Bio-functional electrospun nanomaterials: From topolo applications

Progress in Polymer Science 91, 1-28

DOI: 10.1016/j.progpolymsci.2019.02.006

Citation Report

#	ARTICLE	IF	CITATIONS
1	ZnO Nanostructures and Electrospun ZnO–Polymeric Hybrid Nanomaterials in Biomedical, Health, and Sustainability Applications. Nanomaterials, 2019, 9, 1449.	4.1	47
2	Tailoring Organic–Organic Poly(vinylpyrrolidone) Microparticles and Fibers with Multiwalled Carbon Nanotubes for Reinforced Composites. ACS Applied Nano Materials, 2019, 2, 4302-4312.	5.0	17
3	Design of Hierarchical Beads for Efficient Labelâ€Free Cell Capture. Small, 2019, 15, e1902441.	10.0	41
4	Effect of electrospinning parameters on morphology of polydioxanone nanofibers. Materials Research Express, 2019, 6, 125330.	1.6	9
5	Photocrosslinking maleilated hyaluronate/methacrylated poly (vinyl alcohol) nanofibrous mats for hydrogel wound dressings. International Journal of Biological Macromolecules, 2020, 155, 903-910.	7. 5	30
6	Mussel-inspired polydopamine-assisted bromelain immobilization onto electrospun fibrous membrane for potential application as wound dressing. Materials Science and Engineering C, 2020, 110, 110624.	7.3	46
7	Performance of polyvinyl pyrrolidone-isatis root antibacterial wound dressings produced in situ by handheld electrospinner. Colloids and Surfaces B: Biointerfaces, 2020, 188, 110766.	5.0	71
8	<i>In Situ</i> Electrospun Zein/Thyme Essential Oil-Based Membranes as an Effective Antibacterial Wound Dressing. ACS Applied Bio Materials, 2020, 3, 302-307.	4.6	39
9	Improvement of physical and mechanical properties of electrospun poly(lactic acid) nanofibrous structures. Iranian Polymer Journal (English Edition), 2020, 29, 841-851.	2.4	13
10	Electrospinning of Poly(1,4â€Cyclohexanedimethylene Acetylene Dicarboxylate): Study on the Morphology, Wettability, Thermal and Biodegradation Behaviors. Macromolecular Chemistry and Physics, 2020, 221, 2000310.	2.2	16
11	Morphological and Thermal Properties of Poly(Vinyl Alcohol)/Layered Double Hydroxide Hybrid Nanocomposite Fibers. International Journal of Polymer Science, 2020, 2020, 1-14.	2.7	2
12	Promoting Cell Migration and Neurite Extension along Uniaxially Aligned Nanofibers with Biomacromolecular Particles in a Density Gradient. Advanced Functional Materials, 2020, 30, 2002031.	14.9	43
13	Interlocked Dualâ€Network and Superelastic Electrospun Fibrous Sponges for Efficient Lowâ€Frequency Noise Absorption. Small Structures, 2020, 1, 2000004.	12.0	30
14	Responsive Nanofibers with Embedded Hierarchical Lipid Self-Assemblies. Langmuir, 2020, 36, 11787-11797.	3.5	6
15	High Flexible and Broad Antibacterial Nanodressing Induces Complete Skin Repair with Angiogenic and Follicle Regeneration. Advanced Healthcare Materials, 2020, 9, e2000035.	7.6	45
16	Generation of Aligned Electrospun Fibers by Using Insulating and Hydrophobic Collectors. ACS Applied Polymer Materials, 2020, 2, 2151-2159.	4.4	4
17	A review on electrospun polymeric nanofibers: Production parameters and potential applications. Polymer Testing, 2020, 90, 106647.	4.8	183
18	Gas Transport Phenomena and Polymer Dynamics in PHB/PLA Blend Films as Potential Packaging Materials. Polymers, 2020, 12, 647.	4.5	35

