Enabling Technologies for Ultra-Reliable and Low Later MAC Layer Perspectives

IEEE Communications Surveys and Tutorials

21, 2488-2524

DOI: 10.1109/comst.2019.2897800

Citation Report

#	Article	IF	CITATIONS
1	A primer on design aspects, recent advances, and challenges in cellular device-to-device communication. Ad Hoc Networks, 2019, 94, 101938.	5.5	16
2	A Novel Tensor CS-Based NOMA MIMO System for the Downlink of Massive Mission-Critical MTC in 5G and Beyond. IEEE Access, 2019, 7, 97624-97640.	4.2	5
3	5G Ultra-Reliable Low-Latency Communication Implementation Challenges and Operational Issues with IoT Devices. Electronics (Switzerland), 2019, 8, 981.	3.1	129
4	Multi-Connectivity as an Enabler for Reliable Low Latency Communications—An Overview. IEEE Communications Surveys and Tutorials, 2020, 22, 156-169.	39.4	72
5	Max-min fairness in downlink non-orthogonal multiple access with short packet communications. AEU - International Journal of Electronics and Communications, 2020, 114, 153028.	2.9	7
6	Contention-Based Radio Resource Management for URLLC-Oriented D2D Communications. IEEE Transactions on Vehicular Technology, 2020, 69, 9960-9971.	6.3	14
7	Accelerated Detection Schemes for PSS in 5G-NR. , 2020, , .		2
8	Optimal resource preemption for aperiodic URLLC traffic in 5G Networks. , 2020, , .		4
9	Transmission Performance Optimization for URLLC With Limited Training and Feedback Overheads. IEEE Access, 2020, 8, 140467-140477.	4.2	5
10	A Review of Cognitive Radio Smart Grid Communication Infrastructure Systems. Energies, 2020, 13, 3245.	3.1	20
11	Resource Allocation in Relay-Assisted Mission-Critical Industrial Internet of Things. , 2020, , .		5
12	Multi-Label Neural Decoders for Block Codes. , 2020, , .		2
13	PEG-LDPC Coding for Critical Communications in Factory Automation. , 2020, , .		5
14	Reliability-Latency Tradeoffs in Random Access Ultra-Reliable Low-Latency Energy-Harvesting 5G Networks with Finite Blocklength Codes. , 2020, , .		2
15	A Survey of End-to-End Solutions for Reliable Low-Latency Communications in 5G Networks. IEEE Access, 2020, 8, 192808-192834.	4.2	17
16	Age of Information Minimization in Fading Multiple Access Channels. , 2020, , .		5
17	NOMA-Based 802.11n for Industrial Automation. IEEE Access, 2020, 8, 168546-168557.	4.2	22
18	Throughput Maximization with an Average Age of Information Constraint in Fading Channels. , 2020, , .		2

