Induced pluripotent stem cells in disease modelling and

Nature Reviews Genetics 20, 377-388

DOI: 10.1038/s41576-019-0100-z

Citation Report

#	Article	IF	CITATIONS
1	Recent advances in deriving human endodermal tissues from pluripotent stem cells. Current Opinion in Cell Biology, 2019, 61, 92-100.	2.6	14
2	Medicinal Biotechnology for Disease Modeling, Clinical Therapy, and Drug Discovery and Development., 2019,, 89-128.		6
3	A two-step lineage reprogramming strategy to generate functionally competent human hepatocytes from fibroblasts. Cell Research, 2019, 29, 696-710.	5.7	43
4	Use of Human Pluripotent Stem Cells to Define Initiating Molecular Mechanisms of Cataract for Anti-Cataract Drug Discovery. Cells, 2019, 8, 1269.	1.8	4
5	Methods and applications of CRISPR/Cas system for genome editing in stem cells. Cell Regeneration, 2019, 8, 33-41.	1.1	24
6	Modeling Leukemia with Human Induced Pluripotent Stem Cells. Cold Spring Harbor Perspectives in Medicine, 2019, 9, a034868.	2.9	7
7	Conditional Reprogramming for Patient-Derived Cancer Models and Next-Generation Living Biobanks. Cells, 2019, 8, 1327.	1.8	59
8	Self-assembled ternary poly(vinyl alcohol)-alginate-gelatin hydrogel with controlled-release nanoparticles for pancreatic differentiation of iPS cells. Journal of the Taiwan Institute of Chemical Engineers, 2019, 104, 27-39.	2.7	12
9	Strategies for the expansion of human induced pluripotent stem cells as aggregates in single-use Vertical-Wheelâ,,¢ bioreactors. Journal of Biological Engineering, 2019, 13, 74.	2.0	49
10	Oligogenic inheritance of a human heart disease involving a genetic modifier. Science, 2019, 364, 865-870.	6.0	142
11	How well do we understand the basis of classic selective sweeps in humans?. FEBS Letters, 2019, 593, 1431-1448.	1.3	17
12	Concise Review: Genetic and Epigenetic Regulation of Cardiac Differentiation from Human Pluripotent Stem Cells. Stem Cells, 2019, 37, 992-1002.	1.4	32
13	Next-Generation Liver Medicine Using Organoid Models. Frontiers in Cell and Developmental Biology, 2019, 7, 345.	1.8	48
14	Application of Urine-Derived Stem Cells to Cellular Modeling in Neuromuscular and Neurodegenerative Diseases. Frontiers in Molecular Neuroscience, 2019, 12, 297.	1.4	19
15	Effects of reprogramming on genomic imprinting and the application of pluripotent stem cells. Stem Cell Research, 2019, 41, 101655.	0.3	8
16	Deciphering Role of Wnt Signalling in Cardiac Mesoderm and Cardiomyocyte Differentiation from Human iPSCs: Four-dimensional control of Wnt pathway for hiPSC-CMs differentiation. Scientific Reports, 2019, 9, 19389.	1.6	49
17	Research and therapy with induced pluripotent stem cells (iPSCs): social, legal, and ethical considerations. Stem Cell Research and Therapy, 2019, 10, 341.	2.4	130
18	Nrf2: Redox and Metabolic Regulator of Stem Cell State and Function. Trends in Molecular Medicine, 2020, 26, 185-200.	3.5	137

#	Article	IF	Citations
20	Maintaining genomic stability in pluripotent stem cells. Genome Instability & Disease, 2020, 1, 92-97.	0.5	7
21	Pluripotent stem cell biology and engineering. , 2020, , 1-31.		0
22	Recapitulating developmental mechanisms for retinal regeneration. Progress in Retinal and Eye Research, 2020, 76, 100824.	7.3	28
23	Specific complexes derived from extracellular matrix facilitate generation of structural and drugâ€responsive human salivary gland microtissues through maintenance stem cell homeostasis. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 284-294.	1.3	4
24	Polyacrylamide Hydrogels with Rigidity-Independent Surface Chemistry Show Limited Long-Term Maintenance of Pluripotency of Human Induced Pluripotent Stem Cells on Soft Substrates. ACS Biomaterials Science and Engineering, 2020, 6, 340-351.	2.6	14
25	The status and challenges of replicating the mechanical properties of connective tissues using additive manufacturing. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 103, 103544.	1.5	23
26	Organoids, Assembloids, and Novel Biotechnology: Steps Forward in Developmental and Disease-Related Neuroscience. Neuroscientist, 2021, 27, 463-472.	2.6	22
27	"Betwixt Mine Eye and Heart a League Is Tookâ€. The Progress of Induced Pluripotent Stem-Cell-Based Models of Dystrophin-Associated Cardiomyopathy. International Journal of Molecular Sciences, 2020, 21, 6997.	1.8	5
28	Generation of pure monocultures of human microglia-like cells from induced pluripotent stem cells. Stem Cell Research, 2020, 49, 102046.	0.3	29
29	Human Induced Pluripotent Stem Cell Models of Neurodegenerative Disorders for Studying the Biomedical Implications of Autophagy. Journal of Molecular Biology, 2020, 432, 2754-2798.	2.0	15
30	Compartmentalized Neuronal Culture for Viral Transport Research. Frontiers in Microbiology, 2020, 11, 1470.	1.5	2
31	Differentiation of human induced pluripotent stem cells into erythroid cells. Stem Cell Research and Therapy, 2020, 11, 483.	2.4	30
32	Induced Pluripotency: A Powerful Tool for In Vitro Modeling. International Journal of Molecular Sciences, 2020, 21, 8910.	1.8	13
33	Establishment of drug screening in human embryonic stem cells based on a high-content screening system. Journal of Pharmacological and Toxicological Methods, 2020, 106, 106913.	0.3	0
34	Strategies for Cancer Immunotherapy Using Induced Pluripotency Stem Cells-Based Vaccines. Cancers, 2020, 12, 3581.	1.7	6
35	Acrylamide exposure represses neuronal differentiation, induces cell apoptosis and promotes tau hyperphosphorylation in hESC-derived 3D cerebral organoids. Food and Chemical Toxicology, 2020, 144, 111643.	1.8	23
36	A functional genomics approach to investigate the differentiation of iPSCs into lung epithelium at airâ€iquid interface. Journal of Cellular and Molecular Medicine, 2020, 24, 9853-9870.	1.6	11
37	Application of induced pluripotent stem cells in epilepsy. Molecular and Cellular Neurosciences, 2020, 108, 103535.	1.0	13