#	Article	IF	CITATIONS
19	The Potential of Electrospinning/Electrospraying Technology in the Rational Design of Hydrogel Structures. Macromolecular Materials and Engineering, 2020, 305, 2000285.	3.6	29
20	Multifunctional Chitosan/Polycaprolactone Nanofiber Scaffolds with Varied Dual-Drug Release for Wound-Healing Applications. ACS Biomaterials Science and Engineering, 2020, 6, 4666-4676.	5.2	97
21	In Situ Electrospinning Wound Healing Films Composed of Zein and Clove Essential Oil. Macromolecular Materials and Engineering, 2020, 305, 1900790.	3.6	36
22	Photothermally Activated Electrospun Nanofiber Mats for High-Efficiency Surface-Mediated Gene Transfection. ACS Applied Materials & Samp; Interfaces, 2020, 12, 7905-7914.	8.0	29
23	Local Delivery of Dual MicroRNAs in Trilayered Electrospun Grafts for Vascular Regeneration. ACS Applied Materials & Delivery (2020), 12, 6863-6875.	8.0	61
24	Mechanical matching nanofibrous vascular scaffold with effective anticoagulation for vascular tissue engineering. Composites Part B: Engineering, 2020, 186, 107788.	12.0	43
25	Electrospinning of Essential Oils. Polymers, 2020, 12, 908.	4.5	46
26	Electrospun nanofibers versus drop casting films for designing an electronic tongue: comparison of performance for monitoring geosmin and 2â€methylisoborneol in water samples. Polymers for Advanced Technologies, 2020, 31, 2075-2082.	3.2	8
27	Applications of nano-materials in diverse dentistry regimes. RSC Advances, 2020, 10, 15430-15460.	3.6	62
28	Modulation of vascular endothelial cells under shear stress on electrospun membranes containing REDV and microRNA-126. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70, 1090-1099.	3.4	6
29	Electrospun bioactive composites for neural tissue engineering applications., 2021,, 1-43.		1
30	Impact of the Solvent Composition on the Structural and Mechanical Properties of Customizable Electrospun Poly(Vinylpyrrolidone) Fiber Mats. Physical Chemistry Chemical Physics, 2021, 23, 22923-22935.	2.8	4
31	Coaxial nanofibrous scaffolds mimicking the extracellular matrix transition in the wound healing process promoting skin regeneration through enhancing immunomodulation. Journal of Materials Chemistry B, 2021, 9, 1395-1405.	5.8	16
32	Nanolitography based on electrospun and etched nanofibers. Microelectronic Engineering, 2021, 239-240, 111526.	2.4	3
33	Nanofibrous Grids Assembled Orthogonally from Direct-Written Piezoelectric Fibers as Self-Powered Tactile Sensors. ACS Applied Materials & Interfaces, 2021, 13, 10623-10631.	8.0	18
34	Nanodiamond-Based Fibrous Composites: A Review of Fabrication Methods, Properties, and Applications. ACS Applied Nano Materials, 2021, 4, 2317-2332.	5.0	15
35	One Step Fabrication and Application of Antibacterial Electrospun Zein/Cinnamon Oil Membrane Wound Dressing via In situ Electrospinning Process. Chemical Research in Chinese Universities, 2021, 37, 464-469.	2.6	12
36	Effect of phenyl-isocyanate functionalized graphene oxide on the crystalline phases, mechanical and piezoelectric properties of electrospun PVDF nanofibers. Ceramics International, 2021, 47, 11010-11021.	4.8	9

