L1 drives IFN in senescent cells and promotes age-assoc

Nature 566, 73-78 DOI: 10.1038/s41586-018-0784-9

Citation Report

#	Article	IF	CITATIONS
1	Transcriptionally active HERV-H retrotransposons demarcate topologically associating domains in human pluripotent stem cells. Nature Genetics, 2019, 51, 1380-1388.	21.4	236
2	Roles of JAK2 in Aging, Inflammation, Hematopoiesis and Malignant Transformation. Cells, 2019, 8, 854.	4.1	119
3	RNA Editing by ADAR Adenosine Deaminases: From Molecular Plasticity of Neural Proteins to the Mechanisms of Human Cancer. Biochemistry (Moscow), 2019, 84, 896-904.	1.5	12
4	Diseases of the nERVous system: retrotransposon activity in neurodegenerative disease. Mobile DNA, 2019, 10, 32.	3.6	91
5	Viruses and immunosenescence $\hat{a} \in \hat{~}$ more players in the game. Immunity and Ageing, 2019, 16, 13.	4.2	9
6	Impacts of cannabinoid epigenetics on human development: reflections on Murphy et. al. â€`cannabinoid exposure and altered DNA methylation in rat and human sperm' epigenetics 2018; 13: 1208-1221 Epigenetics, 2019, 14, 1041-1056.	2.7	35
7	Deciphering the mechanism for induction of senescence-associated secretory phenotype (SASP) and its role in ageing and cancer development. Journal of Biochemistry, 2019, 166, 289-295.	1.7	32
8	Low-dose quercetin positively regulates mouse healthspan. Protein and Cell, 2019, 10, 770-775.	11.0	41
9	Single-cell analysis reveals T cell infiltration in old neurogenic niches. Nature, 2019, 571, 205-210.	27.8	351
10	Demethylation and derepression of genomic retroelements in the skeletal muscles of aged mice. Aging Cell, 2019, 18, e13042.	6.7	17
11	Neuroinflammation & pre-mature aging in the context of chronic HIV infection and drug abuse: Role of dysregulated autophagy. Brain Research, 2019, 1724, 146446.	2.2	16
12	Cellular Senescence: Defining a Path Forward. Cell, 2019, 179, 813-827.	28.9	1,551
13	PROPERTIES AND FUNCTIONS OF THE NOVEL TYPE I INTERFERON EPSILON. Seminars in Immunology, 2019, 43, 101328.	5.6	26
14	Animal models of leukodystrophy: a new perspective for the development of therapies. FEBS Journal, 2019, 286, 4176-4191.	4.7	14
15	Host–transposon interactions: conflict, cooperation, and cooption. Genes and Development, 2019, 33, 1098-1116.	5.9	209
16	Transposable Elements, Inflammation, and Neurological Disease. Frontiers in Neurology, 2019, 10, 894.	2.4	98
18	Improved ThwaRTing of Genome Symbionts. Cell Chemical Biology, 2019, 26, 1043-1045.	5.2	0
19	Inhibition of â€~jumping genes' promotes healthy ageing. Nature, 2019, 566, 46-48.	27.8	6

		CITATION REPORT		
#	Article		IF	CITATIONS
20	Transposable elements in human genetic disease. Nature Reviews Genetics, 2019, 20,	760-772.	16.3	214
21	Fate and future climatic role of polar ice sheets. Nature, 2019, 566, 48-49.		27.8	3
22	Time to test antibacterial therapy in Alzheimer's disease. Brain, 2019, 142, 2905-2	929.	7.6	89
23	The Gypsy Endogenous Retrovirus Drives Non-Cell-Autonomous Propagation in a Droso Model of Neurodegeneration. Current Biology, 2019, 29, 3135-3152.e4.	ophila TDP-43	3.9	43
24	Age-Related Gene Expression Signature in Rats Demonstrate Early, Late, and Linear Tra Changes from Multiple Tissues. Cell Reports, 2019, 28, 3263-3273.e3.	nscriptional	6.4	118
25	SIRT7 mediates L1 elements transcriptional repression and their association with the n Nucleic Acids Research, 2019, 47, 7870-7885.	uclear lamina.	14.5	55
26	Unmasking senescence: context-dependent effects of SASP in cancer. Nature Reviews 439-453.	Cancer, 2019, 19,	28.4	465
27	Quiescence: Good and Bad of Stem Cell Aging. Trends in Cell Biology, 2019, 29, 672-6	85.	7.9	69
28	Acceleration of β Cell Aging Determines Diabetes and Senolysis Improves Disease Out Metabolism, 2019, 30, 129-142.e4.	comes. Cell	16.2	277
29	Synthesis and Characterization of Specific Reverse Transcriptase Inhibitors for Mamma Retrotransposons. Cell Chemical Biology, 2019, 26, 1095-1109.e14.	lian LINE-1	5.2	26
30	Cellular labeling of endogenous retrovirus replication (CLEVR) reveals de novo insertio gypsy retrotransposable element in cell culture and in both neurons and glial cells of a flies. PLoS Biology, 2019, 17, e3000278.	ns of the ging fruit	5.6	34
31	Activation of transposable elements and genetic instability during long-term culture of fungal pathogen Candida albicans. Biogerontology, 2019, 20, 457-474.	the human	3.9	5
32	Loss of Nuclear TDP-43 Is Associated with Decondensation of LINE Retrotransposons. 2019, 27, 1409-1421.e6.	Cell Reports,	6.4	137
33	Aging in the Drosophila ovary: contrasting changes in the expression of the piRNA mac mitochondria but no global release of transposable elements. BMC Genomics, 2019, 2	hinery and 0, 305.	2.8	17
34	The Genetics of Aging: A Vertebrate Perspective. Cell, 2019, 177, 200-220.		28.9	177
35	The unusual SASPects. Nature Reviews Molecular Cell Biology, 2019, 20, 195-195.		37.0	1
36	Comprehensive Scanning Mutagenesis of Human Retrotransposon LINE-1 Identifies Me Function. Genetics, 2019, 213, 1401-1414.	otifs Essential for	2.9	22
37	Dissecting Aging and Senescence—Current Concepts and Open Lessons. Cells, 2019	, 8, 1446.	4.1	86

#	Article	IF	CITATIONS
38	Mechanisms of Calorie Restriction: A Review of Genes Required for the Life-Extending and Tumor-Inhibiting Effects of Calorie Restriction. Nutrients, 2019, 11, 3068.	4.1	20
39	AMPK-mediated senolytic and senostatic activity of quercetin surface functionalized Fe3O4 nanoparticles during oxidant-induced senescence in human fibroblasts. Redox Biology, 2020, 28, 101337.	9.0	67
40	L1EM: a tool for accurate locus specific LINE-1 RNA quantification. Bioinformatics, 2020, 36, 1167-1173.	4.1	31
41	Widespread sex dimorphism in aging and age-related diseases. Human Genetics, 2020, 139, 333-356.	3.8	76
42	Reply. Arthritis and Rheumatology, 2020, 72, 376-377.	5.6	0
43	Environmental influences on clonal hematopoiesis. Experimental Hematology, 2020, 83, 66-73.	0.4	45
44	Ribosomal DNA instability: An evolutionary conserved fuel for inflammaging. Ageing Research Reviews, 2020, 58, 101018.	10.9	18
45	Deficiency in the DNA repair protein ERCC1 triggers a link between senescence and apoptosis in human fibroblasts and mouse skin. Aging Cell, 2020, 19, e13072.	6.7	41
46	The islets of Langerhans continue to reveal their secrets. Nature Reviews Endocrinology, 2020, 16, 73-74.	9.6	2
47	Proteomics of Longâ€Lived Mammals. Proteomics, 2020, 20, 1800416.	2.2	8
48	Acute Myeloid Leukemia: Aging and Epigenetics. Cancers, 2020, 12, 103.	3.7	46
49	How the ageing microenvironment influences tumour progression. Nature Reviews Cancer, 2020, 20, 89-106.	28.4	408
50	Long interspersed element-1 ribonucleoprotein particles protect telomeric ends in alternative lengthening of telomeres dependent cells. Neoplasia, 2020, 22, 61-75.	5.3	13
51	Reactivation of Endogenous Retroelements in Cancer Development and Therapy. Annual Review of Cancer Biology, 2020, 4, 159-176.	4.5	36
52	The role of transposable elements activity in aging and their possible involvement in laminopathic diseases. Ageing Research Reviews, 2020, 57, 100995.	10.9	41
53	DNA Damage Response and Oxidative Stress in Systemic Autoimmunity. International Journal of Molecular Sciences, 2020, 21, 55.	4.1	68
54	Canadian Cannabis Consumption and Patterns of Congenital Anomalies: An Ecological Geospatial Analysis. Journal of Addiction Medicine, 2020, 14, e195-e210.	2.6	50
55	Establishment of Quantitative PCR Assays for Active Long Interspersed Nuclear Element-1 Subfamilies in Mice and Applications to the Analysis of Aging-Associated Retrotransposition. Frontiers in Genetics, 2020, 11, 519206.	2.3	6

TION REDO

#	Article	IF	CITATIONS
56	An Increased Burden of Highly Active Retrotransposition Competent L1s Is Associated with Parkinson's Disease Risk and Progression in the PPMI Cohort. International Journal of Molecular Sciences, 2020, 21, 6562.	4.1	18
57	cGAS/STING: novel perspectives of the classic pathway. Molecular Biomedicine, 2020, 1, 7.	4.4	15
58	Cellular Senescence Variation by Metabolic and Epigenomic Remodeling. Trends in Cell Biology, 2020, 30, 919-922.	7.9	19
59	Type I interferons and related pathways in cell senescence. Aging Cell, 2020, 19, e13234.	6.7	38
60	Potential Role for Herpesviruses in Alzheimer's Disease. Journal of Alzheimer's Disease, 2020, 78, 855-869.	2.6	6
61	InÂVivo Reprogramming Ameliorates Aging Features in Dentate Gyrus Cells and Improves Memory in Mice. Stem Cell Reports, 2020, 15, 1056-1066.	4.8	56
62	Senolytic drugs: from discovery to translation. Journal of Internal Medicine, 2020, 288, 518-536.	6.0	515
63	Impact of ageâ€; cancerâ€; and treatmentâ€driven inflammation on T cell function and immunotherapy. Journal of Leukocyte Biology, 2020, 108, 953-965.	3.3	15
64	The commensal skin microbiota triggers type I IFN–dependent innate repair responses in injured skin. Nature Immunology, 2020, 21, 1034-1045.	14.5	90
65	CD38 ecto-enzyme in immune cells is induced during aging and regulates NAD+ and NMN levels. Nature Metabolism, 2020, 2, 1284-1304.	11.9	157
66	Mini-Review on Lipofuscin and Aging: Focusing on The Molecular Interface, The Biological Recycling Mechanism, Oxidative Stress, and The Gut-Brain Axis Functionality. Medicina (Lithuania), 2020, 56, 626.	2.0	8
67	Nanopore Sequencing Enables Comprehensive Transposable Element Epigenomic Profiling. Molecular Cell, 2020, 80, 915-928.e5.	9.7	117
68	Innate and Adaptive Immunity in Aging and Longevity: The Foundation of Resilience. , 2020, 11, 1363.		34
69	Senescence and the SASP: many therapeutic avenues. Genes and Development, 2020, 34, 1565-1576.	5.9	481
70	Frequency and methylation status of selected retrotransposition competent L1 loci in amyotrophic lateral sclerosis. Molecular Brain, 2020, 13, 154.	2.6	7
71	Tousled-Like Kinases Suppress Innate Immune Signaling Triggered by Alternative Lengthening of Telomeres. Cell Reports, 2020, 32, 107983.	6.4	23
72	Nuclear PYHIN proteins target the host transcription factor Sp1 thereby restricting HIV-1 in human macrophages and CD4+ T cells. PLoS Pathogens, 2020, 16, e1008752.	4.7	26
73	Microbiota–host interactions shape ageing dynamics. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190596.	4.0	27

