 2022, $11,1738.$	1.2	5
984	The Response of Land Surface Temperature Changes to the Vegetation Dynamics in the Yangtze River Basin. Remote Sensing, 2022, 14, 5093.	1.8	7
985	Identifying the spatiotemporal pattern and driving factors of vegetation dynamics in Shaanxi Province, China. Geocarto International, 2024, 37, 17890-17916.	1.7	3
986	Will drought exacerbate the decline in the sustainability of plantation forests relative to natural forests? Land Degradation and Development, 0 , , .	1.8	1
987	The grassland carbon cycle: Mechanisms, responses to global changes, and potential contribution to carbon neutrality. Fundamental Research, 2023, 3, 209-218.	1.6	18
988	Spatio-Temporal Analysis of the Effects of Human Activities on Habitat Quality: A Case Study of Guiyang City, Guizhou Province, China. Land, 2022, 11, 1837.	1.2	4
989	Development of a landscape index to link landscape pattern to runoff and sediment. Journal of Mountain Science, 2022, 19, 2905-2919.	0.8	5
990	Global water availability boosted by vegetation-driven changes in atmospheric moisture transport. Nature Geoscience, 2022, 15, 982-988.	5.4	41
991	Spatiotemporal Changes in Leaf Area and Carbon Sequestration of Terrestrial Vegetation in China over the Last Two Decades. Forests, 2022, 13, 1623.	0.9	4
992	Vegetation Productivity and Precipitation Use Efficiency across the Yellow River Basin: Spatial Patterns and Controls. Remote Sensing, 2022, 14, 5074.	1.8	11
993	Evaluating potential groundwater recharge in the unsteady state for deep-rooted afforestation in deep loess deposits. Science of the Total Environment, 2023, 858, 159837.	3.9	9
994	Vegetation Landscape Changes and Driving Factors of Typical Karst Region in the Anthropocene. Remote Sensing, 2022, 14, 5391.	1.8	3
995	Inappropriateness of space-for-time and variability-for-time approaches to infer future dryland productivity changes. Frontiers in Environmental Science, $0,10,10$	1.5	2

#	Article	IF	CITATIONS
996	Light thinning can improve soil water availability and water holding capacity of plantations in alpine mountains. Frontiers in Plant Science, $0,13,\ldots$	1.7	3
997	Interannual changes of land surface conditions in Asian dust source regions since 2000. J Agricultural Meteorology, 2022, 78, 174-181.	0.8	1
998	Ecological Disturbance of Rural Settlement Expansion: Evidence from Nantong, Eastern China. Land, 2022, 11, 1741.	1.2	3
999	Analysis of Spatio-Temporal Dynamics of Chinese Inland Water Clarity at Multiple Spatial Scales between 1984 and 2018. Remote Sensing, 2022, 14, 5091.	1.8	0
1001	Spatial Representativeness of Eddy Covariance Measurements in a Coniferous Plantation Mixed with Cropland in Southeastern China. Remote Sensing, 2022, 14, 5022.	1.8	1
1002	Ecological quality assessment and monitoring using a time-series remote sensing-based ecological index (ts-RSEI). GIScience and Remote Sensing, 2022, 59, 1793-1816.	2.4	16
1003	Estimation of National Forest Aboveground Biomass from Multi-Source Remotely Sensed Dataset with Machine Learning Algorithms in China. Remote Sensing, 2022, 14, 5487.	1.8	7
1004	The potential for carbon sequestration by afforestation can be limited in dryland river basins under the pressure of high human activity. Science of the Total Environment, 2023, 858, 159817.	3.9	5
1005	Historical and future shifts of a sharp zonal aridity gradient: A case study of the Hu Line in China. Journal of Hydrology, 2022, 614, 128590.	2.3	3
1006	Assessment of ecological quality in Northwest China (2000–2020) using the Google Earth Engine platform: Climate factors and land use/land cover contribute to ecological quality. Journal of Arid Land, 2022, 14, 1196-1211.	0.9	8
1007	Separating the impact of check dams on runoff from climate and vegetation changes. Journal of Hydrology, 2022, 614, 128565.	2.3	2
1008	Vegetation greening intensified transpiration but constrained soil evaporation on the Loess Plateau. Journal of Hydrology, 2022, 614, 128514.	2.3	7
1009	Spatial and Temporal Characteristics of NDVI in the Weihe River Basin and Its Correlation with Terrestrial Water Storage. Remote Sensing, 2022, 14, 5532.	1.8	2
1010	Soil temperature mitigation due to vegetation biophysical feedbacks. Global and Planetary Change, 2022, 218, 103971.	1.6	7
1011	Effects of Vegetation Change on Soil Erosion by Water in Major Basins, Central Asia. Remote Sensing, 2022, 14, 5507.	1.8	8
1012	Inhibitive Effects of Recent Exceeding Air Temperature Optima of Vegetation Productivity and Increasing Water Limitation on Photosynthesis Reversed Global Greening. Earth's Future, 2022, 10, .	2.4	5
1013	Assessment on spatiotemporal variations for minimum water consumption of vegetation in China based on constraint line method. Journal of Cleaner Production, 2022, 379, 134680.	4.6	1
1014	Soil-moisture-dependent nocturnal water use strategy and its responses to meteorological factors in a seasonal-arid poplar plantation. Agricultural Water Management, 2022, 274, 107984.	2.4	1

#	Article	IF	CITATIONS
1015	Vegetation dynamics influenced by climate change and human activities in the Hanjiang River Basin, central China. Ecological Indicators, 2022, 145, 109586.	2.6	24
