Effects of Sweeteners on the Gut Microbiota: A Review Clinical Trials

Advances in Nutrition 10, S31-S48 DOI: 10.1093/advances/nmy037

Citation Report

#	Article	IF	CITATIONS
1	Gut Microbiome: Profound Implications for Diet and Disease. Nutrients, 2019, 11, 1613.	1.7	615
2	Altered in Vitro Metabolomic Response of the Human Microbiota to Sweeteners. Genes, 2019, 10, 535.	1.0	22
3	Revisited: Assessing the in vivo data on low/no-calorie sweeteners and the gut microbiota. Food and Chemical Toxicology, 2019, 132, 110692.	1.8	18
4	The Effect of Isolated and Synthetic Dietary Fibers on Markers of Metabolic Diseases in Human Intervention Studies: A Systematic Review. Advances in Nutrition, 2020, 11, 420-438.	2.9	22
5	Acute Effects of Nutritive and Non-Nutritive Sweeteners on Postprandial Blood Pressure. Nutrients, 2019, 11, 1717.	1.7	9
6	Effect of Oral Nutritional Supplements with Sucromalt and Isomaltulose versus Standard Formula on Glycaemic Index, Entero-Insular Axis Peptides and Subjective Appetite in Patients with Type 2 Diabetes: A Randomised Cross-Over Study. Nutrients, 2019, 11, 1477.	1.7	16
7	A high-sugar diet rapidly enhances susceptibility to colitis via depletion of luminal short-chain fatty acids in mice. Scientific Reports, 2019, 9, 12294.	1.6	115
8	Diet–microbiota interactions and personalized nutrition. Nature Reviews Microbiology, 2019, 17, 742-753.	13.6	514
9	Gut Microbiota: An Important Link between Western Diet and Chronic Diseases. Nutrients, 2019, 11, 2287.	1.7	43
10	Guided dietary fibre intake as a means of directing short-chain fatty acid production by the gut microbiota. Journal of the Royal Society of New Zealand, 2020, 50, 434-455.	1.0	21
11	Consumption of sugarâ€sweetened and artificially sweetened soft drinks and risk of cancers not related to obesity. International Journal of Cancer, 2020, 146, 3329-3334.	2.3	14
12	Health risk behaviours and allostatic load: A systematic review. Neuroscience and Biobehavioral Reviews, 2020, 108, 694-711.	2.9	90
13	Non-Alcoholic Beverages, Old and Novel, and Their Potential Effects on Human Health, with a Focus on Hydration and Cardiometabolic Health. Medicina (Lithuania), 2020, 56, 490.	0.8	12
14	Archaeal hyperthermostable mannitol dehydrogenases: A promising industrial enzymes for d-mannitol synthesis. Food Research International, 2020, 137, 109638.	2.9	10
15	Sugar Reduction in Dairy Food: An Overview with Flavoured Milk as an Example. Foods, 2020, 9, 1400.	1.9	26
16	Gut homeostasis and microbiota under attack: impact of the different types of food contaminants on gut health. Critical Reviews in Food Science and Nutrition, 2022, 62, 738-763.	5.4	31
17	Effect of sweeteners and storage on compositional and sensory properties of blackberry jams. European Food Research and Technology, 2020, 246, 2187-2204.	1.6	10
18	Inhibition of Experimental Colitis by Saccharin in Animals: Should We Dismiss or Raise Concerns Regarding Possible Adverse Effects of Saccharin on Human Gut Microbiota and Health?. Inflammatory Bowel Diseases, 2020, 26, e159-e160.	0.9	1

TION RE

#	Article	IF	CITATIONS
19	The Effects of Non-Nutritive Artificial Sweeteners, Aspartame and Sucralose, on the Gut Microbiome in Healthy Adults: Secondary Outcomes of a Randomized Double-Blinded Crossover Clinical Trial. Nutrients, 2020, 12, 3408.	1.7	54
20	Associations between Pro- and Anti-Inflammatory Gastro-Intestinal Microbiota, Diet, and Cognitive Functioning in Dutch Healthy Older Adults: The NU-AGE Study. Nutrients, 2020, 12, 3471.	1.7	42
21	High Concentrations of Aspartame Induce Pro-Angiogenic Effects in Ovo and Cytotoxic Effects in HT-29 Human Colorectal Carcinoma Cells. Nutrients, 2020, 12, 3600.	1.7	21
22	Integrative and quantitative bioenergetics: Design of a study to assess the impact of the gut microbiome on host energy balance. Contemporary Clinical Trials Communications, 2020, 19, 100646.	0.5	15