#	ARTICLE	IF	CITATIONS
74	Nuclear Membrane Rupture and Its Consequences. Annual Review of Cell and Developmental Biology, 2020, 36, 85-114.	9.4	83
75	Somatic mutations in neurodegeneration: An update. Neurobiology of Disease, 2020, 144, 105021.	4.4	32
76	Rising from the ashes: cellular senescence in regeneration. Current Opinion in Genetics and Development, 2020, 64, 94-100.	3.3	25
77	Neuroinflammation and histone H3 citrullination are increased in X-linked Dystonia Parkinsonism post-mortem prefrontal cortex. Neurobiology of Disease, 2020, 144, 105032.	4.4	25
78	Yeast Cell wall Particle mediated Nanotube-RNA delivery system loaded with miR365 Antagomir for Post-traumatic Osteoarthritis Therapy via Oral Route. Theranostics, 2020, 10, 8479-8493.	10.0	26
79	Identification of bona fide B2 SINE retrotransposon transcription through single-nucleus RNA-seq of the mouse hippocampus. Genome Research, 2020, 30, 1643-1654.	5.5	10
80	Genome folding and refolding in differentiation and cellular senescence. Current Opinion in Cell Biology, 2020, 67, 56-63.	5.4	3
81	CeneTEFlow: A Nextflow-based pipeline for analysing gene and transposable elements expression from RNA-Seq data. PLoS ONE, 2020, 15, e0232994.	2.5	1
82	Generation of a p16 Reporter Mouse and Its Use to Characterize and Target p16high Cells InÂVivo. Cell Metabolism, 2020, 32, 814-828.e6.	16.2	93
83	Stem Cells of the Aging Brain. Frontiers in Aging Neuroscience, 2020, 12, 247.	3.4	48
84	Targeting Molecular Mechanism of Vascular Smooth Muscle Senescence Induced by Angiotensin II, A Potential Therapy via Senolytics and Senomorphics. International Journal of Molecular Sciences, 2020, 21, 6579.	4.1	13
85	Common Sources of Inflammation and Their Impact on Hematopoietic Stem Cell Biology. Current Stem Cell Reports, 2020, 6, 96-107.	1.6	29
86	Lamivudine Inhibits <i>Alu</i> RNA-induced Retinal Pigment Epithelium Degeneration via Anti-inflammatory and Anti-senescence Activities. Translational Vision Science and Technology, 2020, 9, 1.	2.2	11
87	Antitumor activity of a systemic STING-activating non-nucleotide cGAMP mimetic. Science, 2020, 369, 993-999.	12.6	259
88	Micronuclei, inflammation and auto-immune disease. Mutation Research - Reviews in Mutation Research, 2020, 786, 108335.	5.5	33
89	How Retroviruses and Retrotransposons in Our Genome May Contribute to Autoimmunity in Rheumatological Conditions. Frontiers in Immunology, 2020, 11, 593891.	4.8	18
90	The HUSH complex is a gatekeeper of type I interferon through epigenetic regulation of LINE-1s. Nature Communications, 2020, 11, 5387.	12.8	79
91	Biology of extracellular vesicles secreted from senescent cells as senescenceâ€associated secretory phenotype factors. Geriatrics and Gerontology International, 2020, 20, 539-546.	1.5	37

#	Article	IF	CITATIONS
92	ZKSCAN3 counteracts cellular senescence by stabilizing heterochromatin. Nucleic Acids Research, 2020, 48, 6001-6018.	14.5	54
93	SIRT7 slows down stem cell aging by preserving heterochromatin: a perspective on the new discovery. Protein and Cell, 2020, 11, 469-471.	11.0	7
94	The Sophisticated Transcriptional Response Governed by Transposable Elements in Human Health and Disease. International Journal of Molecular Sciences, 2020, 21, 3201.	4.1	8
95	Transposable Elements: A Common Feature of Neurodevelopmental and Neurodegenerative Disorders. Trends in Genetics, 2020, 36, 610-623.	6.7	64
96	DNA Damage Regulates Senescence-Associated Extracellular Vesicle Release via the Ceramide Pathway to Prevent Excessive Inflammatory Responses. International Journal of Molecular Sciences, 2020, 21, 3720.	4.1	45
97	The quest to slow ageing through drug discovery. Nature Reviews Drug Discovery, 2020, 19, 513-532.	46.4	260
98	Regulation and Consequences of cGAS Activation by Self-DNA. Trends in Cell Biology, 2020, 30, 594-605.	7.9	54
99	Transposable elements, circular RNAs and mitochondrial transcription in age-related genomic regulation. Development (Cambridge), 2020, 147, .	2.5	25
100	Role of Senescent Renal Cells in Pathophysiology of Diabetic Kidney Disease. Current Diabetes Reports, 2020, 20, 33.	4.2	17
101	Piwi reduction in the aged niche eliminates germline stem cells via Toll-GSK3 signaling. Nature Communications, 2020, 11, 3147.	12.8	18
102	Telomere transcription in ageing. Ageing Research Reviews, 2020, 62, 101115.	10.9	44
103	Treating age-related multimorbidity: the drug discovery challenge. Drug Discovery Today, 2020, 25, 1403-1415.	6.4	21
104	Measuring and interpreting transposable element expression. Nature Reviews Genetics, 2020, 21, 721-736.	16.3	211
105	Classical and Nonclassical Intercellular Communication in Senescence and Ageing. Trends in Cell Biology, 2020, 30, 628-639.	7.9	109
106	Repetitive elements as a transcriptomic marker of aging: Evidence in multiple datasets and models. Aging Cell, 2020, 19, e13167.	6.7	39
107	SIRT7 antagonizes human stem cell aging as a heterochromatin stabilizer. Protein and Cell, 2020, 11, 483-504.	11.0	85
108	Hematopoietic regeneration under the spell of epigenetic-epitranscriptomic factors and transposable elements. Current Opinion in Hematology, 2020, 27, 264-272.	2.5	5
109	The role of host environment in cancer evolution. Evolutionary Applications, 2020, 13, 1756-1770.	3.1	15

#	Article	IF	CITATIONS
110	Silencing of Euchromatic Transposable Elements as a Consequence of Nuclear Lamina Dysfunction. Cells, 2020, 9, 625.	4.1	6
111	The role of cellular senescence in ageing and endocrine disease. Nature Reviews Endocrinology, 2020, 16, 263-275.	9.6	276
112	Long INterspersed elementâ€1 mobility as a sensor of environmental stresses. Environmental and Molecular Mutagenesis, 2020, 61, 465-493.	2.2	15
113	Human transposon insertion profiling by sequencing (TIPseq) to map LINE-1 insertions in single cells. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190335.	4.0	6
114	Transient DNMT3L Expression Reinforces Chromatin Surveillance to Halt Senescence Progression in Mouse Embryonic Fibroblast. Frontiers in Cell and Developmental Biology, 2020, 8, 103.	3.7	12
115	PIWI–piRNA pathway-mediated transposable element repression in <i>Hydra</i> somatic stem cells. Rna, 2020, 26, 550-563.	3.5	21
116	Global transcriptomic changes occur in aged mouse podocytes. Kidney International, 2020, 98, 1160-1173.	5.2	23
117	The World Goes Bats: Living Longer and Tolerating Viruses. Cell Metabolism, 2020, 32, 31-43.	16.2	89
118	Does Calorie Restriction Modulate Inflammaging via FoxO Transcription Factors?. Nutrients, 2020, 12, 1959.	4.1	6
119	DNA Damage- But Not Enzalutamide-Induced Senescence in Prostate Cancer Promotes Senolytic Bcl-xL Inhibitor Sensitivity. Cells, 2020, 9, 1593.	4.1	31
120	Subfamily-specific quantification of endogenous mouse L1 retrotransposons by droplet digital PCR. Analytical Biochemistry, 2020, 601, 113779.	2.4	4
121	Kinetics and mechanisms of mitotic inheritance of DNA methylation and their roles in aging-associated methylome deterioration. Cell Research, 2020, 30, 980-996.	12.0	81
122	Awakening the dark side: retrotransposon activation in neurodegenerative disorders. Current Opinion in Neurobiology, 2020, 61, 65-72.	4.2	20
123	Cellular senescence: from anti-cancer weapon to anti-aging target. Science China Life Sciences, 2020, 63, 332-342.	4.9	29
124	Aging Biomarkers: From Functional Tests to Multiâ€Omics Approaches. Proteomics, 2020, 20, e1900408.	2.2	40
125	Cell fitness screens reveal a conflict between LINE-1 retrotransposition and DNA replication. Nature Structural and Molecular Biology, 2020, 27, 168-178.	8.2	74
126	What Doesn't Kill You Makes You Stronger: Transposons as Dual Players in Chromatin Regulation and Genomic Variation. BioEssays, 2020, 42, e1900232.	2.5	20
127	Our Conflict with Transposable Elements and Its Implications for Human Disease. Annual Review of Pathology: Mechanisms of Disease, 2020, 15, 51-70.	22.4	81

#	Article	IF	CITATIONS
128	Maximizing the ovarian reserve in mice by evading LINE-1 genotoxicity. Nature Communications, 2020, 11, 330.	12.8	41
129	Transposable Elements Cross Kingdom Boundaries and Contribute to Inflammation and Ageing. BioEssays, 2020, 42, 1900197.	2.5	2
130	A potential new mechanism for pregnancy loss: considering the role of LINE-1 retrotransposons in early spontaneous miscarriage. Reproductive Biology and Endocrinology, 2020, 18, 6.	3.3	16
131	Sexual-dimorphism in human immune system aging. Nature Communications, 2020, 11, 751.	12.8	316
132	Widespread and tissue-specific expression of endogenous retroelements in human somatic tissues. Genome Medicine, 2020, 12, 40.	8.2	30
133	cGAS/STING Pathway Activation Contributes to Delayed Neurodegeneration in Neonatal Hypoxia-Ischemia Rat Model: Possible Involvement of LINE-1. Molecular Neurobiology, 2020, 57, 2600-2619.	4.0	56
134	Methyl-Metabolite Depletion Elicits Adaptive Responses to Support Heterochromatin Stability and Epigenetic Persistence. Molecular Cell, 2020, 78, 210-223.e8.	9.7	45
135	Senescent Cells: Emerging Targets for Human Aging and Age-Related Diseases. Trends in Biochemical Sciences, 2020, 45, 578-592.	7.5	126
136	Enabling large-scale genome editing at repetitive elements by reducing DNA nicking. Nucleic Acids Research, 2020, 48, 5183-5195.	14.5	41
137	Reducing Senescent Cell Burden in Aging and Disease. Trends in Molecular Medicine, 2020, 26, 630-638.	6.7	102
138	Extrachromosomal Circular DNA: Current Knowledge and Implications for CNS Aging and Neurodegeneration. International Journal of Molecular Sciences, 2020, 21, 2477.	4.1	35
139	Senescence-associated extracellular vesicle release plays a role in senescence-associated secretory phenotype (SASP) in age-associated diseases. Journal of Biochemistry, 2021, 169, 147-153.	1.7	29
140	Genomic Analysis Revealed a Convergent Evolution of LINE-1 in Coat Color: A Case Study in Water Buffaloes (<i>Bubalus bubalis</i>). Molecular Biology and Evolution, 2021, 38, 1122-1136.	8.9	32
141	Stabilization of heterochromatin by CLOCK promotes stem cell rejuvenation and cartilage regeneration. Cell Research, 2021, 31, 187-205.	12.0	67
142	HIV-1 Transcription but Not Intact Provirus Levels are Associated With Systemic Inflammation. Journal of Infectious Diseases, 2021, 223, 1934-1942.	4.0	19
143	Thymus involution sets the clock of the aging T-cell landscape: Implications for declined immunity and tissue repair. Ageing Research Reviews, 2021, 65, 101231.	10.9	32
144	cGAS-STING signaling in cancer immunity and immunotherapy. Biomedicine and Pharmacotherapy, 2021, 133, 110972.	5.6	45
145	Healthy Aging Interventions Reduce Repetitive Element Transcripts. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2021, 76, 805-810.	3.6	10

