Structural basis of cooling agent and lipid sensing by th

Science 363, DOI: 10.1126/science.aav9334

Citation Report

#	Article	IF	Citations
1	The role of π-helices in TRP channel gating. Current Opinion in Structural Biology, 2019, 58, 314-323.	2.6	47
2	Interfacial Binding Sites for Cholesterol on TRP Ion Channels. Biophysical Journal, 2019, 117, 2020-2033.	0.2	14
3	Competitive Interactions between PIRT, the Cold Sensing Ion Channel TRPM8, and PIP2 Suggest a Mechanism for Regulation. Scientific Reports, 2019, 9, 14128.	1.6	7
4	Structural biology of thermoTRPV channels. Cell Calcium, 2019, 84, 102106.	1.1	22
5	Voltage vs. Ligand I: Structural basis of the intrinsic flexibility of S3 segment and its significance in ion channel activation. Channels, 2019, 13, 455-476.	1.5	9
6	Visualizing structural transitions of ligand-dependent gating of the TRPM2 channel. Nature Communications, 2019, 10, 3740.	5.8	34
7	Structural insights into TRPM8 inhibition and desensitization. Science, 2019, 365, 1434-1440.	6.0	118
8	Structure of the thermo-sensitive TRP channel TRP1 from the alga Chlamydomonas reinhardtii. Nature Communications, 2019, 10, 4180.	5.8	29
9	Direct Gαq Gating Is the Sole Mechanism for TRPM8 Inhibition Caused by Bradykinin Receptor Activation. Cell Reports, 2019, 27, 3672-3683.e4.	2.9	21
10	Recent Progress in TRPM8 Modulation: An Update. International Journal of Molecular Sciences, 2019, 20, 2618.	1.8	71
11	Frozen images of a cool channel with icy compounds. Cell Calcium, 2019, 80, 189-191.	1.1	0
12	Structural and Evolutionary Insights Point to Allosteric Regulation of TRP Ion Channels. Accounts of Chemical Research, 2019, 52, 1643-1652.	7.6	35
13	TRP ion channels: Proteins with conformational flexibility. Channels, 2019, 13, 207-226.	1.5	16
14	TRPM4 and TRPM5 Channels Share Crucial Amino Acid Residues for Ca2+ Sensitivity but Not Significance of PI(4,5)P2. International Journal of Molecular Sciences, 2019, 20, 2012.	1.8	11
15	Tools for Understanding Nanoscale Lipid Regulation of Ion Channels. Trends in Biochemical Sciences, 2019, 44, 795-806.	3.7	66
16	Visualizing conformation transitions of the Lipid II flippase MurJ. Nature Communications, 2019, 10, 1736.	5.8	51
17	The anthelmintic drug praziquantel activates a schistosome transient receptor potential channel. Journal of Biological Chemistry, 2019, 294, 18873-18880.	1.6	81
18	Lipid Interactions of a Ciliary Membrane TRP Channel: Simulation and Structural Studies of Polycystin-2. Structure, 2020, 28, 169-184.e5.	1.6	37

TION RE

	CITATION	i Report	
#	Article	IF	CITATIONS
19	Lipid-Dependent Regulation of Ion Channels and G Protein–Coupled Receptors: Insights from Structures and Simulations. Annual Review of Pharmacology and Toxicology, 2020, 60, 31-50.	4.2	117
20	Hot new structures of the cold sensor, TRPM8, reveal insights into the fundamentals of cold perception and adaptation. Cell Calcium, 2020, 85, 102112.	1.1	3
21	Structure-Based Design of Novel Biphenyl Amide Antagonists of Human Transient Receptor Potential Cation Channel Subfamily M Member 8 Channels with Potential Implications in the Treatment of Sensory Neuropathies. ACS Chemical Neuroscience, 2020, 11, 268-290.	1.7	13
22	Structural Insights into Electrophile Irritant Sensing by the Human TRPA1 Channel. Neuron, 2020, 105, 882-894.e5.	3.8	81
23	A structural overview of the ion channels of the TRPM family. Cell Calcium, 2020, 85, 102111.	1.1	126
24	The Journey to Discovering a Flatworm Target of Praziquantel: A Long TRP. Trends in Parasitology, 2020, 36, 182-194.	1.5	47
25	Mechanoactivation of NOX2-generated ROS elicits persistent TRPM8 Ca ²⁺ signals that are inhibited by oncogenic KRas. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26008-26019.	3.3	19
26	lon channels as lipid sensors: from structures to mechanisms. Nature Chemical Biology, 2020, 16, 1331-1342.	3.9	38
27	Molecular mechanisms underlying menthol binding and activation of TRPM8 ion channel. Nature Communications, 2020, 11, 3790.	5.8	54
28	Exploration of TRPM8 Binding Sites by β-Carboline-Based Antagonists and Their In Vitro Characterization and In Vivo Analgesic Activities. Journal of Medicinal Chemistry, 2020, 63, 9672-9694.	2.9	15
29	Transient receptor potential channels: current perspectives on evolution, structure, function and nomenclature. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201309.	1.2	54
30	Structural determinants of TRPV4 inhibition and identification of new antagonists with antiviral activity. British Journal of Pharmacology, 2020, , .	2.7	17
31	Structure-Function Relationship of TRPM2: Recent Advances, Contradictions, and Open Questions. International Journal of Molecular Sciences, 2020, 21, 6481.	1.8	10
32	Highly functionalized β-lactams and 2-ketopiperazines as TRPM8 antagonists with antiallodynic activity. Scientific Reports, 2020, 10, 14154.	1.6	7
33	Evidence that the TRPV1 S1-S4 membrane domain contributes to thermosensing. Nature Communications, 2020, 11, 4169.	5.8	23
34	Calcium cytotoxicity sensitizes prostate cancer cells to standard-of-care treatments for locally advanced tumors. Cell Death and Disease, 2020, 11, 1039.	2.7	20
35	The cool things to know about TRPM8!. Channels, 2020, 14, 413-420.	1.5	18
36	Why the emperor penguin reigns where elephants shiver. Cell Calcium, 2020, 91, 102263.	1.1	1