1016	How socioeconomic factors affect ecosystem service value: Evidence from China. Ecological Indicators, 2022, 145, 109589.	2.6	14
1017	Assessing the synergistic modulation of evapotranspiration by global impervious surface and vegetation changes. Agricultural and Forest Meteorology, 2022, 327, 109194.	1.9	5
1018	Spatial-temporal changes in ecosystem services and social-ecological drivers in a typical coastal tourism city: A case study of Sanya, China. Ecological Indicators, 2022, 145, 109607.	2.6	18
1019	Quantifying the direct effects of long-term dynamic land use intensity on vegetation change and its interacted effects with economic development and climate change in jiangsu, China. Journal of Environmental Management, 2023, 325, 116562.	3.8	15
1020	Assessment of Land Degradation Factors. , 0, , .		O
1021	Climate-driven decoupling of wetland and upland biomass trends on the mid-Atlantic coast. Nature Geoscience, 2022, 15, 913-918.	5.4	19
1022	Global spatial distribution of vegetation and 20-years dynamic changes. IOP Conference Series: Earth and Environmental Science, 2022, 1087, 012048.	0.2	O
1023	Quantifying the effects of the †Internet plus Ecology' framework on carbon sink in the digital age: a representative study of Ant Forest in China. Environmental Research Letters, 2022, 17, 124005.	2.2	3
1024	Spatio-Temporal Heterogeneity of Ecological Quality in Hangzhou Greater Bay Area (HGBA) of China and Response to Land Use and Cover Change. Remote Sensing, 2022, 14, 5613.	1.8	4
1025	Selective removal of non-woody species released water limitation on vegetation community stagnated at early successional stages in a humid karst region. Journal of Hydrology, 2022, 615, 128714.	2.3	4
1026	Quantifying the spatial differentiation mechanism of land use degree. Heliyon, 2022, 8, e11389.	1.4	2
1027	Future climate imposes pressure on vulnerable ecological regions in China. Science of the Total Environment, 2023, 858, 159995.	3.9	7
1028	Quantitative impacts of climate change and human activities on runoff in the Huolin River catchment. Journal of Water and Climate Change, 2022, 13, 3851-3866.	1.2	1
1029	Interplay of greening and ENSO on biosphere–atmosphere processes in Australia. Geoscience Letters, 2022, 9, .	1.3	1
1030	Response of Erosive Precipitation to Vegetation Restoration and Its Effect on Soil and Water Conservation Over China's Loess Plateau. Water Resources Research, 2023, 59, .	1.7	9
1031	A shift in the dominant role of atmospheric vapor pressure deficit and soil moisture on vegetation greening in China. Journal of Hydrology, 2022, 615, 128680.	2.3	16
1032	Temporally corrected long-term satellite solar-induced fluorescence leads to improved estimation of global trends in vegetation photosynthesis during 1995–2018. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 194, 222-234.	4.9	13

#	ARTICLE	IF	CITATIONS
1033	Toward sustainable land use in China: A perspective on China's national land surveys. Land Use Policy, 2022, 123, 106428.	2.5	17
1034	Drivers of recent decline in dust activity over East Asia. Nature Communications, 2022, 13, .	5.8	28
1035	Vegetation recovery trends under dual dominance of climate change and anthropogenic factors in the severely damaged areas of the Wenchuan earthquake. Journal of Mountain Science, 2022, 19, 3131-3147.	0.8	0
1036	The Biophysical Impacts of Idealized Afforestation on Surface Temperature in China: Local and Nonlocal Effects. Journal of Climate, 2022, 35, 7833-7852.	1.2	4
1037	Further mitigating carbon footprint pressure in urban agglomeration by enhancing the spatial clustering. Journal of Environmental Management, 2023, 326, 116715.	3.8	9
1038	Spatial transformation of changes in global cultivated land. Science of the Total Environment, 2023, 859, 160194.	3.9	18
1039	Revegetation affects the response of land surface phenology to climate in Loess Plateau, China. Science of the Total Environment, 2023, 860, 160383.	3.9	2
1040	Forest Restoration Potential in China: Implications for Carbon Capture. Journal of Remote Sensing, 2022, 2022, .	3.2	5
1041	Next generation application of DPSIR for sustainable policy implementation. Current Research in Environmental Sustainability, 2023, 5, 100201.	1.7	8
1042	Divergent seasonal responses of carbon fluxes to extreme droughts over China. Agricultural and Forest Meteorology, 2023, 328, 109253.	1.9	7
1043	Vegetation cover change and restoration potential in the Ziwuling Forest Region, China. Ecological Engineering, 2023, 187, 106877.	1.6	6
1044	Carbon deficit checks in high resolution and compensation under regional inequity. Journal of Environmental Management, 2023, 328, 116986.	3.8	4
1045	Ecological restoration effects of the Beijing–Tianjin Sandstorm Source Control Project in China since 2000. Ecological Indicators, 2023, 146, 109782.	2.6	3
1046	Palaeoenvironmental evolution of the Badain Jaran Desert hinterland during the Early to Middle Holocene: A multi-proxy reconstruction on Taoerlegetu paleolake, northwest China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 611, 111359.	1.0	О
