Recombination rate variation shapes barriers to introgr

PLoS Biology 17, e2006288

DOI: 10.1371/journal.pbio.2006288

Citation Report

#	Article	IF	CITATIONS
1	Unifying Theoretical and Empirical Perspectives on Genomic Differentiation. Trends in Ecology and Evolution, 2019, 34, 987-995.	4.2	11
2	Widespread selection and gene flow shape the genomic landscape during a radiation of monkeyflowers. PLoS Biology, 2019, 17, e3000391.	2.6	111
3	Mating system variation in hybrid zones: facilitation, barriers and asymmetries to gene flow. New Phytologist, 2019, 224, 1035-1047.	3.5	46
4	Dissecting the Effects of Selection and Mutation on Genetic Diversity in Three Wood White (Leptidea) Butterfly Species. Genome Biology and Evolution, 2019, 11, 2875-2886.	1.1	18
5	Evolutionary Models for the Diversification of Placental Mammals Across the KPg Boundary. Frontiers in Genetics, 2019, 10, 1241.	1.1	41
6	Genomic architecture and introgression shape a butterfly radiation. Science, 2019, 366, 594-599.	6.0	365
7	Inference of recombination maps from a single pair of genomes and its application to ancient samples. PLoS Genetics, 2019, 15, e1008449.	1.5	34
8	The role of recombination on genomeâ€wide patterns of local ancestry exemplified by supplemented brook charr populations. Molecular Ecology, 2019, 28, 4755-4769.	2.0	14
9	Can genomics shed light on the origin of species?. PLoS Biology, 2019, 17, e3000394.	2.6	9
10	Per-Nucleus Crossover Covariation and Implications for Evolution. Cell, 2019, 177, 326-338.e16.	13.5	64
11	Genetic dissection of assortative mating behavior. PLoS Biology, 2019, 17, e2005902.		70
		2.6	79
12	Eukaryote hybrid genomes. PLoS Genetics, 2019, 15, e1008404.	2.6	77
12 13			
	Eukaryote hybrid genomes. PLoS Genetics, 2019, 15, e1008404.	1.5	77
13	Eukaryote hybrid genomes. PLoS Genetics, 2019, 15, e1008404. Multilocus population-genetic theory. Theoretical Population Biology, 2020, 133, 40-48. Massive postglacial gene flow between European white oaks uncovered genes underlying species	1.5 0.5	10
13	Eukaryote hybrid genomes. PLoS Genetics, 2019, 15, e1008404. Multilocus population-genetic theory. Theoretical Population Biology, 2020, 133, 40-48. Massive postglacial gene flow between European white oaks uncovered genes underlying species barriers. New Phytologist, 2020, 226, 1183-1197. Phylogenomics of Auchenorrhyncha (Insecta: Hemiptera) using transcriptomes: examining controversial relationships via degeneracy coding and interrogation of gene conflict. Systematic	1.5 0.5 3.5	77 10 46
13 14 15	Eukaryote hybrid genomes. PLoS Genetics, 2019, 15, e1008404. Multilocus population-genetic theory. Theoretical Population Biology, 2020, 133, 40-48. Massive postglacial gene flow between European white oaks uncovered genes underlying species barriers. New Phytologist, 2020, 226, 1183-1197. Phylogenomics of Auchenorrhyncha (Insecta: Hemiptera) using transcriptomes: examining controversial relationships via degeneracy coding and interrogation of gene conflict. Systematic Entomology, 2020, 45, 85-113. Understanding Admixture: Haplodiploidy to the Rescue. Trends in Ecology and Evolution, 2020, 35,	1.5 0.5 3.5	77 10 46 45