#	Article	IF	CITATIONS
146	Opposing Roles of Type I Interferons in Cancer Immunity. Annual Review of Pathology: Mechanisms of Disease, 2021, 16, 167-198.	22.4	88
147	Retroelement-derived RNA and its role in the brain. Seminars in Cell and Developmental Biology, 2021, 114, 68-80.	5.0	10
148	Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nature Reviews Molecular Cell Biology, 2021, 22, 75-95.	37.0	812
149	FOXO3-engineered human mesenchymal progenitor cells efficiently promote cardiac repair after myocardial infarction. Protein and Cell, 2021, 12, 145-151.	11.0	27
150	Single-cell transcriptomic atlas of primate cardiopulmonary aging. Cell Research, 2021, 31, 415-432.	12.0	88
151	Reconsidering LINE-1's role in cancer: does LINE-1 function as a reporter detecting early cancer-associated epigenetic signatures?. Evolution, Medicine and Public Health, 2021, 9, 78-82.	2.5	5
152	Locus-specific expression analysis of transposable elements. Briefings in Bioinformatics, 2022, 23, .	6.5	7
153	Cytoplasmic chromatin fragments—from mechanisms to therapeutic potential. ELife, 2021, 10, .	6.0	25
154	A technology of a different sort: microraft arrays. Lab on A Chip, 2021, 21, 3204-3218.	6.0	9
155	Targeting the stress support network regulated by autophagy and senescence for cancer treatment. Advances in Cancer Research, 2021, 150, 75-112.	5.0	4
156	Wholeâ€body senescent cell clearance alleviates ageâ€related brain inflammation and cognitive impairment in mice. Aging Cell, 2021, 20, e13296.	6.7	186
157	Recognize Yourself—Innate Sensing of Non-LTR Retrotransposons. Viruses, 2021, 13, 94.	3.3	7
159	Senolysis by glutaminolysis inhibition ameliorates various age-associated disorders. Science, 2021, 371, 265-270.	12.6	222
160	Draft Genome Assemblies and Annotations of <i>Agrypnia vestita</i> Walker, and <i>Hesperophylax magnus</i> Banks Reveal Substantial Repetitive Element Expansion in Tube Case-Making Caddisflies (Insecta: Trichoptera). Genome Biology and Evolution, 2021, 13, .	2.5	14
161	COVID-19, Retroelements, and Aging. Advances in Gerontology, 2021, 11, 83-92.	0.4	3
162	Reduced RNA turnover as a driver of cellular senescence. Life Science Alliance, 2021, 4, e202000809.	2.8	12
165	Aging-associated changes in metabolic regulation of epigenetic modifications and gene expression. , 2021, , 75-95.		0
166	FOXP3 ⁺ regulatory T cells and ageâ€related diseases. FEBS Journal, 2022, 289, 319-335.	4.7	13

#	Article	IF	CITATIONS
169	Angiotensin-converting enzyme 2 (ACE2) expression increases with age in patients requiring mechanical ventilation. PLoS ONE, 2021, 16, e0247060.	2.5	73
170	Implications of Endogenous Retroelements in the Etiopathogenesis of Systemic Lupus Erythematosus. Journal of Clinical Medicine, 2021, 10, 856.	2.4	10
171	Transposable Element Landscape in <i>Drosophila</i> Populations Selected for Longevity. Genome Biology and Evolution, 2021, 13, .	2.5	6
173	TRIM28 Expression on Dendritic Cells Prevents Excessive T Cell Priming by Silencing Endogenous Retrovirus. Journal of Immunology, 2021, 206, 1528-1539.	0.8	10
175	Exogenous Coronavirus Interacts With Endogenous Retrotransposon in Human Cells. Frontiers in Cellular and Infection Microbiology, 2021, 11, 609160.	3.9	32
176	Senescent cells as promising targets to tackle age-related diseases. Ageing Research Reviews, 2021, 66, 101251.	10.9	28
177	The functional impact of nuclear reorganization in cellular senescence. Briefings in Functional Genomics, 2022, 21, 24-34.	2.7	21
178	TP53 drives abscopal effect by secretion of senescence-associated molecular signals in non-small cell lung cancer. Journal of Experimental and Clinical Cancer Research, 2021, 40, 89.	8.6	18
179	Diabetes fuels periodontal lesions via GLUT1-driven macrophage inflammaging. International Journal of Oral Science, 2021, 13, 11.	8.6	30
180	The struggle of a good friend getting old: cellular senescence in viral responses and therapy. EMBO Reports, 2021, 22, e52243.	4.5	38
181	Functional genomics of inflamm-aging and immunosenescence. Briefings in Functional Genomics, 2022, 21, 43-55.	2.7	16
182	Characterization of an active LINE-1 in the naked mole-rat genome. Scientific Reports, 2021, 11, 5725.	3.3	8
183	Telomeres and Cancer: Resolving the Paradox. Annual Review of Cancer Biology, 2021, 5, 59-77.	4.5	30
184	The function of small extracellular vesicles secreted from senescent cells. Drug Delivery System, 2021, 36, 130-137.	0.0	0
185	Mechanisms of Cellular Senescence: Cell Cycle Arrest and Senescence Associated Secretory Phenotype. Frontiers in Cell and Developmental Biology, 2021, 9, 645593.	3.7	608
186	SIRT3 consolidates heterochromatin and counteracts senescence. Nucleic Acids Research, 2021, 49, 4203-4219.	14.5	74
187	Unique Human and Mouse β-Cell Senescence-Associated Secretory Phenotype (SASP) Reveal Conserved Signaling Pathways and Heterogeneous Factors. Diabetes, 2021, 70, 1098-1116.	0.6	27
188	Activation of endogenous retroviruses during brain development causes an inflammatory response. EMBO Journal, 2021, 40, e106423.	7.8	38

#	Article	IF	CITATIONS
189	Identifying transposable element expression dynamics and heterogeneity during development at the single-cell level with a processing pipeline scTE. Nature Communications, 2021, 12, 1456.	12.8	74
190	Cellular aging beyond cellular senescence: Markers of senescence prior to cell cycle arrest <i>in vitro</i> and <i>in vivo</i> . Aging Cell, 2021, 20, e13338.	6.7	106
191	Intercellular viral spread and intracellular transposition of Drosophila gypsy. PLoS Genetics, 2021, 17, e1009535.	3.5	11
192	Bone Aging, Cellular Senescence, and Osteoporosis. JBMR Plus, 2021, 5, e10488.	2.7	65
193	Increased expression of peptides from non-coding genes in cancer proteomics datasets suggests potential tumor neoantigens. Communications Biology, 2021, 4, 496.	4.4	20
194	The cGAS–STING pathway as a therapeutic target in inflammatory diseases. Nature Reviews Immunology, 2021, 21, 548-569.	22.7	714
195	m6A-independent genome-wide METTL3 and METTL14 redistribution drives the senescence-associated secretory phenotype. Nature Cell Biology, 2021, 23, 355-365.	10.3	71
196	Repetitive sequences in aging. Aging, 2021, 13, 10816-10817.	3.1	1
197	Sensing of transposable elements by the antiviral innate immune system. Rna, 2021, 27, 735-752.	3.5	36
198	A ride through the epigenetic landscape: aging reversal by reprogramming. GeroScience, 2021, 43, 463-485.	4.6	12
199	Silencing of LINE-1 retrotransposons is a selective dependency of myeloid leukemia. Nature Genetics, 2021, 53, 672-682.	21.4	47
200	In utero exposure to chlordecone affects histone modifications and activates LINE-1 in cord blood. Life Science Alliance, 2021, 4, e202000944.	2.8	7
201	Toxic Y chromosome: Increased repeat expression and age-associated heterochromatin loss in male Drosophila with a young Y chromosome. PLoS Genetics, 2021, 17, e1009438.	3.5	24
202	Nucleoside reverse transcriptase inhibitors and Kamuvudines inhibit amyloid-β induced retinal pigmented epithelium degeneration. Signal Transduction and Targeted Therapy, 2021, 6, 149.	17.1	16
203	Aging-associated lncRNAs are evolutionarily conserved and participate in NFκB signaling. Nature Aging, 2021, 1, 438-453.	11.6	15
204	Senescenceâ€associated βâ€galactosidase reveals the abundance of senescent CD8+ T cells in aging humans. Aging Cell, 2021, 20, e13344.	6.7	78
205	Single-nucleus transcriptomic landscape of primate hippocampal aging. Protein and Cell, 2021, 12, 695-716.	11.0	49
206	Repression of endogenous retroviruses prevents antiviral immune response and is required for mammary gland development. Cell Stem Cell, 2021, 28, 1790-1804.e8.	11.1	10

