A second source of repeating fast radio bursts

Nature

566, 235-238

DOI: 10.1038/s41586-018-0864-x

Citation Report

#	Article	IF	CITATIONS
1	Are fast radio bursts the most likely electromagnetic counterpart of neutron star mergers resulting in prompt collapse?. Physical Review D, 2019, 100 , .	1.6	11
2	Finding the location of a fast radio burst. Science, 2019, 365, 546-547.	6.0	1
3	GREENBURST: A commensal Fast Radio Burst search back-end for the Green Bank Telescope. Publications of the Astronomical Society of Australia, 2019, 36, .	1.3	5
4	A fast radio burst localized to a massive galaxy. Nature, 2019, 572, 352-354.	13.7	252
5	Five new real-time detections of fast radio bursts with UTMOST. Monthly Notices of the Royal Astronomical Society, 2019, 488, 2989-3002.	1.6	49
6	Repeating Fast Radio Bursts from Magnetars with Low Magnetospheric Twist. Astrophysical Journal, 2019, 879, 4.	1.6	91
7	Prospects of strongly lensed repeating fast radio bursts: Complementary constraints on dark energy evolution. Physical Review D, 2019, 99, .	1.6	21
8	Cosmology-independent Estimate of the Fraction of Baryon Mass in the IGM from Fast Radio Burst Observations. Astrophysical Journal, 2019, 876, 146.	1.6	40
9	Energy function, formation rate, and low-metallicity environment of fast radio bursts. Monthly Notices of the Royal Astronomical Society, 2019, 487, 3672-3678.	1.6	15
10	The prevalence of repeating fast radio bursts. Nature Astronomy, 2019, 3, 928-931.	4.2	90
11	Commensal discovery of four fast radio bursts during Parkes Pulsar Timing Array observations. Monthly Notices of the Royal Astronomical Society, 2019, 488, 868-875.	1.6	31
12	A Search for High-energy Counterparts to Fast Radio Bursts. Astrophysical Journal, 2019, 879, 40.	1.6	30
13	Fast radio bursts. Astronomy and Astrophysics Review, 2019, 27, 1.	9.1	369
14	Comprehensive modelling and optical analysis of single-lens telescopes. Chinese Journal of Physics, 2019, 60, 739-748.	2.0	O
15	A single fast radio burst localized to a massive galaxy at cosmological distance. Science, 2019, 365, 565-570.	6.0	295
16	Non-detection of fast radio bursts from six gamma-ray burst remnants with possible magnetar engines. Monthly Notices of the Royal Astronomical Society, 2019, 489, 3643-3647.	1.6	17
17	A Universal Energy Distribution for FRB 121102. Astrophysical Journal, 2019, 882, 108.	1.6	30
18	The FRB 121102 Host Is Atypical among Nearby Fast Radio Bursts. Astrophysical Journal Letters, 2019, 884, L26.	3.0	28

#	Article	IF	Citations
19	Strong gravitational lensing of explosive transients. Reports on Progress in Physics, 2019, 82, 126901.	8.1	93
20	A Search for Short-term Hard X-Ray Bursts in the Direction of the Repeating FRB 121102. Astrophysical Journal, 2019, 885, 55.	1.6	8
21	CHIME/FRB Discovery of Eight New Repeating Fast Radio Burst Sources. Astrophysical Journal Letters, 2019, 885, L24.	3.0	302
22	CHIME/FRB Detection of the Original Repeating Fast Radio Burst Source FRB 121102. Astrophysical Journal Letters, 2019, 882, L18.	3.0	98
23	Limits on the Weak Equivalence Principle and Photon Mass with FRB 121102 Subpulses. Astrophysical Journal Letters, 2019, 882, L13.	3.0	26
24	GBTrans: a commensal search for radio pulses with the Green Bank 20-m telescope. Monthly Notices of the Royal Astronomical Society, 2019, 489, 4001-4006.	1.6	6
25	A 21Âcm pilot survey for pulsars and transients using the Focal L-Band Array for the Green Bank Telescope. Monthly Notices of the Royal Astronomical Society, 2019, 489, 1709-1718.	1.6	3
26	Distinct Properties of the Radio Burst Emission from the Magnetar XTE J1810–197. Astrophysical Journal Letters, 2019, 882, L9.	3.0	31
27	Observational diversity of magnetized neutron stars. Reports on Progress in Physics, 2019, 82, 106901.	8.1	50
28	Fast radio burst dispersion measures and rotation measures and the origin of intergalactic magnetic fields. Monthly Notices of the Royal Astronomical Society, 2019, 488, 4220-4238.	1.6	27
29	Fast Radio Bursts: An Extragalactic Enigma. Annual Review of Astronomy and Astrophysics, 2019, 57, 417-465.	8.1	324
30	A Sample of Low-energy Bursts from FRB 121102. Astrophysical Journal Letters, 2019, 877, L19.	3.0	120
31	A living theory catalogue for fast radio bursts. Physics Reports, 2019, 821, 1-27.	10.3	276
32	On the Time–Frequency Downward Drifting of Repeating Fast Radio Bursts. Astrophysical Journal Letters, 2019, 876, L15.	3.0	61
33	Limits on the population of repeating fast radio bursts from the ASKAP/CRAFT lat50 survey. Monthly Notices of the Royal Astronomical Society, 2019, 486, 5934-5950.	1.6	33
34	Fast radio burst energetics and sources. Monthly Notices of the Royal Astronomical Society, 2019, 487, 491-501.	1.6	21
35	FRB 121102 Bursts Show Complex Time–Frequency Structure. Astrophysical Journal Letters, 2019, 876, L23.	3.0	230
36	A fast radio burst with frequency-dependent polarization detected during Breakthrough Listen observations. Monthly Notices of the Royal Astronomical Society, 2019, 486, 3636-3646.	1.6	31