#	Article	IF	CITATIONS
19	Rapid and Predictable Evolution of Admixed Populations Between Two <i>Drosophila</i> Species Pairs. Genetics, 2020, 214, 211-230.	1.2	42
20	Using Haplotype Information for Conservation Genomics. Trends in Ecology and Evolution, 2020, 35, 245-258.	4.2	69
21	It's time to stop sweeping recombination rate under the genome scan rug. Molecular Ecology, 2020, 29, 4249-4253.	2.0	14
22	Natural variation in meiotic recombination rate shapes introgression patterns in intraspecific hybrids between wild and domesticated barley. New Phytologist, 2020, 228, 1852-1863.	3.5	26
23	The Origin and Spread of Locally Adaptive Seasonal Camouflage in Snowshoe Hares. American Naturalist, 2020, 196, 316-332.	1.0	29
24	Genomic Patterns of Introgression in Interspecific Populations Created by Crossing Wheat with Its Wild Relative. G3: Genes, Genomes, Genetics, 2020, 10, 3651-3661.	0.8	13
25	Contrasting signatures of genomic divergence during sympatric speciation. Nature, 2020, 588, 106-111.	13.7	115
26	Visual mate preference evolution during butterfly speciation is linked to neural processing genes. Nature Communications, 2020, 11, 4763.	5.8	24
27	The importance of intrinsic postzygotic barriers throughout the speciation process. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190533.	1.8	114
28	Genome-wide patterns of divergence and introgression after secondary contact between <i>Pungitius</i> sticklebacks. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190548.	1.8	32
29	Genetic and phenotypic evidence of a contact zone between divergent colour morphs of the iconic redâ€eyed treefrog. Molecular Ecology, 2020, 29, 4442-4456.	2.0	12
30	Evolution of strong reproductive isolation in plants: broad-scale patterns and lessons from a perennial model group. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190544.	1.8	16
31	Genomic differentiation across the speciation continuum in three hummingbird species pairs. BMC Evolutionary Biology, 2020, 20, 113.	3.2	19
32	From molecules to populations: appreciating and estimating recombination rate variation. Nature Reviews Genetics, 2020, 21, 476-492.	7.7	81
33	Recent hybrids recapitulate ancient hybrid outcomes. Nature Communications, 2020, 11, 2179.	5.8	29
34	Contrasting genomic and phenotypic outcomes of hybridization between pairs of mimetic butterfly taxa across a suture zone. Molecular Ecology, 2020, 29, 1328-1343.	2.0	9
35	Stable species boundaries despite ten million years of hybridization in tropical eels. Nature Communications, 2020, 11, 1433.	5.8	53
36	Divergence of chemosensing during the early stages of speciation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16438-16447.	3.3	25

#	Article	IF	Citations
37	Genomic basis of homoploid hybrid speciation within chestnut trees. Nature Communications, 2020, 11, 3375.	5.8	41
38	Selective sweeps on novel and introgressed variation shape mimicry loci in a butterfly adaptive radiation. PLoS Biology, 2020, 18, e3000597.	2.6	60
39	Phylogeographic history of flat periwinkles, Littorina fabalis and L. obtusata. BMC Evolutionary Biology, 2020, 20, 23.	3.2	16
40	Evidence for widespread selection in shaping the genomic landscape during speciation of <i>Populus</i> . Molecular Ecology, 2020, 29, 1120-1136.	2.0	31
41	Emerging Frontiers in the Study of Molecular Evolution. Journal of Molecular Evolution, 2020, 88, 211-226.	0.8	8
42	Snake Recombination Landscapes Are Concentrated in Functional Regions despite PRDM9. Molecular Biology and Evolution, 2020, 37, 1272-1294.	3.5	45
43	Adaptive Introgression across Semipermeable Species Boundaries between Local Helicoverpa zea and Invasive Helicoverpa armigera Moths. Molecular Biology and Evolution, 2020, 37, 2568-2583.	3.5	64
44	Natural Selection Shapes Variation in Genome-wide Recombination Rate in Drosophila pseudoobscura. Current Biology, 2020, 30, 1517-1528.e6.	1.8	49
45	Comparative genomics approach to evolutionary process connectivity. Evolutionary Applications, 2020, 13, 1320-1334.	1.5	33
46	Patterns of genomic divergence and introgression between Japanese stickleback species with overlapping breeding habitats. Journal of Evolutionary Biology, 2021, 34, 114-127.	0.8	15
47	Chromosome-Scale Genome Assemblies of Aphids Reveal Extensively Rearranged Autosomes and Long-Term Conservation of the X Chromosome. Molecular Biology and Evolution, 2021, 38, 856-875.	3.5	54
48	How do species barriers decay? Concordance and local introgression in mosaic hybrid zones of mussels. Journal of Evolutionary Biology, 2021, 34, 208-223.	0.8	27
49	Genomic divergence landscape in recurrently hybridizing Chironomus sister taxa suggests stable steady state between mutual gene flow and isolation. Evolution Letters, 2021, 5, 86-100.	1.6	5
50	Phylogenomics of the North American Plecoptera. Systematic Entomology, 2021, 46, 287-305.	1.7	19
51	Phylogenomics and the Genetic Architecture of the Placental Mammal Radiation. Annual Review of Animal Biosciences, 2021, 9, 29-53.	3.6	32
52	Newly discovered cichlid fish biodiversity threatened by hybridization with nonâ€native species. Molecular Ecology, 2021, 30, 895-911.	2.0	24
53	Signatures of Introgression across the Allele Frequency Spectrum. Molecular Biology and Evolution, 2021, 38, 716-726.	3.5	19
54	Hybridization: a †double-edged sword†for Neotropical plant diversity. Botanical Journal of the Linnean Society, 2022, 199, 331-356.	0.8	26