#	Article	IF	CITATIONS
207	New insights into the functional role of retrotransposon dynamics in mammalian somatic cells. Cellular and Molecular Life Sciences, 2021, 78, 5245-5256.	5.4	7
208	Reverse-transcribed SARS-CoV-2 RNA can integrate into the genome of cultured human cells and can be expressed in patient-derived tissues. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	175
210	Coordinate regulation of the senescent state by selective autophagy. Developmental Cell, 2021, 56, 1512-1525.e7.	7.0	29
211	DNA methylation in former extremely low birth weight newborns: association with cardiovascular and endocrine function. Pediatric Research, 2021, , .	2.3	4
212	IgG and IgA autoantibodies against L1 ORF1p expressed in granulocytes correlate with granulocyte consumption and disease activity in pediatric systemic lupus erythematosus. Arthritis Research and Therapy, 2021, 23, 153.	3.5	4
213	Functional conservation in genes and pathways linking ageing and immunity. Immunity and Ageing, 2021, 18, 23.	4.2	38
214	The impact of age-related hypomethylated DNA on immune signaling upon cellular demise. Trends in Immunology, 2021, 42, 464-468.	6.8	7
215	Hallmarks of aging and immunosenescence: Connecting the dots. Cytokine and Growth Factor Reviews, 2021, 59, 9-21.	7.2	69
216	The loss of heterochromatin is associated with multiscale three-dimensional genome reorganization and aberrant transcription during cellular senescence. Genome Research, 2021, 31, 1121-1135.	5.5	36
217	Reduction of lamin B receptor levels by miR-340-5p disrupts chromatin, promotes cell senescence and enhances senolysis. Nucleic Acids Research, 2021, 49, 7389-7405.	14.5	14
218	Inflammation, epigenetics, and metabolism converge to cell senescence and ageing: the regulation and intervention. Signal Transduction and Targeted Therapy, 2021, 6, 245.	17.1	119
219	Aneuploid senescent cells activate NFâ€₽B to promote their immune clearance by NK cells. EMBO Reports, 2021, 22, e52032.	4.5	42
220	Phase separation of the LINE-1 ORF1 protein is mediated by the N-terminus and coiled-coil domain. Biophysical Journal, 2021, 120, 2181-2191.	0.5	32
222	Disruption of nucleocytoplasmic trafficking as a cellular senescence driver. Experimental and Molecular Medicine, 2021, 53, 1092-1108.	7.7	19
223	Oxylipin biosynthesis reinforces cellular senescence and allows detection of senolysis. Cell Metabolism, 2021, 33, 1124-1136.e5.	16.2	77
225	The derepression of transposable elements in lung cells is associated with the inflammatory response and gene activation in idiopathic pulmonary fibrosis. Mobile DNA, 2021, 12, 14.	3.6	9
226	Sirtuin 6: linking longevity with genome and epigenome stability. Trends in Cell Biology, 2021, 31, 994-1006.	7.9	45
227	Inhibition of Rag GTPase signaling in mice suppresses B cell responses and lymphomagenesis with minimal detrimental trade-offs. Cell Reports, 2021, 36, 109372.	6.4	6

#	Article	IF	CITATIONS
228	Decoding and rejuvenating human ageing genomes: Lessons from mosaic chromosomal alterations. Ageing Research Reviews, 2021, 68, 101342.	10.9	21
229	Manipulating the exposome to enable better ageing. Biochemical Journal, 2021, 478, 2889-2898.	3.7	26
230	Revelations About Aging and Disease from Unconventional Vertebrate Model Organisms. Annual Review of Genetics, 2021, 55, 135-159.	7.6	12
231	Pericentromeric noncoding RNA changes DNA binding of CTCF and inflammatory gene expression in senescence and cancer. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	38
232	Lamivudine improves cognitive decline in SAMP8 mice: Integrating in vivo pharmacological evaluation and network pharmacology. Journal of Cellular and Molecular Medicine, 2021, 25, 8490-8503.	3.6	10
233	Inhibition of the cGASâ€STING pathway ameliorates the premature senescence hallmarks of Ataxiaâ€Telangiectasia brain organoids. Aging Cell, 2021, 20, e13468.	6.7	42
234	Transcriptomic Effects of Healthspan-Promoting Dietary Interventions: Current Evidence and Future Directions. Frontiers in Nutrition, 2021, 8, 712129.	3.7	7
235	Anti-aging effects of chlorpropamide depend on mitochondrial complex-II and the production of mitochondrial reactive oxygen species. Acta Pharmaceutica Sinica B, 2022, 12, 665-677.	12.0	7
236	Aberrant Neurogliovascular Unit Dynamics in Cerebral Small Vessel Disease: A Rheological Clue to Vascular Parkinsonism. Pharmaceutics, 2021, 13, 1207.	4.5	6
237	Senolytics and senomorphics: Natural and synthetic therapeutics in the treatment of aging and chronic diseases. Free Radical Biology and Medicine, 2021, 171, 169-190.	2.9	103
238	CCM2-deficient endothelial cells undergo a ROCK-dependent reprogramming into senescence-associated secretory phenotype. Angiogenesis, 2021, 24, 843-860.	7.2	12
239	The role of retrotransposable elements in ageing and age-associated diseases. Nature, 2021, 596, 43-53.	27.8	156
240	Large-scale chemical screen identifies Gallic acid as a geroprotector for human stem cells. Protein and Cell, 2022, 13, 532-539.	11.0	18
241	Development of infrastructure for a systemic multidisciplinary approach to study aging in retired sled dogs. Aging, 2021, 13, 21814-21837.	3.1	7
242	Transposon-triggered innate immune response confers cancer resistance to the blind mole rat. Nature Immunology, 2021, 22, 1219-1230.	14.5	45
243	The Interplay Among HIV, LINE-1, and the Interferon Signaling System. Frontiers in Immunology, 2021, 12, 732775.	4.8	10
244	The prolyl-isomerase PIN1 is essential for nuclear Lamin-B structure and function and protects heterochromatin under mechanical stress. Cell Reports, 2021, 36, 109694.	6.4	15
245	Targeting immune dysfunction in aging. Ageing Research Reviews, 2021, 70, 101410.	10.9	76

#	Article	IF	CITATIONS
246	Activation of HERV-K(HML-2) disrupts cortical patterning and neuronal differentiation by increasing NTRK3. Cell Stem Cell, 2021, 28, 1566-1581.e8.	11.1	27
247	Dissecting primary and secondary senescence to enable new senotherapeutic strategies. Ageing Research Reviews, 2021, 70, 101412.	10.9	27
248	Structural dissection of sequence recognition and catalytic mechanism of human LINE-1 endonuclease. Nucleic Acids Research, 2021, 49, 11350-11366.	14.5	4
249	Cellular senescence at the crossroads of inflammation and Alzheimer's disease. Trends in Neurosciences, 2021, 44, 714-727.	8.6	108
251	Senescent immune cells release grancalcin to promote skeletal aging. Cell Metabolism, 2021, 33, 1957-1973.e6.	16.2	70
252	Factors Regulating the Activity of LINE1 Retrotransposons. Genes, 2021, 12, 1562.	2.4	17
253	The Contribution of Physiological and Accelerated Aging to Cancer Progression Through Senescence-Induced Inflammation. Frontiers in Oncology, 2021, 11, 747822.	2.8	5
254	Impact of Senescent Cell Subtypes on Tissue Dysfunction and Repair: Importance and Research Questions. Mechanisms of Ageing and Development, 2021, 198, 111548.	4.6	39
255	Diverse Roles of Cellular Senescence in Skeletal Muscle Inflammation, Regeneration, and Therapeutics. Frontiers in Pharmacology, 2021, 12, 739510.	3.5	23
256	Aging of the Retina: Molecular and Metabolic Turbulences and Potential Interventions. Annual Review of Vision Science, 2021, 7, 633-664.	4.4	28
258	Interplay of cGAS with chromatin. Trends in Biochemical Sciences, 2021, 46, 822-831.	7.5	17
259	A common signature of cellular senescence; does it exist?. Ageing Research Reviews, 2021, 71, 101458.	10.9	52
260	Molecular mechanisms of cellular senescence. , 2022, , 221-230.		0
261	Machine learning reveals bilateral distribution of somatic L1 insertions in human neurons and glia. Nature Neuroscience, 2021, 24, 186-196.	14.8	22
262	Identification of differentially expressed genomic repeats in primary hepatocellular carcinoma and their potential links to biological processes and survival. Turkish Journal of Biology, 2021, 45, 599-612.	0.8	0
263	A genome-wide strategy to identify causes and consequences of retrotransposon expression finds activation by BRCA1 in ovarian cancer. NAR Cancer, 2021, 3, zcaa040.	3.1	2
264	Epigenetic dysregulation in cardiovascular aging and disease. , 2021, 1, .		14
265	Epigenetic Clock: Just a Convenient Marker or an Active Driver of Aging?. Advances in Experimental Medicine and Biology, 2019, 1178, 175-206.	1.6	26

#	Article	IF	CITATIONS
266	Interconnection Between Cellular Senescence, Regeneration and Ageing in Salamanders. Healthy Ageing and Longevity, 2020, , 43-62.	0.2	2
267	Lamin A involvement in ageing processes. Ageing Research Reviews, 2020, 62, 101073.	10.9	41
268	Regulation of cellular senescence by microRNAs. Mechanisms of Ageing and Development, 2020, 189, 111264.	4.6	17
269	The ageing epigenome and itsÂrejuvenation. Nature Reviews Molecular Cell Biology, 2020, 21, 137-150.	37.0	276
271	The role of adipose tissue senescence in obesity- and ageing-related metabolic disorders. Clinical Science, 2020, 134, 315-330.	4.3	71
283	Cellular senescence and senescenceâ€associated secretory phenotype via the cGASâ€STING signaling pathway in cancer. Cancer Science, 2020, 111, 304-311.	3.9	117
284	Brain organoids and insights on human evolution. F1000Research, 2019, 8, 760.	1.6	7
285	Cell Proliferation Assays and Cell Viability Assays. Materials and Methods, 0, 9, .	0.0	1
286	SVA insertion in X-linked Dystonia Parkinsonism alters histone H3 acetylation associated with TAF1 gene. PLoS ONE, 2020, 15, e0243655.	2.5	9
287	Senolytics and Senostatics: A Two-Pronged Approach to Target Cellular Senescence for Delaying Aging and Age-Related Diseases. Molecules and Cells, 2019, 42, 821-827.	2.6	61
288	Nonâ€canonical <scp>ATM</scp> / <scp>MRN</scp> activities temporally define the senescence secretory program. EMBO Reports, 2020, 21, e50718.	4.5	17
289	β-cell senescence in type 2 diabetes. Aging, 2019, 11, 9967-9968.	3.1	7
290	Sexual dimorphism in aging hematopoiesis: an earlier decline of hematopoietic stem and progenitor cells in male than female mice. Aging, 2020, 12, 25939-25955.	3.1	8
291	Metformin: Sentinel of the Epigenetic Landscapes That Underlie Cell Fate and Identity. Biomolecules, 2020, 10, 780.	4.0	16
292	Hepatic senescence, the good and the bad. World Journal of Gastroenterology, 2019, 25, 5069-5081.	3.3	54
293	TEffectR: an R package for studying the potential effects of transposable elements on gene expression with linear regression model. PeerJ, 2019, 7, e8192.	2.0	22
294	Strategies for targeting senescent cells in human disease. Nature Aging, 2021, 1, 870-879.	11.6	192
295	Enterovirus Infection Restricts Long Interspersed Element 1 Retrotransposition. Frontiers in Microbiology, 2021, 12, 706241.	3.5	2