#	Article	IF	CITATIONS
37	Temperatureâ€sensitive transient receptor potential vanilloid channels: structural insights into ligandâ€dependent activation. British Journal of Pharmacology, 2022, 179, 3542-3559.	2.7	6
38	PIRT the TRP Channel Regulating Protein Binds Calmodulin and Cholesterol-Like Ligands. Biomolecules, 2020, 10, 478.	1.8	5
39	Improving brain power by applying a cool TRPM8 receptor agonist to the eyelid margin. Medical Hypotheses, 2020, 142, 109747.	0.8	2
40	GemSpot: A Pipeline for Robust Modeling of Ligands into Cryo-EM Maps. Structure, 2020, 28, 707-716.e3.	1.6	50
41	Mapping of CaM, S100A1 and PIP2-Binding Epitopes in the Intracellular N- and C-Termini of TRPM4. International Journal of Molecular Sciences, 2020, 21, 4323.	1.8	6
42	Irritant-evoked activation and calcium modulation of the TRPA1 receptor. Nature, 2020, 585, 141-145.	13.7	93
43	Molecular mechanisms of cold pain. Neurobiology of Pain (Cambridge, Mass), 2020, 7, 100044.	1.0	42
44	Current View of Ligand and Lipid Recognition by the Menthol Receptor TRPM8. Trends in Biochemical Sciences, 2020, 45, 806-819.	3.7	14
45	TRP Channels, Conformational Flexibility, and the Lipid Membrane. Journal of Membrane Biology, 2020, 253, 299-308.	1.0	6
46	Regulation of the cold-sensing TRPM8 channels by phosphoinositides and G _q -coupled receptors. Channels, 2020, 14, 79-86.	1.5	10
47	Behavioral characterization of a CRISPR-generated TRPA1 knockout rat in models of pain, itch, and asthma. Scientific Reports, 2020, 10, 979.	1.6	43
48	Phosphatidylinositol 4,5-bisphosphate directly interacts with the β and γ subunits of the sodium channel ENaC. Journal of Biological Chemistry, 2020, 295, 7958-7969.	1.6	14
49	A paradigm of thermal adaptation in penguins and elephants by tuning cold activation in TRPM8. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8633-8638.	3.3	40
50	Testosteroneâ€androgen receptor: The steroid link inhibiting TRPM8â€mediated cold sensitivity. FASEB Journal, 2020, 34, 7483-7499.	0.2	18
51	Combining Molecular Dynamics and Docking Simulations to Develop Targeted Protocols for Performing Optimized Virtual Screening Campaigns on the hTRPM8 Channel. International Journal of Molecular Sciences, 2020, 21, 2265.	1.8	15
52	A Non-covalent Ligand Reveals Biased Agonism of the TRPA1 Ion Channel. Neuron, 2021, 109, 273-284.e4.	3.8	52
53	Cryo-EM: The Resolution Revolution and Drug Discovery. SLAS Discovery, 2021, 26, 17-31.	1.4	36
54	Calmodulin binds to Drosophila TRP with an unexpected mode. Structure, 2021, 29, 330-344.e4.	1.6	7