1047	Socioeconomic development alters the effects of †green' and †grain' on evapotranspiration in China's loess plateau after the grain for green programme. Journal of Environmental Management, 2023, 328, 117013.	3.8	3
1048	Detection and attribution of vegetation dynamics in the National Barrier Zone of China by considering climate temporal effects. International Journal of Applied Earth Observation and Geoinformation, 2023, 116, 103140.	0.9	1
1049	Nonlinear imprints of forest coverage on the relationships between gross primary production (GPP) and landscape patterns. Ecological Indicators, 2023, 146, 109783.	2.6	5
1050	A new estimation of carbon emissions from land use and land cover change in China over the past 300 years. Science of the Total Environment, 2023, 863, 160963.	3.9	18

#	Article	IF	CITATIONS
1051	Cultivated land loss and construction land expansion in China: Evidence from national land surveys in 1996, 2009 and 2019. Land Use Policy, 2023, 125, 106496.	2.5	29
1052	Ecological engineering induced carbon sinks shifting from decreasing to increasing during 1981–2019 in China. Science of the Total Environment, 2023, 864, 161037.	3.9	12
1053	Land cover change in global drylands: A review. Science of the Total Environment, 2023, 863, 160943.	3.9	14
1054	Is land degradation worsening in Northern China? Quantitative evidence and enlightenment from satellites. Land Degradation and Development, 2023, 34, 1662-1680.	1.8	3
1055	Trend of Vegetation and Environmental Factors and Their Feedback in the Karst Regions of Southwestern China. Sustainability, 2022, 14, 15941.	1.6	1
1056	Effects of climate change and human activities on vegetation coverage change in northern China considering extreme climate and time-lag and -accumulation effects. Science of the Total Environment, 2023, 860, 160527.	3.9	39
1057	Understanding spatial patterns in the drivers of greenness trends in the Sahel-Sudano-Guinean region. Big Earth Data, 2023, 7, 298-317.	2.0	5
1058	Review of vegetation phenology trends in China in a changing climate. Progress in Physical Geography, 2022, 46, 829-845.	1.4	10
1059	An assessment of the Ecological Conservation Redline: unlocking priority areas for conservation. Journal of Environmental Planning and Management, 2024, 67, 1034-1052.	2.4	3
1060	Trends in Forest Greening and Its Spatial Correlation with Bioclimatic and Environmental Factors in the Greater Mekong Subregion from 2001 to 2020. Remote Sensing, 2022, 14, 5982.	1.8	3
1061	Elevation Gradients Limit the Antiphase Trend in Vegetation and Its Climate Response in Arid Central Asia. Remote Sensing, 2022, 14, 5922.	1.8	5
1062	Quantitatively Computing the Influence of Vegetation Changes on Surface Discharge in the Middle-Upper Reaches of the Huaihe River, China. Forests, 2022, 13, 2000.	0.9	7
1063	Ecological Response to Climate Change Across China From Combined Soil Temperature and Moisture Changes. Earth and Space Science, 2022, 9, .	1.1	5
1064	Interrelations of vegetation growth and water scarcity in Iran revealed by satellite time series. Scientific Reports, 2022, 12, .	1.6	3
1065	Temporal variability of precipitation over the <scp>Qinghaiâ€Tibetan</scp> Plateau and its surrounding areas in the last 40 years. International Journal of Climatology, 2023, 43, 1912-1934.	1.5	3
1066	Estimating Vegetation Greening Influences on Runoff Signatures Using a Logâ€Based Weighted Ensemble Method. Water Resources Research, 2022, 58, .	1.7	2
1067	Scrutinizing Urbanization in Kathmandu Using Google Earth Engine Together with Proximity-Based Scenario Modelling. Land, 2023, 12, 25.	1.2	0
1068	Natural decadal variability of global vegetation growth in relation to major decadal climate modes. Environmental Research Letters, 0, , .	2.2	0

#	Article	IF	CITATIONS
1069	Siberian carbon sink reduced by forest disturbances. Nature Geoscience, 2023, 16, 56-62.	5 . 4	27
1070	Comparing Ant Assemblages and Functional Groups across Urban Habitats and Seasons in an East Asia Monsoon Climate Area. Animals, 2023, 13, 40.	1.0	2
1071	Partitioned Soil Water Balance and Its Link With Water Uptake Strategy Under Apple Trees in the Loessâ€Covered Region. Water Resources Research, 2023, 59, .	1.7	4
1072	Detecting Spatially Non-Stationary between Vegetation and Related Factors in the Yellow River Basin from 1986 to 2021 Using Multiscale Geographically Weighted Regression Based on Landsat. Remote Sensing, 2022, 14, 6276.	1.8	6
1073	The main inherent uncertainty sources in trend estimation based on satellite remote sensing data. Theoretical and Applied Climatology, 2023, 151, 915-934.	1.3	5
1074	Modeling the effects of realistic land cover changes on land surface temperatures over China. Climate Dynamics, 2023, 61, 1451-1474.	1.7	2
1075	Air Pollution and Cardiovascular Health in Middle East and North Africa: Many Shadows but Some Light. European Journal of Preventive Cardiology, 0, , .	0.8	0
1076	Prominent vegetation greening in spring and autumn across China during the 1981–2018 period. Environmental Research Letters, 2022, 17, 124043.	2.2	3