23	Food Additives, Gut Microbiota, and Irritable Bowel Syndrome: A Hidden Track. International Journal of Environmental Research and Public Health, 2020, 17, 8816.	1.2	35
24	Effect of physiological factors, pathologies, and acquired habits on the sweet taste threshold: A systematic review and metaâ€analysis. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 3755-3773.	5.9	14
25	National wastewater reconnaissance of artificial sweetener consumption and emission in Australia. Environment International, 2020, 143, 105963.	4.8	25
26	Maltitol: Analytical Determination Methods, Applications in the Food Industry, Metabolism and Health Impacts. International Journal of Environmental Research and Public Health, 2020, 17, 5227.	1.2	39
27	A review of stevia as a potential healthcare product: Up-to-date functional characteristics, administrative standards and engineering techniques. Trends in Food Science and Technology, 2020, 103, 264-281.	7.8	39
28	Essential oils and microbiota: Implications for diet and weight control. Trends in Food Science and Technology, 2020, 104, 60-71.	7.8	14
29	The Gut Microbiome and Individual-Specific Responses to Diet. MSystems, 2020, 5, .	1.7	58
30	Natural Sweeteners: The Relevance of Food Naturalness for Consumers, Food Security Aspects, Sustainability and Health Impacts. International Journal of Environmental Research and Public Health, 2020, 17, 6285.	1.2	83
31	The development of metabolic endotoxemia is dependent on the type of sweetener and the presence of saturated fat in the diet. Gut Microbes, 2020, 12, 1801301.	4.3	42
32	Does the Intestinal Microbiome Impact Athletic Performance?. Current Gastroenterology Reports, 2020, 22, 53.	1.1	7
33	Micro cell vesicle technology (mCVT): a novel hybrid system of gene delivery for hard-to-transfect (HTT) cells. Nanoscale, 2020, 12, 18022-18030.	2.8	5
34	Aspartame, acesulfame K and sucralose- influence on the metabolism of Escherichia coli. Metabolism Open, 2020, 8, 100072.	1.4	12
35	Soft Drink Consumption in Young Mexican Adults Is Associated with Higher Total Body Fat Percentage in Men but Not in Women. Foods, 2020, 9, 1760.	1.9	6
36	Biological and Pharmacological Potential of Xylitol: A Molecular Insight of Unique Metabolism. Foods, 2020, 9, 1592.	1.9	55

#	Article	IF	CITATIONS
37	The drivers, trends and dietary impacts of non-nutritive sweeteners in the food supply: a narrative review. Nutrition Research Reviews, 2021, 34, 185-208.	2.1	30
38	Effect of stevia on the gut microbiota and glucose tolerance in a murine model of diet-induced obesity. FEMS Microbiology Ecology, 2020, 96, .	1.3	22
39	Nonnutritive sweetener consumption during pregnancy, adiposity, and adipocyte differentiation in offspring: evidence from humans, mice, and cells. International Journal of Obesity, 2020, 44, 2137-2148.	1.6	27
40	Microbiota and Lifestyle: A Special Focus on Diet. Nutrients, 2020, 12, 1776.	1.7	102
41	Intense Sweeteners, Taste Receptors and the Gut Microbiome: A Metabolic Health Perspective. International Journal of Environmental Research and Public Health, 2020, 17, 4094.	1.2	23
42	Gut microbiota in surgical and critically ill patients. Anaesthesia and Intensive Care, 2020, 48, 179-195.	0.2	13
43	Impact of food additives on the composition and function of gut microbiota: A review. Trends in Food Science and Technology, 2020, 99, 295-310.	7.8	94
44	Dietary Carbohydrate Constituents Related to Gut Dysbiosis and Health. Microorganisms, 2020, 8, 427.	1.6	33
45	Maternal sucralose intake alters gut microbiota of offspring and exacerbates hepatic steatosis in adulthood. Gut Microbes, 2020, 11, 1043-1063.	4.3	43
46	Health benefits of xylitol. Applied Microbiology and Biotechnology, 2020, 104, 7225-7237.	1.7	60