#	Article	IF	CITATIONS
296	Biomarkers of geroprotection and cardiovascular health: An overview of omics studies and established clinical biomarkers in the context of diet. Critical Reviews in Food Science and Nutrition, 2023, 63, 2426-2446.	10.3	5
297	Integration of Epigenetic Mechanisms into Non-Genotoxic Carcinogenicity Hazard Assessment: Focus on DNA Methylation and Histone Modifications. International Journal of Molecular Sciences, 2021, 22, 10969.	4.1	14
298	Pathogenic tau accelerates aging-associated activation of transposable elements in the mouse central nervous system. Progress in Neurobiology, 2022, 208, 102181.	5.7	32
300	The metabolic roots of senescence: mechanisms and opportunities for intervention. Nature Metabolism, 2021, 3, 1290-1301.	11.9	211
301	Transposable elements as new players in neurodegenerative diseases. FEBS Letters, 2021, 595, 2733-2755.	2.8	24
302	Role of Altered Extracellular Signalling in Cellular Senescence. , 2019, , .		0
308	How to face the aging world – lessons from dementia research. Croatian Medical Journal, 2020, 61, 139-146.	0.7	5
310	Cytoplasmic DNA: sources, sensing, and role in aging and disease. Cell, 2021, 184, 5506-5526.	28.9	95
312	Signature changes in the expressions of protein-coding genes, IncRNAs, and repeat elements in early and late cellular senescence. Turkish Journal of Biology, 2020, 44, 356-370.	0.8	5
313	Loss of Epigenetic Information as a Cause of Mammalian Aging. SSRN Electronic Journal, 0, , .	0.4	0
314	Hepatic regeneration in aging: Cell type plasticity and redundancies. Advances in Stem Cells and Their Niches, 2020, , 127-171.	0.1	1
319	Precise Diabetic Wound Therapy: PLS Nanospheres Eliminate Senescent Cells via DPP4 Targeting and PARP1 Activation. Advanced Science, 2022, 9, e2104128.	11.2	18
322	Key Molecular Mechanisms of Aging, Biomarkers, and Potential Interventions. Molecular Biology, 2020, 54, 777-811.	1.3	13
323	Mitochondrial Nucleic Acid as a Driver of Pathogenic Type I Interferon Induction in Mendelian Disease. Frontiers in Immunology, 2021, 12, 729763.	4.8	2
324	Cellular senescence during aging and chronic liver diseases. , 2022, , 155-178.		0
325	HO-1 in Bone Biology: Potential Therapeutic Strategies for Osteoporosis. Frontiers in Cell and Developmental Biology, 2021, 9, 791585.	3.7	18
326	Long-lived fish in a big pond. Science, 2021, 374, 824-825.	12.6	3
327	Enhancement of Bone-Forming Ability on Beta-Tricalcium Phosphate by Modulating Cellular Senescence Mechanisms Using Senolytics. International Journal of Molecular Sciences, 2021, 22, 12415.	4.1	5

#	Article	IF	CITATIONS
328	Senotherapeutic Drugs: A New Avenue for Skincare?. Plastic and Reconstructive Surgery, 2021, 148, 21S-26S.	1.4	4
331	Chronic HIV Infection and Aging: Application of a Geroscience-Guided Approach. Journal of Acquired Immune Deficiency Syndromes (1999), 2022, 89, S34-S46.	2.1	8
332	Antiviral immunity triggered by infection-induced host transposable elements. Current Opinion in Virology, 2022, 52, 211-216.	5.4	16
333	Mitochondrial Nucleic Acid as a Driver of Pathogenic Type I Interferon Induction in Mendelian Disease. Frontiers in Immunology, 2021, 12, 729763.	4.8	18
334	Unveiling E2F4, TEAD1 and AP-1 as regulatory transcription factors of the replicative senescence program by multi-omics analysis. Protein and Cell, 2022, , 1.	11.0	12
335	Retrotransposons as a Source of DNA Damage in Neurodegeneration. Frontiers in Aging Neuroscience, 2021, 13, 786897.	3.4	15
336	Chromatin basis of the senescence-associated secretory phenotype. Trends in Cell Biology, 2022, 32, 513-526.	7.9	29
337	Intervention of cGAS‒STING signaling in sterile inflammatory diseases. Journal of Molecular Cell Biology, 2022, 14, .	3.3	11
338	Transposable element activation promotes neurodegeneration in a Drosophila model of Huntington's disease. IScience, 2022, 25, 103702.	4.1	14
339	TREX1 Deficiency Induces ER Stress-Mediated Neuronal Cell Death by Disrupting Ca2+ Homeostasis. Molecular Neurobiology, 2022, 59, 1398-1418.	4.0	2
340	Deficiency of TRDMT1 impairs exogenous RNA-based response and promotes retrotransposon activity during long-term culture of osteosarcoma cells. Toxicology in Vitro, 2022, 80, 105323.	2.4	6
341	Advances in cGAS-STING Signaling Pathway and Diseases. Frontiers in Cell and Developmental Biology, 2022, 10, 800393.	3.7	7
342	Pathogenesis of sarcopenia and the relationship with fat mass: descriptive review. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13, 781-794.	7.3	144
343	The role of cellular senescence and SASP in tumour microenvironment. FEBS Journal, 2023, 290, 1348-1361.	4.7	35
344	Type-I Interferon Signaling in Fanconi Anemia. Frontiers in Cellular and Infection Microbiology, 2022, 12, 820273.	3.9	7
345	Novel insights from a multiomics dissection of the Hayflick limit. ELife, 2022, 11, .	6.0	38
346	Senescence and the tumor-immune landscape: Implications for cancer immunotherapy. Seminars in Cancer Biology, 2022, 86, 827-845.	9.6	33
347	A single-cell transcriptomic landscape of the lungs of patients with COVID-19. Nature Cell Biology, 2021, 23, 1314-1328.	10.3	91

#	Article	IF	CITATIONS
348	Untangling senescent and damageâ€associated microglia in the aging and diseased brain. FEBS Journal, 2023, 290, 1326-1339.	4.7	20
349	OUP accepted manuscript. Nucleic Acids Research, 2022, , .	14.5	14
350	Genome wide CRISPR/Cas9 screen identifies the coagulation factor IX (F9) as a regulator of senescence. Cell Death and Disease, 2022, 13, 163.	6.3	8
351	LINE-1 expression in cancer correlates with p53 mutation, copy number alteration, and S phase checkpoint. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	36
352	Induction of senescence-associated secretory phenotype underlies the therapeutic efficacy of PRC2 inhibition in cancer. Cell Death and Disease, 2022, 13, 155.	6.3	14
353	Pericentromeric repetitive ncRNA regulates chromatin interaction and inflammatory gene expression. Nucleus, 2022, 13, 74-78.	2.2	1
354	Olive Oil Improves While Trans Fatty Acids Further Aggravate the Hypomethylation of LINE-1 Retrotransposon DNA in an Environmental Carcinogen Model. Nutrients, 2022, 14, 908.	4.1	5
355	Involvement of Type I Interferon Signaling in Muscle Stem Cell Proliferation During Dermatomyositis. Neurology, 2022, 98, .	1.1	13
357	Cellular senescence and acute kidney injury. Pediatric Nephrology, 2022, 37, 3009-3018.	1.7	12
358	" <i>Reframing</i> ―dopamine signaling at the intersection of glial networks in the aged Parkinsonian brain as innate <i>Nrf2/Wnt</i> driver: Therapeutical implications. Aging Cell, 2022, 21, e13575.	6.7	8
359	Advances in understanding the molecular basis of clonal hematopoiesis. Trends in Molecular Medicine, 2022, 28, 360-377.	6.7	5
360	cGASâ€STING mediates cytoplasmic mitochondrialâ€DNAâ€induced inflammatory signal transduction during accelerated senescence of pancreatic βâ€cells induced by metabolic stress. FASEB Journal, 2022, 36, e22266.	0.5	12
361	Transposable element landscapes in aging Drosophila. PLoS Genetics, 2022, 18, e1010024.	3.5	19
362	Destabilizing heterochromatin by APOE mediates senescence. Nature Aging, 2022, 2, 303-316.	11.6	36
363	The roles and mechanisms of senescence-associated secretory phenotype (SASP): can it be controlled by senolysis?. Inflammation and Regeneration, 2022, 42, 11.	3.7	62
364	Targeting aging mechanisms: pharmacological perspectives. Trends in Endocrinology and Metabolism, 2022, 33, 266-280.	7.1	50
365	The Mechanism of Bone Remodeling After Bone Aging. Clinical Interventions in Aging, 2022, Volume 17, 405-415.	2.9	18
366	Poloâ€like kinase 4 inhibitor CFIâ€400945 suppresses liver cancer through cell cycle perturbation and eliciting antitumor immunity. Hepatology, 2023, 77, 729-744.	7.3	16

# 367	ARTICLE Repeat expression is linked to patient survival and exhibits single nucleotide variation in pancreatic cancer revealing LTR70:r.879A>G. Gene, 2022, 822, 146344.	IF 2.2	CITATIONS 0
368	Early senescence and production of senescence-associated cytokines are major determinants of radioresistance in head-and-neck squamous cell carcinoma. Cell Death and Disease, 2021, 12, 1162.	6.3	23
369	Mechanisms and Regulation of Cellular Senescence. International Journal of Molecular Sciences, 2021, 22, 13173.	4.1	116
370	Cytosolic Self-DNA—A Potential Source of Chronic Inflammation in Aging. Cells, 2021, 10, 3544.	4.1	12
371	The Antiviral Drug Efavirenz in Breast Cancer Stem Cell Therapy. Cancers, 2021, 13, 6232.	3.7	0
372	Sex-specific chromatin remodelling safeguards transcription in germ cells. Nature, 2021, 600, 737-742.	27.8	24
374	Reverse Transcriptase Inhibition Disrupts Repeat Element Life Cycle in Colorectal Cancer. Cancer Discovery, 2022, 12, 1462-1481.	9.4	30
375	mRNA Vaccines: Why Is the Biology of Retroposition Ignored?. Genes, 2022, 13, 719.	2.4	16
376	Nonresolving inflammation redux. Immunity, 2022, 55, 592-605.	14.3	35
381	Repetitive DNA in disease. Science, 2022, 376, 353-354.	12.6	19
383	Stepwise-edited, human melanoma models reveal mutations' effect on tumor and microenvironment. Science, 2022, 376, eabi8175.	12.6	24
384	Immune-mediated neurodegenerative trait provoked by multimodal derepression of long-interspersed nuclear element-1. IScience, 2022, 25, 104278.	4.1	7
385	Resveratrol blocks retrotransposition of LINE-1 through PPAR α and sirtuin-6. Scientific Reports, 2022, 12, 7772.	3.3	4
386	IFN-Aging: Coupling Aging With Interferon Response. Frontiers in Aging, 2022, 3, .	2.6	9
387	The role of senescence in cellular plasticity: Lessons from regeneration and development and implications for age-related diseases. Developmental Cell, 2022, 57, 1083-1101.	7.0	19
388	Mechanisms of DNA damageâ€mediated neurotoxicity in neurodegenerative disease. EMBO Reports, 2022, 23, e54217.	4.5	43
389	Cytoplasmic DNA in cancer cells: Several pathways that potentially limit DNase2 and TREX1 activities. Biochimica Et Biophysica Acta - Molecular Cell Research, 2022, 1869, 119278.	4.1	6
390	Modulation of Oxidative Stress-Induced Senescence during Non-Alcoholic Fatty Liver Disease. Antioxidants, 2022, 11, 975.	5.1	3