#	ARTICLE	lF	CITATIONS
38	Patient derived stem cells for discovery and validation of novel pathogenic variants in inherited retinal disease. Progress in Retinal and Eye Research, 2021, 83, 100918.	7.3	16
39	Reprogramming Prostate Cancer Cells into Induced Pluripotent Stem Cells: a Promising Model of Prostate Cancer Stem Cell Research. Cellular Reprogramming, 2020, 22, 262-268.	0.5	4
40	Global trends in clinical trials involving pluripotent stem cells: a systematic multi-database analysis. Npj Regenerative Medicine, 2020, 5, 15.	2.5	94
41	Versatility of Induced Pluripotent Stem Cells (iPSCs) for Improving the Knowledge on Musculoskeletal Diseases. International Journal of Molecular Sciences, 2020, 21, 6124.	1.8	9
42	Effective Modulation of CNS Inhibitory Microenvironment using Bioinspired Hybridâ∈Nanoscaffoldâ∈Based Therapeutic Interventions. Advanced Materials, 2020, 32, e2002578.	11.1	40
43	Humanized Rodent Models for Cancer Research. Frontiers in Oncology, 2020, 10, 1696.	1.3	68
44	Human induced pluripotent stem cells technology in treatment resistant depression: novel strategies and opportunities to unravel ketamine's fast-acting antidepressant mechanisms. Therapeutic Advances in Psychopharmacology, 2020, 10, 204512532096833.	1.2	4
45	Human sensory neurons derived from pluripotent stem cells for disease modelling and personalized medicine. Neurobiology of Pain (Cambridge, Mass), 2020, 8, 100055.	1.0	27
46	Neuronal Differentiation of Induced Pluripotent Stem Cells from Schizophrenia Patients in Two-Dimensional and in Three-Dimensional Cultures Reveals Increased Expression of the Kv4.2 Subunit DPP6 That Contributes to Decreased Neuronal Activity. Stem Cells and Development, 2020, 29, 1577-1587.	1.1	12
47	Human pluripotent stem cells: derivation and applications. Nature Reviews Molecular Cell Biology, 2020, , .	16.1	5
48	The mutational impact of culturing human pluripotent and adult stem cells. Nature Communications, 2020, 11, 2493.	5. 8	61
49	Induced pluripotent stem cells (iPSCs) as gameâ€changing tools in the treatment of neurodegenerative disease: Mirage or reality?. Journal of Cellular Physiology, 2020, 235, 9166-9184.	2.0	9
50	Mitochondrial diseases in adults. Journal of Internal Medicine, 2020, 287, 592-608.	2.7	33
51	Induced pluripotent stem cells provide mega insights into kidney disease. Kidney International, 2020, 98, 54-57.	2.6	4
52	Image-based high-content screening in drug discovery. Drug Discovery Today, 2020, 25, 1348-1361.	3.2	52
53	mRNA-Based Reprogramming Under Xeno-Free and Feeder-Free Conditions. Methods in Molecular Biology, 2020, , 1.	0.4	1
54	Patient-Derived In Vitro Models for Drug Discovery in Colorectal Carcinoma. Cancers, 2020, 12, 1423.	1.7	25
55	Recommended Guidelines for Developing, Qualifying, and Implementing Complex In Vitro Models (CIVMs) for Drug Discovery. SLAS Discovery, 2020, 25, 1174-1190.	1.4	33

#	ARTICLE	IF	Citations
56	In vitro models for ASD-patient-derived iPSCs and cerebral organoids. Progress in Molecular Biology and Translational Science, 2020, 173, 355-375.	0.9	4
57	Conditional reprogramming: Modeling urological cancer and translation to clinics. Clinical and Translational Medicine, 2020, 10, e95.	1.7	9
58	The current state of drug repurposing and rare diseases: an interview with Paul Trippier. Future Drug Discovery, 2020, 2, FDD30.	0.8	0
59	Editorial: Epigenetic Regulation of Stem Cell Plasticity in Tissue Regeneration and Disease. Frontiers in Cell and Developmental Biology, 2020, 8, 82.	1.8	4
60	Modeling the complex genetic architectures of brain disease. Nature Genetics, 2020, 52, 363-369.	9.4	35
61	Modeling and Targeting Alzheimer's Disease With Organoids. Frontiers in Pharmacology, 2020, 11, 396.	1.6	71
62	Innovations in 3D Tissue Models of Human Brain Physiology and Diseases. Advanced Functional Materials, 2020, 30, 1909146.	7.8	50
63	Differentiation of human pluripotent stem cells toward pharyngeal endoderm derivatives: Current status and potential. Current Topics in Developmental Biology, 2020, 138, 175-208.	1.0	5
64	Isotope metallomics approaches for medical research. Cellular and Molecular Life Sciences, 2020, 77, 3293-3309.	2.4	17
65	Scaffolds Functionalized with Matrix from Induced Pluripotent Stem Cell Fibroblasts for Diabetic Wound Healing. Advanced Healthcare Materials, 2020, 9, e2000307.	3.9	19
66	Sweat gland regeneration: Current strategies and future opportunities. Biomaterials, 2020, 255, 120201.	5.7	14
67	Polymer Transformers: Interdigitating Reaction Networks of Fueled Monomer Species to Reconfigure Functional Polymer States. Angewandte Chemie - International Edition, 2020, 59, 18161-18165.	7.2	16
68	Polymer Transformers: Interdigitating Reaction Networks of Fueled Monomer Species to Reconfigure Functional Polymer States. Angewandte Chemie, 2020, 132, 18318-18322.	1.6	7
69	Endothelial Cells and Endothelium. , 2022, , 18-25.		1
70	TFAP2C facilitates somatic cell reprogramming by inhibiting c-Myc-dependent apoptosis and promoting mesenchymal-to-epithelial transition. Cell Death and Disease, 2020, 11, 482.	2.7	20
71	A Rainbow Reporter Tracks Single Cells and Reveals Heterogeneous Cellular Dynamics among Pluripotent Stem Cells and Their Differentiated Derivatives. Stem Cell Reports, 2020, 15, 226-241.	2.3	16
72	Pancreatic circulating tumor cell profiling identifies LIN28B as a metastasis driver and drug target. Nature Communications, 2020, 11, 3303.	5.8	55
73	Chimeras for the twenty-first century. Critical Reviews in Biotechnology, 2020, 40, 283-291.	5.1	12