47	Effects of xylitol and erythritol consumption on mutans streptococci and the oral microbiota: a systematic review. Acta Odontologica Scandinavica, 2020, 78, 599-608.	0.9	18
48	Perspective: Standards for Research and Reporting on Low-Energy ("Artificialâ€) Sweeteners. Advances in Nutrition, 2020, 11, 484-491.	2.9	20
49	Environmental Exposures during Puberty: Window of Breast Cancer Risk and Epigenetic Damage. International Journal of Environmental Research and Public Health, 2020, 17, 493.	1.2	21
50	Diet, nutrients and the microbiome. Progress in Molecular Biology and Translational Science, 2020, 171, 237-263.	0.9	75
51	Plausible Biological Interactions of Low- and Non-Calorie Sweeteners with the Intestinal Microbiota: An Update of Recent Studies. Nutrients, 2020, 12, 1153.	1.7	55
52	NMR based real-time enzyme kinetics on estimating the inhibitory effect of sucralose in the enzymatic conversion of sucrose. Biophysical Chemistry, 2021, 268, 106495.	1.5	2
53	Gut microbiota composition in relation to intake of added sugar, sugar-sweetened beverages and artificially sweetened beverages in the Malmö Offspring Study. European Journal of Nutrition, 2021, 60, 2087-2097.	1.8	29
54	A review of the impact of xenobiotics from dietary sources on infant health: Early life exposures and the role of the microbiota. Environmental Pollution, 2021, 269, 115994.	3.7	19

#	Article	IF	CITATIONS
55	Optimisation of natural sweeteners for sugar reduction in chocolate flavoured milk and their impact on sensory attributes. International Dairy Journal, 2021, 115, 104922.	1.5	21
56	A rational review on the effects of sweeteners and sweetness enhancers on appetite, food reward and metabolic/adiposity outcomes in adults. Food and Function, 2021, 12, 442-465.	2.1	21
57	Changes in Appetite Regulation-Related Signaling Pathways in the Brain of Mice Supplemented with Non-nutritive Sweeteners. Journal of Molecular Neuroscience, 2021, 71, 1144-1155.	1.1	1
58	Gut Microbiota in Health and Diseases. , 2022, , 182-198.		3
59	Fueling Gut Microbes: A Review of the Interaction between Diet, Exercise, and the Gut Microbiota in Athletes. Advances in Nutrition, 2021, 12, 2190-2215.	2.9	57
60	Strategies for Reducing Salt and Sugar Intakes in Individuals at Increased Cardiometabolic Risk. Nutrients, 2021, 13, 279.	1.7	17
61	Genetic Variation in Holobionts. The Microbiomes of Humans, Animals, Plants, and the Environment, 2021, , 275-315.	0.2	0
62	Studies of xenobiotic-induced gut microbiota dysbiosis: from correlation to mechanisms. Gut Microbes, 2021, 13, 1921912.	4.3	19
63	The Impact of Artificial Sweeteners on Body Weight Control and Glucose Homeostasis. Frontiers in Nutrition, 2020, 7, 598340.	1.6	62
64	Impaired Intestinal Akkermansia muciniphila and Aryl Hydrocarbon Receptor Ligands Contribute to Nonalcoholic Fatty Liver Disease in Mice. MSystems, 2021, 6, .	1.7	35
65	Trends in the Use of Low and No-Calorie Sweeteners in Non-Alcoholic Beverages in Slovenia. Foods, 2021, 10, 387.	1.9	13
66	The sensory properties and metabolic impact of natural and synthetic sweeteners. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 1554-1583.	5.9	56
67	New insights into the molecular mechanism behind mannitol and erythritol fructosylation by β-fructofuranosidase from Schwanniomyces occidentalis. Scientific Reports, 2021, 11, 7158.	1.6	5
68	Gut Microbiota and Its Metabolite Deoxycholic Acid Contribute to Sucralose Consumption-Induced Nonalcoholic Fatty Liver Disease. Journal of Agricultural and Food Chemistry, 2021, 69, 3982-3991.	2.4	20
69	Does the Australian Health Star Rating System Encourage Added Sugar Reformulation? Trends in Sweetener Use in Australia. Nutrients, 2021, 13, 898.	1.7	11
70	Diet and the Microbiota–Gut–Brain Axis: Sowing the Seeds of Good Mental Health. Advances in Nutrition, 2021, 12, 1239-1285.	2.9	125