1077	Spatiotemporal evolution of aeolian dust in China: an insight into the synoptic records of 1984â€2020 and nationwide practices to combat desertification. Land Degradation and Development, 0, , .	1.8	3
1078	Quantitative assessment of vegetation suitability in China based on carbon-water balance. Journal of Cleaner Production, 2023, 387, 135735.	4.6	4
1079	China's Greening Modulated the Reallocation of the Evapotranspiration Components during 2001–2020. Remote Sensing, 2022, 14, 6327.	1.8	1
1081	Interactions between the Grainâ€forâ€Green Program and check dams increased vegetation carbon sequestration in the Yanhe basin, Loess Plateau. Land Degradation and Development, 2023, 34, 2310-2321.	1.8	5
1082	Responses of root water uptake to soil water dynamics for three revegetation species on the Loess Plateau of China. Land Degradation and Development, 2023, 34, 2228-2240.	1.8	2
1083	Enhanced trends in spectral greening and climate anomalies across Europe. Environmental Monitoring and Assessment, 2023, 195, .	1.3	6
1084	Spatio-Temporal Patterns and Driving Forces of Desertification in Otindag Sandy Land, Inner Mongolia, China, in Recent 30 Years. Remote Sensing, 2023, 15, 279.	1.8	7
1085	Response of Photosynthetic Efficiency to Extreme Drought and Its Influencing Factors in Southwest China. Sustainability, 2023, 15, 1095.	1.6	1
1086	Drought Changes the Trade-Off Strategy of Root and Arbuscular Mycorrhizal Fungi Growth in a Subtropical Chinese Fir Plantation. Forests, 2023, 14, 114.	0.9	4
1087	Assessing the contribution of vegetation variation to streamflow variation in the Lancang River Basin, China. Frontiers in Ecology and Evolution, 0, 10 , .	1.1	8

#	ARTICLE	lF	CITATIONS
1088	Spatiotemporal graph-based analysis of land cover evolution using remote sensing time series data. International Journal of Geographical Information Science, 2023, 37, 1009-1040.	2.2	1
1089	Reconciling different approaches to quantifying land surface temperature impacts of afforestation using satellite observations. Biogeosciences, 2023, 20, 75-92.	1.3	3
1090	Is there interaction between forestry residue and crop residue in co-pyrolysis? Evidence from wood sawdust and peanut shell. Journal of Thermal Analysis and Calorimetry, 2023, 148, 2467-2481.	2.0	6
1091	Have China's drylands become wetting in the past 50 years?. Journal of Chinese Geography, 2023, 33, 99-120.	1.5	2
1092	Latitudes and land use: Global biome shifts in vegetation persistence across three decades. Frontiers in Remote Sensing, 0, 4, .	1.3	1
1093	Assessing the Spatiotemporal Dynamics of Vegetation Coverage in Urban Built-Up Areas. Land, 2023, 12, 235.	1.2	3
1094	Multi-source remote sensing data shows a significant increase in vegetation on the Tibetan Plateau since 2000. Progress in Physical Geography, 2023, 47, 597-624.	1.4	2
1095	Drylands contribute disproportionately to observed global productivity increases. Science Bulletin, 2023, 68, 224-232.	4.3	13
1096	China's environmental solutions. Applied Microbiology and Biotechnology, 2023, 107, 987-1002.	1.7	2
1097	Biophysical impacts of earth greening can substantially mitigate regional land surface temperature warming. Nature Communications, 2023, 14, .	5.8	36
1098	Soil–vegetation moisture capacitor maintains dry season vegetation productivity over India. Scientific Reports, 2023, 13, .	1.6	3
1100	Assessment of Restoration Degree and Restoration Potential of Key Ecosystem-Regulating Services in the Three-River Headwaters Region Based on Vegetation Coverage. Remote Sensing, 2023, 15, 523.	1.8	6
1101	Curbing land degradation and mitigating climate change in mountainous regions: a systemic review. Environmental Monitoring and Assessment, 2023, 195, .	1.3	2
1102	A 20-year vegetation cover change and its response to climate factors in the Guangdong-Hong Kong-Macao Greater Bay Area under the background of climate change. Frontiers in Ecology and Evolution, 0, 10, .	1.1	3
1103	Vegetation Change and Eco-Environmental Quality Evaluation in the Loess Plateau of China from 2000 to 2020. Remote Sensing, 2023, 15, 424.	1.8	14
1104	Forest disturbance decreased in China from 1986 to 2020 despite regional variations. Communications Earth & Environment, 2023, 4, .	2.6	11
1105	Effects of land use patterns on the interannual variations of carbon sinks of terrestrial ecosystems in China. Ecological Indicators, 2023, 146, 109914.	2.6	9
1106	Improved air quality leads to enhanced vegetation growth during the COVID–19 lockdown in India. Applied Geography, 2023, 151, 102869.	1.7	7

#	Article	IF	CITATIONS
1107	Weakening summer westerly circulation actuates greening of the Tibetan Plateau. Global and Planetary Change, 2023, 221, 104027.	1.6	5
1108	The increasing contribution of greening to the terrestrial evapotranspiration in China. Ecological Modelling, 2023, 477, 110273.	1.2	8
1109	Afforestation promotes ecosystem multifunctionality in a hilly area of the Loess Plateau. Catena, 2023, 223, 106905.	2.2	3