#	Article	IF	CITATIONS
74	Evaluating the cytotoxicity of graphene oxide using embryonic stem cellsâ€derived cells. Journal of Biomedical Materials Research - Part A, 2020, 108, 1321-1328.	2.1	11
75	Self-Organizing 3D Human Trunk Neuromuscular Organoids. Cell Stem Cell, 2020, 26, 172-186.e6.	5.2	177
76	Brain Organoids: A Promising Living Biobank Resource for Neuroscience Research. Biopreservation and Biobanking, 2020, 18, 136-143.	0.5	15
77	Engineering Biomaterials with Micro/Nanotechnologies for Cell Reprogramming. ACS Nano, 2020, 14, 1296-1318.	7.3	39
78	A Droplet Microfluidic System to Fabricate Hybrid Capsules Enabling Stem Cell Organoid Engineering. Advanced Science, 2020, 7, 1903739.	5.6	92
79	Production of Human Pluripotent Stem Cell-Derived Hepatic Cell Lineages and Liver Organoids: Current Status and Potential Applications. Bioengineering, 2020, 7, 36.	1.6	20
80	Responsible use of organoids in precision medicine: the need for active participant involvement. Development (Cambridge), 2020, 147, .	1.2	13
81	Organoids for personalized treatment of Cystic Fibrosis: Professional perspectives on the ethics and governance of organoid biobanking. Journal of Cystic Fibrosis, 2021, 20, 443-451.	0.3	20
82	Modeling aortic diseases using induced pluripotent stem cells. Stem Cells Translational Medicine, 2021, 10, 190-197.	1.6	5
83	Genetically encoded sensors enable micro- and nano-scopic decoding of transmission in healthy and diseased brains. Molecular Psychiatry, 2021, 26, 443-455.	4.1	9
84	Using Cardiovascular Cells from Human Pluripotent Stem Cells for COVID-19 Research: Why the Heart Fails. Stem Cell Reports, 2021, 16, 385-397.	2.3	25
85	Automating Human Induced Pluripotent Stem Cell Culture and Differentiation of iPSC-Derived Retinal Pigment Epithelium for Personalized Drug Testing. SLAS Technology, 2021, 26, 287-299.	1.0	15
86	The Impact of Oxygen Availability and Multilineage Communication on Organoid Maturation. Antioxidants and Redox Signaling, 2021, 35, 217-233.	2.5	6
87	A microdevice platform for characterizing the effect of mechanical strain magnitudes on the maturation of iPSC-Cardiomyocytes. Biosensors and Bioelectronics, 2021, 175, 112875.	5.3	26
88	BRCA1 and BRCA2 associated breast cancer and the roles of current modelling systems in drug discovery. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1875, 188459.	3.3	5
89	The role of the gut microbiome in graft fibrosis after pediatric liver transplantation. Human Genetics, 2021, 140, 709-724.	1.8	8
90	Advances in Engineering Human Tissue Models. Frontiers in Bioengineering and Biotechnology, 2020, 8, 620962.	2.0	72
91	hiPSC-Derived Neurons Provide a Robust and Physiologically Relevant In Vitro Platform to Test Botulinum Neurotoxins. Frontiers in Pharmacology, 2020, 11, 617867.	1.6	11

#	Article	IF	CITATIONS
92	Functional genomics of psychiatric disease risk using genome engineering., 2021,, 711-734.		0
93	iPSCs for modeling coxsackievirus infection. , 2021, , 95-119.		0
94	Establishment and characterization of induced pluripotent stem cell line (IGIBi002-A) from a \hat{l}^2 -thalassemia patient with IVS1-5 mutation by non-integrating reprogramming approach. Stem Cell Research, 2021, 50, 102124.	0.3	5
95	Discovery and Development of Stem Cells for Therapeutic Applications. , 2021, , 267-296.		O
96	Human Embryo Models and Drug Discovery. International Journal of Molecular Sciences, 2021, 22, 637.	1.8	8
97	Perspectives of pluripotent stem cells in livestock. World Journal of Stem Cells, 2021, 13, 1-29.	1.3	15
98	CRISPR/Cas9-Mediated Introduction of Specific Heterozygous Mutations in Human Induced Pluripotent Stem Cells. Methods in Molecular Biology, 2021, , 531-557.	0.4	3
99	Hypothalamus and neuroendocrine diseases: The use of human-induced pluripotent stem cells for disease modeling. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2021, 181, 337-350.	1.0	1
100	Human induced pluripotent stem cells for modeling of Salmonella infection., 2021,, 277-306.		0
101	Pluripotent stem-cell-derived oligodendrocyte progenitors to model demyelination caused by Theiler $\hat{a} \in \mathbb{N}$ s murine encephalomyelitis virus and other viruses., 2021,, 121-148.		0
102	The Dynamics of Metabolic Characterization in iPSC-Derived Kidney Organoid Differentiation via a Comparative Omics Approach. Frontiers in Genetics, 2021, 12, 632810.	1.1	10
103	Generation of a Recombinant Stem Cell-Specific Human SOX2 Protein from Escherichia coli Under Native Conditions. Molecular Biotechnology, 2021, 63, 327-338.	1.3	11
105	Directed Differentiation of Hemogenic Endothelial Cells from Human Pluripotent Stem Cells. Journal of Visualized Experiments, 2021 , , .	0.2	2
106	In Situ Stable Generation of Reactive Intermediates by Open Microfluidic Probe for Subcellular Free Radical Attack and Membrane Labeling. Angewandte Chemie, 2021, 133, 8564-8568.	1.6	2
108	Advances in Central Nervous System Organoids: A Focus on Organoid-Based Models for Motor Neuron Disease. Tissue Engineering - Part C: Methods, 2021, 27, 213-224.	1.1	15
109	Personalized Bone Reconstruction and Regeneration in the Treatment of Craniosynostosis. Applied Sciences (Switzerland), 2021, 11, 2649.	1.3	6
110	Genetic Correction of IL-10RB Deficiency Reconstitutes Anti-Inflammatory Regulation in iPSC-Derived Macrophages. Journal of Personalized Medicine, 2021, 11, 221.	1.1	5
111	The Current Challenges for Drug Discovery in CNS Remyelination. International Journal of Molecular Sciences, 2021, 22, 2891.	1.8	11