#	ARTICLE	IF	Citations
37	Detection of a Low-frequency Cosmic Radio Transient Using Two LWA Stations. Astrophysical Journal, 2019, 874, 151.	1.6	16
38	A southern sky search for repeating fast radio bursts using the Australian SKA Pathfinder. Monthly Notices of the Royal Astronomical Society, 2019, 486, 70-76.	1.6	16
39	Second Repeating FRB 180814.J0422+73: Ten-year Fermi-LAT Upper Limits and Implications. Astrophysical Journal Letters, 2019, 875, L19.	3.0	10
40	The Localization of the Single Pulse in VLBI Observation. Astronomical Journal, 2019, 157, 138.	1.9	2
41	A new fast radio burst in the data sets containing the Lorimer burst. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 484, L147-L150.	1.2	18
42	Fast radio bursts as synchrotron maser emission from decelerating relativistic blast waves. Monthly Notices of the Royal Astronomical Society, 2019, 485, 4091-4106.	1.6	271
43	Chiming again and again. Nature Astronomy, 2019, 3, 133-134.	4.2	0
44	Observations of fast radio bursts at frequencies down to 400Âmegahertz. Nature, 2019, 566, 230-234.	13.7	168
45	Are all fast radio bursts repeating sources?. Monthly Notices of the Royal Astronomical Society, 2019, 484, 5500-5508.	1.6	63
46	PEXO: A Global Modeling Framework for Nanosecond Timing, Microarcsecond Astrometry, and νm s ^{â^1} Radial Velocities. Astrophysical Journal, Supplement Series, 2019, 244, 39.	3.0	15
47	A Deep Targeted Search for Fast Radio Bursts from the Sites of Low-redshift Short Gamma-Ray Bursts. Astrophysical Journal, 2019, 887, 252.	1.6	10
48	Synthesising the intrinsic FRB population using frbpoppy. Astronomy and Astrophysics, 2019, 632, A125.	2.1	25
49	Constraints on the low frequency spectrum of FRB 121102. Astronomy and Astrophysics, 2019, 623, A42.	2.1	35
50	Estimates of Fast Radio Burst Dispersion Measures from Cosmological Simulations. Astrophysical Journal, 2019, 886, 135.	1.6	26
51	Faint Repetitions from a Bright Fast Radio Burst Source. Astrophysical Journal Letters, 2019, 887, L30.	3.0	94
52	Probing diffuse gas with fast radio bursts. Physical Review D, 2019, 100, .	1.6	25
53	A Search for Gamma-Ray Prompt Emission Associated with the Lorimer Burst FRB 010724. Astrophysical Journal, 2019, 882, 100.	1.6	13
54	The Giant Radio Array for Neutrino Detection (GRAND): Science and design. Science China: Physics, Mechanics and Astronomy, 2020, 63, 1.	2.0	130

