Mutations present in a low-passage Zika virus isolate remice

Virology 530, 19-26 DOI: 10.1016/j.virol.2019.02.004

Citation Report

#	Article	IF	CITATIONS
1	Inter- and intra-lineage genetic diversity of wild-type Zika viruses reveals both common and distinctive nucleotide variants and clusters of genomic diversity. Emerging Microbes and Infections, 2019, 8, 1126-1138.	3.0	20
2	An Attenuated Zika Virus Encoding Non-Glycosylated Envelope (E) and Non-Structural Protein 1 (NS1) Confers Complete Protection against Lethal Challenge in a Mouse Model. Vaccines, 2019, 7, 112.	2.1	14
3	Vector Competence: What Has Zika Virus Taught Us?. Viruses, 2019, 11, 867.	1.5	45
4	Duration of seminal Zika viral RNA shedding in immunocompetent mice inoculated with Asian and African genotype viruses. Virology, 2019, 535, 1-10.	1.1	22
5	Increased growth ability and pathogenicity of American- and Pacific-subtype Zika virus (ZIKV) strains compared with a Southeast Asian-subtype ZIKV strain. PLoS Neglected Tropical Diseases, 2019, 13, e0007387.	1.3	16
6	Multiscale analysis for patterns of Zika virus genotype emergence, spread, and consequence. PLoS ONE, 2019, 14, e0225699.	1.1	12
7	Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31365-31375.	3.3	27
8	Zika virus in rhesus macaque semen and reproductive tract tissues: a pilot study of acute infectionâ€. Biology of Reproduction, 2020, 103, 1030-1042.	1.2	5
9	Zika Virus Replication in Myeloid Cells during Acute Infection Is Vital to Viral Dissemination and Pathogenesis in a Mouse Model. Journal of Virology, 2020, 94, .	1.5	14
10	Two Genetic Differences between Closely Related Zika Virus Strains Determine Pathogenic Outcome in Mice. Journal of Virology, 2020, 94, .	1.5	11
11	An epidemiological survey of the current status of Zika and the immune interaction between dengue and Zika infection in Southern Taiwan. International Journal of Infectious Diseases, 2020, 93, 151-159.	1.5	12
12	Basic Amino Acid Substitution at Residue 367 of the Envelope Protein of Tembusu Virus Plays a Critical Role in Pathogenesis. Journal of Virology, 2020, 94, .	1.5	19
13	Animal Models of Zika Virus Sexual Transmission. , 0, , .		0
14	Recent progresses and remaining challenges for the detection of Zika virus. Medicinal Research Reviews, 2021, 41, 2039-2108.	5.0	16
15	Zika virus-like particle vaccine protects AG129 mice and rhesus macaques against Zika virus. PLoS Neglected Tropical Diseases, 2021, 15, e0009195.	1.3	14
18	Early Embryonic Loss Following Intravaginal Zika Virus Challenge in Rhesus Macaques. Frontiers in Immunology, 2021, 12, 686437.	2.2	9
21	A cautionary perspective regarding the isolation and serial propagation of SARS-CoV-2 in Vero cells. Npj Vaccines, 2021, 6, 83.	2.9	25
22	Previous exposure to dengue virus is associated with increased Zika virus burden at the maternal-fetal interface in rhesus macaques. PLoS Neglected Tropical Diseases, 2021, 15, e0009641.	1.3	20

#	Article	IF	CITATIONS
23	Construction of an infectious clone of Zika virus stably expressing an EGFP marker in a eukaryotic expression system. Virology Journal, 2021, 18, 151.	1.4	2
24	Neuroinvasiveness of the MR766 strain of Zika virus in IFNAR-/-Âmice maps to prM residues conserved amongst African genotype viruses. PLoS Pathogens, 2021, 17, e1009788.	2.1	18
25	Zika Virus Infection of Pregnant <i>Ifnar1</i> ^{â^'/â^'} Mice Triggers Strain-Specific Differences in Fetal Outcomes. Journal of Virology, 2021, 95, e0081821.	1.5	6
26	Embryonic Stage of Congenital Zika Virus Infection Determines Fetal and Postnatal Outcomes in Mice. Viruses, 2021, 13, 1807.	1.5	2
30	Animal models of congenital zika syndrome provide mechanistic insight into viral pathogenesis during pregnancy. PLoS Neglected Tropical Diseases, 2020, 14, e0008707.	1.3	25
31	Genetic and biological characterisation of Zika virus isolates from different Brazilian regions. Memorias Do Instituto Oswaldo Cruz, 2019, 114, e190150.	0.8	20
32	Leu-to-Phe substitution at prM146 decreases the growth ability of Zika virus and partially reduces its pathogenicity in mice. Scientific Reports, 2021, 11, 19635.	1.6	6
33	Enemy of My Enemy: A Novel Insect-Specific Flavivirus Offers a Promising Platform for a Zika Virus Vaccine. Vaccines, 2021, 9, 1142.	2.1	9
35	IP-10 and CXCR3 signaling inhibit Zika virus replication in human prostate cells. PLoS ONE, 2020, 15, e0244587.	1.1	3
36	Impact of extrinsic incubation temperature on natural selection during Zika virus infection of Aedes aegypti and Aedes albopictus. PLoS Pathogens, 2021, 17, e1009433.	2.1	11
37	Structurally Conserved Domains between Flavivirus and Alphavirus Fusion Glycoproteins Contribute to Replication and Infectious-Virion Production. Journal of Virology, 2022, 96, JVI0177421.	1.5	5
40	Evidence of Spreading Zika Virus Infection Caused by Males of Different Species. Viruses, 2022, 14, 2047.	1.5	1
41	Adaptation to host cell environment during experimental evolution of Zika virus. Communications Biology, 2022, 5, .	2.0	5
42	Evaluation of an Engineered Zika Virus-Like Particle Vaccine Candidate in a Mosquito-Mouse Transmission Model. MSphere, 2023, 8, .	1.3	1