#	Article	IF	Citations
112	In Situ Stable Generation of Reactive Intermediates by Open Microfluidic Probe for Subcellular Free Radical Attack and Membrane Labeling. Angewandte Chemie - International Edition, 2021, 60, 8483-8487.	7.2	25
113	Generation of Systemic Lupus Erythematosus Patient-Derived Induced Pluripotent Stem Cells from Blood. Stem Cells and Development, 2021, 30, 227-233.	1.1	3
114	Frondoside A Inhibits an MYC-Driven Medulloblastoma Model Derived from Human-Induced Pluripotent Stem Cells. Molecular Cancer Therapeutics, 2021, 20, 1199-1209.	1.9	10
115	Transgene Delivery to Human Induced Pluripotent Stem Cells Using Nanoparticles. Pharmaceuticals, 2021, 14, 334.	1.7	3
117	Using CRISPR to understand and manipulate gene regulation. Development (Cambridge), 2021, 148, .	1.2	9
118	Nintedanib targets KIT D816V neoplastic cells derived from induced pluripotent stem cells of systemic mastocytosis. Blood, 2021, 137, 2070-2084.	0.6	21
119	Using 3D in vitro cell culture models in anti-cancer drug discovery. Expert Opinion on Drug Discovery, 2021, 16, 841-850.	2.5	16
120	Basic and Preclinical Research for Personalized Medicine. Journal of Personalized Medicine, 2021, 11, 354.	1.1	8
121	Single-Use Bioreactors for Human Pluripotent and Adult Stem Cells: Towards Regenerative Medicine Applications. Bioengineering, 2021, 8, 68.	1.6	18
122	Diabetic Endothelial Cells Differentiated From Patient iPSCs Show Dysregulated Glycine Homeostasis and Senescence Associated Phenotypes. Frontiers in Cell and Developmental Biology, 2021, 9, 667252.	1.8	12
123	Tissue-Specific Microparticles Improve Organoid Microenvironment for Efficient Maturation of Pluripotent Stem-Cell-Derived Hepatocytes. Cells, 2021, 10, 1274.	1.8	14
124	Human Pluripotent Stem-Cell-Derived Models as a Missing Link in Drug Discovery and Development. Pharmaceuticals, 2021, 14, 525.	1.7	10
125	Impaired neuronal activity and differential gene expression in <i>STXBP1</i> encephalopathy patient iPSC-derived GABAergic neurons. Human Molecular Genetics, 2021, 30, 1337-1348.	1.4	11
126	iPSC–endothelial cell phenotypic drug screening and in silico analyses identify tyrphostin-AG1296 for pulmonary arterial hypertension. Science Translational Medicine, 2021, 13, .	5.8	17
127	Mini-gut feelings: perspectives of people with cystic fibrosis on the ethics and governance of organoid biobanking. Personalized Medicine, 2021, 18, 241-254.	0.8	6
128	Modeling plasticity and dysplasia of pancreatic ductal organoids derived from human pluripotent stem cells. Cell Stem Cell, 2021, 28, 1105-1124.e19.	5.2	53
129	SISTEMA: A large and standardized collection of transcriptome data sets for human pluripotent stem cell research. IScience, 2021, 24, 102767.	1.9	5
130	HIF-1α Affects the Neural Stem Cell Differentiation of Human Induced Pluripotent Stem Cells via MFN2-Mediated Wnt/β-Catenin Signaling. Frontiers in Cell and Developmental Biology, 2021, 9, 671704.	1.8	15

#	Article	IF	CITATIONS
131	Dominant Optic Atrophy (DOA): Modeling the Kaleidoscopic Roles of OPA1 in Mitochondrial Homeostasis. Frontiers in Neurology, 2021, 12, 681326.	1.1	11
134	Bioinspired 3D Culture in Nanoliter Hyaluronic Acidâ€Rich Coreâ€Shell Hydrogel Microcapsules Isolates Highly Pluripotent Human iPSCs. Small, 2021, 17, e2102219.	5.2	13
136	Application of Modified mRNA in Somatic Reprogramming to Pluripotency and Directed Conversion of Cell Fate. International Journal of Molecular Sciences, 2021, 22, 8148.	1.8	16
137	Maturity Onset Diabetes of the Young—New Approaches for Disease Modelling. International Journal of Molecular Sciences, 2021, 22, 7553.	1.8	17
138	The Gut-Brain Axis in Inflammatory Bowel Diseaseâ€"Current and Future Perspectives. International Journal of Molecular Sciences, 2021, 22, 8870.	1.8	36
139	Cellular Therapy for the Treatment of Paediatric Respiratory Disease. International Journal of Molecular Sciences, 2021, 22, 8906.	1.8	11
140	Modeling Sporadic Alzheimer's Disease in Human Brain Organoids under Serum Exposure. Advanced Science, 2021, 8, e2101462.	5.6	66
141	Leveraging the Genetic Diversity of Human Stem Cells in Therapeutic Approaches. Journal of Molecular Biology, 2022, 434, 167221.	2.0	4
142	Towards Biohybrid Lung: Induced Pluripotent Stem Cell Derived Endothelial Cells as Clinically Relevant Cell Source for Biologization. Micromachines, 2021, 12, 981.	1.4	7
143	Applications of piggyBac Transposons for Genome Manipulation in Stem Cells. Stem Cells International, 2021, 2021, 1-13.	1.2	5
144	Blastocyst-Inspired Hydrogels to Maintain Undifferentiation of Mouse Embryonic Stem Cells. ACS Nano, 2021, 15, 14162-14173.	7.3	8
145	Oxygen as a Master Regulator of Human Pluripotent Stem Cell Function and Metabolism. Journal of Personalized Medicine, 2021, 11, 905.	1.1	11
146	Transcriptomic entropy benchmarks stem cell-derived cardiomyocyte maturation against endogenous tissue at single cell level. PLoS Computational Biology, 2021, 17, e1009305.	1.5	25
147	Longevity leap: mind the healthspan gap. Npj Regenerative Medicine, 2021, 6, 57.	2.5	55
148	Engineered Human Induced Pluripotent Cells Enable Genetic Code Expansion in Brain Organoids. ChemBioChem, 2021, 22, 3208-3213.	1.3	3
149	Stem cells characterization: OMICS reinforcing analytics. Current Opinion in Biotechnology, 2021, 71, 175-181.	3.3	6
151	Exposure to cadmium induces neuroinflammation and impairs ciliogenesis in hESC-derived 3D cerebral organoids. Science of the Total Environment, 2021, 797, 149043.	3.9	35
152	Neurons derived from human-induced pluripotent stem cells express mu and kappa opioid receptors. Neural Regeneration Research, 2021, 16, 653.	1.6	7