3

#	Article	IF	CITATIONS
37	Recent Developments in Chitosan-Based Micro/Nanofibers for Sustainable Food Packaging, Smart Textiles, Cosmeceuticals, and Biomedical Applications. Molecules, 2021, 26, 2683.	3.8	36
38	Hybrid Nanofibrous Membranes as a Promising Functional Layer for Personal Protection Equipment: Manufacturing and Antiviral/Antibacterial Assessments. Polymers, 2021, 13, 1776.	4.5	15
39	Composite Poly(vinyl alcohol)-Based Nanofibers Embedding Differently-Shaped Gold Nanoparticles: Preparation and Characterization. Polymers, 2021, 13, 1604.	4.5	2
40	Development and Characterization of Fe3O4@Carbon Nanoparticles and Their Biological Screening Related to Oral Administration. Materials, 2021, 14, 3556.	2.9	12
41	A Review: Optimization for Poly(glycerol sebacate) and Fabrication Techniques for Its Centered Scaffolds. Macromolecular Bioscience, 2021, 21, e2100022.	4.1	20
42	Controllable assembly/disassembly of polyphenol-DNA nanocomplex for cascade-responsive drug release in cancer cells. Biomaterials, 2021, 273, 120846.	11.4	53
43	Electrospun PLGA/SF/artemisinin composite nanofibrous membranes for wound dressing. International Journal of Biological Macromolecules, 2021, 183, 68-78.	7.5	47
44	Stretchable and Anisotropic Conductive Composite Hydrogel as Therapeutic Cardiac Patches. , 2021, 3, 1238-1248.		21
45	Electrospinning nanofibers to 1D, 2D, and 3D scaffolds and their biomedical applications. Nano Research, 2022, 15, 787-804.	10.4	42
46	Incorporation of nanomaterials on the electrospun membrane process with potential use in water treatment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 624, 126775.	4.7	10
47	Poly(dimethyl siloxane) anti-corrosion coating with wide pH-responsive and self-healing performance based on coreâ^'shell nanofiber containers. Journal of Materials Science and Technology, 2022, 101, 128-145.	10.7	37
48	Preparation and characterization of PGS/PLLA@PNIPAM core-shell nanofiber membrane by electrospinning and surface ATRP grafting. Journal of Engineered Fibers and Fabrics, 2021, 16, 155892502198896.	1.0	0
49	Surface-engineered dendrimers in targeting and delivery of drugs., 2021,, 203-223.		1
50	Electrospun Nanofibers for Wastewater Treatment. Springer Series on Polymer and Composite Materials, 2021, , 87-117.	0.7	0
51	Peptideâ€Engineered Fluorescent Nanomaterials: Structure Design, Function Tailoring, and Biomedical Applications. Small, 2021, 17, e2005578.	10.0	31
52	Superâ€Soft DNA/Dopamineâ€Graftedâ€Dextran Hydrogel as Dynamic Wire for Electric Circuits Switched by a Microbial Metabolism Process. Advanced Science, 2020, 7, 2000684.	11.2	35
53	Electrospun nanofiber membranes for wastewater treatment applications. Separation and Purification Technology, 2020, 250, 117116.	7.9	280
54	Cell-Incorporated Bioactive Tissue Engineering Scaffolds made by Concurrent Cell Electrospinning and Emulsion Electrospinning. Nano LIFE, 2021, 11 , .	0.9	5

#	Article	IF	CITATIONS
55	An Upâ€toâ€Date Review on Alginate Nanoparticles and Nanofibers for Biomedical and Pharmaceutical Applications. Advanced Materials Interfaces, 2021, 8, 2100809.	3.7	44
56	Sustainable Bioplastic Made from Biomass DNA and Ionomers. Journal of the American Chemical Society, 2021, 143, 19486-19497.	13.7	50
57	Electrospun Scaffold of Collagen and Polycaprolactone Containing ZnO Quantum Dots for Skin Wound Regeneration. Journal of Bionic Engineering, 2021, 18, 1378-1390.	5.0	28
58	Emerging polymeric electrospun fibers: From structural diversity to application in flexible bioelectronics and tissue engineering. Exploration, 2022, 2, .	11.0	68
59	Facile fabrication of electrospun g-C ₃ N ₄ Bi ₁₂ O ₁₇ Cl ₂ /poly(acrylonitrile- <i>co</i>	>-maleic)	Тј हॄТQq0 0 0
60	Journal of Chemistry, 2022, 46, 3727-3737. Electrospun ZnO-loaded chitosan/PCL bilayer membranes with spatially designed structure for accelerated wound healing. Carbohydrate Polymers, 2022, 282, 119131.	10.2	52
61	Advances in Biosensing and Environmental Monitoring Based on Electrospun Nanofibers. Advanced Fiber Materials, 2022, 4, 404-435.	16.1	73
62	Influence of Ultrasonication on the Properties of Hybrid Electrospun Polyacrylonitrile and Silver Nanoparticles Fibers and Their Potential Use in Water Decontamination. Communications in Computer and Information Science, 2022, , 176-188.	0.5	1
63	In Situ Electrospinning of Aggregationâ€Induced Emission Nanofibrous Dressing for Wound Healing. Small Methods, 2022, 6, e2101247.	8.6	57
64	Biomedical applications of electrospun nanofibers in industrial world: a review. International Journal of Polymeric Materials and Polymeric Biomaterials, 2023, 72, 561-575.	3.4	12
65	An asymmetric wettable PCL/chitosan composite scaffold loaded with IGF-2 for wound dressing. Journal of Biomaterials Applications, 2022, 37, 577-587.	2.4	4
66	Biomimetic Asymmetric Composite Dressing by Electrospinning with Aligned Nanofibrous and Micropatterned Structures for Severe Burn Wound Healing. ACS Applied Materials & Samp; Interfaces, 2022, 14, 32799-32812.	8.0	38
67	Development of L-arginine-based poly(ester urethane)urea for enhanced vascular adaptability. Science China Technological Sciences, 2022, 65, 2751-2762.	4.0	4
69	Seaweed polysaccharide fibers: Solution properties, processing and applications. Journal of Materials Science and Technology, 2023, 140, 1-18.	10.7	6
70	Applications of nanomaterials for health and environment protection. MOJ Ecology & Environmental Sciences, 2022, 7, 84-87.	0.2	2
71	Dual mode stimuliâ€responsive colorâ€tunable transparent photoluminescent anticounterfeiting polycarbonate electrospun nanofibers embedded with lanthanideâ€doped aluminate. Journal of Applied Polymer Science, 2023, 140, .	2.6	12
72	Fabrication of biodegradable fibrous systems employing electrospinning technology for effluent treatment. Environmental Science Advances, 2023, 2, 368-396.	2.7	14
73	Scalable Fabrication of Electrospun True-Nanoscale Fiber Membranes for Effective Selective Separation. Nano Letters, 2023, 23, 1044-1051.	9.1	14