71	Suitability of Sugar Alcohols as Antidiabetic Supplements: A Review. Journal of Food and Drug Analysis, 2021, 29, 1-14.	0.9	23
72	The β-Fructofuranosidase from Rhodotorula dairenensis: Molecular Cloning, Heterologous Expression, and Evaluation of Its Transferase Activity. Catalysts, 2021, 11, 476.	1.6	4

#	ARTICLE	IF	CITATIONS
73	Soft drinks and sweeteners intake: Possible contribution to the development of metabolic syndrome and cardiovascular diseases. Beneficial or detrimental action of alternative sweeteners?. Food Research International, 2021, 142, 110220.	2.9	23
74	The complex relationship between metabolic syndrome and sweeteners. Journal of Food Science, 2021, 86, 1511-1531.	1.5	6
75	Diarrhea Predominant-Irritable Bowel Syndrome (IBS-D): Effects of Different Nutritional Patterns on Intestinal Dysbiosis and Symptoms. Nutrients, 2021, 13, 1506.	1.7	48
76	The consumption of low-calorie sweetener containing foods during pregnancy: results from the ROLO study. European Journal of Clinical Nutrition, 2021, , .	1.3	1
77	Erythritol Ameliorates Small Intestinal Inflammation Induced by High-Fat Diets and Improves Glucose Tolerance. International Journal of Molecular Sciences, 2021, 22, 5558.	1.8	23
78	An Overview of Current Knowledge of the Gut Microbiota and Low-Calorie Sweeteners. Nutrition Today, 2021, 56, 105-113.	0.6	4
79	(-)-Oleocanthal Nutraceuticals for Alzheimer's Disease Amyloid Pathology: Novel Oral Formulations, Therapeutic, and Molecular Insights in 5xFAD Transgenic Mice Model. Nutrients, 2021, 13, 1702.	1.7	4
80	Low- and No-Calorie Sweetener (LNCS) Consumption Patterns Amongst the Spanish Adult Population. Nutrients, 2021, 13, 1845.	1.7	9
81	Estimated assessment of dietary exposure to artificial sweeteners from processed food in Nanjing, China. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk	1.1	10
	Assessment, 2021, 38, 1105-1117.		
82	Assessment, 2021, 38, 1105-1117. The Link between Obesity, Microbiota Dysbiosis, and Neurodegenerative Pathogenesis. Diseases (Basel,) Tj ETQq1	1.0.7843 1.0	14 rgBT /0 46
82 83		1.0.7843 1.0	14 rgBT /0 46
	The Link between Obesity, Microbiota Dysbiosis, and Neurodegenerative Pathogenesis. Diseases (Basel,) Tj ETQq1	1.0	40
83	The Link between Obesity, Microbiota Dysbiosis, and Neurodegenerative Pathogenesis. Diseases (Basel,) Tj ETQq1 Gut Microbiota Prevents Sugar Alcohol-Induced Diarrhea. Nutrients, 2021, 13, 2029. Evaluating the Association Between Artificial Sweetener Intake and Indicators of Stress and Anxiety.	1.7	10
83 84	The Link between Obesity, Microbiota Dysbiosis, and Neurodegenerative Pathogenesis. Diseases (Basel,) Tj ETQq1 Gut Microbiota Prevents Sugar Alcohol-Induced Diarrhea. Nutrients, 2021, 13, 2029. Evaluating the Association Between Artificial Sweetener Intake and Indicators of Stress and Anxiety. International Quarterly of Community Health Education, 2023, 43, 339-342. Risk factors for early-onset colorectal cancer: a population-based case–control study in Ontario,	1.7 0.4	10 1
83 84 85	The Link between Obesity, Microbiota Dysbiosis, and Neurodegenerative Pathogenesis. Diseases (Basel,) Tj ETQq1 Gut Microbiota Prevents Sugar Alcohol-Induced Diarrhea. Nutrients, 2021, 13, 2029. Evaluating the Association Between Artificial Sweetener Intake and Indicators of Stress and Anxiety. International Quarterly of Community Health Education, 2023, 43, 339-342. Risk factors for early-onset colorectal cancer: a population-based case–control study in Ontario, Canada. Cancer Causes and Control, 2021, 32, 1063-1083. Cumulative Risks of Excipients in Pediatric Phytomucolytic Syrups: The Implications for Pharmacy	1.7 0.4 0.8	10 1 32