#	Article	IF	CITATIONS
391	A retrotransposon storm marks clinical phenoconversion to late-onset Alzheimer's disease. GeroScience, 2022, 44, 1525-1550.	4.6	12
392	Identification of LINE retrotransposons and long non-coding RNAs expressed in the octopus brain. BMC Biology, 2022, 20, 116.	3.8	6
393	DNA double-strand break repair and nucleic acid-related immunity. Acta Biochimica Et Biophysica Sinica, 2022, 54, 828-835.	2.0	7
395	A High Throughput Cell-Based Screen Assay for LINE-1 ORF1p Expression Inhibitors Using the In-Cell Western Technique. Frontiers in Pharmacology, 2022, 13, .	3.5	1
396	Hyperbaric oxygen therapy for healthy aging: From mechanisms to therapeutics. Redox Biology, 2022, 53, 102352.	9.0	15
397	Deciphering aging at three-dimensional genomic resolution. , 2022, 1, 100034.		6
398	The hallmarks of aging in Ataxia-Telangiectasia. Ageing Research Reviews, 2022, 79, 101653.	10.9	10
400	Bridging the Cap Between Environmental Adversity and Neuropsychiatric Disorders: The Role of Transposable Elements. Frontiers in Genetics, 0, 13, .	2.3	6
401	The Role of Transposable Elements of the Human Genome in Neuronal Function and Pathology. International Journal of Molecular Sciences, 2022, 23, 5847.	4.1	11
402	Nrf2 driven macrophage responses in diverse pathophysiological contexts: Disparate pieces from a shared molecular puzzle. BioFactors, 2022, 48, 795-812.	5.4	5
403	ExplorATE: a new pipeline to explore active transposable elements from RNA-seq data. Bioinformatics, 2022, 38, 3361-3366.	4.1	0
404	Restructuring of Lamina-Associated Domains in Senescence and Cancer. Cells, 2022, 11, 1846.	4.1	12
405	Transposable Elements in Pluripotent Stem Cells and Human Disease. Frontiers in Genetics, 0, 13, .	2.3	1
406	The 6th international cell senescence association conference. Genes To Cells, 2022, 27, 517-525.	1.2	0
407	Cellular senescence and the tumour microenvironment. Molecular Oncology, 2022, 16, 3333-3351.	4.6	34
408	Epigenetic Regulation of Inflammatory Signaling and Inflammation-Induced Cancer. Frontiers in Cell and Developmental Biology, 0, 10, .	3.7	15
409	Telomere Maintenance and the cGAS-STING Pathway in Cancer. Cells, 2022, 11, 1958.	4.1	2
410	Targeting cellular senescence to combat cancer and ageing. Molecular Oncology, 2022, 16, 3319-3332.	4.6	6

CITATION REPOR	
	Т

#	Article	IF	CITATIONS
411	Lamivudine, a reverse transcriptase inhibitor, rescues cognitive deficits in a mouse model of down syndrome. Journal of Cellular and Molecular Medicine, 2022, 26, 4210-4215.	3.6	9
412	L1 Retrotransposons: A Potential Endogenous Regulator for Schizophrenia. Frontiers in Genetics, 0, 13, .	2.3	4
413	Selective pericentromeric heterochromatin dismantling caused by TP53 activation during senescence. Nucleic Acids Research, 2022, 50, 7493-7510.	14.5	5
414	Effects of end-stage osteoarthritis on markers of skeletal muscle Long INterspersed Element-1 activity. BMC Research Notes, 2022, 15, .	1.4	1
415	Senescence: An Identity Crisis Originating from Deep Within the Nucleus. Annual Review of Cell and Developmental Biology, 2022, 38, 219-239.	9.4	8
416	DNA damage and repair in age-related inflammation. Nature Reviews Immunology, 2023, 23, 75-89.	22.7	56
417	Inflammation: the incubator of the tumor microenvironment. Trends in Cancer, 2022, 8, 901-914.	7.4	57
419	Interplay of cGAS with micronuclei: Regulation and diseases. Mutation Research - Reviews in Mutation Research, 2022, 790, 108440.	5.5	7
421	Melatonin: Regulation of Viral Phase Separation and Epitranscriptomics in Post-Acute Sequelae of COVID-19. International Journal of Molecular Sciences, 2022, 23, 8122.	4.1	7
422	Mechanisms and consequences of endothelial cell senescence. Nature Reviews Cardiology, 2023, 20, 38-51.	13.7	71
423	CFI-402257, a TTK inhibitor, effectively suppresses hepatocellular carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	17
424	<i>LINE-1</i> RNA causes heterochromatin erosion and is a target for amelioration of senescent phenotypes in progeroid syndromes. Science Translational Medicine, 2022, 14, .	12.4	31
425	Cellular senescence and senolytics: the path to the clinic. Nature Medicine, 2022, 28, 1556-1568.	30.7	257
426	Epigenetics, DNA damage, and aging. Journal of Clinical Investigation, 2022, 132, .	8.2	32
427	Cellular senescence: a key therapeutic target in aging and diseases. Journal of Clinical Investigation, 2022, 132, .	8.2	115
428	Targeting senescent cells for a healthier longevity: the roadmap for an era of global aging. , 2022, 1, 103-119.		41
430	Artificially stimulating retrotransposon activity increases mortality and accelerates a subset of aging phenotypes in Drosophila. ELife, 0, 11, .	6.0	13
431	Inorganic arsenic exposure-induced premature senescence and senescence-associated secretory phenotype (SASP) in human hepatic stellate cells. Toxicology and Applied Pharmacology, 2022, 454, 116231.	2.8	5

ARTICLE IF CITATIONS Antiaging: Is it possible?., 2023, , 155-160. 432 0 The role of AÎ² in Alzheimer's Disease as an Evolutionary Outcome of Optimized Innate Immune Defense. 2.7 journal of prevention of Alzheimer's disease, The, O, , . 434 DNA damage, epigenetics, and aging., 2022, , 139-156. 0 DNA methylation changes and inflammaging in aging-associated diseases. Epigenomics, 2022, 14, 965-986. The landscape of aging. Science China Life Sciences, 2022, 65, 2354-2454. 436 4.9 110 Upregulation of PD-L1 in Senescence and Aging. Molecular and Cellular Biology, 2022, 42, . 2.3 24 Condensin I and condensin II proteins form a LINE-1 dependent super condensin complex and cooperate 439 14.5 3 to repress LINE-1. Nucleic Acids Research, 2022, 50, 10680-10694. Acute frataxin knockdown in induced pluripotent stem cell-derived cardiomyocytes activates a type I 2.4 interferon response. DMM Disease Models and Mechanisms, 2023, 16, . Role Of Retroelements In The Development Of COVID-19 Neurological Consequences. Russian Open 443 0.3 1 Medical Journal, 2022, 11, . The combination of DNA methylome and transcriptome revealed the intergenerational inheritance on 444 the influence of advanced maternal age. Clinical and Translational Medicine, 2022, 12, . LINE-1 activation in the cerebellum drives ataxia. Neuron, 2022, 110, 3278-3287.e8. 445 8.1 15 Interrelation of MicroRNAs and Transposons in Aging and Carcinogenesis. Advances in Gerontology, 446 0.4 2022, 12, 264-277. Senescence of Tumor Cells in Anticancer Therapyâ€"Beneficial and Detrimental Effects. International 447 4.1 8 Journal of Molecular Sciences, 2022, 23, 11082. COVID-19 and cellular senescence. Nature Reviews Immunology, 2023, 23, 251-263. 448 22.7 54 449 The Zinc-Finger protein ZCCHC3 inhibits LINE-1 retrotransposition. Frontiers in Microbiology, 0, 13, . 3.5 1 Single-cell epigenome analysis reveals age-associated decay of heterochromatin domains in excitatory neurons in the mouse brain. Cell Research, 2022, 32, 1008-1021. Senescence-associated secretory phenotype and its impact on oral immune homeostasis. Frontiers in 451 4.8 10 Immunology, 0, 13, . Emerging role of STING signalling in CNS injury: inflammation, autophagy, necroptosis, ferroptosis and pyroptosis. Journal of Neuroinflammation, 2022, 19, .

#	Article	IF	CITATIONS
453	Research on Werner Syndrome: Trends from Past to Present and Future Prospects. Genes, 2022, 13, 1802.	2.4	8
454	KCNQ1OT1 promotes genome-wide transposon repression by guiding RNA–DNA triplexes and HP1 binding. Nature Cell Biology, 2022, 24, 1617-1629.	10.3	20
455	Long-Term IGF1 Stimulation Leads to Cellular Senescence via Functional Interaction with the Thioredoxin-Interacting Protein, TXNIP. Cells, 2022, 11, 3260.	4.1	6
457	Lamin A to Z in normal aging. Aging, 0, , .	3.1	1
458	Endogenous retroelements as alarms for disruptions to cellular homeostasis. Trends in Cancer, 2023, 9, 55-68.	7.4	8
459	A rare human centenarian variant of <scp>SIRT6</scp> enhances genome stability and interaction with Lamin A. EMBO Journal, 2022, 41, .	7.8	16
460	Age-related mechanisms in the context of rheumatic disease. Nature Reviews Rheumatology, 2022, 18, 694-710.	8.0	10
461	Cytosolic DNA sensor IFI16 proteins: Potential molecular integrators of interactions among the aging hallmarks. Ageing Research Reviews, 2022, 82, 101765.	10.9	4
462	Senescent AECâ; and the implication for idiopathic pulmonary fibrosis treatment. Frontiers in Pharmacology, 0, 13, .	3.5	4
463	Deficiency for SAMHD1 activates MDA5 in a cGAS/STING-dependent manner. Journal of Experimental Medicine, 2023, 220, .	8.5	11
464	PAHSAs reduce cellular senescence and protect pancreatic beta cells from metabolic stress through regulation of Mdm2/p53. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	10
466	Targeting Multiple Homeostasis-Maintaining Systems by Ionophore Nigericin Is a Novel Approach for Senolysis. International Journal of Molecular Sciences, 2022, 23, 14251.	4.1	3
468	Retrotransposon activation during Drosophila metamorphosis conditions adult antiviral responses. Nature Genetics, 2022, 54, 1933-1945.	21.4	9
469	Human LINE-1 retrotransposons: impacts on the genome and regulation by host factors. Genes and Genetic Systems, 2023, 98, 121-154.	0.7	4
470	Pathological implication of CaMKII in NF-κB pathway and SASP during cardiomyocytes senescence. Mechanisms of Ageing and Development, 2023, 209, 111758.	4.6	2
471	SIRT6 in Aging, Metabolism, Inflammation and Cardiovascular Diseases. , 2022, 13, 1787.		24
472	Dynamic and scalable assessment of the senescence-associated secretory phenotype (SASP). Methods in Cell Biology, 2024, , 181-195.	1.1	0
473	STING Suppresses Mitochondrial VDAC2 to Govern RCC Growth Independent of Innate Immunity. Advanced Science, 2023, 10, .	11.2	8

#	Article	IF	CITATIONS
474	Radiogenomics of <i>C9orf72</i> Expansion Carriers Reveals Global Transposable Element Derepression and Enables Prediction of Thalamic Atrophy and Clinical Impairment. Journal of Neuroscience, 2023, 43, 333-345.	3.6	3
475	Emerging Roles of Type-I Interferons in Neuroinflammation, Neurological Diseases, and Long-Haul COVID. International Journal of Molecular Sciences, 2022, 23, 14394.	4.1	9
476	Transposon control as a checkpoint for tissue regeneration. Development (Cambridge), 2022, 149, .	2.5	3
477	Replicative Senescence-Associated LINE1 Methylation and LINE1-Alu Expression Levels in Human Endothelial Cells. Cells, 2022, 11, 3799.	4.1	3
478	TDP-43 safeguards the embryo genome from L1 retrotransposition. Science Advances, 2022, 8, .	10.3	9
479	Inflammatory response to retrotransposons drives tumor drug resistance that can be prevented by reverse transcriptase inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	5
480	Generalized nuclear localization of retroelement transcripts. Mobile DNA, 2022, 13, .	3.6	1
481	Quantification of LINE-1 RNA Expression from Bulk RNA-seq Using L1EM. Methods in Molecular Biology, 2023, , 115-126.	0.9	0
482	Beyond the Lab: What We Can Learn about Cancer from Wild and Domestic Animals. Cancers, 2022, 14, 6177.	3.7	1
483	NIH SenNet Consortium to map senescent cells throughout the human lifespan to understand physiological health. Nature Aging, 2022, 2, 1090-1100.	11.6	27
484	Transposons Acting as Competitive Endogenous RNAs: In-Silico Evidence from Datasets Characterised by L1 Overexpression. Biomedicines, 2022, 10, 3279.	3.2	1
485	Senescence atlas reveals an aged-like inflamed niche that blunts muscle regeneration. Nature, 2023, 613, 169-178.	27.8	90
486	Repeat Element Activation-Driven Inflammation: Role of NFκB and Implications in Normal Development and Cancer?. Biomedicines, 2022, 10, 3101.	3.2	3
487	Affinity-Based Interactome Analysis of Endogenous LINE-1 Macromolecules. Methods in Molecular Biology, 2023, , 215-256.	0.9	2
488	The cGAS–STING pathway and cancer. Nature Cancer, 2022, 3, 1452-1463.	13.2	76
489	An update on postâ€ŧranscriptional regulation of retrotransposons. FEBS Letters, 2023, 597, 380-406.	2.8	7
490	Nuclear envelope, chromatin organizers, histones, and DNA: The many achilles heels exploited across cancers. Frontiers in Cell and Developmental Biology, 0, 10, .	3.7	7
491	Clearance of p16Ink4a-positive cells in a mouse transgenic model does not change β-cell mass and has limited effects on their proliferative capacity. Aging, 2022, 15, 441-458.	3.1	4