#	Article	IF	Citations
55	A repeating fast radio burst source localized to a nearby spiral galaxy. Nature, 2020, 577, 190-194.	13.7	297
56	Statistical properties of magnetar bursts and FRB 121102. Monthly Notices of the Royal Astronomical Society, 2020, 491, 1498-1505.	1.6	41
57	Beaming as an explanation of the repetition/width relation in FRBs. Monthly Notices of the Royal Astronomical Society, 2020, 497, 3076-3082.	1.6	30
58	High time resolution and polarization properties of ASKAP-localized fast radio bursts. Monthly Notices of the Royal Astronomical Society, 2020, 497, 3335-3350.	1.6	93
59	Detectability of radio afterglows from binary neutron star mergers and implications for fast radio bursts. Monthly Notices of the Royal Astronomical Society, 2020, 498, 2384-2390.	1.6	4
60	Redshift estimates for fast radio bursts and implications on intergalactic magnetic fields. Monthly Notices of the Royal Astronomical Society, 2020, 498, 4811-4829.	1.6	11
61	The Multiwavelength Counterparts of Fast Radio Bursts. Astrophysical Journal, 2020, 897, 146.	1.6	26
62	FRB 171019: an event of binary neutron star merger?. Research in Astronomy and Astrophysics, 2020, 20, 056.	0.7	6
63	Characterizing fast radio bursts through statistical cross-correlations. Physical Review D, 2020, 102, .	1.6	14
64	A bright, high rotation-measure FRB that skewers the M33 halo. Monthly Notices of the Royal Astronomical Society, 2020, 499, 4716-4724.	1.6	27
65	Nonlinear self-focusing in strongly magnetized pair plasma. Physical Review E, 2020, 102, 013211.	0.8	4
66	Observing superluminous supernovae and long gamma-ray bursts as potential birthplaces of repeating fast radio bursts. Monthly Notices of the Royal Astronomical Society, 2020, 493, 5170-5180.	1.6	6
67	Constraints on the engines of fast radio bursts. Monthly Notices of the Royal Astronomical Society, 2020, 494, 4627-4644.	1.6	59
68	Photonic Perceptron Based on a Kerr Microcomb for Highâ€Speed, Scalable, Optical Neural Networks. Laser and Photonics Reviews, 2020, 14, 2000070.	4.4	84
69	Diverse polarization angle swings from a repeating fast radio burst source. Nature, 2020, 586, 693-696.	13.7	109
70	No redshift evolution of non-repeating fast radio burst rates. Monthly Notices of the Royal Astronomical Society, 2020, 498, 3927-3945.	1.6	27
71	What does FRB light-curve variability tell us about the emission mechanism?. Monthly Notices of the Royal Astronomical Society, 2020, 498, 651-664.	1.6	31
72	A population analysis of pulse broadening in ASKAP fast radio bursts. Monthly Notices of the Royal Astronomical Society, 2020, 497, 1382-1390.	1.6	35

#	Article	IF	Citations
73	Constraining a neutron star merger origin for localized fast radio bursts. Monthly Notices of the Royal Astronomical Society, 2020, 497, 3131-3141.	1.6	20
74	The physical mechanisms of fast radio bursts. Nature, 2020, 587, 45-53.	13.7	183
75	Fast radio bursts: do repeaters and non-repeaters originate in statistically similar ensembles?. Monthly Notices of the Royal Astronomical Society, 2020, 500, 3275-3280.	1.6	17
76	A targeted search for repeating fast radio bursts associated with gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 2020, 501, 541-547.	1.6	4
77	Implications of Canadian Hydrogen Intensity Mapping Experiment repeating fast radio bursts. Monthly Notices of the Royal Astronomical Society, 2020, 498, 1973-1982.	1.6	23
78	A simple relationship for the spectro-temporal structure of bursts from FRB 121102. Monthly Notices of the Royal Astronomical Society, 2020, 498, 4936-4942.	1.6	24
79	A new era of radio transients. Astronomy and Geophysics, 2020, 61, 5.12-5.17.	0.1	1
80	Luminosity–duration relations and luminosity functions of repeating and non-repeating fast radio bursts. Monthly Notices of the Royal Astronomical Society, 2020, 494, 2886-2904.	1.6	26
81	A Fast Radio Burst Discovered in FAST Drift Scan Survey. Astrophysical Journal Letters, 2020, 895, L6.	3.0	31
82	FRB coherent emission from decay of Alfv \tilde{A} ©n waves. Monthly Notices of the Royal Astronomical Society, 2020, 494, 2385-2395.	1.6	66
83	Measurement of the Rate Distribution of the Population of Repeating Fast Radio Bursts: Implications for Progenitor Models. Astrophysical Journal Letters, 2020, 895, L22.	3.0	8
84	Which bright fast radio bursts repeat?. Monthly Notices of the Royal Astronomical Society, 2020, 495, 2416-2427.	1.6	33
85	Fast Radio Burst Counterparts and Their Implications for the Central Engine. Astrophysical Journal, 2020, 892, 135.	1.6	16
86	Weak equivalence principle, swampland and H0 tension with fast single radio bursts FRB 180924 and FRB 190523. Physics of the Dark Universe, 2020, 29, 100571.	1.8	7
87	The Northern Cross fast radio burst project – I. Overview and pilot observations at 408ÂMHz. Monthly Notices of the Royal Astronomical Society, 2020, 494, 1229-1236.	1.6	14
88	Updated constraints on superconducting cosmic strings from the astronomy of fast radio bursts. European Physical Journal C, 2020, 80, 1.	1.4	4
89	On the FRB luminosity function – – II. Event rate density. Monthly Notices of the Royal Astronomical Society, 2020, 494, 665-679.	1.6	81
90	Periodic activity from a fast radio burst source. Nature, 2020, 582, 351-355.	13.7	231