#	Article	IF	CITATIONS
153	Cutting-edge tools and approaches for stem cell research and application in intestinal diseases. , 2021, , 1-4.		0
158	Generation of 3D human gastrointestinal organoids: principle and applications. Cell Regeneration, 2020, 9, 6.	1.1	22
159	NEUROD1 Intrinsically Initiates Differentiation of Induced Pluripotent Stem Cells into Neural Progenitor Cells. Molecules and Cells, 2020, 43, 1011-1022.	1.0	9
160	Human Pluripotent Stem Cells for Spinal Cord Injury. Current Stem Cell Research and Therapy, 2020, 15, 135-143.	0.6	9
161	Human hair follicle-derived mesenchymal stem cells: Isolation, expansion, and differentiation. World Journal of Stem Cells, 2020, 12, 462-470.	1.3	25
162	Potential of transposon-mediated cellular reprogramming towards cell-based therapies. World Journal of Stem Cells, 2020, 12, 527-544.	1.3	14
163	Heading towards a dead end: The role of DND1 in germ line differentiation of human iPSCs. PLoS ONE, 2021, 16, e0258427.	1.1	2
164	Parallels between the Developing Vascular and Neural Systems: Signaling Pathways and Future Perspectives for Regenerative Medicine. Advanced Science, 2021, 8, e2101837.	5 . 6	13
165	A small molecule modulating monounsaturated fatty acids and Wnt signaling confers maintenance to induced pluripotent stem cells against endodermal differentiation. Stem Cell Research and Therapy, 2021, 12, 550.	2.4	11
168	Epigenetic Mechanisms of ART-Related Imprinting Disorders: Lessons From iPSC and Mouse Models. Genes, 2021, 12, 1704.	1.0	10
169	iPSC for modeling neurodegenerative disorders. Regenerative Therapy, 2020, 15, 332-339.	1.4	22
170	Microneedle arrays integrated with living organisms for smart biomedical applications. Theranostics, 2021, 11, 10012-10029.	4.6	18
171	Induced pluripotent stem cells and derivative photoreceptor precursors as therapeutic cells for retinal degenerations. Tzu Chi Medical Journal, 2020, 32, 101.	0.4	2
172	Induced pluripotent stem cell modeling of genetic small vessel disease. , 2020, , 131-159.		3
173	Suspension Culture of Human Induced Pluripotent Stem Cells in Single-Use Vertical-Wheelâ,,¢ Bioreactors Using Aggregate and Microcarrier Culture Systems. Methods in Molecular Biology, 2020, 2286, 167-178.	0.4	8
174	Utilization of Human Induced Pluripotent Stem Cells-Derived In vitro Models for the Future Study of Sex Differences in Alzheimer's Disease. Frontiers in Aging Neuroscience, 2021, 13, 768948.	1.7	7
175	Tips and tricks for successfully culturing and adapting human induced pluripotent stem cells. Molecular Therapy - Methods and Clinical Development, 2021, 23, 569-581.	1.8	10
176	Critical Analysis of cGMP Large-Scale Expansion Process in Bioreactors of Human Induced Pluripotent Stem Cells in the Framework of Quality by Design. BioDrugs, 2021, 35, 693-714.	2.2	7

#	ARTICLE	IF	CITATIONS
178	An induced pluripotent stem cell model of Fanconi anemia reveals mechanisms of p53-driven progenitor cell differentiation. Blood Advances, 2020, 4, 4679-4692.	2.5	1
179	Human DC3 Antigen Presenting Dendritic Cells From Induced Pluripotent Stem Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 667304.	1.8	2
180	Harnessing the Potential of Human Pluripotent Stem Cell-Derived Motor Neurons for Drug Discovery in Amyotrophic Lateral Sclerosis: From the Clinic to the Laboratory and Back to the Patient. Frontiers in Drug Discovery, 2021, 1 , .	1.1	8
181	Developing nociceptor-selective treatments for acute and chronic pain. Science Translational Medicine, 2021, 13, eabj9837.	5.8	22
182	Stem Cell Applications in Lysosomal Storage Disorders: Progress and Ongoing Challenges. Advances in Experimental Medicine and Biology, 2021, , 135-162.	0.8	3
183	Derivation of Clinical-Grade Induced Pluripotent Stem Cell Lines from Erythroid Progenitor Cells in Xenofree Conditions. Methods in Molecular Biology, 2021, , 1.	0.4	1
184	Extracellular Vesicle Collection from Human Stem Cells Grown in Suspension Bioreactors. Methods in Molecular Biology, 2021, , 193-204.	0.4	3
185	High Content Image Analysis of Spatiotemporal Proliferation and Differentiation Patterns in 3D Embryoid Body Differentiation Model. Methods in Molecular Biology, 2021, , 1.	0.4	0
186	Advanced In Vitro Lung Models for Drug and Toxicity Screening: The Promising Role of Induced Pluripotent Stem Cells. Advanced Biology, 2022, 6, e2101139.	1.4	10
187	From organ-on-chip to body-on-chip: The next generation of microfluidics platforms for in vitro drug efficacy and toxicity testing. Progress in Molecular Biology and Translational Science, 2022, 187, 41-91.	0.9	7
188	iPSC for modeling of metabolic and neurodegenerative disorders. , 2022, , 59-84.		0
189	Regenerative Neurology and Regenerative Cardiology: Shared Hurdles and Achievements. International Journal of Molecular Sciences, 2022, 23, 855.	1.8	6
190	Sin3a drives mesenchymal-to-epithelial transition through cooperating with Tet1 in somatic cell reprogramming. Stem Cell Research and Therapy, 2022, 13, 29.	2.4	3
191	Advances in microfluidic 3D cell culture for preclinical drug development. Progress in Molecular Biology and Translational Science, 2022, 187, 163-204.	0.9	8
192	CRISPR/Cas9-mediated gene knockout and interallelic gene conversion in human induced pluripotent stem cells using non-integrative bacteriophage-chimeric retrovirus-like particles. BMC Biology, 2022, 20, 8.	1.7	13
193	Generation of a NES-mScarlet Red Fluorescent Reporter Human iPSC Line for Live Cell Imaging and Flow Cytometric Analysis and Sorting Using CRISPR-Cas9-Mediated Gene Editing. Cells, 2022, 11, 268.	1.8	2
194	Cerebellar Modelling Using Human Induced Pluripotent Stem Cells. Neuromethods, 2022, , 1-21.	0.2	2
195	Induced pluripotent stem cells for modeling open-angle glaucoma. , 2022, , 85-104.		0