83 84 85 86	The Link between Obesity, Microbiota Dysbiosis, and Neurodegenerative Pathogenesis. Diseases (Basel,) Tj ETQq1 Gut Microbiota Prevents Sugar Alcohol-Induced Diarrhea. Nutrients, 2021, 13, 2029. Evaluating the Association Between Artificial Sweetener Intake and Indicators of Stress and Anxiety. International Quarterly of Community Health Education, 2023, 43, 339-342. Risk factors for early-onset colorectal cancer: a population-based case–control study in Ontario, Canada. Cancer Causes and Control, 2021, 32, 1063-1083. Cumulative Risks of Excipients in Pediatric Phytomucolytic Syrups: The Implications for Pharmacy Practice. Scientia Pharmaceutica, 2021, 89, 32.	1.7 0.4 0.8 0.7	40 10 1 32 4
83 84 85 86 87	The Link between Obesity, Microbiota Dysbiosis, and Neurodegenerative Pathogenesis. Diseases (Basel,) Tj ETQq1 Gut Microbiota Prevents Sugar Alcohol-Induced Diarrhea. Nutrients, 2021, 13, 2029. Evaluating the Association Between Artificial Sweetener Intake and Indicators of Stress and Anxiety. International Quarterly of Community Health Education, 2023, 43, 339-342. Risk factors for early-onset colorectal cancer: a population-based case–control study in Ontario, Canada. Cancer Causes and Control, 2021, 32, 1063-1083. Cumulative Risks of Excipients in Pediatric Phytomucolytic Syrups: The Implications for Pharmacy Practice. Scientia Pharmaceutica, 2021, 89, 32. Updated Database and Trends of Declared Low- and No-Calorie Sweeteners From Foods and Beverages Marketed in Spain. Frontiers in Nutrition, 2021, 8, 670422.	1.7 0.4 0.8 0.7 1.6	 40 10 1 32 4 9

#	Article	IF	CITATIONS
91	Maternal Sweeteners Intake During Gestation and Lactation Affects Learning and Memory in Rat Female Offspring. Journal of Medicinal Food, 2021, 24, 833-840.	0.8	1
92	Analysis of Caloric and Noncaloric Sweeteners Present in Dairy Products Aimed at the School Market and Their Possible Effects on Health. Nutrients, 2021, 13, 2994.	1.7	3
93	New Glycosylated Dihydrochalcones Obtained by Biotransformation of 2′-Hydroxy-2-methylchalcone in Cultures of Entomopathogenic Filamentous Fungi. International Journal of Molecular Sciences, 2021, 22, 9619.	1.8	8
94	Biological Responses to the Consumption of Non-Nutritional Sweeteners. , 0, , .		Ο
95	Hernandulcin Production in Cell Suspensions of <i>Phyla Scaberrima</i> : Exploring Hernandulcin Accumulation through Physical and Chemical Stimuli. Chemistry and Biodiversity, 2021, 18, e2100611.	1.0	2
96	Microbiota Changes Throughout Life - An Overview. , 2022, , 1-12.		1
97	The role of the gut microbiome and diet in the pathogenesis of non-alcoholic fatty liver disease. Clinical and Molecular Hepatology, 2021, 27, 22-43.	4.5	46
98	Treating diseases associated with metabolic syndrome. , 2021, , 243-275.		0
99	Metabolism of Dietary (Poly)phenols by the Gut Microbiota. , 2022, , 149-175.		2
100	PROCESSED FOOD AND FOOD ADDITIVES IN THE CONTEXT OF DYSBIOSIS AND ITS HEALTH CONSEQUENCES. Postepy Mikrobiologii, 2021, 60, 223-230.	0.1	0
102	GIDA KATKI MADDELERİNİN MİKROBİYOTA ÜZERİNE ETKİSİ. GÄ \pm da, 0, , 1030-1046.	0.1	4
103	Deciphering the Riddles in Nutrition and Cardiovascular Disease. European Cardiology Review, 2019, 14, 141-150.	0.7	3
104	Combined effect of glyphosate, saccharin and sodium benzoate on the gut microbiota of rats. Regulatory Mechanisms in Biosystems, 2019, 10, 228-232.	0.5	12
105	Artificial sweeteners are related to non-alcoholic fatty liver disease: Microbiota dysbiosis as a novel potential mechanism. EXCLI Journal, 2020, 19, 620-626.	0.5	11
106	The Role of the Gut Microbiome in Liver Cirrhosis Treatment. International Journal of Molecular Sciences, 2021, 22, 199.	1.8	52
107	Sweeteners: sensory properties, digestion, consumption trends, and health effects. , 2021, , .		1
108	Artificial Sweeteners: History and New Concepts on Inflammation. Frontiers in Nutrition, 2021, 8, 746247.	1.6	31
110	Can aspartame-sweetened products safely help with weight loss?. Journal of Education, Health and Sport, 2020, 10, 345.	0.0	Ο