#	Article	IF	CITATIONS
91	Radiation forces constrain the FRB mechanism. Monthly Notices of the Royal Astronomical Society, 2020, 494, 1217-1228.	1.6	16
92	Constraints on Compact Dark Matter with Fast Radio Burst Observations. Astrophysical Journal Letters, 2020, 896, L11.	3.0	27
93	Persistent Radio Emission from Synchrotron Heating by a Repeating Fast Radio Burst Source in a Nebula. Astrophysical Journal, 2020, 896, 71.	1.6	13
94	Stimulated emission–based model of fast radio bursts. Monthly Notices of the Royal Astronomical Society, 2020, 494, 876-884.	1.6	2
95	A quark nova in the wake of a core-collapse supernova: a unifying model for long duration gamma-ray bursts and fast radio bursts. Research in Astronomy and Astrophysics, 2020, 20, 027.	0.7	7
96	Nine New Repeating Fast Radio Burst Sources from CHIME/FRB. Astrophysical Journal Letters, 2020, 891, L6.	3.0	178
97	Fast Radio Bursts from Interacting Binary Neutron Star Systems. Astrophysical Journal Letters, 2020, 890, L24.	3.0	48
98	The Fast Radio Burst Luminosity Function and Death Line in the Low-twist Magnetar Model. Astrophysical Journal, 2020, 891, 82.	1.6	43
99	Fast Radio Bursts as Strong Waves Interacting with the Ambient Medium. Astrophysical Journal Letters, 2020, 892, L10.	3.0	17
100	Radius-to-frequency Mapping and FRB Frequency Drifts. Astrophysical Journal, 2020, 889, 135.	1.6	32
101	Periodic Fast Radio Bursts from Young Neutron Stars. Astrophysical Journal, 2020, 890, 162.	1.6	9
102	Zwicky Transient Facility Constraints on the Optical Emission from the Nearby Repeating FRB 180916.J0158+65. Astrophysical Journal Letters, 2020, 896, L2.	3.0	20
103	A neutron starâ€"white dwarf binary model for periodically active fast radio burst sources. Monthly Notices of the Royal Astronomical Society, 2020, 497, 1543-1546.	1.6	28
104	Lensing of fast radio bursts: Future constraints on primordial black hole density with an extended mass function and a new probe of exotic compact fermion and boson stars. Physical Review D, 2020, 102, .	1.6	26
105	Real-time gap-free dynamic waveform spectral analysis with nanosecond resolutions through analog signal processing. Nature Communications, 2020, 11 , 3309.	5.8	42
106	Prompt X-Ray Emission from Fast Radio Bursts—Upper Limits with AstroSat. Astrophysical Journal, 2020, 888, 40.	1.6	11
107	The Effects of Plasma Lensing on the Inferred Dispersion Measures of Fast Radiobursts. Astrophysical Journal, 2020, 889, 158.	1.6	17
108	Upgraded antennas for pulsar observations in the Argentine Institute of Radio astronomy. Astronomy and Astrophysics, 2020, 633, A84.	2.1	10

#	Article	IF	CITATIONS
109	Repeating fast radio bursts with WSRT/Apertif. Astronomy and Astrophysics, 2020, 635, A61.	2.1	48
110	Explanation of detailed spectral properties of fast radio bursts by the axion star model. Progress of Theoretical and Experimental Physics, 2020, 2020, .	1.8	5
111	Data Analysis for Precision 21 cm Cosmology. Publications of the Astronomical Society of the Pacific, 2020, 132, 062001.	1.0	107
112	Reconstructing the fraction of baryons in the intergalactic medium with fast radio bursts via Gaussian processes. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 023-023.	1.9	12
113	Cosmology with gravitationally lensed repeating fast radio bursts. Astronomy and Astrophysics, 2021, 645, A44.	2.1	27
114	On the True Fractions of Repeating and Nonrepeating Fast Radio Burst Sources. Astrophysical Journal Letters, 2021, 906, L5.	3.0	23
115	Fast radio burst repeaters produced via Kozai-Lidov feeding of neutron stars in binary systems. Astronomy and Astrophysics, 2021, 645, A122.	2.1	4
116	A comparison between repeating bursts of FRB 121102 and giant pulses from Crab pulsar and its applications. Frontiers of Physics, 2021, 16, 1.	2.4	13
117	Constraining the fast radio burst properties using the joint distributions of dispersion measure and fluence of the events detected at Parkes, ASKAP, CHIME, and UTMOST. Monthly Notices of the Royal Astronomical Society, 2021, 502, 904-914.	1.6	2
118	Fast radio bursts. Astronomy and Geophysics, 2021, 62, 1.29-1.35.	0.1	8
119	An X-ray burst from a magnetar enlightening the mechanism of fast radio bursts. Nature Astronomy, 2021, 5, 401-407.	4.2	104
120	Exploring the epoch of hydrogen reionization using FRBs. Monthly Notices of the Royal Astronomical Society, 2021, 502, 5134-5146.	1.6	21
121	The 60 pc Environment of FRB 20180916B. Astrophysical Journal Letters, 2021, 908, L12.	3.0	67
122	FRB131104 Swift/BAT Data Revisited: No Evidence of a Gamma-Ray Counterpart. Astrophysical Journal, 2021, 908, 137.	1.6	3
123	Rotation Measure Evolution of the Repeating Fast Radio Burst Source FRB 121102. Astrophysical Journal Letters, 2021, 908, L10.	3.0	80
124	The physics of fast radio bursts. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	2.0	87
125	Searching for gravitational waves with strongly lensed repeating fast radio bursts. Physical Review D, 2021, 103, .	1.6	11
126	Synthesising the repeating FRB population using frbpoppy. Astronomy and Astrophysics, 2021, 647, A30.	2.1	22