#	Article	IF	CITATIONS
196	Targeting α-Synuclein in Parkinson's Disease by Induced Pluripotent Stem Cell Models. Frontiers in Neurology, 2021, 12, 786835.	1.1	3
198	Fish Pluripotent Stem-Like Cell Line Induced by Small-Molecule Compounds From Caudal Fin and its Developmental Potentiality. Frontiers in Cell and Developmental Biology, 2021, 9, 817779.	1.8	6
199	Human induced pluripotent stem cells display a similar mutation burden as embryonic pluripotent cells inÂvivo. IScience, 2022, 25, 103736.	1.9	5
200	Organ-on-Chip Technology for Aerobic Intestinal Host – Anaerobic Microbiota Research. Organs-on-a-Chip, 2022, 4, 100013.	1.8	5
201	The Application of Brain Organoids in Assessing Neural Toxicity. Frontiers in Molecular Neuroscience, 2022, 15, 799397.	1.4	11
202	Machine learning prediction and tau-based screening identifies potential Alzheimer's disease genes relevant to immunity. Communications Biology, 2022, 5, 125.	2.0	18
203	The effect of topographical and mechanical stimulation on the structural and functional anisotropy of cardiomyocytes grown on a circular PDMS diaphragm. Biosensors and Bioelectronics, 2022, 204, 114017.	5.3	6
206	Dendritic Cell Differentiation from Human Induced Pluripotent Stem Cells: Challenges and Progress. Stem Cells and Development, 2022, 31, 207-220.	1.1	0
207	Thyroid Gland Organoids: Current Models and Insights for Application in Tissue Engineering. Tissue Engineering - Part A, 2022, 28, 500-510.	1.6	9
208	The hopes and hypes of plant and bacteria-derived cellulose application in stem cell technology. Cellulose, 2022, 29, 3035-3058.	2.4	4
209	Multiple isogenic GNE-myopathy modeling with mutation specific phenotypes from human pluripotent stem cells by base editors. Biomaterials, 2022, 282, 121419.	5.7	11
210	Skin-on-a-Chip Technology: Microengineering Physiologically Relevant In Vitro Skin Models. Pharmaceutics, 2022, 14, 682.	2.0	17
211	Moving To A New Dimension: 3D Kidney Cultures For Kidney Regeneration. Current Opinion in Biomedical Engineering, 2022, , 100379.	1.8	0
212	Synthetic electrospun nanofibers as a supportive matrix in osteogenic differentiation of induced pluripotent stem cells. Journal of Biomaterials Science, Polymer Edition, 2022, 33, 1469-1493.	1.9	4
215	Supramolecular Biomaterials in the Netherlands. Tissue Engineering - Part A, 2022, , .	1.6	3
216	Long-term adherence of human brain cells inÂvitro is enhanced by charged amine-based plasma polymer coatings. Stem Cell Reports, 2022, 17, 489-506.	2.3	11
217	Application of Organoids in Carcinogenesis Modeling and Tumor Vaccination. Frontiers in Oncology, 2022, 12, 855996.	1.3	2
219	N6-Methyladenosine RNA Modification: A Potential Regulator of Stem Cell Proliferation and Differentiation. Frontiers in Cell and Developmental Biology, 2022, 10, 835205.	1.8	4

#	Article	IF	CITATIONS
220	Fluorescence imaging technologies for complex characterization 3D-models based on induced pluripotent stem cells. , 2021 , , .		0
221	Generating pancreatic beta-like cells from human pluripotent stem cells. Methods in Cell Biology, 2022, , .	0.5	0
224	Human DC3 Antigen Presenting Dendritic Cells From Induced Pluripotent Stem Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 667304.	1.8	14
225	Autophagy and pluripotency: self-eating your way to eternal youth. Trends in Cell Biology, 2022, 32, 868-882.	3.6	8
226	A guide to the organ-on-a-chip. Nature Reviews Methods Primers, 2022, 2, .	11.8	247
227	The Presence of Blood–Brain Barrier Modulates the Response to Magnesium Salts in Human Brain Organoids. International Journal of Molecular Sciences, 2022, 23, 5133.	1.8	5
228	Functional genomics and the future of iPSCs in disease modeling. Stem Cell Reports, 2022, 17, 1033-1047.	2.3	16
229	Hepatocyte-like cells differentiated from methylmalonic aciduria cblB type induced pluripotent stem cells: A platform for the evaluation of pharmacochaperoning. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2022, 1868, 166433.	1.8	0
230	Induced Pluripotent Stem Cells. , 2022, , 1-25.		16
231	Current understanding of genomic stability maintenance in pluripotent stem cells. Acta Biochimica Et Biophysica Sinica, 2022, , .	0.9	4
232	Across Dimensions: Developing 2D and 3D Human iPSC-Based Models of Fragile X Syndrome. Cells, 2022, 11, 1725.	1.8	3
233	Clinical Trial in a Dish for Space Radiation Countermeasure Discovery. Life Sciences in Space Research, 2022, , .	1.2	3
234	Comprehensive Analysis of Acquired Genetic Variants and Their Prognostic Impact in Systemic Mastocytosis. Cancers, 2022, 14, 2487.	1.7	4
235	Organoids in gastrointestinal diseases: from experimental models to clinical translation. Gut, 2022, 71, 1892-1908.	6.1	40
236	Development of an efficient single-cell cloning and expansion strategy for genome edited induced pluripotent stem cells. Molecular Biology Reports, 2022, 49, 7887-7898.	1.0	5
237	Robust derivation of transplantable dopamine neurons from human pluripotent stem cells by timed retinoic acid delivery. Nature Communications, 2022, 13 , .	5.8	9
238	A Carbon-Based Biosensing Platform for Simultaneously Measuring the Contraction and Electrophysiology of iPSC-Cardiomyocyte Monolayers. ACS Nano, 2022, 16, 11278-11290.	7.3	15
239	Clinical applications of pluripotent stem cells and their derivatives: current status and future perspectives. Regenerative Medicine, 2022, 17, 677-690.	0.8	4