1110	Plant above-ground biomass and litter quality drive soil microbial metabolic limitations during vegetation restoration of subtropical forests. Soil Ecology Letters, 2023, 5, .	2.4	1
1111	Renewable Energies in the Agricultural Sector: A Perspective Analysis of the Last Three Years. Energies, 2023, 16, 345.	1.6	2
1112	Enhanced Impact of Vegetation on Evapotranspiration in the Northern Drought-Prone Belt of China. Remote Sensing, 2023, 15, 221.	1.8	2
1113	Increased precipitation weakenes the positive effect of vegetation greening on erosion. Geocarto International, 2023, 38, .	1.7	0
1114	The Relation Between Net Primary Productivity And Human Activities For Three Biomes In Bahia State, Brazil. Geography, Environment, Sustainability, 2023, 15, 6-16.	0.6	0
1115	Quantitative Analysis of the Contributions of Climatic and Anthropogenic Factors to the Variation in Net Primary Productivity, China. Remote Sensing, 2023, 15, 789.	1.8	10
1116	Rural outmigration generates a carbon sink in South China karst. Progress in Physical Geography, 2023, 47, 655-667.	1.4	2
1117	Great and fast increase in soil CH4 uptake after reforestation in karst cropland area is linked to the environmental and microbial factors. Agriculture, Ecosystems and Environment, 2023, 347, 108367.	2.5	2
1118	Competition between biogeochemical drivers and land-cover changes determines urban greening or browning. Remote Sensing of Environment, 2023, 287, 113481.	4.6	15
1119	Effect of landscape restoration on evapotranspiration and water use in the Yellow River Basin, China. Acta Geophysica, 2024, 72, 341-356.	1.0	1
1120	Controls and variability of soil respiration temperature sensitivity across China. Science of the Total Environment, 2023, 871, 161974.	3.9	4
1121	Improving Leaf Area Index Estimation With Chlorophyll Insensitive Multispectral Red-Edge Vegetation Indices. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16, 3568-3582.	2.3	2
1122	A Review of Research on Forest Ecosystem Quality Assessment and Prediction Methods. Forests, 2023, 14, 317.	0.9	2
1123	How to balance land demand conflicts to guarantee sustainable land development. IScience, 2023, 26, 106641.	1.9	5
1124	Vegetation growth due to CO2 fertilization is threatened by increasing vapor pressure deficit. Journal of Hydrology, 2023, 619, 129292.	2.3	3

#	Article	IF	CITATIONS
1125	Effects of climate change and anthropogenic activity on the vegetation greening in the Liaohe River Basin of northeastern China. Ecological Indicators, 2023, 148, 110105.	2.6	14
1126	Temporal variability of global potential water erosion based on an improved USLE model. International Soil and Water Conservation Research, 2024, 12, 1-12.	3.0	2
1127	An individual tree-based model for estimating regional and temporal carbon storage of Abies chensiensis forest ecosystem in the Qinling Mountains, China. Ecological Modelling, 2023, 479, 110305.	1.2	3
1128	Research on early warning and control measures for arable land resource security. Land Use Policy, 2023, 128, 106601.	2.5	9
1129	Machine learning-based prediction and assessment of recent dynamics of forest net primary productivity in Romania. Journal of Environmental Management, 2023, 334, 117513.	3.8	7
1130	Inhibit or promote: The inverse-U-shape effect of greenspace on economic growth. Environmental Impact Assessment Review, 2023, 100, 107094.	4.4	1
1131	Seasonal variations of volatile and PM2.5 bounded n-alkanes in a central plain city, China: Abundance, sources, and atmospheric behaviour. Atmospheric Pollution Research, 2023, 14, 101754.	1.8	1
1132	The spatio-temporal trends of urban green space and its interactions with urban growth: Evidence from the Yangtze River Delta region, China. Land Use Policy, 2023, 128, 106598.	2.5	11
1133	Population density regulation may mitigate the imbalance between anthropogenic carbon emissions and vegetation carbon sequestration. Sustainable Cities and Society, 2023, 92, 104502.	5.1	9
1134	Changes in and driving forces of ecosystem services in tropical southwestern China. Ecological Indicators, 2023, 149, 110180.	2.6	4
1135	Developing a novel framework to re-examine half a century of compound drought and heatwave events in mainland China. Science of the Total Environment, 2023, 874, 162366.	3.9	2
1136	Convergence and divergence emerging in climatic controls of polynomial trends for northern ecosystem productivity over 2000–2018. Science of the Total Environment, 2023, 874, 162425.	3.9	0
1137	Assessing impacts of climate variability and land use/land cover change on the water balance components in the Sahel using Earth observations and hydrological modelling. Journal of Hydrology: Regional Studies, 2023, 47, 101370.	1.0	4
1138	The role of harmonized Landsat Sentinel-2 (HLS) products to reveal multiple trajectories and determinants of cropland abandonment in subtropical mountainous areas. Journal of Environmental Management, 2023, 336, 117621.	3.8	7
1139	Planning the temporary takeoff/landing site's location for a pesticide spraying helicopter based on an intelligent fusion algorithm. Computers and Electronics in Agriculture, 2023, 209, 107826.	3.7	1