#	Article	IF	CITATIONS
127	Fast radio burst detection in the presence of coloured noise. Monthly Notices of the Royal Astronomical Society, 2021, 503, 5223-5231.	1.6	8
128	GPU-accelerated periodic source identification in large-scale surveys: measuring <i>P</i> and <i>P</i> and <i>P</i> Monthly Notices of the Royal Astronomical Society, 2021, 503, 2665-2675.	1.6	4
129	Highly polarized microstructure from the repeating FRB 20180916B. Nature Astronomy, 2021, 5, 594-603.	4.2	66
130	A Nearby Repeating Fast Radio Burst in the Direction of M81. Astrophysical Journal Letters, 2021, 910, L18.	3.0	124
131	Probing the Universe with Fast Radio Bursts. Universe, 2021, 7, 85.	0.9	16
132	LOFAR Detection of 110–188 MHz Emission and Frequency-dependent Activity from FRB 20180916B. Astrophysical Journal Letters, 2021, 911, L3.	3.0	99
133	Plasma effects in electron-beam-driven QED cascades. , 2021, , .		0
134	A deep study of the high–energy transient sky. Experimental Astronomy, 2021, 51, 1203-1223.	1.6	5
135	An Analysis Pipeline for CHIME/FRB Full-array Baseband Data. Astrophysical Journal, 2021, 910, 147.	1.6	31
136	An analysis of the time-frequency structure of several bursts from FRB 121102 detected with MeerKAT. Monthly Notices of the Royal Astronomical Society, 2021, 505, 3041-3053.	1.6	19
137	Fast radio burst dispersion measure distribution as a probe of helium reionization. Physical Review D, 2021, 103, .	1.6	14
138	FRBs Lensed by Point Masses I. Lens Mass Estimation for Doubly Imaged FRBs. Astrophysical Journal, 2021, 912, 134.	1.6	7
139	The CHIME Pulsar Project: System Overview. Astrophysical Journal, Supplement Series, 2021, 255, 5.	3.0	40
140	The cosmic dispersion measure in the EAGLE simulations. Monthly Notices of the Royal Astronomical Society, 2021, 505, 5356-5369.	1.6	5
141	AGILE Observations of Fast Radio Bursts. Astrophysical Journal, 2021, 915, 102.	1.6	11
142	Implications of the lowest frequency detection of the persistent counterpart of FRB121102. Astronomy and Astrophysics, 2021, 655, A102.	2.1	9
143	Evidence of a shared spectro-temporal law between sources of repeating fast radio bursts. Monthly Notices of the Royal Astronomical Society, 2021, 507, 246-260.	1.6	19
144	Model-independent Estimation of H $<$ sub $>$ 0 $<$ /sub $>$ and \hat{I} @ $<$ sub $>$ K $<$ /sub $>$ from Strongly Lensed Fast Radio Bursts. Astrophysical Journal, 2021, 916, 70.	1.6	9