#	ARTICLE	IF	CITATIONS
240	CRISPR Modeling and Correction of Cardiovascular Disease. Circulation Research, 2022, 130, 1827-1850.	2.0	32
241	Adventures and Advances in Time Travel With Induced Pluripotent Stem Cells and Automated Patch Clamp. Frontiers in Molecular Neuroscience, 0, 15, .	1.4	6
242	Reliable Multiplex Generation of Pooled Induced Pluripotent Stem Cells for Genetic Testing. SSRN Electronic Journal, $0, , .$	0.4	0
243	Role of Chaperone-Mediated Autophagy in Ageing Biology and Rejuvenation of Stem Cells. Frontiers in Cell and Developmental Biology, 0, 10 , .	1.8	1
244	Application of Induced Pluripotent Stem Cells in Moyamoya Disease: Progress and Promises. Current Stem Cell Research and Therapy, 2023, 18, 733-739.	0.6	2
245	Human <scp>iPSCâ€Vascular</scp> smooth muscle cell spheroids demonstrate sizeâ€dependent alterations in cellular viability and secretory function. Journal of Biomedical Materials Research - Part A, 2022, 110, 1813-1823.	2.1	1
246	Anti-fibrotic effect of a selective estrogen receptor modulator in systemic sclerosis. Stem Cell Research and Therapy, 2022, 13 , .	2.4	6
247	Acute radiation syndrome drug discovery using organ-on-chip platforms. Expert Opinion on Drug Discovery, 2022, 17, 865-878.	2.5	5
249	Droplet Microarray Based Screening Identifies Proteins for Maintaining Pluripotency of hiPSCs. Advanced Healthcare Materials, 2022, 11 , .	3.9	2
250	Silver nanoparticles exposure induces developmental neurotoxicity in hiPSC-derived cerebral organoids. Science of the Total Environment, 2022, 845, 157047.	3.9	14
251	Enhanced Adipogenic Differentiation of Human Dental Pulp Stem Cells in Enzymatically Decellularized Adipose Tissue Solid Foams. Biology, 2022, 11, 1099.	1.3	0
252	Human fibroblasts facilitate the generation of iPSCs-derived mammary-like organoids. Stem Cell Research and Therapy, 2022, 13, .	2.4	5
253	Meiosis resumption in human primordial germ cells from induced pluripotent stem cells by in vitro activation and reconstruction of ovarian nests. Stem Cell Research and Therapy, 2022, 13, .	2.4	11
254	Generation of neuronal/glial mixed cultures from human induced pluripotent stem cells (hiPSCs). Methods in Cell Biology, 2022, , 229-245.	0.5	1
255	How to build a tumor: An industry perspective. Drug Discovery Today, 2022, 27, 103329.	3.2	5
257	Using 2D and 3D pluripotent stem cell models to study neurotropic viruses. Frontiers in Virology, 0, 2,	0.7	3
258	Identification of solamargine as a cisplatin sensitizer through phenotypical screening in cisplatin-resistant NSCLC organoids. Frontiers in Pharmacology, 0, 13, .	1.6	9
259	Substantial somatic genomic variation and selection for BCOR mutations in human induced pluripotent stem cells. Nature Genetics, 2022, 54, 1406-1416.	9.4	31

#	Article	IF	CITATIONS
260	Stem cells: a comprehensive review of origins and emerging clinical roles in medical practice. Orthopedic Reviews, 2022, 14, .	0.3	19
262	Manufacturing with pluripotent stem cells (<scp>PSConf</scp> 2021): Key issues for future research and development. Cell Proliferation, 2022, 55, .	2.4	4
264	Identification of Human Retinal Organoid Cell Differentiation-Related Genes via Single-Cell Sequencing Data Analysis. Computational and Mathematical Methods in Medicine, 2022, 2022, 1-19.	0.7	0
267	Modelling adult stem cells and their niche in health and disease with epithelial organoids. Seminars in Cell and Developmental Biology, 2023, 144, 20-30.	2.3	3
269	Dendritic cells generated from induced pluripotent stem cells and by direct reprogramming of somatic cells. European Journal of Immunology, 2022, 52, 1880-1888.	1.6	0
270	Applications of human organoids in the personalized treatment for digestive diseases. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	7
271	Microfluidics for Neuronal Cell and Circuit Engineering. Chemical Reviews, 2022, 122, 14842-14880.	23.0	22
272	Better governance starts with better words: why responsible human tissue research demands a change of language. BMC Medical Ethics, 2022, 23, .	1.0	5
273	Cerebral Organoids as an Experimental Platform for Human Neurogenomics. Cells, 2022, 11, 2803.	1.8	14
274	Mirâ€122 upregulation and letâ€7f downregulation combination: The effects on hepatic differentiation of <scp>hiPSCs</scp> on the <scp>PCLâ€Gelâ€HA</scp> nanofibrous scaffold. Journal of Cellular and Molecular Medicine, 0, , .	1.6	1
275	Prospects and Challenges of Electrospun Cell and Drug Delivery Vehicles to Correct Urethral Stricture. International Journal of Molecular Sciences, 2022, 23, 10519.	1.8	8
276	Clinical Trial-Ready Patient Cohorts for Multiple System Atrophy: Coupling Biospecimen and iPSC Banking to Longitudinal Deep-Phenotyping. Cerebellum, 2024, 23, 31-51.	1.4	1
277	Cell Cluster Sorting in Automated Differentiation of Patient-specific Induced Pluripotent Stem Cells Towards Blood Cells. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	8
278	Transient inhibition of p53 enhances prime editing and cytosine base-editing efficiencies in human pluripotent stem cells. Nature Communications, 2022, 13, .	5.8	17
280	Prognostic Analysis of Human Pluripotent Stem Cells Based on Their Morphological Portrait and Expression of Pluripotent Markers. International Journal of Molecular Sciences, 2022, 23, 12902.	1.8	4
281	MyoD-Induced Trans-Differentiation: A Paradigm for Dissecting the Molecular Mechanisms of Cell Commitment, Differentiation and Reprogramming. Cells, 2022, 11, 3435.	1.8	3
282	iPSCs derived from esophageal atresia patients reveal SOX2 dysregulation at the anterior foregut stage. DMM Disease Models and Mechanisms, 2022, 15 , .	1.2	1
283	Single-cell mass cytometry analysis reveals stem cell heterogeneity. Methods, 2022, 208, 9-18.	1.9	2

#	ARTICLE	IF	Citations
284	Direct Reprogramming Strategies for the Treatment of Nervous System Injuries and Neurodegenerative Disorders., 2022,, 383-412.		0
285	Induced Pluripotent Stem Cells. , 2022, , 895-919.		0
286	Sex differences in heart: from basics to clinics. European Journal of Medical Research, 2022, 27, .	0.9	9
287	Phenotypic screening models for rapid diagnosis of genetic variants and discovery of personalized therapeutics. Molecular Aspects of Medicine, 2023, 91, 101153.	2.7	7
288	iPSC-based model of Vogt-Koyanagi-Harada disease for phenotype recapitulation and drug screening. Clinical Immunology, 2023, 246, 109205.	1.4	2
289	Current progress in understanding schizophrenia using genomics and pluripotent stem cells: A meta-analytical overview. Schizophrenia Research, 2022, , .	1.1	8
291	Reprogramming stem cells in regenerative medicine. , 2022, 1 , .		11
292	T, NK, then macrophages: Recent advances and challenges in adaptive immunotherapy from human pluripotent stem cells. Differentiation, 2023, 130, 51-57.	1.0	4
293	A novel NMDA receptor test model based on hiPSC-derived neural cells. Biological Chemistry, 2023, 404, 267-277.	1.2	4
294	Changes in PRC1 activity during interphase modulate lineage transition in pluripotent cells. Nature Communications, 2023, 14, .	5.8	1
295	Current Status and Future Perspectives on Stem Cell-Based Therapies for Parkinson's Disease. Journal of Movement Disorders, 2023, 16, 22-41.	0.7	8
296	In Vitro Trials: The Dawn of a New Era for Drug Discovery in Atopic Dermatitis?. Journal of Pharmacology and Experimental Therapeutics, 2023, 384, 245-247.	1.3	1
298	Derivation of Sendai-Virus-Reprogrammed Human iPSCs-Neuronal Precursors: <i>In Vitro</i> vivo Post-grafting Safety Characterization. Cell Transplantation, 2023, 32, 096368972311632.	1.2	2
299	Human Brain Organoids in Migraine Research: Pathogenesis and Drug Development. International Journal of Molecular Sciences, 2023, 24, 3113.	1.8	1
300	Importance of Spatial Arrangement of Cardiomyocyte Network for Precise and Stable On-Chip Predictive Cardiotoxicity Measurement. Micromachines, 2023, 14, 854.	1.4	0
301	Overexpression of KCNJ2 enhances maturation of human-induced pluripotent stem cell-derived cardiomyocytes. Stem Cell Research and Therapy, 2023, 14, .	2.4	1
302	Exploring the reprogramming potential of B cells and comprehending its clinical and therapeutic perspective. Transplant Immunology, 2023, 78, 101804.	0.6	0
303	Ex vivo expansion of hematopoietic stem cells. Experimental Cell Research, 2023, 427, 113599.	1.2	2