#	Article	IF	Citations
55	Reproductive Patterns Drive the Gene Flow and Spatial Dispersal of <i>Euschistus heros</i> (Hemiptera: Pentatomidae). Journal of Economic Entomology, 2021, 114, 2346-2354.	0.8	7
56	Paracoccidioides brasiliensis Isolated from Nine-Banded Armadillos (Dasypus novemcinctus) Reveal Population Structure and Admixture in the Amazon Basin. Journal of Fungi (Basel, Switzerland), 2021, 7, 54.	1.5	3
58	Asymmetric introgression reveals the genetic architecture of a plumage trait. Nature Communications, 2021, 12, 1019.	5.8	35
60	DILS: Demographic inferences with linked selection by using ABC. Molecular Ecology Resources, 2021, 21, 2629-2644.	2.2	32
61	Neural divergence and hybrid disruption between ecologically isolated <i>Heliconius</i> butterflies. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	24
62	Adaptive introgression: how polyploidy reshapes gene flow landscapes. New Phytologist, 2021, 230, 457-461.	3.5	31
63	The Effects of GC-Biased Gene Conversion on Patterns of Genetic Diversity among and across Butterfly Genomes. Genome Biology and Evolution, 2021, 13, .	1.1	11
64	Most Genomic Loci Misrepresent the Phylogeny of an Avian Radiation Because of Ancient Gene Flow. Systematic Biology, 2021, 70, 961-975.	2.7	45
65	Chromosomeâ€scale inference of hybrid speciation and admixture with convolutional neural networks. Molecular Ecology Resources, 2021, 21, 2676-2688.	2.2	13
67	Genetic Barriers to Historical Gene Flow between Cryptic Species of Alpine Bumblebees Revealed by Comparative Population Genomics. Molecular Biology and Evolution, 2021, 38, 3126-3143.	3.5	25
68	Associative Overdominance and Negative Epistasis Shape Genome-Wide Ancestry Landscape in Supplemented Fish Populations. Genes, 2021, 12, 524.	1.0	2
70	Complex reticulate evolution of speckled brushâ€furred rats (<i>Lophuromys</i>) in the Ethiopian centre of endemism. Molecular Ecology, 2021, 30, 2349-2365.	2.0	21
71	Synteny-Based Genome Assembly for 16 Species of <i>Heliconius </i> Butterflies, and an Assessment of Structural Variation across the Genus. Genome Biology and Evolution, 2021, 13, .	1.1	15
72	Homage to Felsenstein 1981, or why are there so few/many species?. Evolution; International Journal of Organic Evolution, 2021, 75, 978-988.	1.1	13
73	Positive selection plays a major role in shaping signatures of differentiation across the genomic landscape of two independent <i>Ficedula</i> flycatcher species pairs*. Evolution; International Journal of Organic Evolution, 2021, 75, 2179-2196.	1.1	18
74	Molecular Evolution of Ecological Specialisation: Genomic Insights from the Diversification of Murine Rodents. Genome Biology and Evolution, 2021, 13, .	1.1	11
76	Wheat speciation and adaptation: perspectives from reticulate evolution. ABIOTECH, 2021, 2, 386-402.	1.8	15
77	The Genomic Signature of Allopatric Speciation in a Songbird Is Shaped by Genome Architecture (Aves:) Tj ETQc	1 1 _{1.1} 784	314 rgBT /Ov