		CITATION REPORT		
#	Article		IF	CITATIONS
492	Introduction: Progression of the Science of Ageing. Sub-Cellular Biochemistry, 2023, ,	1-6.	2.4	0
493	The Potent and Paradoxical Biology of Cellular Senescence in Cancer. Annual Review of Biology, 2023, 7, 207-228.	FCancer	4.5	1
494	The interferon stimulated gene-encoded protein HELZ2 inhibits human LINE-1 retrotra LINE-1 RNA-mediated type I interferon induction. Nature Communications, 2023, 14, .	nsposition and	12.8	10
495	Loss of epigenetic information as a cause of mammalian aging. Cell, 2023, 186, 305-32	26.e27.	28.9	184
496	The Immunological Conundrum of Endogenous Retroelements. Annual Review of Immi 99-125.	unology, 2023, 41,	21.8	11
497	Resurrection of endogenous retroviruses during aging reinforces senescence. Cell, 202 287-304.e26.	13, 186,	28.9	82
499	Anti-retroviral treatment with zidovudine alters pyrimidine metabolism, reduces transla extends healthy longevity via ATF-4. Cell Reports, 2023, 42, 111928.	ation, and	6.4	7
500	Pathogenic tau–induced transposable element–derived dsRNA drives neuroinflam Advances, 2023, 9, .	mation. Science	10.3	14
501	Hallmarks of aging: An expanding universe. Cell, 2023, 186, 243-278.		28.9	894
502	RNaseH2A downregulation drives inflammatory gene expression via genomic DNA frag senescent and cancer cells. Communications Biology, 2022, 5, .	mentation in	4.4	7
505	ls aging a "Retroâ€spective event?. Cell, 2023, 186, 233-235.		28.9	2
506	Senescence-associated secretory phenotypes in rat-derived dedifferentiated fat cells w senescence. Dental Materials Journal, 2023, , .	ith replicative	1.8	0
507	Impact of retrotransposon protein L1 ORF1p expression on oncogenic pathways in he carcinoma: the role of cytoplasmic PIN1 upregulation. British Journal of Cancer, 2023,	oatocellular 128, 1236-1248.	6.4	1
509	Transposon hypothesis of carcinogenesis. Genes and Cells, 2021, 16, 8-15.		0.2	0
510	The role of tRNA-derived small RNAs in aging. BMB Reports, 2023, 56, 49-55.		2.4	2
511	Senescent cell: the â€~factory of viral amplification'. Trends in Microbiology, 2023,	31, 421-422.	7.7	1
512	Accelerated Vascular Aging in Chronic Kidney Disease: The Potential for Novel Therapie Research, 2023, 132, 950-969.	s. Circulation	4.5	7
513	The pollutome-connectome axis: a putative mechanism to explain pollution effects on neurodegeneration. Ageing Research Reviews, 2023, 86, 101867.		10.9	4

#	Article	IF	CITATIONS
514	Long-term human spaceflight and inflammaging: Does it promote aging?. Ageing Research Reviews, 2023, 87, 101909.	10.9	7
516	Potential health risks of mRNA-based vaccine therapy: A hypothesis. Medical Hypotheses, 2023, 171, 111015.	1.5	4
517	LINE-1 retrotransposon expression in cancerous, epithelial and neuronal cells revealed by 5′ single-cell RNA-Seq. Nucleic Acids Research, 2023, 51, 2033-2045.	14.5	5
519	DNA methylation changes from primary cultures through senescence-bypass in Syrian hamster fetal cells initially exposed to benzo[a]pyrene. Toxicology, 2023, 487, 153451.	4.2	3
520	Inflammation and DNA damage: cause, effect or both. Nature Reviews Rheumatology, 2023, 19, 200-211.	8.0	29
521	Transposable elements and their role in aging. Ageing Research Reviews, 2023, 86, 101881.	10.9	7
523	Hydrogen Sulfide Inhibited Sympathetic Activation in D-Galactose-Induced Aging Rats by Upregulating Klotho and Inhibiting Inflammation in the Paraventricular Nucleus. Biomedicines, 2023, 11, 566.	3.2	2
524	A Senomorphicâ€Conjugated Scaffold for Application of Senescent Cells in Regenerative Medicine. Advanced Therapeutics, 0, , 2200276.	3.2	0
525	Orthologs of Human-Disease-Associated Genes in Plants Are Involved in Regulating Leaf Senescence. Life, 2023, 13, 559.	2.4	1
526	Design, Synthesis, and Biological Evaluation of Bipyridazine Derivatives as Stimulator of Interferon Genes (STING) Receptor Agonists. Journal of Medicinal Chemistry, 2023, 66, 3327-3347.	6.4	7
527	Endogenous retroviruses and TDP-43 proteinopathy form a sustaining feedback driving intercellular spread of Drosophila neurodegeneration. Nature Communications, 2023, 14, .	12.8	9
528	LINE1-Mediated Reverse Transcription and Genomic Integration of SARS-CoV-2 mRNA Detected in Virus-Infected but Not in Viral mRNA-Transfected Cells. Viruses, 2023, 15, 629.	3.3	6
530	Localization of senescent cells under cavity preparations in rats and restoration of reparative dentin formation by senolytics. Dental Materials Journal, 2023, , .	1.8	0
531	Response to: Elevated L1 expression in ataxia telangiectasia likely explained by an RNA-seq batch effect. Neuron, 2023, 111, 612-613.	8.1	0
532	Bat crazy iPSCs. Cell, 2023, 186, 901-903.	28.9	0
533	Awakening of ancient retrovirus: a new sign of aging in humans?. Science China Life Sciences, 0, , .	4.9	0
534	Pathogenic Microglia Orchestrate Neurotoxic Properties of Eomes-Expressing Helper T Cells. Cells, 2023, 12, 868.	4.1	3
535	Repetitive elements in aging and neurodegeneration. Trends in Genetics, 2023, 39, 381-400.	6.7	9

#	Article	IF	CITATIONS
536	Emerging Therapeutic Approaches to Target the Dark Side of Senescent Cells: New Hopes to Treat Aging as a Disease and to Delay Age-Related Pathologies. Cells, 2023, 12, 915.	4.1	6
537	Single-cell transcriptomics reveals the interaction between peripheral CD4+ CTLs and mesencephalic endothelial cells mediated by IFNG in Parkinson's disease. Computers in Biology and Medicine, 2023, 158, 106801.	7.0	3
538	Aging microenvironment and antitumor immunity for geriatric oncology: the landscape and future implications. Journal of Hematology and Oncology, 2023, 16, .	17.0	5
539	Progression of irradiated mesenchymal stromal cells from early to late senescence: Changes in SASP composition and antiâ€ŧumour properties. Cell Proliferation, 2023, 56, .	5.3	8
540	The reverse transcriptase inhibitor <scp>3TC</scp> protects against ageâ€related cognitive dysfunction. Aging Cell, 2023, 22, .	6.7	8
541	Metabolic landscape in cardiac aging: insights into molecular biology and therapeutic implications. Signal Transduction and Targeted Therapy, 2023, 8, .	17.1	12
542	Senotherapeutics: An emerging approach to the treatment of viral infectious diseases in the elderly. Frontiers in Cellular and Infection Microbiology, 0, 13, .	3.9	2
544	Spurious transcription may be a hallmark of aging. Nature Aging, 2023, 3, 374-375.	11.6	0
545	The role of transposable elements in aging and cancer. Biogerontology, 2023, 24, 479-491.	3.9	2
546	Epstein-Barr Virus Envelope Glycoprotein gp110 Inhibits IKKi-Mediated Activation of NF-κB and Promotes the Degradation of β-Catenin. Microbiology Spectrum, 2023, 11, .	3.0	2
547	Phase Separation in cGASâ€5TING Signaling: Cytosolic DNA Sensing and Regulatory Functions. ChemBioChem, 2023, 24, .	2.6	2
548	New insights into the properties, functions, and aging of skeletal stem cells. Osteoporosis International, 0, , .	3.1	0
549	Biomarkers of aging. Science China Life Sciences, 2023, 66, 893-1066.	4.9	60
550	Computational screen to identify potential targets for immunotherapeutic identification and removal of senescence cells. Aging Cell, 0, , .	6.7	1
551	Expression of retrotransposons contributes to aging in <i>Drosophila</i> . Genetics, 2023, 224, .	2.9	3
552	Human endogenous retrovirus onco-exaptation counters cancer cell senescence through calbindin. Journal of Clinical Investigation, 2023, 133, .	8.2	5
553	Chronic Kidney Disease and the Exposome of Ageing. Sub-Cellular Biochemistry, 2023, , 79-94.	2.4	1
554	Critically short telomeres derepress retrotransposons to promote genome instability in embryonic stem cells. Cell Discovery, 2023, 9, .	6.7	6