#	Article	IF	CITATIONS
19	Random-Access NOMA in URLL Energy-Harvesting IoT Networks With Short Packet and Diversity Transmissions. IEEE Access, 2020, 8, 220734-220754.	4.2	20
20	Non-Stationary Bandit Strategy for Rate Adaptation With Delayed Feedback. IEEE Access, 2020, 8, 75503-75511.	4.2	4
21	Priority-based initial access for URLLC traffic in massive IoT networks: Schemes and performance analysis. Computer Networks, 2020, 178, 107360.	5.1	17
22	Computation Offloading and Resource Allocation for the Internet of Things in Energy-Constrained MEC-Enabled HetNets. IEEE Access, 2020, 8, 47509-47521.	4.2	24
23	Joint Frame Design and Resource Allocation for Ultra-Reliable and Low-Latency Vehicular Networks. IEEE Transactions on Wireless Communications, 2020, 19, 3607-3622.	9.2	27
24	Survey of Radio Resource Management in 5G Heterogeneous Networks. IEEE Access, 2020, 8, 131202-131223.	4.2	51
25	Mobile edge communications, computing, and caching (MEC3) technology in the maritime communication network. China Communications, 2020, 17, 223-234.	3.2	40
26	Software-Defined Vehicular Cloud Networks: Architecture, Applications and Virtual Machine Migration. Sensors, 2020, 20, 1092.	3.8	18
27	Multi-user Full-Duplex Two-Way Relaying Systems with User Mobility. Springer Series in Wireless Technology, 2021, , 155-170.	1.1	0
28	Throughput Maximization With an Average Age of Information Constraint in Fading Channels. IEEE Transactions on Wireless Communications, 2021, 20, 481-494.	9.2	26
29	A Survey on Deep Learning for Ultra-Reliable and Low-Latency Communications Challenges on 6G Wireless Systems. IEEE Access, 2021, 9, 55098-55131.	4.2	44
30	Beamforming Design for Multiuser uRLLC With Finite Blocklength Transmission. IEEE Transactions on Wireless Communications, 2021, 20, 8096-8109.	9.2	28
31	Spectrum Sharing for 5G/6G URLLC: Research Frontiers and Standards. IEEE Communications Standards Magazine, 2021, 5, 120-125.	4.9	30
32	Blind Source Separation For Full-Duplex Systems: Potential and Challenges. IEEE Open Journal of the Communications Society, 2021, 2, 1379-1389.	6.9	8
33	URLLC for 5G and Beyond: Requirements, Enabling Incumbent Technologies and Network Intelligence. IEEE Access, 2021, 9, 67064-67095.	4.2	57
34	An Overview of Physical Layer Design for Ultra-Reliable Low-Latency Communications in 3GPP Releases 15, 16, and 17. IEEE Access, 2021, 9, 433-444.	4.2	85
35	Cognitive D2D Finite Blocklength Transmissions With the Presence of Time-Selective Interference. IEEE Transactions on Vehicular Technology, 2021, 70, 12215-12219.	6.3	6
36	Internet of Things 2.0: Concepts, Applications, and Future Directions. IEEE Access, 2021, 9, 70961-71012.	4.2	61

#	Article	IF	CITATIONS
37	A Framework for 5G Ultra-Reliable Low Latency for Industrial and Mission-Critical Machine-Type Communication. Smart Innovation, Systems and Technologies, 2021, , 99-109.	0.6	1
38	Performance Analysis of URLL Energy-Harvesting Cognitive-Radio IoT Networks With Short Packet and Diversity Transmissions. IEEE Access, 2021, 9, 79293-79306.	4.2	7
39	Deep Reinforcement Learning for Adaptive Network Slicing in 5G for Intelligent Vehicular Systems and Smart Cities. IEEE Internet of Things Journal, 2022, 9, 222-235.	8.7	35
40	Effective Collaboration to Maximize Throughput Based on Multiuser Cooperative Mobility in Social-Physical Ad Hoc Networks. IEEE Open Journal of the Communications Society, 2021, 2, 818-835.	6.9	7
41	Ultra-reliable and low-latency communications: applications, opportunities and challenges. Science China Information Sciences, 2021, 64, 1.	4.3	32
42	Average Aol Minimization in UAV-Assisted Data Collection With RF Wireless Power Transfer: A Deep Reinforcement Learning Scheme. IEEE Internet of Things Journal, 2022, 9, 5216-5228.	8.7	35
43	A Low-Latency Random Access Scheme by Multichannel SIC for Industrial IoT. IEEE Systems Journal, 2021, , 1-10.	4.6	0
44	Performance Analysis of Short-Packet Non-Orthogonal Multiple Access With Alamouti Space-Time Block Coding. IEEE Transactions on Vehicular Technology, 2021, 70, 2900-2905.	6.3	18
45	Permutation-Based Transmissions in Ultra-Reliable and Low-Latency Communications. IEEE Communications Letters, 2021, 25, 1024-1028.	4.1	9
46	A Tutorial on Ultrareliable and Low-Latency Communications in 6C: Integrating Domain Knowledge Into Deep Learning. Proceedings of the IEEE, 2021, 109, 204-246.	21.3	182
47	Towards Human Motion Tracking Enhanced by Semi-Continuous Ultrasonic Time-of-Flight Measurements. Sensors, 2021, 21, 2259.	3.8	5
48	Performance Analysis of URLL Random-Access NOMA-Enabled IoT Networks with Short Packet and Diversity Transmissions. , 2021, , .		0
49	Short-Packet Communications for MIMO NOMA Systems Over Nakagami- <i>m</i> Fading: BLER and Minimum Blocklength Analysis. IEEE Transactions on Vehicular Technology, 2021, 70, 3583-3598.	6.3	40
50	Human–Robot Task Allocation and Scheduling: Boeing 777 Case Study. IEEE Robotics and Automation Letters, 2021, 6, 1256-1263.	5.1	16
51	Differential spectrum access for next generation data traffic in massive-IoT. Microprocessors and Microsystems, 2021, 82, 103951.	2.8	3
52	Minimization of Age of Information in Fading Multiple Access Channels. IEEE Journal on Selected Areas in Communications, 2021, 39, 1471-1484.	14.0	17
53	On the Optimization of Outage Probability of Access Delay of MTDs in Cellular Networks for URLLC. , 2021, , .		0
54	Hardware impaired modify-and-forward relaying with relay selection: Reliability and security. Physical Communication, 2021, 46, 101315.	2.1	1