#	Article	IF	CITATIONS
111	Do artificial sweeteners increase the risk of non-alcoholic fatty liver disease (NAFLD)?. EXCLI Journal, 2020, 19, 1158-1160.	0.5	0
112	Novel functional properties and applications of steviol glycosides in foods. Current Opinion in Food Science, 2022, 43, 91-98.	4.1	9
113	Acute Effect of Riceberry Waffle Intake on Postprandial Glycemic Response in Healthy Subjects. Foods, 2021, 10, 2937.	1.9	2
114	Emerging technologies and their impact on regulatory science. Experimental Biology and Medicine, 2022, 247, 1-75.	1.1	22
115	The Sharp Rise in the Use of Low- and No-Calorie Sweeteners in Non-Alcoholic Beverages in Slovenia: An Update Based on 2020 Data. Frontiers in Nutrition, 2021, 8, 778178.	1.6	4
116	Maternal sucralose exposure induces Paneth cell defects and exacerbates gut dysbiosis of progeny mice. Food and Function, 2021, 12, 12634-12646.	2.1	5
117	Parkinson's Disease: Possible Mechanisms for Nutritional Approaches. Journal of Restorative Medicine, 2020, 10, .	0.7	0
118	Changes in nonnutritive sweetener intake in a cohort of preschoolers after the implementation of Chile's Law of Food Labelling and Advertising. Pediatric Obesity, 2022, 17, e12895.	1.4	11
120	Multimodal interactions of drugs, natural compounds and pollutants with the gut microbiota. Nature Reviews Microbiology, 2022, 20, 431-443.	13.6	77
121	What are the benefits and risks of nutrition policy actions to reduce added sugar consumption? An Australian case study. Public Health Nutrition, 2022, 25, 2025-2042.	1.1	1
122	Maternal Sweeteners Intake Modulates Gut Microbiota and Exacerbates Learning and Memory Processes in Adult Male Offspring. Frontiers in Pediatrics, 2021, 9, 746437.	0.9	8
123	Low Dose of Sucralose Alter Gut Microbiome in Mice. Frontiers in Nutrition, 2022, 9, 848392.	1.6	12
124	Production and Digestibility Studies of β-Galactosyl Xylitol Derivatives Using Heterogeneous Catalysts of LacA β-Galactosidase from Lactobacillus Plantarum WCFS1. Molecules, 2022, 27, 1235.	1.7	1
125	The Effects of Stevia Consumption on Gut Bacteria: Friend or Foe?. Microorganisms, 2022, 10, 744.	1.6	13
126	Is a Non-Caloric Sweetener-Free Diet Good to Treat Functional Gastrointestinal Disorder Symptoms? A Randomized Controlled Trial. Nutrients, 2022, 14, 1095.	1.7	5
127	Is There an Academic Bias against Low-Energy Sweeteners?. Nutrients, 2022, 14, 1428.	1.7	6
128	Gut Microbiome: Profound Implications for Diet and Disease. Kompass Nutrition & Dietetics, 0, , 1-16.	1.0	2
129	Hydrogels Made of Poly-Î ³ -Glutamic Acid and Sugar Alcohols for Enhanced Survival of Probiotic Strains Subjected to Low pH and Freeze Drying. AppliedChem, 2021, 1, 173-183.	0.2	О

#	Article	IF	CITATIONS
130	Sweeteners Maintain Epithelial Barrier Function Through the miR-15b/RECK/MMP-9 Axis, Remodel Microbial Homeostasis, and Attenuate Dextran Sodium Sulfate-Induced Colitis in Mice. Journal of Agricultural and Food Chemistry, 2022, 70, 171-183.	2.4	7
131	Potential Effects of Sucralose and Saccharin on Gut Microbiota: A Review. Nutrients, 2022, 14, 1682.	1.7	18
133	Incorporating the Gut Microbiome in the Risk Assessment of Xenobiotics and Identifying Beneficial Components for One Health. Frontiers in Microbiology, 2022, 13, .	1.5	8
134	GAS CHROMATOGRAPHY-MASS SPECTROMETRY (GC-MS) ANALYSIS OF CONSOLIDA THIRKEANA EXTRACT. Ankara Universitesi Eczacilik Fakultesi Dergisi, 0, , .	0.2	2
135	Investigating the gut microbiome and metabolome following treatment with artificial sweeteners acesulfame potassium and saccharin in young adult Wistar rats. Food and Chemical Toxicology, 2022, 165, 113123.	1.8	6
136	Imaging of sugarâ€based contrast agents using their hydroxyl proton exchange properties. NMR in Biomedicine, 2023, 36, .	1.6	9