#	Article	IF	CITATIONS
145	Signature of Collective Plasma Effects in Beam-Driven QED Cascades. Physical Review Letters, 2021, 127, 095001.	2.9	13
146	The BINGO project. Astronomy and Astrophysics, 2022, 664, A14.	2.1	25
147	81 New candidate fast radio bursts in Parkes archive. Monthly Notices of the Royal Astronomical Society, 2021, 507, 3238-3245.	1.6	8
148	Chromatic periodic activity down to 120Âmegahertz in a fast radio burst. Nature, 2021, 596, 505-508.	13.7	69
149	Freeâ€"free absorption in hot relativistic flows: application to fast radio bursts. Monthly Notices of the Royal Astronomical Society: Letters, 2021, 508, L48-L52.	1.2	5
150	Periodic Activities of Repeating Fast Radio Bursts from Be/X-Ray Binary Systems. Astrophysical Journal Letters, 2021, 918, L5.	3.0	26
151	Narrow-band giant pulses from the Crab pulsar. Monthly Notices of the Royal Astronomical Society, 2021, 508, 1947-1953.	1.6	9
152	Reflective black holes. Modern Physics Letters A, 2021, 36, 2150200.	0.5	2
153	A Bright Fast Radio Burst from FRB 20200120E with Sub-100 Nanosecond Structure. Astrophysical Journal Letters, 2021, 919, L6.	3.0	44
154	Constraining Hell reionization detection uncertainties via fast radio bursts. New Astronomy, 2021, 89, 101627.	0.8	4
155	A Search for Hard X-Ray Bursts Occurring Simultaneously with Fast Radio Bursts in the Repeating FRB 121102. Astrophysical Journal, 2021, 907, 25.	1.6	1
156	The Dispersion Measure and Scattering of Fast Radio Bursts: Contributions from the Intergalactic Medium, Foreground Halos, and Hosts. Astrophysical Journal, 2021, 906, 95.	1.6	11
157	Applying saliency-map analysis in searches for pulsars and fast radio bursts. Astronomy and Astrophysics, 2020, 642, A26.	2.1	7
158	A search for supernova-like optical counterparts to ASKAP-localised fast radio bursts. Astronomy and Astrophysics, 2020, 639, A119.	2.1	12
159	Cosmic anisotropy and fast radio bursts. Classical and Quantum Gravity, 2020, 37, 185022.	1.5	12
160	Self-modulation of fast radio bursts. Monthly Notices of the Royal Astronomical Society, 2020, 500, 272-281.	1.6	16
161	Extremely band-limited repetition from a fast radio burst source. Monthly Notices of the Royal Astronomical Society, 2020, 500, 2525-2531.	1.6	51
162	Cosmology-insensitive estimate of IGM baryon mass fraction from five localized fast radio bursts. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 496, L28-L32.	1.2	38

#	Article	IF	CITATIONS
163	Program objectives and specifications for the Ultra-Fast Astronomy observatory. , 2019, , .		7
164	A GPU Spatial Processing System for CHIME. Journal of Astronomical Instrumentation, 2020, 09, .	0.8	6
165	Magnetars from Neutron Star–White Dwarf Mergers: Application to Fast Radio Bursts. Astrophysical Journal, 2020, 893, 9.	1.6	20
166	The Rarity of Repeating Fast Radio Bursts from Binary Neutron Star Mergers. Astrophysical Journal, 2020, 893, 44.	1.6	7
167	Are Persistent Emission Luminosity and Rotation Measure of Fast Radio Bursts Related?. Astrophysical Journal, 2020, 895, 7.	1.6	14
168	On the Magnetospheric Origin of Repeating Fast Radio Bursts. Astrophysical Journal, 2020, 899, 109.	1.6	31
169	A Distant Fast Radio Burst Associated with Its Host Galaxy by the Very Large Array. Astrophysical Journal, 2020, 899, 161.	1.6	62
170	Population Modeling of Fast Radio Bursts from Source Properties. Astrophysical Journal, 2020, 899, 124.	1.6	4
171	Dispersion Measures of Fast Radio Burst Host Galaxies Derived from IllustrisTNG Simulation. Astrophysical Journal, 2020, 900, 170.	1.6	27
172	Repeating Fast Radio Bursts from Pulsar–Asteroid Belt Collisions: Frequency Drifting and Polarization. Astrophysical Journal, 2020, 905, 140.	1.6	5
173	AGILE Observations of Two Repeating Fast Radio Bursts with Low Intrinsic Dispersion Measures. Astrophysical Journal Letters, 2020, 890, L32.	3.0	20
174	Detection of Repeating FRB 180916.J0158+65 Down to Frequencies of 300 MHz. Astrophysical Journal Letters, 2020, 896, L41.	3.0	70
175	The Lowest-frequency Fast Radio Bursts: Sardinia Radio Telescope Detection of the Periodic FRB 180916 at 328 MHz. Astrophysical Journal Letters, 2020, 896, L40.	3.0	65
176	A Comparative Study of Host Galaxy Properties between Fast Radio Bursts and Stellar Transients. Astrophysical Journal Letters, 2020, 899, L6.	3.0	45
177	Scintillation Can Explain the Spectral Structure of the Bright Radio Burst from SGR 1935+2154. Astrophysical Journal Letters, 2020, 899, L21.	3.0	14
178	Double-peaked Pulse Profile of FRB 200428: Synchrotron Maser Emission from Magnetized Shocks Encountering a Density Jump. Astrophysical Journal Letters, 2020, 904, L5.	3.0	14
179	Fast Radio Burst Trains from Magnetar Oscillations. Astrophysical Journal Letters, 2020, 903, L38.	3.0	21
180	Multiwavelength Radio Observations of Two Repeating Fast Radio Burst Sources: FRBÂ121102 and FRBÂ180916.J0158+65. Astrophysical Journal Letters, 2020, 905, L27.	3.0	20