1140	Browning of vegetation in efficient carbon sink regions of India during the past two decades is driven by climate change and anthropogenic intrusions. Journal of Environmental Management, 2023, 336, 117655.	3.8	7
1141	Increasing global oceanic wind speed partly counteracted water clarity management effectiveness: A case study of Hainan Island coastal waters. Journal of Environmental Management, 2023, 339, 117865.	3.8	0
1142	Future climate change would intensify the water resources supply-demand pressure of afforestation in inner Mongolia, China. Journal of Cleaner Production, 2023, 407, 137145.	4.6	6

#	Article	IF	CITATIONS
1143	Future changes and driving factors of global peak vegetation growth based on CMIP6 simulations. Ecological Informatics, 2023, 75, 102031.	2.3	7
1144	Impacts of Climate Change and Human Activities on NDVI in the Qinghai-Tibet Plateau. Remote Sensing, 2023, 15, 587.	1.8	7
1145	Effects of thinning on forest soil and stump respiration in a subtropical pine plantation. Forest Ecology and Management, 2023, 531, 120797.	1.4	3
1146	Dynamics of global dryland vegetation were more sensitive to soil moisture: Evidence from multiple vegetation indices. Agricultural and Forest Meteorology, 2023, 331, 109327.	1.9	9
1147	Impacts of vegetation restoration on water resources and carbon sequestration in the mountainous area of Haihe River basin, China. Science of the Total Environment, 2023, 869, 161724.	3.9	8
1148	Contrasting responses of peak vegetation growth to asymmetric warming: Evidences from FLUXNET and satellite observations. Global Change Biology, 2023, 29, 2363-2379.	4.2	4
1149	A novel framework for vegetation change characterization from time series landsat images. Environmental Research, 2023, 222, 115379.	3.7	4
1150	Ecological restoration exacerbates the agriculture-induced water crisis in North China Region. Agricultural and Forest Meteorology, 2023, 331, 109341.	1.9	15
1151	Drought trigger thresholds for different levels of vegetation loss in China and their dynamics. Agricultural and Forest Meteorology, 2023, 331, 109349.	1.9	24
1152	Spatio-Temporal Variations of Ecosystem Water Use Efficiency and Its Drivers in Southwest China. Land, 2023, 12, 397.	1.2	5
1153	The evolution of ecological security and its drivers in the Yellow River Basin. Environmental Science and Pollution Research, 2023, 30, 47501-47515.	2.7	3
1154	Large-scale ecosystem carbon stocks and their driving factors across Loess Plateau. , 2023, 2, .		39
1155	Improving the MODIS LAI compositing using prior time-series information. Remote Sensing of Environment, 2023, 287, 113493.	4.6	5
1156	Soil and vegetation water content identify the main terrestrial ecosystem changes. National Science Review, 2023, 10, .	4.6	4
1157	Research Progress of Grassland Ecosystem Structure and Stability and Inspiration for Improving Its Service Capacity in the Karst Desertification Control. Plants, 2023, 12, 770.	1.6	7
1158	Relationship and driving factors between urbanization and natural ecosystem health in China. Ecological Indicators, 2023, 147, 109972.	2.6	15
1159	Water use characteristics of the artificial forests black locust (<scp><i>Robinia) Tj ETQq0 0 0 rgBT /Overlock 10 Techydrology, 2023, 16, .</i></scp>	Tf 50 107 1 1.1	Td (pseudoac 1
1160	Conflict or Coordination? measuring the relationships between urbanization and vegetation cover in China. Ecological Indicators, 2023, 147, 109993.	2.6	31

#	Article	IF	CITATIONS
1161	Widespread mismatch between satellite observed vegetation greenness and temperature isolines during 2000–2020 in China. Ecological Indicators, 2023, 147, 110018.	2.6	1
1162	Impact of ecological restoration on ecosystem service tradeâ€offs: Insight from karst desertification control. Land Degradation and Development, 2023, 34, 2693-2706.	1.8	8
1163	Potential of microalgae and cyanobacteria to improve soil health and agricultural productivity: a critical view. Environmental Science Advances, 2023, 2, 586-611.	1.0	13
1164	Grain for Green Project May Not Threaten Ecosystem Sustainability by Degrading Water Availability in Humid Karst Landscapes. Water Resources Research, 2023, 59, .	1.7	4
1165	Maps with 1 km resolution reveal increases in above- and belowground forest biomass carbon pools in China over the past 20Âyears. Earth System Science Data, 2023, 15, 897-910.	3.7	14
1167	Ecological restoration for sustainable development in China. National Science Review, 2023, 10, .	4.6	38
1168	Climate Change and CO2 Fertilization Have Played Important Roles in the Recent Decadal Vegetation Greening Trend on the Chinese Loess Plateau. Remote Sensing, 2023, 15, 1233.	1.8	1
1169	Observations of Satellite Land Surface Phenology Indicate That Maximum Leaf Greenness Is More Associated With Global Vegetation Productivity Than Growing Season Length. Global Biogeochemical Cycles, 2023, 37, .	1.9	2
1170	Lithologic control of soil C:N:P stoichiometry across a climatic gradient in southwest China. Journal of Soils and Sediments, 2023, 23, 1662-1673.	1.5	4