#	Article	IF	CITATIONS
55	Identification of N-acyl-N-indanyl-α-phenylglycinamides as selective TRPM8 antagonists designed to mitigate the risk of adverse effects. Bioorganic and Medicinal Chemistry, 2021, 30, 115903.	1.4	5
56	Molecular dynamics: a powerful tool for studying the medicinal chemistry of ion channel modulators. RSC Medicinal Chemistry, 2021, 12, 1503-1518.	1.7	8
57	Synthetic Ion Channel Formed by Multiblock Amphiphile with Anisotropic Dual-Stimuli-Responsiveness. Journal of the American Chemical Society, 2021, 143, 1348-1355.	6.6	23
58	Synthesis, Characterization and HPLC Analysis of the (1S,2S,5R)-Diastereomer and the Enantiomer of the Clinical Candidate AR-15512. Molecules, 2021, 26, 906.	1.7	3
59	Phenylalanine-Derived β-Lactam TRPM8 Modulators. Configuration Effect on the Antagonist Activity. International Journal of Molecular Sciences, 2021, 22, 2370.	1.8	2
60	Structural and in Vitro Functional Characterization of a Menthyl TRPM8 Antagonist Indicates Species-Dependent Regulation. ACS Medicinal Chemistry Letters, 2021, 12, 758-767.	1.3	6
61	Experimental Pharmacotherapy for Dry Eye Disease: A Review. Journal of Experimental Pharmacology, 2021, Volume 13, 345-358.	1.5	19
62	The fineâ€ŧuning of cell membrane lipid bilayers accentuates their compositional complexity. BioEssays, 2021, 43, e2100021.	1.2	15
64	Structural basis for promiscuous action of monoterpenes on TRP channels. Communications Biology, 2021, 4, 293.	2.0	23
65	Structural basis for human TRPC5 channel inhibition by two distinct inhibitors. ELife, 2021, 10, .	2.8	39
66	Binding of Androgen- and Estrogen-Like Flavonoids to Their Cognate (Non)Nuclear Receptors: A Comparison by Computational Prediction. Molecules, 2021, 26, 1613.	1.7	20
67	Linalool inhibits the angiogenic activity of endothelial cells by downregulating intracellular ATP levels and activating TRPM8. Angiogenesis, 2021, 24, 613-630.	3.7	12
69	Species-Specific Regulation of TRPM2 by PI(4,5)P2 via the Membrane Interfacial Cavity. International Journal of Molecular Sciences, 2021, 22, 4637.	1.8	8
70	Two Decades of Evolution of Our Understanding of the Transient Receptor Potential Melastatin 2 (TRPM2) Cation Channel. Life, 2021, 11, 397.	1.1	9
71	Structures of the TRPM5 channel elucidate mechanisms of activation and inhibition. Nature Structural and Molecular Biology, 2021, 28, 604-613.	3.6	27
72	Structures and Dynamics of Native-State Transmembrane Protein Targets and Bound Lipids. Membranes, 2021, 11, 451.	1.4	12
73	Transient Receptor Potential Ankyrin 1 Channel: An Evolutionarily Tuned Thermosensor. Physiological Research, 2021, 70, 363-381.	0.4	9
74	Mechanical properties of anionic asymmetric bilayers from atomistic simulations. Journal of Chemical Physics, 2021, 154, 224701.	1.2	7