137	Replacement of Refined Sugar by Natural Sweeteners: Focus on Potential Health Benefits. SSRN Electronic Journal, 0, , .	0.4	1
138	Nutrition-wide association study of microbiome diversity and composition in colorectal cancer patients. BMC Cancer, 2022, 22, .	1.1	9
139	Comprehensive Assessment of Functional Effects of Commonly Used Sugar Substitute Sweeteners on <i>Ex Vivo</i> Human Gut Microbiome. Microbiology Spectrum, 2022, 10, .	1.2	3
140	Sweetened beverage consumption and risk of liver cancer by diabetes status: A pooled analysis. Cancer Epidemiology, 2022, 79, 102201.	0.8	14
141	Global trends in added sugars and non-nutritive sweetener use in the packaged food supply: drivers and implications for public health. Public Health Nutrition, 2023, 26, 952-964.	1.1	9
142	Does Allulose Appeal to Consumers? Results from a Discrete Choice Experiment in Germany. Nutrients, 2022, 14, 3350.	1.7	3
143	Non-nutritive sweeteners and their impacts on the gut microbiome and host physiology. Frontiers in Nutrition, 0, 9, .	1.6	10
145	The "manna―extracted from the ash trees still cultivated in Sicily from mythical food to pharmaceutical and nutraceutical resource. Archive of Food and Nutritional Science, 2022, 6, 038-048.	0.1	2
146	Diet and nutrition against inflammatory bowel disease: Trick or treat(ment)?. World Journal of Experimental Medicine, 2022, 12, 104-107.	0.9	0
147	Consumption of low-calorie sweeteners: findings from the Campinas Nutrition and Health Survey. British Journal of Nutrition, 0, , 1-34.	1.2	0
148	A gut reaction: Microbiome-driven glycemic effects of non-nutritive sweeteners. Cell, 2022, 185, 3282-3284.	13.5	2
149	Diet fuelling inflammatory bowel diseases: preclinical and clinical concepts. Gut, 2022, 71, 2574-2586.	6.1	35

#	Article	IF	CITATIONS
150	Association between beverage consumption and risk of rheumatoid arthritis: a prospective study from the French E3N Cohort. Rheumatology, 2023, 62, 1814-1823.	0.9	2
151	Artificial sweeteners and risk of cardiovascular diseases: results from the prospective NutriNet-Santé cohort. BMJ, The, 0, , e071204.	3.0	50
152	Long-term D-Allose Administration Favorably Alters the Intestinal Environment in Aged Male Mice. Journal of Applied Glycoscience (1999), 2022, , .	0.3	0
153	Replacement of refined sugar by natural sweeteners: focus on potential health benefits. Heliyon, 2022, 8, e10711.	1.4	18
154	Possibilities and Prospects of Modification of the Intestinal Microbiome. Russian Archives of Internal Medicine, 2022, 12, 341-351.	0.0	1
155	Characterization and Nutritional Compositions of Novel Fruit Jams Developed from Selected Fruits. African Journal of Agriculture and Food Science, 2022, 5, 28-49.	0.0	0
157	Impact of Dietary Sugars on Gut Microbiota and Metabolic Health. International Journal of Diabetology, 2022, 3, 549-560.	0.9	6
158	Ice cream as functional food: A review of healthâ€promoting ingredients in the frozen dairy products. Journal of Food Process Engineering, 2022, 45, .	1.5	4
159	Artificially Sweetened Beverage Consumption and Cancer Risk: A Comprehensive Dose–Response Meta-Analysis of Prospective Studies. Nutrients, 2022, 14, 4445.	1.7	1
160	A Review of Natural Peptide Sweeteners. International Journal of Peptide Research and Therapeutics, 2022, 28, .	0.9	2
161	Is the Use of Artificial Sweeteners Beneficial for Patients with Diabetes Mellitus? The Advantages and Disadvantages of Artificial Sweeteners. Nutrients, 2022, 14, 4446.	1.7	11
162	Personalized nutrition, microbiota, and metabolism: A triad for eudaimonia. Frontiers in Molecular Biosciences, 0, 9, .	1.6	0
163	Trend of minimally processed and ultra-processed beverages purchased in Brazilian households: Less milk and much soft drink (2002–2003 to 2017–2018). Frontiers in Public Health, 0, 10, .	1.3	3