1172	Multi-Remote Sensing Data Analysis for Identifying the Impact of Human Activities on Water-Related Ecosystem Services in the Yangtze River Economic Belt, China. Water (Switzerland), 2023, 15, 915.	1.2	2
1173	Exploring the combined impact of ecosystem services and urbanization on SDGs realization. Applied Geography, 2023, 153, 102907.	1.7	16
1174	Land Surface Greening and CO2 Fertilization More than Offset the Gross Carbon Sequestration Decline Caused by Land Cover Change and the Enhanced Vapour Pressure Deficit in Europe. Remote Sensing, 2023, 15, 1372.	1.8	1
1175	Unintended consequences of combating desertification in China. Nature Communications, 2023, 14, .	5.8	37
1177	Estimating spatiotemporal dynamics of evapotranspiration and assessing the cause for its increase in China. Agricultural and Forest Meteorology, 2023, 333, 109394.	1.9	2
1178	Spatiotemporal variations and driving factors of China's ecosystem water use efficiency. Ecological Indicators, 2023, 148, 110077.	2.6	5
1179	Microbial diversity and abundance in loamy sandy soil under renaturalization of former arable land. PeerJ, 0, 11, e14761.	0.9	3
1180	Interaction Processes of Environment and Plant Ecophysiology with BVOC Emissions from Dominant Greening Trees. Forests, 2023, 14, 523.	0.9	2
1181	Climate Change and Anthropogenic Activity Co-Driven Vegetation Coverage Increase in the Three-North Shelter Forest Region of China. Remote Sensing, 2023, 15, 1509.	1.8	2

#	Article	IF	CITATIONS
1182	Impacts of climate change and anthropogenic activities on the normalized difference vegetation index of desertified areas in northern China. Journal of Chinese Geography, 2023, 33, 483-507.	1.5	8
1183	Regulation factors driving vegetation changes in China during the past 20 years. Journal of Chinese Geography, 2023, 33, 508-528.	1.5	5
1184	Revealing the main factors affecting global forest change at distinct altitude gradients. Ecological Indicators, 2023, 148, 110131.	2.6	0
1185	Identifying the Responses of Vegetation Gross Primary Productivity and Water Use Efficiency to Climate Change under Different Aridity Gradients across China. Remote Sensing, 2023, 15, 1563.	1.8	3
1186	Threeâ€Dimensional Differentiation of the Contribution of Climatic Factors to Vegetation Change in the Panâ€Tibetan Plateau. Journal of Geophysical Research G: Biogeosciences, 2023, 128, .	1.3	3
1188	Global patterns of dried soil layers and environmental forcing. Land Degradation and Development, 2023, 34, 3364-3374.	1.8	3
1189	Planning of takeoff/landing site location, dispatch route, and spraying route for a pesticide application helicopter. European Journal of Agronomy, 2023, 146, 126814.	1.9	4
1190	Spatiotemporal patterns of planted forests on the Loess Plateau between 1986 and 2021 based on Landsat NDVI time-series analysis. GIScience and Remote Sensing, 2023, 60, .	2.4	6
1191	Soil carbon sequestration benefits of active versus natural restoration vary with initial carbon content and soil layer. Communications Earth & Environment, 2023, 4, .	2.6	4
1192	Simulation of climate warming and agricultural land expansion for sustainable lake fish catch in high-latitude agricultural regions. Ecological Indicators, 2023, 148, 110104.	2.6	2
1193	China's Engagement in Arctic Governance for Its Sustainable Development Based on International Law Perspective. Sustainability, 2023, 15, 5429.	1.6	2
1194	Changes in Forest Vegetation Carbon Storage and Its Driving Forces in Subtropical Red Soil Hilly Region over the Past 34 Years: A Case Study of Taihe County, China. Forests, 2023, 14, 602.	0.9	0
1195	Vegetation Cover Variation in Dry Valleys of Southwest China: The Role of Precipitation. Remote Sensing, 2023, 15, 1727.	1.8	3
1196	Future changes of dryâ€wet climate regions and its contributing climatic factors in China based on <scp>CMIP6</scp> models. International Journal of Climatology, 2023, 43, 3570-3589.	1.5	0
1197	Spatiotemporal Relationship between Ecological Restoration Space and Ecosystem Services in the Yellow River Basin, China. Land, 2023, 12, 730.	1,2	2
1198	Climate change increases carbon allocation to leaves in early leaf greenâ€up. Ecology Letters, 2023, 26, 816-826.	3.0	8
1199	Affecting of Nature and Human Activities on the Trend of Vegetation Health Indices in Dak Nong Province, Vietnam. Sustainability, 2023, 15, 5695.	1.6	1
1200	Quantitative Study on Improved Budyko-Based Separation of Climate and Ecological Restoration of Runoff and Sediment Yield in Nandong Underground River System. Water (Switzerland), 2023, 15, 1263.	1.2	3

#	Article	IF	CITATIONS
1202	Eco-Efficiency Evaluation of Sloping Land Conversion Program and Its Spatial and Temporal Evolution: Evidence from 314 Counties in the Loess Plateau of China. Forests, 2023, 14, 681.	0.9	1
1203	Impacts of improved irrigation application efficiency and groundwater levels on energy use for crop production in a semi-arid region of India. Environment, Development and Sustainability, 0, , .	2.7	1
1204	Reprocessed MODIS Version 6.1 Leaf Area Index Dataset and Its Evaluation for Land Surface and Climate Modeling. Remote Sensing, 2023, 15, 1780.	1.8	5