		CITATION REPORT		
#	Article		IF	CITATIONS
75	TRP channels in health and disease at a glance. Journal of Cell Science, 2021, 134, .		1.2	18
76	Ligand binding at the protein–lipid interface: strategic considerations for drug desig Reviews Drug Discovery, 2021, 20, 710-722.	n. Nature	21.5	59
77	Thermosensory Transient Receptor Potential Ion Channels and Asthma. Biomedicines,	2021, 9, 816.	1.4	7
78	TRPM8 Channels: Advances in Structural Studies and Pharmacological Modulation. Int Journal of Molecular Sciences, 2021, 22, 8502.	ernational	1.8	24
79	Macromolecular refinement of X-ray and cryoelectron microscopy structures with Phe for improved structure and ligand quality. Structure, 2021, 29, 913-921.e4.	nix/OPLS3e	1.6	29
80	Constitutive Phosphorylation as a Key Regulator of TRPM8 Channel Function. Journal on Neuroscience, 2021, 41, 8475-8493.	of	1.7	11
81	Structural Pharmacology of TRP Channels. Journal of Molecular Biology, 2021, 433, 16	66914.	2.0	39
82	Unstructural Biology of TRP Ion Channels: The Role of Intrinsically Disordered Regions Function and Regulation. Journal of Molecular Biology, 2021, 433, 166931.	in Channel	2.0	31
84	Ligandâ€stereoselective allosteric activation of coldâ€sensing TRPM8 channels by an homochiral menthol dimer with headâ€toâ€head or headâ€toâ€tail. Chirality, 2021, 3	Hâ€bonded 3, 783-796.	1.3	5
85	Methods to study phosphoinositide regulation of ion channels. Methods in Enzymolog 49-79.	gy, 2021, 652,	0.4	5
86	Crowding-induced opening of the mechanosensitive Piezo1 channel in silico. Commur 2021, 4, 84.	ications Biology,	2.0	35
87	Structural mechanisms of transient receptor potential ion channels. Journal of General 2020, 152, .	Physiology,	0.9	59
92	Structure-based characterization of novel TRPV5 inhibitors. ELife, 2019, 8, .		2.8	44
93	Ligand recognition and gating mechanism through three ligand-binding sites of humai channel. ELife, 2019, 8, .	n TRPM2	2.8	70
94	Structural basis for pharmacological modulation of the TRPC6 channel. ELife, 2020, 9,		2.8	74
95	Disease-associated mutations in the human TRPM3 render the channel overactive via t mechanisms. ELife, 2020, 9, .	two distinct	2.8	29
96	Global alignment and assessment of TRP channel transmembrane domain structures t functional mechanisms. ELife, 2020, 9, .	o explore	2.8	42
100	Unraveling the cardiac effects induced by carvacrol in spontaneously hypertensive rats Cardiovascular Pharmacology, 2021, Publish Ahead of Print, .	s. Journal of	0.8	0

ARTICLE IF CITATIONS Chemesthesis and olfaction., 2022, , 179-203. 101 2 Molecular Sensors of Temperature, Pressure, and Pain with Special Focus on TRPV1, TRPM8, and PIEZO2 1.5 Ion Channels. Neuroscience Bulletin, 2021, 37, 1745-1749. Discovery of Novel TRPM8 Blockers Suitable for the Treatment of Somatic and Ocular Painful Conditions: A Journey through p<i>K</i>_a and LogD Modulation. Journal of Medicinal 103 2.9 3 Chemistry, 2021, 64, 16820-16837. Druggable Lipid Binding Sites in Pentameric Ligand-Gated Ion Channels and Transient Receptor 104 Potential Channels. Frontiers in Physiology, 2021, 12, 798102. A Systemic Review of the Integral Role of TRPM2 in Ischemic Stroke: From Upstream Risk Factors to 105 1.8 9 Ultimate Neuronal Death. Cells, 2022, 11, 491. Structural Determinants for Ligand Accommodation in Voltage Sensors. Biochemistry, 0, , . 0.8 Mechanism of praziquantel action at a parasitic flatworm ion channel. Science Translational 107 5.8 47 Medicine, 2021, 13, eabj5832. The Role of Lipids in CRAC Channel Function. Biomolecules, 2022, 12, 352. 1.8 Targeting CB2 and TRPV1: Computational Approaches for the Identification of Dual Modulators. 109 3 1.6 Frontiers in Molecular Biosciences, 2022, 9, 841190. Sensory TRP Channels in Three Dimensions. Annual Review of Biochemistry, 2022, 91, 629-649. On the Connections between TRPM Channels and SOCE. Cells, 2022, 11, 1190. 111 1.8 1 Structural mechanism of TRPM7 channel regulation by intracellular magnesium. Cellular and 2.4 Molecular Life Sciences, 2022, 79, 225. TRPM8-Rap1A Interaction Sites as Critical Determinants for Adhesion and Migration of Prostate and 113 1.7 6 Other Epithelial Cancer Cells. Cancers, 2022, 14, 2261. Ligand-Binding Sites in Vanilloid-Subtype TRP Channels. Frontiers in Pharmacology, 2022, 13, . 114 1.6 116 Structures of a mammalian TRPM8 in closed state. Nature Communications, 2022, 13, . 22 5.8 Synthesis of aniline-based menthol glycinates and derivatives. Results in Chemistry, 2022, 4, 100400. Differential Activation of TRPM8 by the Stereoisomers of Menthol. Frontiers in Pharmacology, 0, 13, . 118 1.6 1 119 Sequence and structural conservation reveal fingerprint residues in TRP channels. ELife, 0, 11, . 2.8