#	Article	IF	Citations
55	Security and Reliability Performance Analysis for URLLC With Randomly Distributed Eavesdroppers. , 2021, , .		4
56	Automatic Recognition of Communication Signal Modulation Based on the Multiple-Parallel Complex Convolutional Neural Network. Wireless Communications and Mobile Computing, 2021, 2021, 1-11.	1.2	2
57	A Study on the Adaptability of Deep Learning-Based Polar-Coded NOMA in Ultra-Reliable Low-Latency Communications. Advances in Intelligent Systems and Computing, 2022, , 39-49.	0.6	1
58	Joint Resource Allocation and Transceiver Design for Sum-Rate Maximization Under Latency Constraints in Multicell MU-MIMO Systems. IEEE Transactions on Communications, 2021, 69, 4569-4584.	7.8	6
59	End-to-End Learning for Uplink MU-SIMO Joint Transmitter and Non-Coherent Receiver Design in Fading Channels. IEEE Transactions on Wireless Communications, 2021, 20, 5531-5542.	9.2	8
60	Multi-Operator Connectivity Sharing for Reliable Networks: A Data-Driven Risk Analysis. IEEE Transactions on Network and Service Management, 2021, 18, 2800-2811.	4.9	6
61	Friendly-jamming schemes to secure ultra-reliable and low-latency communications in 5G and beyond communications. Computer Standards and Interfaces, 2021, 78, 103540.	5.4	10
62	A Comprehensive Overview on 5G-and-Beyond Networks With UAVs: From Communications to Sensing and Intelligence. IEEE Journal on Selected Areas in Communications, 2021, 39, 2912-2945.	14.0	202
63	HARQ in Full-Duplex Relay-Assisted Transmissions for URLLC. IEEE Open Journal of the Communications Society, 2021, 2, 409-422.	6.9	9
64	Improving Performance of Association Control in IEEE 802.11ah-Based Massive IoT Networks. IEEE Internet of Things Journal, 2022, 9, 8572-8583.	8.7	3
65	Performance Analysis of Grant-Free Random-Access NOMA in URLL IoT Networks. IEEE Access, 2021, 9, 105974-105988.	4.2	11
66	Open-Loop Communications for Up-Link URLLC Under Clustered User Distribution. IEEE Transactions on Vehicular Technology, 2021, 70, 11509-11522.	6.3	5
67	Opportunistic Bits in Short-Packet Communications: A Finite Blocklength Perspective. IEEE Transactions on Communications, 2021, , 1-1.	7.8	4
68	Performance Analysis and Deep Learning Design of Wireless Powered Cognitive NOMA IoT Short-Packet Communications With Imperfect CSI and SIC. IEEE Internet of Things Journal, 2022, 9, 10464-10479.	8.7	24
69	Cooperative NOMA-Based User Pairing for URLLC: A Max–Min Fairness Approach. IEEE Systems Journal, 2022, 16, 3833-3843.	4.6	13
70	Aerial Reconfigurable Intelligent Surface-Enabled URLLC UAV Systems. IEEE Access, 2021, 9, 140248-140257.	4.2	47
71	On the Performance Evaluations of Cooperative Retransmission Scheme for Cell-Edge Users of URLLC in Multi-Carrier Downlink NOMA Systems. Sensors, 2021, 21, 7052.	3.8	1
72	Machine Learning Based RATs Selection Supporting Multi-connectivity for Reliability (Invited Paper). Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2019, , 31-41.	0.3	9