1205	Coupling Relationship between Rural Settlement Patterns and Landscape Fragmentation in Woodlands and Biological Reserves—A Case of Nanshan National Park. Land, 2023, 12, 741.	1.2	1
1206	Variations of Ecosystem Services Supply and Demand on the Southeast Hilly Area of China: Implications for Ecosystem Protection and Restoration Management. Land, 2023, 12, 750.	1.2	1
1207	Improving the Quality of MODIS LAI Products by Exploiting Spatiotemporal Correlation Information. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61, 1-19.	2.7	1
1208	æ"廽西北干旱区"暗湿北"é—®é¢~åŠå…¶æœªæ¥è¶‹åŠ¿è®¨è®º. SCIENTI.	A SONICA T	eri a e, 2023,
1209	Remote sensing evaluation of Chinese mainland's comprehensive natural resources carrying capacity and its spatial-temporal variation characteristics. Environmental Impact Assessment Review, 2023, 101, 107104.	4.4	5
1210	NDVI-Based Vegetation Dynamics and Response to Climate Changes and Human Activities in Guizhou Province, China. Forests, 2023, 14, 753.	0.9	5
1211	Quantifying the Contribution of Driving Factors on Distribution and Change of Net Primary Productivity of Vegetation in the Mongolian Plateau. Remote Sensing, 2023, 15, 1986.	1.8	6
1212	Vegetation Greening Enhanced the Regional Terrestrial Carbon Uptake in the Dongting Lake Basin of China. Forests, 2023, 14, 768.	0.9	0
1213	A critical review of methods, principles and progress for estimating the gross primary productivity of terrestrial ecosystems. Frontiers in Environmental Science, $0,11,.$	1.5	5
1214	Spatiotemporal Features and Time-Lagged Effects of Drought on Terrestrial Ecosystem in Southwest China. Forests, 2023, 14, 781.	0.9	2
1215	A global long-term, high-resolution satellite radar backscatter data record (1992–2022+): merging C-band ERS/ASCAT and Ku-band QSCAT. Earth System Science Data, 2023, 15, 1577-1596.	3.7	0
1216	Climate change rather than vegetation greening dominates runoff change in China. Journal of Hydrology, 2023, 620, 129519.	2.3	2
1217	The Spatio-Temporal Evolution Characteristics of the Vegetation NDVI in the Northern Slope of the Tianshan Mountains at Different Spatial Scales. Sustainability, 2023, 15, 6642.	1.6	2
1218	A Deep Learning-Based Approach to Predict Large-Scale Dynamics of Normalized Difference Vegetation Index for the Monitoring of Vegetation Activities and Stresses Using Meteorological Data. Sustainability, 2023, 15, 6632.	1.6	3
1219	Deforestation Drivers Across the Tropics and Their Impacts on Carbon Stocks and Ecosystem Services. Anthropocene Science, 0, , .	1.6	2

#	Article	IF	CITATIONS
1220	Evaluation and Implication of the Policies towards China's Carbon Neutrality. Sustainability, 2023, 15, 6762.	1.6	5
1221	Air pollution, cardiovascular disease, and urban greening: an ecological blueprint. European Journal of Preventive Cardiology, 2023, 30, 1608-1611.	0.8	2
1222	Mixed-species plantations alleviate deep soil water depletion and facilitate hydrological niche partitioning compared to pure plantations. Forest Ecology and Management, 2023, 539, 121017.	1.4	1
1223	Vegetation restoration thresholds under different vegetation types and altitude gradients in the Sichuan-Yunnan ecological shelter, China. Journal of Environmental Management, 2023, 340, 117910.	3.8	6
1224	How the Internet + Green Public Welfare Model Cultivates a Low-Carbon and Green Lifestyle: Case of Ant Forest. Journal of the Urban Planning and Development Division, ASCE, 2023, 149, .	0.8	4
1225	Retrieving leaf area index from FY-3D MERSI-II data using a sensor-adaptive algorithm. International Journal of Remote Sensing, 2023, 44, 2317-2341.	1.3	1
1226	Geographic detector-based quantitative assessment enhances attribution analysis of climate and topography factors to vegetation variation for spatial heterogeneity and coupling. Global Ecology and Conservation, 2023, 42, e02398.	1.0	8
1328	Chinaâ∈™s Environmental Turn and the Impacts on Investment and Trade in Brazil-China Relations. , 2023, , 139-160.		O
1338	Evidence and attribution of the enhanced land carbon sink. Nature Reviews Earth & Environment, 2023, 4, 518-534.	12.2	18
1411	The Climate Problem and Climate Policy. , 2023, , 21-45.		0
1414	Effects of land use patterns on carbon sinks in terrestrial ecosystems in Xinjiang., 2023,,.		0
1437	Conservation IIâ€"Assessing Agricultural Intensification Near Protected Areas. , 2024, , 1213-1226.		0
1453	An Operational Data-Driven Framework For Developing High-Resolution Leaf Area Index Products. , 2023, , .		0
1454	Snow leopard status and conservation in China. , 2024, , 577-601.		0
1456	Assessment of Forest Resource Dynamics and Conservation Benefits in China's Natural Forest Protection Project. , 2023, , .		0
1473	Climate change and forest hydrology in future forests. , 2024, , 95-124.		0
1588	Dryland Dynamics and Driving Forces. , 2024, , 23-68.		0
1589	Structure, Functions, and Interactions of Dryland Ecosystems. , 2024, , 69-107.		0

#	Article	IF	CITATIONS
1590	Socioeconomic and Environmental Changes in Global Drylands. , 2024, , 161-201.		0
1591	Structure and Functioning of China's Dryland Ecosystems in a Changing Environment. , 2024, , 391-424.		O