#	Article	IF	CITATIONS
121	Critical contributions of pre-S1 shoulder and distal TRP box in DAG-activated TRPC6 channel by PIP2 regulation. Scientific Reports, 2022, 12, .	1.6	4
122	Simulation and Machine Learning Methods for Ion-Channel Structure Determination, Mechanistic Studies and Drug Design. Frontiers in Pharmacology, 0, 13, .	1.6	5
123	Structural identification of riluzole-binding site on human TRPC5. Cell Discovery, 2022, 8, .	3.1	4
124	Extensive Sampling of Molecular Dynamics Simulations to Identify Reliable Protein Structures for Optimized Virtual Screening Studies: The Case of the hTRPM8 Channel. International Journal of Molecular Sciences, 2022, 23, 7558.	1.8	1
125	What structures did, and did not, reveal about the function of the epithelial Ca2+ channels TRPV5 and TRPV6. Cell Calcium, 2022, 106, 102620.	1.1	4
126	Mutations of TRPM8 channels: Unraveling the molecular basis of activation by cold and ligands. Medicinal Research Reviews, 2022, 42, 2168-2203.	5.0	3
127	Tegaserod maleate exhibits antileukemic activity by targeting TRPM8. Biomedicine and Pharmacotherapy, 2022, 154, 113566.	2.5	3
128	Roles of Intramolecular Interactions in the Regulation of TRP Channels. Reviews of Physiology, Biochemistry and Pharmacology, 2022, , 29-56.	0.9	3
129	Computational and functional studies of the PI(4,5)P2 binding site of the TRPM3 ion channel reveal interactions with other regulators. Journal of Biological Chemistry, 2022, 298, 102547.	1.6	5
130	Structural mechanisms of TRPV2 modulation by endogenous and exogenous ligands. Nature Chemical Biology, 2023, 19, 72-80.	3.9	10
131	TRPM8 contributes to sex dimorphism by promoting recovery of normal sensitivity in a mouse model of chronic migraine. Nature Communications, 2022, 13, .	5.8	10
133	Structural and functional analyses of a GPCR-inhibited ion channel TRPM3. Neuron, 2023, 111, 81-91.e7.	3.8	18
134	Activation mechanism of the mouse cold-sensing TRPM8 channel by cooling agonist and PIP ₂ . Science, 2022, 378, .	6.0	22
135	Transient Receptor Potential (TRP) Family of Channel Proteins. Russian Journal of Developmental Biology, 2022, 53, 309-320.	0.1	0
136	Progress in the Structural Basis of thermoTRP Channel Polymodal Gating. International Journal of Molecular Sciences, 2023, 24, 743.	1.8	5
137	Natural variation in the binding pocket of a parasitic flatworm TRPM channel resolves the basis for praziquantel sensitivity. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	14
138	On the modulation of TRPM channels: Current perspectives and anticancer therapeutic implications. Frontiers in Oncology, 0, 12, .	1.3	5
139	Temperature perception by plants. Trends in Plant Science, 2023, 28, 924-940.	4.3	7

#	Article	IF	CITATIONS
141	Role of Menthol and Other Flavors on Tobacco and Nicotine Product Use. Respiratory Medicine, 2023, , 213-240.	0.1	0
142	Transient Receptor Potential (TRP) Channels in Pain, Neuropsychiatric Disorders, and Epilepsy. International Journal of Molecular Sciences, 2023, 24, 4714.	1.8	5
143	Automatic and accurate ligand structure determination guided by cryo-electron microscopy maps. Nature Communications, 2023, 14, .	5.8	2
144	Adding New Scientific Evidences on the Pharmaceutical Properties of Pelargonium quercetorum Agnew Extracts by Using In Vitro and In Silico Approaches. Plants, 2023, 12, 1132.	1.6	11
145	Bilirubin gates the TRPM2 channel as a direct agonist to exacerbate ischemic brain damage. Neuron, 2023, 111, 1609-1625.e6.	3.8	9
146	Phosphatidylinositol 4,5-Bisphosphate and Cholesterol Regulators of the Calcium-Activated Chloride Channels TMEM16A and TMEM16B. Advances in Experimental Medicine and Biology, 2023, , 279-304.	0.8	1
147	Regulation of ThermoTRP Channels by PIP2 and Cholesterol. Advances in Experimental Medicine and Biology, 2023, , 245-277.	0.8	3
148	Latent generative landscapes as maps of functional diversity in protein sequence space. Nature Communications, 2023, 14, .	5.8	7
149	No Life on this Planet Without PHB. Helvetica Chimica Acta, 2023, 106, .	1.0	4
155	TRP (transient receptor potential) ion channel family: structures, biological functions and therapeutic interventions for diseases. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	20
161	TRPM channels in health and disease. Nature Reviews Nephrology, 2024, 20, 175-187.	4.1	2