#	Article	IF	CITATIONS
73	Comparison between Different Channel Coding Techniques for IEEE 802.11be within Factory Automation Scenarios. Sensors, 2021, 21, 7209.	3.8	10
74	Wireless Communication for the Industrial IoT. , 2020, , 57-94.		6
75	Review in FBMC to Enhance the Performance of 5G Networks. Journal of Communications, 2020, , 415-426.	1.6	5
76	Unlocking Unlicensed Band Potential to Enable URLLC in Cloud Robotics for Ubiquitous IoT. IEEE Network, 2021, 35, 107-113.	6.9	2
77	Leveraging SDN slicing isolation for improved adaptive satellite-5G downlink scheduler. , 2021, , .		1
79	Secure Physical Layer Transmission and Authentication Mechanism Based on Compressed Sensing of Multiple Antenna Arrays. Journal of Sensors, 2021, 2021, 1-11.	1.1	0
80	Sliding Network Coding for URLLC. IEEE Transactions on Wireless Communications, 2022, 21, 4424-4433.	9.2	6
81	5G Networks Towards Smart and Sustainable Cities: A Review of Recent Developments, Applications and Future Perspectives. IEEE Access, 2022, 10, 2987-3006.	4.2	32
82	RETIS – Real-Time Sensitive Wireless Communication Solution for Industrial Control Applications. , 2020, , .		4
83	Efficient User Clustering and Reinforcement Learning Based Power Allocation for NOMA Systems. , 2020, , .		5
84	Statistical Learning-Based Dynamic Retransmission Mechanism for Mission Critical Communication: An Edge-Computing Approach. , 2020, , .		3
85	QoE- Driven Resource Allocation for Secure URLLC in 6G-Enabled IoT Networks. , 2021, , .		2
86	Joint Reservation and Contention-Based Access for URLLC-Enabled D2D Communications. IEEE Communications Letters, 2022, 26, 212-216.	4.1	3
87	Independent Pilots Versus Shared Pilots: Short Frame Structure Optimization for Heterogeneous-Traffic URLLC Networks. IEEE Transactions on Wireless Communications, 2022, 21, 5755-5769.	9.2	6
88	Fog-RAN Enabled Multi-Connectivity and Multi-Cell Scheduling Framework for Ultra-Reliable Low Latency Communication. IEEE Access, 2022, 10, 7059-7072.	4.2	6
89	A Survey of Physical Layer Techniques for Secure Wireless Communications in Industry. IEEE Communications Surveys and Tutorials, 2022, 24, 810-838.	39.4	43
90	Intelligent Ultrareliable and Low-Latency Communications: Flexibility and Adaptation. IEEE Internet of Things Journal, 2022, 9, 16140-16153.	8.7	2
91	Effective capacity maximization of two-way full-duplex and half-duplex relays with finite block length packets transmission. Wireless Networks, 2022, 28, 1079-1096.	3.0	1