#	Article	IF	CITATIONS
74	Thermally expanded graphite polyetherimide composite with superior electrical and thermal conductivity. Materials Chemistry and Physics, 2023, 298, 127404.	4.0	11
75	Biomanufacturing of biomimetic three-dimensional nanofibrous multicellular constructs for tissue regeneration. Colloids and Surfaces B: Biointerfaces, 2023, 223, 113189.	5.0	4
76	Anti-fouling electrospun organic and inorganic nanofiber membranes for wastewater treatment. South African Journal of Chemical Engineering, 2023, 44, 302-317.	2.4	6
78	Electrospun nanofiber/hydrogel composite materials and their tissue engineering applications. Journal of Materials Science and Technology, 2023, 162, 157-178.	10.7	14
79	Topologically devised flexible bi-aeolotropic conduction Janus-like bi-layer membrane functionalized by red-green bicolor fluorescence. Journal of Materials Research and Technology, 2023, 24, 8644-8655.	5.8	0
80	Metal matrix composite fabricated from electrospun PAN, EGNS/PAN nanofibers and AL 5049 alloy by using friction stir processing. International Journal of Advanced Manufacturing Technology, 2023, 127, 2343-2355.	3.0	0
81	Designing Scalable Anisotropically Conductive Thin Films Using Hot Drawing of Poly(vinyl) Tj ETQq0 0 0 rgBT /Ov	verlock 10 4.4	Tf 50 502 To
82	Artificial Intelligence in Regenerative Medicine: Applications and Implications. Biomimetics, 2023, 8, 442.	3.3	8
83	Optimizing Piezoelectric Coefficient in PVDF Fibers: Key Strategies for Energy Harvesting and Smart Textiles. Advanced Electronic Materials, 2023, 9, .	5.1	0
84	Spatial-confinement synthesis of single-crystal ZrCo nanoparticles for ultrafast and long-life hydrogen/hydrogen isotope storage. Chemical Engineering Journal, 2023, 473, 145342.	12.7	0
85	One-dimensional electrospinning nanomaterials toward capacitive deionization: Fundamentals, development, and perspectives. Desalination, 2023, 567, 117010.	8.2	5
86	Conjugation Electro-spinning Toward Janus-like Micro-fibers Array Displaying Magnetic-blue Fluorescent-conductive Aeolotropism. , 2023, , .		0
87	In vitro assessment of <i>Momordica charantia</i> / <i>Hypericum perforatum</i> oils loaded PCL/Collagen fibers: Novel scaffold for tissue engineering. Journal of Applied Biomaterials and Functional Materials, 2024, 22, .	1.6	0
88	Electrospinning-Based Super Liquid-Repellent Membranes for Membrane Distillation: Theory, Fabrications, Applications, and Challenges. , 0, , .		0
89	Biomimetic 3D composite scaffold with pH-Responsive micropatterns for wound healing. Chemical Engineering Journal, 2024, 485, 149646.	12.7	0
90	A mini-review on nano-enabled solutions for wastewater treatment: Addressing disinfection by-products. Current Opinion in Environmental Science and Health, 2024, 38, 100545.	4.1	0
91	Electrospinning and electrospun polysaccharide-based nanofiber membranes: A review. International Journal of Biological Macromolecules, 2024, 263, 130335.	7.5	0
92	Development and application of electrospun fiber-based multifunctional sensors. Chemical Engineering Journal, 2024, 486, 150204.	12.7	0