#	ARTICLE	IF	Citations
181	The ⟨i>z⟨ i>â€"DM distribution of fast radio bursts. Monthly Notices of the Royal Astronomical Society, 2021, 509, 4775-4802.	1.6	52
182	Binary Comb Models for FRB 121102. Astrophysical Journal, 2021, 920, 54.	1.6	20
183	Statistical properties of fast radio bursts elucidate their origins: magnetars are favored over gamma-ray bursts. Research in Astronomy and Astrophysics, 2021, 21, 211.	0.7	3
184	US Contributions to the Athena Wide Field Imager. , 2019, , .		O
185	A study of repeated bursts FRB 121102 as a radiation from cusps on superconducting cosmic string. ScienceRise, 2019, 1, 43-48.	0.1	0
186	A Search for Bursts from FRB 191228 in Breakthrough Listen Archival Data. Research Notes of the AAS, 2020, 4, 99.	0.3	0
187	The host galaxies and progenitors of Fast Radio Burst. , 2020, , .		0
188	Search for fast radio transients using Arecibo drift-scan observations at 1.4ÂGHz. Monthly Notices of the Royal Astronomical Society, 2021, 509, 1929-1939.	1.6	2
189	Joint inference on the redshift distribution of fast radio burst and on the intergalactic baryon content. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	2
190	The Remnant of Neutron Star-White Dwarf Merger and the Repeating Fast Radio Bursts. International Journal of Astronomy and Astrophysics, 2020, 10, 28-38.	0.2	4
191	Combinations of Standard Pings and Standard Candles: An Effective and Hubble Constant-free Probe of Dark Energy Evolution. Astrophysical Journal, 2020, 901, 130.	1.6	2
192	Quark-Novae in the outskirts of galaxies: an explanation of the fast radio burst phenomenon. Monthly Notices of the Royal Astronomical Society, 2020, 500, 4414-4421.	1.6	3
193	An Accreting Stellar Binary Model for Active Periodic Fast Radio Bursts. Astrophysical Journal, 2021, 922, 98.	1.6	15
194	Coherent Emission in Pulsars, Magnetars, and Fast Radio Bursts: Reconnection-driven Free Electron Laser. Astrophysical Journal, 2021, 922, 166.	1.6	29
195	Comprehensive Analysis of a Dense Sample of FRB 121102 Bursts. Astrophysical Journal, 2021, 922, 115.	1.6	16
196	Three aspects of the radius-to-frequency mapping in fast radio bursts. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	3
197	Coherent Inverse Compton Scattering by Bunches in Fast Radio Bursts. Astrophysical Journal, 2022, 925, 53.	1.6	27
198	A Clock Stabilization System for CHIME/FRB Outriggers. Astronomical Journal, 2022, 163, 48.	1.9	11

#	Article	IF	Citations
199	Filamentation of fast radio bursts in magnetar winds. Monthly Notices of the Royal Astronomical Society, 2022, 511, 4766-4773.	1.6	7
200	Prospects for measuring dark energy with 21 cm intensity mapping experiments. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 060.	1.9	12
201	FRBs Lensed by Point Masses. II. The Multipeaked FRBs from the Point View of Microlensing. Astrophysical Journal, 2021, 923, 117.	1.6	5
202	Faraday depolarization and induced circular polarization by multipath propagation with application to FRBs. Monthly Notices of the Royal Astronomical Society, 2022, 510, 4654-4668.	1.6	37
203	Long and Short Fast Radio Bursts Are Different from Repeating and Nonrepeating Transients. Astrophysical Journal, 2021, 923, 230.	1.6	10
204	Fast Radio Burst Morphology in the First CHIME/FRB Catalog. Astrophysical Journal, 2021, 923, 1.	1.6	109
205	No Evidence for Galactic Latitude Dependence of the Fast Radio Burst Sky Distribution. Astrophysical Journal, 2021, 923, 2.	1.6	20
206	The First CHIME/FRB Fast Radio Burst Catalog. Astrophysical Journal, Supplement Series, 2021, 257, 59.	3.0	199
207	Fast Radio Bursts as Crustal Dynamical Events Induced by Magnetic Field Evolution in Young Magnetars. Research in Astronomy and Astrophysics, 2022, 22, 035004.	0.7	2
208	Magnetospheric Curvature Radiation by Bunches as Emission Mechanism for Repeating Fast Radio Bursts. Astrophysical Journal, 2022, 927, 105.	1.6	36
209	Circularly polarized radio emission from the repeating fast radio burst source FRB 20201124A. Monthly Notices of the Royal Astronomical Society, 2022, 512, 3400-3413.	1.6	34
210	A Sudden Period of High Activity from Repeating Fast Radio Burst 20201124A. Astrophysical Journal, 2022, 927, 59.	1.6	31
211	Arguing About Extraterrestrial Intelligence. Philosophical Quarterly, 2022, 73, 64-83.	0.3	6
212	Angular dependence of coherent radio emission from magnetars with multipolar magnetic fields. Monthly Notices of the Royal Astronomical Society, 2022, 512, 3189-3194.	1.6	2
213	Sudden discharge of young charged magnetars as a new model for FRBs. Monthly Notices of the Royal Astronomical Society, 2021, 509, 5357-5364.	1.6	0
214	The Low Frequency Perspective on Fast Radio Bursts. Universe, 2022, 8, 9.	0.9	4
215	Upper limits on Einstein's weak equivalence principle placed by uncertainties of dispersion measures of fast radio bursts. Physical Review D, 2021, 104, .	1.6	4
216	Collective plasma effects of electron–positron pairs in beam-driven QED cascades. Physics of Plasmas, 2022, 29, .	0.7	5