		CITATION REPORT		
#	Article		IF	CITATIONS
92	Scheduling of Heterogeneous Services by Resolving Conflicts. IEEE Access, 2022, 10, 3	6576-36591.	4.2	0
93	Relay-Assisted Uplink Transmission Design of URLLC Packets. IEEE Internet of Things Jc 18839-18853.	ournal, 2022, 9,	8.7	1
94	Ultra-Reliable Communication for Critical Machine Type Communication via CRAN-Ena Multi-Connectivity Diversity Schemes. Sensors, 2021, 21, 8064.	bled	3.8	4
95	DCM: Delay as Component Model based on Hidden Striping Structure in Mobile Netwo	orks. , 2021, , .		2
96	An Unsupervised Deep Unrolling Framework for Constrained Optimization Problems in Networks. IEEE Transactions on Wireless Communications, 2022, 21, 8552-8564.	Wireless	9.2	6
97	Outage Performance of Cross-Packet HARQ. IEEE Wireless Communications Letters, 24	022, 11, 1423-1427.	5.0	2
98	Performance Evaluation of Short Packet Communications in NOMA VLC Systems With IEEE Access, 2022, 10, 49781-49793.	Imperfect CSI.	4.2	5
99	Unmanned aerial vehicleâ€aided edge networks with ultraâ€reliable low″atency com twin approach. IET Signal Processing, 2022, 16, 897-908.	munications: A digital	1.5	13
100	DDPG-Based Throughput Optimization with Aol Constraint in Ambient Backscatter-Ass CRN. Sensors, 2022, 22, 3262.	sisted Overlay	3.8	1
101	Assessing Deep Generative Models on Time Series Network Data. IEEE Access, 2022, 1	0, 64601-64617.	4.2	4
102	Link-Layer Retransmission-Based Error-Control Protocols in FSO Communications: A Su Communications Surveys and Tutorials, 2022, 24, 1602-1633.	ırvey. IEEE	39.4	12
103	A Hybrid Scheme of MCS Selection and Spectrum Allocation for URLLC Traffic under D Reliability Constraints. Entropy, 2022, 24, 727.	elay and	2.2	3
104	Towards a Unified Framework for Physical Layer Security in 5G and Beyond Networks. Journal of Vehicular Technology, 2022, 3, 321-343.	EEE Open	4.9	10
105	Energy-Efficient Transmit Probability-Power Control for Covert D2D Communications Information Constraints. IEEE Transactions on Vehicular Technology, 2022, 71, 9690-9	Vith Age of 704.	6.3	8
106	Robust Beamforming Design for IRS-Aided URLLC in D2D Networks. IEEE Transactions Communications, 2022, 70, 6035-6049.	on	7.8	6
107	Unlicensed Assisted Ultra-Reliable and Low-Latency Communications. Mobile Network: Applications, 2022, 27, 2232-2243.	s and	3.3	1
108	A Framework for TSN-enabled Virtual Environments for Ultra-Low Latency 5G Scenario	s. , 2022, , .		3
109	Rooftop Relay Nodes to Enhance URLLC in UAV-Assisted Cellular Networks. , 2022, , .			0

#	Article	IF	CITATIONS
110	Mobile sink assisted data gathering for URLLC in IoT using a fuzzy logic system. , 2022, , .		6
111	Uplink Performance Analysis of Grant-Free NOMA Networks. , 2022, , .		1
112	Latency Analysis and Field Trial for 5G NR. , 2022, , .		4
113	Optimization of Repetition Scheme for URLLC with Diverse Reliability Requirements. , 2022, , .		3
114	Adaptive–Persistent Nonorthogonal Random Access Scheme for URLL Massive IoT Networks. IEEE Systems Journal, 2023, 17, 1660-1671.	4.6	1
115	Robust Beamforming Design With Finite Blocklength for URLLC. IEEE Transactions on Vehicular Technology, 2023, 72, 2604-2608.	6.3	1
116	A Comprehensive Survey on Radio Resource Management in 5G HetNets: Current Solutions, Future Trends and Open Issues. IEEE Communications Surveys and Tutorials, 2022, 24, 2495-2534.	39.4	16
117	Configurable Independent Component Analysis Preprocessing Accelerator. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2022, , 1-13.	3.1	0
118	Critical Logical Link Assessment for Improving Industrial Wireless Communication Systems. IFAC-PapersOnLine, 2022, 55, 51-56.	0.9	0
119	Resource Allocation for URLLC Service in Relay-Assisted Smart Grid System. , 2022, , .		0
120	Ultra-Reliable Low-Latency Communications: Unmanned Aerial Vehicles Assisted Systems. Information (Switzerland), 2022, 13, 430.	2.9	5
121	A Survey on FEC Techniques for Industrial Wireless Communications. IEEE Open Journal of the Industrial Electronics Society, 2022, 3, 674-699.	6.8	4
122	Optimal Power Allocation for Non-Orthogonal Multiple Access Visible Light Communications with Short Packet and Imperfect Channel Information. , 2022, , .		1
123	Wireless Distributed Consensus for Connected Autonomous Systems. IEEE Internet of Things Journal, 2023, 10, 7786-7799.	8.7	1
124	Low Latency Energy-Efficient Neural Decoders for Block Codes. IEEE Transactions on Green Communications and Networking, 2023, 7, 680-691.	5.5	0
125	Power Allocation for FDMA-URLLC Downlink with Random Channel Assignment. , 2022, , .		0
126	Diversity Guaranteeing Transmission of Polar Codes over Block Fading Channels. , 2022, , .		1
127	A Survey on Resource Management for 6C Heterogeneous Networks: Current Research, Future Trends, and Challenges, Electronics (Switzerland), 2023, 12, 647	3.1	16