#	Article	IF	CITATIONS
78	Humanâ€modified canids in humanâ€modified landscapes: The evolutionary consequences of hybridization for grey wolves and freeâ€ranging domestic dogs. Evolutionary Applications, 2021, 14, 2433-2456.	1.5	15
79	The Pleistocene species pump past its prime: Evidence from European butterfly sister species. Molecular Ecology, 2021, 30, 3575-3589.	2.0	35
80	Selection and isolation define a heterogeneous divergence landscape between hybridizing <i>>Heliconius</i> butterflies. Evolution; International Journal of Organic Evolution, 2021, 75, 2251-2268.	1.1	18
81	The <i>Dryas iulia</i> Genome Supports Multiple Gains of a W Chromosome from a B Chromosome in Butterflies. Genome Biology and Evolution, 2021, 13, .	1.1	24
82	Chromosome Fusion Affects Genetic Diversity and Evolutionary Turnover of Functional Loci but Consistently Depends on Chromosome Size. Molecular Biology and Evolution, 2021, 38, 4449-4462.	3.5	51
83	Cortex cis-regulatory switches establish scale colour identity and pattern diversity in Heliconius. ELife, 2021, 10, .	2.8	40
87	Mitonuclear conflict in a macaque species exhibiting phylogenomic discordance. Journal of Evolutionary Biology, 2021, 34, 1568-1579.	0.8	8
88	Ancient divergence of Indian and Tibetan wolves revealed by recombinationâ€aware phylogenomics. Molecular Ecology, 2021, 30, 6687-6700.	2.0	26
89	Evolutionary impacts of introgressive hybridization in a rapidly evolving group of jumping spiders (F.) Tj ETQq0 C) 0 rgBT /C	verlock 10 Tf
90	Heliconius butterflies: a window into the evolution and development of diversity. Current Opinion in Genetics and Development, 2021, 69, 72-81.	1.5	8
91	The genomic consequences of hybridization. ELife, 2021, 10, .	2.8	128
94	Genomic introgression from a distant congener in the Levant fritillary butterfly, <i>Melitaea acentria</i> . Molecular Ecology, 2021, 30, 4819-4832.	2.0	7
95	Variable Signatures of Selection Despite Conserved Recombination Landscapes Early in Speciation. Journal of Heredity, 2021, 112, 485-496.	1.0	3
96	Persistence and expansion of cryptic endangered red wolf genomic ancestry along the American Gulf coast. Molecular Ecology, 2022, 31, 5440-5454.	2.0	7
97	Prevalence and Adaptive Impact of Introgression. Annual Review of Genetics, 2021, 55, 265-283.	3.2	99
99	Radiation with reticulation marks the origin of a major malaria vector. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31583-31590.	3.3	29
113	<i>Paracoccidioides</i> Genomes Reflect High Levels of Species Divergence and Little Interspecific Gene Flow. MBio, 2020, 11, .	1.8	17
115	Selective sorting of ancestral introgression in maize and teosinte along an elevational cline. PLoS Genetics, 2021, 17, e1009810.	1.5	50

#	Article	IF	CITATIONS
130	The effects of introgression across thousands of quantitative traits revealed by gene expression in wild tomatoes. PLoS Genetics, 2021, 17, e1009892.	1.5	9
134	Widespread introgression across a phylogeny of 155 Drosophila genomes. Current Biology, 2022, 32, 111-123.e5.	1.8	132
135	Hidden Phylogenomic Signal Helps Elucidate Arsenurine Silkmoth Phylogeny and the Evolution of Body Size and Wing Shape Trade-Offs. Systematic Biology, 2022, 71, 859-874.	2.7	5
140	A large deletion at the cortex locus eliminates butterfly wing patterning. G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	6
141	Predictability and parallelism in the contemporary evolution of hybrid genomes. PLoS Genetics, 2022, 18, e1009914.	1.5	11
143	Demographic History and Natural Selection Shape Patterns of Deleterious Mutation Load and Barriers to Introgression across <i>Populus</i> i>Genome. Molecular Biology and Evolution, 2022, 39, .	3.5	29
144	Predictors of genomic differentiation within a hybrid taxon. PLoS Genetics, 2022, 18, e1010027.	1.5	5
145	Cryptic Prophages Contribution for Campylobacter jejuni and Campylobacter coli Introgression. Microorganisms, 2022, 10, 516.	1.6	6
146	Parental Population Range Expansion before Secondary Contact Promotes Heterosis. American Naturalist, 2022, 200, E1-E15.	1.0	12
147	Response to Hill and Powers: It is irrelevant that the mode and tempo of Cassia crossbill speciation is not typical for birds. Journal of Avian Biology, 2022, 2022, .	0.6	0
148	Species Persistence with Hybridization in Toad-Headed Lizards Driven by Divergent Selection and Low Recombination. Molecular Biology and Evolution, 2022, 39, .	3.5	3
149	Imbalanced segregation of recombinant haplotypes in hybrid populations reveals inter- and intrachromosomal Dobzhansky-Muller incompatibilities. PLoS Genetics, 2022, 18, e1010120.	1.5	2
150	Hybridization Dynamics and Extensive Introgression in the <i>Daphnia longispina </i> Species Complex: New Insights from a High-Quality <i>Daphnia galeata </i> Reference Genome. Genome Biology and Evolution, 2021, 13, .	1.1	11
152	Genome assembly, structural variants, and genetic differentiation between lake whitefish young species pairs (<i>Coregonus</i> sp.) with long and short reads. Molecular Ecology, 2023, 32, 1458-1477.	2.0	18
154	Population genomic evidence of selection on structural variants in a natural hybrid zone. Molecular Ecology, 2023, 32, 1497-1514.	2.0	9
155	Genome-wide analyses of introgression between two sympatric Asian oak species. Nature Ecology and Evolution, 2022, 6, 924-935.	3.4	32
156	Evolution of genes involved in the unusual genitals of the bear macaque, <i>Macaca arctoides</i> Ecology and Evolution, 2022, 12, .	0.8	2
157	Interactions Between Natural Selection and Recombination Shape the Genomic Landscape of Introgression. Molecular Biology and Evolution, 2022, 39, .	3.5	8