#	Article	IF	CITATIONS
217	The northern cross fast radio burst project $\hat{a} \in \mathbb{N}$ II. Monitoring of repeating FRB 20180916B, 20181030A, 20200120E, and 20201124A. Monthly Notices of the Royal Astronomical Society, 2022, 513, 1858-1866.	1.6	4
218	Effects of Gravitational-wave Radiation of Eccentric Neutron Star–White Dwarf Binaries on the Periodic Activity of Fast Radio Burst Sources. Astrophysical Journal, 2022, 929, 114.	1.6	2
219	MASTER Real-Time Multi-Message Observations of High Energy Phenomena. Universe, 2022, 8, 271.	0.9	7
220	Circular Polarization of Fast Radio Bursts in the Curvature Radiation Scenario. Research in Astronomy and Astrophysics, 2022, 22, 075013.	0.7	9
221	Electromagnetic Fireworks: Fast Radio Bursts from Rapid Reconnection in the Compressed Magnetar Wind. Astrophysical Journal Letters, 2022, 932, L20.	3.0	18
222	The Statistical Similarity of Repeating and Non-Repeating Fast Radio Bursts. Universe, 2022, 8, 355.	0.9	4
223	Sub-second periodicity in a fast radio burst. Nature, 2022, 607, 256-259.	13.7	37
224	Repeating fast radio bursts: Coherent circular polarization by bunches. Science China: Physics, Mechanics and Astronomy, 2022, 65, .	2.0	13
225	Luminosity distribution of fast radio bursts from CHIME/FRB Catalog 1 by means of the updated Macquart relation. Astrophysics and Space Science, 2022, 367, .	0.5	6
226	Arecibo observations of a burst storm from FRBÂ20121102A in 2016. Monthly Notices of the Royal Astronomical Society, 2022, 515, 3577-3596.	1.6	28
227	Transient simulations for radio surveys. Astronomy and Computing, 2022, 40, 100629.	0.8	2
228	Prospects of strongly lensed fast radio bursts: simultaneous measurement of post-Newtonian parameter and Hubble constant. Monthly Notices of the Royal Astronomical Society, 2022, 516, 1977-1982.	1.6	8
229	Repeating fast radio bursts with high burst rates by plate collisions in neutron star crusts. Monthly Notices of the Royal Astronomical Society, 2022, 517, 4612-4619.	1.6	3
230	FAST Observations of an Extremely Active Episode of FRB 20201124A: I. Burst Morphology. Research in Astronomy and Astrophysics, 2022, 22, 124001.	0.7	25
231	FAST Observations of an Extremely Active Episode of FRB 20201124A. IV. Spin Period Search. Research in Astronomy and Astrophysics, 2022, 22, 124004.	0.7	12
232	The discovery and scientific potential of fast radio bursts. Science, 2022, 378, .	6.0	10
233	A targeted search for repeating fast radio bursts with the MWA. Monthly Notices of the Royal Astronomical Society, 2022, 518, 4278-4289.	1.6	0
234	Expanding fireball in magnetar bursts and fast radio bursts. Monthly Notices of the Royal Astronomical Society, 2023, 519, 4094-4109.	1.6	5

#	ARTICLE	IF	CITATIONS
235	Fast Radio Bursts., 2023, , 1-38.		0
236	Fast transient infrared detection for time-domain astronomy. Journal of Instrumentation, 2023, 18, C02012.	0.5	0
237	Oscillatory path integrals for radio astronomy. Annals of Physics, 2023, 451, 169255.	1.0	6
238	Nondetection of CHIME/Fast Radio Burst Sources with the Arecibo Observatory. Astrophysical Journal, 2023, 944, 70.	1.6	2
239	Are fast radio bursts produced by large glitches of anomalous x-ray pulsars?. Physics & Astronomy International Journal, 2023, 7, 1-5.	0.1	0
240	Tied-array beam localization of radio transients and pulsars. , 2023, 2, 114-128.		4
241	A broad survey of spectro-temporal properties from FRB 20121102A. Monthly Notices of the Royal Astronomical Society, 2023, 522, 3036-3048.	1.6	3
264	Fast Radio Bursts. , 2024, , 5151-5187.		O