#	Article	IF	CITATIONS
304	Human iPSC-derived preclinical models to identify toxicity of tumor-specific T cells with clinical potential. Molecular Therapy - Methods and Clinical Development, 2023, 28, 249-261.	1.8	3
305	CRISPR/Cas9 correction of a dominant cis-double-variant in COL1A1 isolated from a patient with osteogenesis imperfecta increases the osteogenic capacity of induced pluripotent stem cells. Journal of Bone and Mineral Research, 2020, 38, 719-732.	3.1	1
306	Pluripotent Stem Cells in Disease Modeling and Drug Discovery for Myotonic Dystrophy Type 1. Cells, 2023, 12, 571.	1.8	1
307	Transition Substitution of Desired Bases in Human Pluripotent Stem Cells with Base Editors: A Step-by-Step Guide. International Journal of Stem Cells, 2023, 16, 234-243.	0.8	1
308	Application potentials of the iPSC technology in modeling, drug discovery and regeneration of skeletal system disorders., 2023,, 117-140.		0
309	Modeling mitochondrial <scp>DNA</scp> diseases: from base editing to pluripotent stemâ€cellâ€derived organoids. EMBO Reports, 2023, 24, .	2.0	7
310	A decade of liver organoids: Advances in disease modeling. Clinical and Molecular Hepatology, 2023, 29, 643-669.	4.5	1
312	Ultrathin and Flexible Bioelectronic Arrays for Functional Measurement of iPSC-Cardiomyocytes under Cardiotropic Drug Administration and Controlled Microenvironments. Nano Letters, 2023, 23, 2321-2331.	4.5	3
313	Open/Closed Cage Silsesquioxane-based Thioamide-bridged Hybrid Networks with Unexpected Adsorption Abilities and Selectivity for Au (III). Chemical Engineering Journal, 2023, 462, 142323.	6.6	8
314	KIT D816V Mast Cells Derived from Induced Pluripotent Stem Cells Recapitulate Systemic Mastocytosis Transcriptional Profile. International Journal of Molecular Sciences, 2023, 24, 5275.	1.8	6
315	Xeno-free culture and proliferation of hPSCs on 2D biomaterials. Progress in Molecular Biology and Translational Science, 2023, , 63-107.	0.9	0
316	Pathophysiological Investigation of Skeletal Deformities of Musculocontractural Ehlers–Danlos Syndrome Using Induced Pluripotent Stem Cells. Genes, 2023, 14, 730.	1.0	2
317	Revolutionizing Disease Modeling: The Emergence of Organoids in Cellular Systems. Cells, 2023, 12, 930.	1.8	10
319	Somatic mutations alter the differentiation outcomes of iPSC-derived neurons. Cell Genomics, 2023, 3, 100280.	3.0	2
320	3D Tumor Models in Urology. International Journal of Molecular Sciences, 2023, 24, 6232.	1.8	3
322	Induction and application of human naive pluripotency. Cell Reports, 2023, 42, 112379.	2.9	7
323	CRISPR-based functional genomics screening in human-pluripotent-stem-cell-derived cell types. Cell Genomics, 2023, 3, 100300.	3.0	3
324	rAAV2-Mediated Restoration of GALC in Neural Stem Cells from Krabbe Patient-Derived iPSCs. Pharmaceuticals, 2023, 16, 624.	1.7	2

#	Article	IF	CITATIONS
325	Inner Ear Cells from Stem Cells: A Path Towards Inner Ear Cell Regeneration. Springer Handbook of Auditory Research, 2023, , 135-162.	0.3	0
335	Transcription Factors and Splice Factors—Interconnected Regulators of Stem Cell Differentiation. Current Stem Cell Reports, 0, , .	0.7	1
337	The omics era: a nexus of untapped potential for Mendelian chromatinopathies. Human Genetics, 0, , .	1.8	5
347	Modeling Retinitis Pigmentosa with Patient-Derived iPSCs. Advances in Experimental Medicine and Biology, 2023, , 555-563.	0.8	0
361	Skin-on-a-Chip Microfluidic Devices: Production, Verification, and Uses in Cosmetic Toxicology. , 2023, , 47-82.		0
370	Cellular agriculture for milk bioactive production. , 0, , .		1
373	Epithelial Stem Cell Regeneration in Acute and Chronic Airway Injury. , 2023, , 1-24.		0
376	iPSCs and their Role in Amelioration of Neurodegenerative Disorders. , 2023, , 111-137.		0
382	Robot-Assisted Precise Manufacturing of Tissue Spheroid in Single-Cell Scale., 2023,,.		0
390	Organogenesis and related approaches for organ replacement. , 2024, , 1501-1520.		0
391	Strategies to reduce the risks of mRNA drug and vaccine toxicity. Nature Reviews Drug Discovery, 2024, 23, 281-300.	21.5	2
395	Pathogenesis of viral infection. , 2024, , 2187-2207.		0
397	Innovative explorations: unveiling the potential of organoids for investigating environmental pollutant exposure. Environmental Science and Pollution Research, 2024, 31, 16256-16273.	2.7	0
398	Integrating Nanosensors into Stem Cells Technologies and Regenerative Medicine. , 2024, , 1-35.		0
408	Integrating Nanosensors into Stem Cells Technologies and Regenerative Medicine., 2024,, 1-35.		0