164	Habitual intakes of sugar-sweetened beverages associated with gut microbiota-related metabolites and metabolic health outcomes in young Chinese adults. Nutrition, Metabolism and Cardiovascular Diseases, 2023, 33, 359-368.	1.1	6
165	Role of gut microbiota in food safety. , 2023, , 812-828.		0
166	Sustainable bioproduction of natural sugar substitutes: Strategies and challenges. Trends in Food Science and Technology, 2022, 129, 512-527.	7.8	10
167	Understanding interactions among diet, host and gut microbiota for personalized nutrition. Life Sciences, 2023, 312, 121265.	2.0	5
168	Sports and Energy Drink Consumption, Oral Health Problems and Performance Impact among Elite Athletes. Nutrients, 2022, 14, 5089.	1.7	3

ARTICLE IF CITATIONS Food Additives: Importance, Classification, and Adverse Reactions in Humans., 2023, , 1-31. 1 169 171 Toxicological Aspects of Natural Food Additives., 2023, , 303-323. Foods may modify responsiveness to cancer immune checkpoint blockers by altering both the gut 172 2 microbiota and activation of estrogen receptors in immune cells., 0, 1, . Microbiota analysis for risk assessment of xenobiotics: toxicomicrobiomics, incorporating the gut microbiome in the risk assessment of xenobiotics and identifying beneficial components for One 0.9 Health. EFSA Journal, 2022, 20, . The Impact of Food Additives on the Abundance and Composition of Gut Microbiota. Molecules, 2023, 174 1.7 5 28,631. Evolution of beverage portion sizes consumed in Brazil between 2008 and 2018. Frontiers in Public 1.3 Health, 0, 10, . Oh So Sweet: A Comparative Investigation of Retail Market Composition of Sweetened and Flavoured 176 1.7 1 Beverages in Singapore and Australia. Nutrients, 2023, 15, 247. Grain, Gluten, and Dietary Fiber Intake Influence Gut Microbial Diversity: Data from the Food and Microbiome Longitudinal Investigation. Cancer Research Communications, 2023, 3, 43-53. Impact of gut-peripheral nervous system axis on the development of diabetic neuropathy. Memorias Do 178 0.8 0 Instituto Oswaldo Cruz, 0, 118, . Designing healthier bread through the lens of the gut microbiota. Trends in Food Science and 179 Technology, 2023, 134, 13-28. Sports foods are not all they shake up to be. An audit of formulated supplementary sports food 180 1.6 1 products and packaging in Australian retail environments. Frontiers in Nutrition, 0, 10, . The role of diet in shaping human gut microbiota. Bailliere's Best Practice and Research in Clinical 1.0 Gastroenterology, 2023, 62-63, 101828. Non-nutritive sweetener regulation and health: analysing applications to vary Australian and New 182 0.9 1 Zealand food standards. Health Promotion International, 2023, 38, . Application of Computational Data Modeling to a Large-Scale Population Cohort Assists the Discovery of Inositol as a Strain-Specific Substrate for Faecalibacterium prausnitzii. Nutrients, 2023, 15, 1311. 1.7 Engineering <i>Escherichia coli</i> to Utilize Erythritol as Sole Carbon Source. Advanced Science, 184 5.6 6 2023, 10, . The Effect of Bioactive Aliment Compounds and Micronutrients on Non-Alcoholic Fatty Liver Disease. 2.2 Antioxidants, 2023, 12, 903. Effect of Non-Nutritive Sweeteners on the Gut Microbiota. Nutrients, 2023, 15, 1869. 187 1.7 5 189 Microbiome-mediated TÂcell regulation, inflammation, and disease., 2023, , 443-475.

#	Article	IF	CITATIONS
205	What if gastrointestinal complications in endurance athletes were gut injuries in response to a high consumption of ultra-processed foods? Please take care of your bugs if you want to improve endurance performance: a narrative review. European Journal of Applied Physiology, 2024, 124, 383-402.	1.2	1
212	Sugar reduction and sweeteners to improve foods. , 2024, , 87-120.		О
213	The Microbiome, Metabolism, and Networks in Precision Nutrition. , 2024, , 91-142.		0
233	Changes in the Gut Microbiome as Seen in Diabetes and Obesity. , 2023, , 61-81.		0