#	Article	IF	CITATIONS
128	Beamforming Design in Short-Packet Transmission for URLLC in Cell-Free Massive MIMO System. IEEE Systems Journal, 2023, 17, 4715-4724.	4.6	7
129	Analysis of Massive Ultra-Reliable and Low-Latency Communications Over the <i>îº</i> - <i>î¼</i> Shadowed Fading Channel. IEEE Transactions on Communications, 2023, 71, 1798-1813.	7.8	2
130	Dimensioning Spectrum to Support Ultra-Reliable Low-Latency Communication. IEEE Communications Standards Magazine, 2023, 7, 88-93.	4.9	1
131	Ultraâ€reliability and lowâ€latency communications on the internet of things based on <scp>5G</scp> network: Literature review, classification, and future research view. Transactions on Emerging Telecommunications Technologies, 2023, 34, .	3.9	10
132	Hybrid Transmission Scheme for Improving Link Reliability in mmWave URLLC Communications. IEEE Transactions on Wireless Communications, 2023, 22, 6329-6340.	9.2	3
133	Achievable Rate Region for uRLLC Interference Channel With Finite Blocklength Transmission. IEEE Transactions on Vehicular Technology, 2023, 72, 8857-8868.	6.3	Ο
134	Ultra-Reliable Device-Centric Uplink Communications in Airborne Networks: A Spatiotemporal Analysis. IEEE Transactions on Vehicular Technology, 2023, 72, 9484-9499.	6.3	1
135	Performance Analysis of Random Access NOMA for Critical mIoT With Timer-Power Back-Off Strategy. IEEE Transactions on Vehicular Technology, 2023, 72, 10754-10769.	6.3	0
136	Intelligent Ultra-Reliable and Low Latency Communications: Security and Flexibility. IEEE Transactions on Wireless Communications, 2023, 22, 8392-8406.	9.2	0
137	A Survey of Scheduling in 5G URLLC and Outlook for Emerging 6G Systems. IEEE Access, 2023, 11, 34372-34396.	4.2	6
138	Resource allocation scheme for eMBB and uRLLC coexistence in 6G networks. Wireless Networks, 2023, 29, 2519-2538.	3.0	4
139	Resource Allocation for IRS-Assisted Uplink URLLC Systems. IEEE Communications Letters, 2023, 27, 1540-1544.	4.1	1
140	Lyapunov Optimization-based User Scheduling and Beamforming Design for uRLLC Systems. , 2023, , .		0
141	Online Schedule Randomization to Mitigate Timing Attacks in 5G Periodic URLLC Communications. ACM Transactions on Sensor Networks, 2023, 19, 1-26.	3.6	1
142	Predictive Precoder Design for OTFS-Enabled URLLC: A Deep Learning Approach. IEEE Journal on Selected Areas in Communications, 2023, 41, 2245-2260.	14.0	14
143	Hybrid Precoding Design for Subarray-Structure-Enabled mmWave URLLC System. Applied Sciences (Switzerland), 2023, 13, 6883.	2.5	0
144	An In-Depth Study of 5G-Based Eco-Friendly Smart City. Lecture Notes in Networks and Systems, 2023, , 537-548.	0.7	0
145	Real-Time Data Measurement Methodology to Evaluate the 5G Network Performance Indicators. IEEE Access, 2023, 11, 43909-43924.	4.2	1