#	ARTICLE	IF	CITATIONS
158	Wholeâ€genome phylogeography of the blueâ€faced honeyeater (<i>Entomyzon cyanotis</i>) and discovery and characterization of a <scp>neoâ€Z</scp> chromosome. Molecular Ecology, 2023, 32, 1248-1270.	2.0	4
159	Variation in the genomic basis of parallel phenotypic and ecological divergence in benthic and pelagic morphs of Icelandic Arctic charr (<i>Salvelinus alpinus</i>). Molecular Ecology, 2022, 31, 4688-4706.	2.0	3
161	Radiation and hybridization underpin the spread of the fire ant social supergene. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	3.3	10
162	Repeated genetic adaptation to altitude in two tropical butterflies. Nature Communications, 2022, 13, .	5 . 8	17
165	Selection against admixture and gene regulatory divergence in a long-term primate field study. Science, 2022, 377, 635-641.	6.0	28
166	A butterfly pan-genome reveals that a large amount of structural variation underlies the evolution of chromatin accessibility. Genome Research, 2022, 32, 1862-1875.	2.4	10
167	Linkage mapping and genome annotation give novel insights into gene family expansions and regional recombination rate variation in the painted lady (Vanessa cardui) butterfly. Genomics, 2022, 114, 110481.	1.3	18
168	What is reproductive isolation?. Journal of Evolutionary Biology, 2022, 35, 1143-1164.	0.8	36
171	Linked selection, differential introgression and recombination rate variation promote heterogeneous divergence in a pair of yellow croakers. Molecular Ecology, 2022, 31, 5729-5744.	2.0	8
172	Widespread Gene Expression Divergence in Butterfly Sensory Tissues Plays a Fundamental Role During Reproductive Isolation and Speciation. Molecular Biology and Evolution, 2022, 39, .	3.5	2
174	Inference of Gene Flow between Species under Misspecified Models. Molecular Biology and Evolution, 2022, 39, .	3.5	10
177	Rapid and predictable genome evolution across three hybrid ant populations. PLoS Biology, 2022, 20, e3001914.	2.6	4
180	Predicting recombination frequency from map distance. Heredity, 0, , .	1.2	7
182	Re-evaluating Homoploid Reticulate Evolution in <i>Helianthus</i> Sunflowers. Molecular Biology and Evolution, 2023, 40, .	3.5	9
184	Recombination and selection against introgressed DNA. Evolution; International Journal of Organic Evolution, 2023, 77, 1131-1144.	1.1	16
186	Chromosome Fissions and Fusions Act as Barriers to Gene Flow between <i>Brenthis</i> Fritillary Butterflies. Molecular Biology and Evolution, 2023, 40, .	3.5	17
187	Recombination Variation Shapes Phylogeny and Introgression in Wild Diploid Strawberries. Molecular Biology and Evolution, 2023, 40, .	3 . 5	6
223	Admixture. , 2024, , 484-502.		0