#	Article	IF	CITATIONS
146	Convergence of Software-Defined Vehicular Cloud and 5G Enabling Technologies: A Survey. Electronics (Switzerland), 2023, 12, 2066.	3.1	3
147	A Joint Communication and Control System for URLLC in Industrial IoT. IEEE Transactions on Vehicular Technology, 2023, 72, 15074-15079.	6.3	1
148	Ultra-High Rate-Reliability Fairness in Grant-Free Massive URLLC NOMA System: Joint Power and Channel Allocation Using Meta-Heuristic Search. IEEE Transactions on Vehicular Technology, 2023, 72, 15899-15915.	6.3	2
149	Achieving Energy-efficient Massive URLLC over Cell-free Massive MIMO. IEEE Internet of Things Journal, 2023, , 1-1.	8.7	0
150	Smart Grid Meets URLLC: A Federated Orchestration With Improved Communication for Efficient Energy Resources Management. IEEE Internet of Things Journal, 2023, 10, 22440-22450.	8.7	0
151	Physical Layer Latency Analysis for 5G NR. , 2023, , .		0
152	Generalized Short-Circuit Ratio Based Distributed Real-Time Stability Assessment of Renewable Power Systems. IEEE Transactions on Power Systems, 2023, 38, 5953-5956.	6.5	0
153	Intelligent reflecting surfaceâ€assisted beamformingâ€NOMA networks for shortâ€packet communications: Performance analysis and deep learning approach. IET Communications, 2023, 17, 1940-1954.	2.2	1
154	Joint Optimization of Frame Structure and Power Allocation for URLLC in Short Blocklength Regime. IEEE Transactions on Communications, 2023, 71, 7333-7346.	7.8	0
155	Orchestrating Smart Grid Demand Response Operations With URLLC and MuZero Learning. IEEE Internet of Things Journal, 2024, 11, 6692-6704.	8.7	0
156	Energy-Efficient Resource Allocation in Ultra-Dense Networks With EMBB and URLLC Users Coexistence. IEEE Transactions on Vehicular Technology, 2024, 73, 2549-2563.	6.3	0
157	Closed-form Approximation for Performance Bound of Finite Blocklength Massive MIMO Transmission. IEEE Transactions on Communications, 2023, , 1-1.	7.8	1
158	Multi-User IR-HARQ Latency and Resource Optimization for URLLC. IEEE Access, 2023, 11, 129994-130009.	4.2	0
159	A Collaborative Machine Learning Scheme for Traffic Allocation and Load Balancing for URLLC Service in 5G and Beyond. Journal of Computer and Communications, 2023, 11, 197-207.	0.9	0
160	Space-air-ground Integrated Networks For Urllc In Spatial Digital Twins. IEEE Communications Standards Magazine, 2023, 7, 6-11.	4.9	0
161	Statistical Tools and Methodologies for Ultrareliable Low-Latency Communication—A Tutorial. Proceedings of the IEEE, 2023, 111, 1502-1543.	21.3	0
162	Resource Allocation for Co-existence of eMBB and URLLC Services in 6G Wireless Networks: A Survey. IEEE Access, 2023, , 1-1.	4.2	0
163	Joint active and passive beamforming optimization for IRS-assisted downlink MISO-URLLC in max–min fairness. Wireless Networks, 0, , .	3.0	Ο

#	Article	IF	CITATIONS
164	Joint power allocation and blocklength assignment for reliability optimization in CA-enabled HetNets. Peer-to-Peer Networking and Applications, 2024, 17, 358-372.	3.9	1
165	Efficient and choreographed quality-of- service management in dense 6G verticals with high-speed mobility requirements. Integrated Computer-Aided Engineering, 2024, 31, 173-195.	4.6	0
166	Hybrid Precoding with Low-Resolution PSs for URLLC users in Cell-Free MmWave MIMO Systems. , 2023, , .		0