#	ARTICLE	IF	CITATIONS
555	Kamuvudine-9 Protects Retinal Structure and Function in a Novel Model of Experimental Rhegmatogenous Retinal Detachment. , 2023, 64, 3.		2
556	Inhibition of C5AR1 impairs osteoclast mobilization and prevents bone loss. Molecular Therapy, 2023, 31, 2507-2523.	8.2	2
557	Adult progenitor rejuvenation with embryonic factors. Cell Proliferation, 2023, 56, .	5.3	1
559	RANKL+ senescent cells under mechanical stress: a therapeutic target for orthodontic root resorption using senolytics. International Journal of Oral Science, 2023, 15, .	8.6	2
560	"Bone-SASP―in Skeletal Aging. Calcified Tissue International, 2023, 113, 68-82.	3.1	3
561	Nuclear lamina erosion-induced resurrection of endogenous retroviruses underlies neuronal aging. Cell Reports, 2023, 42, 112593.	6.4	8
562	Alzheimer's disease and neuroinflammation: will new drugs in clinical trials pave the way to a multi-target therapy?. Frontiers in Pharmacology, 0, 14, .	3.5	4
563	A Treg-specific long noncoding RNA maintains immune-metabolic homeostasis in aging liver. Nature Aging, 2023, 3, 813-828.	11.6	8
565	Vitrification with Dimethyl Sulfoxide Induces Transcriptomic Alteration of Gene and Transposable Element Expression in Immature Human Oocytes. Genes, 2023, 14, 1232.	2.4	0
566	Retrotransposon LINE-1 bodies in the cytoplasm of piRNA-deficient mouse spermatocytes: Ribonucleoproteins overcoming the integrated stress response. PLoS Genetics, 2023, 19, e1010797.	3.5	2
568	Chronic inflammation and the hallmarks of aging. Molecular Metabolism, 2023, 74, 101755.	6.5	26
569	Induction of remission in diabetes by lowering blood glucose. Frontiers in Endocrinology, 0, 14, .	3.5	1
571	A pilot study of LINE-1 copy number and telomere length with aging in human sperm. Journal of Assisted Reproduction and Genetics, 2023, 40, 1845-1854.	2.5	2
572	Exploring the Communication of the SASP: Dynamic, Interactive, and Adaptive Effects on the Microenvironment. International Journal of Molecular Sciences, 2023, 24, 10788.	4.1	4
573	Analysis of Somatic Mutations in Senescent Cells Using Single-Cell Whole-Genome Sequencing. , 2023, 1, 20230005.		1
574	Single-Cell Transcriptomics Reveals Global Markers of Transcriptional Diversity across Different Forms of Cellular Senescence. , 2023, 1, 20230008.		0
575	Cellular senescence and neurodegeneration. Human Genetics, 2023, 142, 1247-1262.	3.8	4
576	Role of cGAS–Sting Signaling in Alzheimer's Disease. International Journal of Molecular Sciences, 2023, 24, 8151.	4.1	3

#	Article	IF	CITATIONS
577	Expression of L1 retrotransposons in granulocytes from patients with active systemic lupus erythematosus. Mobile DNA, 2023, 14, .	3.6	3
578	H4K16ac activates the transcription of transposable elements and contributes to their cis-regulatory function. Nature Structural and Molecular Biology, 2023, 30, 935-947.	8.2	10
579	The central role of DNA damage in immunosenescence. Frontiers in Aging, 0, 4, .	2.6	1
580	Interplay between RNA interference and transposable elements in mammals. Frontiers in Immunology, 0, 14, .	4.8	3
581	Counteracting Immunosenescence—Which Therapeutic Strategies Are Promising?. Biomolecules, 2023, 13, 1085.	4.0	3
582	<scp>NAD</scp> metabolism: Role in senescence regulation and aging. Aging Cell, 2024, 23, .	6.7	4
583	STING signaling in inflammaging: a new target against musculoskeletal diseases. Frontiers in Immunology, 0, 14, .	4.8	1
584	Age-related gene expression signatures from limb skeletal muscles and the diaphragm in mice and rats reveal common and species-specific changes. Skeletal Muscle, 2023, 13, .	4.2	5
585	Ageing-associated phenotypes in mice. Mechanisms of Ageing and Development, 2023, 214, 111852.	4.6	0
586	An interchangeable prion-like domain is required for Ty1 retrotransposition. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	2
587	Loss of epigenetic suppression of retrotransposons with oncogenic potential in aging mammary luminal epithelial cells. Genome Research, 2023, 33, 1229-1241.	5.5	2
588	Transposable elements in normal and malignant hematopoiesis. DMM Disease Models and Mechanisms, 2023, 16, .	2.4	1
590	Protein Exaptation by Endogenous Retroviral Elements Shapes Tumor Cell Senescence and Downstream Immune Signaling. Cancer Research, 2023, 83, 2640-2642.	0.9	0
591	Fanconi anemia DNA crosslink repair factors protect against LINE-1 retrotransposition during mouse development. Nature Structural and Molecular Biology, 2023, 30, 1434-1445.	8.2	2
592	Where to Draw the LINE—Are Retrotransposable Elements Here to Stay?. Cancers, 2023, 15, 4119.	3.7	0
594	A prion-like domain in Gag capsid protein drives retrotransposon particle assembly and mobility. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	0
595	LINE-1: an emerging initiator of cGAS-STING signalling and inflammation that is dysregulated in disease Biochemistry and Cell Biology, 0, , .	2.0	1
596	Downregulation of transposable elements extends lifespan in Caenorhabditis elegans. Nature Communications, 2023, 14, .	12.8	4

		CITATION REPORT		
#	Article		IF	Citations
597	The Regulation and Immune Signature of Retrotransposons in Cancer. Cancers, 2023,	15, 4340.	3.7	2
598	Pancreatic \hat{l}^2 -cell senescence in diabetes: mechanisms, markers and therapies. Frontier Endocrinology, 0, 14, .	's in	3.5	1
599	Hyperglycaemia aggravates periodontal inflammâ€aging by promoting <scp>SETDB1< <scp>LINE</scp>â€1 deâ€repression in macrophages. Journal of Clinical Periodontolo</scp>	:/scp>â€mediated gy, 0, , .	4.9	0
600	Spreading Senescent Cells' Burden and Emerging Therapeutic Targets for Frailty. C	Cells, 2023, 12, 2287.	4.1	1
601	cGAS–STING drives ageing-related inflammation and neurodegeneration. Nature, 20	23, 620, 374-380.	27.8	77
602	Apoptotic stress causes mtDNA release during senescence and drives the SASP. Natur 627-636.	e, 2023, 622,	27.8	30
603	A possible role for proinflammatory activation via cGAS-STING pathway in atherosclerc accumulation of DNA double-strand breaks. Scientific Reports, 2023, 13, .	osis induced by	3.3	1
604	Transcriptomes of aging brain, heart, muscle, and spleen from female and male Africar killifish. Scientific Data, 2023, 10, .	i turquoise	5.3	1
605	Alzheimer's Disease: Novel Targets and Investigational Drugs for Disease Modifica 1387-1408.	tion. Drugs, 2023, 83,	10.9	8
606	Ultrasensitive Detection of Circulating LINE-1 ORF1p as a Specific Multicancer Biomar Discovery, 2023, 13, 2532-2547.	ker. Cancer	9.4	10
608	Past and Future Directions for Research on Cellular Senescence. Cold Spring Harbor Pe Medicine, 0, , a041205.	erspectives in	6.2	0
609	capTEs enables locus-specific dissection of transcriptional outputs from reference and transposable elements. Communications Biology, 2023, 6, .	nonreference	4.4	0
610	Reversing and modulating cellular senescence in beta cells, a new field of opportunitie diabetes. Frontiers in Endocrinology, 0, 14, .	s to treat	3.5	1
611	Neuronal DNA double-strand breaks lead to genome structural variations and 3D genc in neurodegeneration. Cell, 2023, 186, 4404-4421.e20.	me disruption	28.9	21
612	Perturbation of 3D nuclear architecture, epigenomic aging and dysregulation, and can synaptopathy reconfigures conceptualization of cannabinoid pathophysiology: part 2á immunome, synaptome. Frontiers in Psychiatry, 0, 14, .	nabinoid 쀔Metabolome,	2.6	0
613	Senescence, brain inflammation, and oligomeric tau drive cognitive decline in Alzheim Evidence from clinical and preclinical studies. Alzheimer's and Dementia, 2024, 20, 70	er's disease: 9-727.	0.8	2
615	New Dawn for Atherosclerosis: Vascular Endothelial Cell Senescence and Death. Intern Journal of Molecular Sciences, 2023, 24, 15160.	ational	4.1	5
616	Novel insight into cGAS-STING pathway in ischemic stroke: from pre- to post-disease. F Immunology, 0, 14, .	rontiers in	4.8	2

#	Article	IF	CITATIONS
618	The role of transposable elements in human evolution and methods for their functional analysis: current status and future perspectives. Genes and Genetic Systems, 2023, 98, 289-304.	0.7	1
619	TOWARDS PREVENTION OF ANEUPLOIDY-ASSOCIATED CELLULAR SENESCENCE AND AGING: more questions than answers?. Mutation Research - Reviews in Mutation Research, 2023, , 108474.	5.5	Ο
622	Cancer Relevance of Circulating Antibodies Against LINE-1 Antigens in Humans. Cancer Research Communications, 2023, 3, 2256-2267.	1.7	0
623	The ticking of aging clocks. Trends in Endocrinology and Metabolism, 2023, , .	7.1	Ο
624	Quadrato Motor Training (QMT) is associated with DNA methylation changes at DNA repeats: A pilot study. PLoS ONE, 2023, 18, e0293199.	2.5	1
625	Suppressors of cGASâ€STING are downregulated during finâ€limb regeneration and aging in aquatic vertebrates. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 0, , .	1.3	0
626	Cellular senescence in skeletal disease: mechanisms and treatment. Cellular and Molecular Biology Letters, 2023, 28, .	7.0	3
627	Mechanism and therapeutic potential of targeting cGAS-STING signaling in neurological disorders. Molecular Neurodegeneration, 2023, 18, .	10.8	1
628	DNA methylation controls hematopoietic stem cell aging. Nature Aging, 2023, 3, 1320-1322.	11.6	0
629	Genome stability from the perspective of telomere length. Trends in Genetics, 2024, 40, 175-186.	6.7	2
631	LINE-1 retrotransposons drive human neuronal transcriptome complexity and functional diversification. Science Advances, 2023, 9, .	10.3	2
632	An intronic LINE-1 regulates IFNAR1 expression in human immune cells. Mobile DNA, 2023, 14, .	3.6	2
633	Repurposing nucleoside reverse transcriptase inhibitors (NRTIs) to slow aging. Ageing Research Reviews, 2023, 92, 102132.	10.9	1
634	Advances in transposable elements: from mechanisms to applications in mammalian genomics. Frontiers in Genetics, 0, 14, .	2.3	0
635	Applications of advanced technologies for detecting genomic structural variation. Mutation Research - Reviews in Mutation Research, 2023, 792, 108475.	5.5	0
636	Does the interplay between human endogenous retrovirus K and extracellular vesicles contribute to aging?. , 0, 4, 548-56.		0
638	Stress, epigenetics, and aging: Unraveling the intricate crosstalk. Molecular Cell, 2024, 84, 34-54.	9.7	3
640	Branchedâ€Chain Amino Acid Accumulation Fuels the Senescenceâ€Associated Secretory Phenotype. Advanced Science, 2024, 11, .	11.2	0

#	Article	IF	CITATIONS
641	Hallmarks of ageing in human skeletal muscle and implications for understanding the pathophysiology of sarcopenia in women and men. Clinical Science, 2023, 137, 1721-1751.	4.3	3
643	Aging and the emerging role of cellular senescence in osteoarthritis. Osteoarthritis and Cartilage, 2023, , .	1.3	0
645	Nuclear cGAS restricts L1 retrotransposition by promoting TRIM41-mediated ORF2p ubiquitination and degradation. Nature Communications, 2023, 14, .	12.8	2
646	Potential cGAS-STING pathway functions in DNA damage responses, DNA replication and DNA repair. DNA Repair, 2024, 133, 103608.	2.8	1
647	Olovnikov, Telomeres, and Telomerase. Is It Possible to Prolong a Healthy Life?. Biochemistry (Moscow), 2023, 88, 1704-1718.	1.5	0
648	The Information Theory of Aging. Nature Aging, 2023, 3, 1486-1499.	11.6	5
649	Generation of somatic de novo structural variation as a hallmark of cellular senescence in human lung fibroblasts. Frontiers in Cell and Developmental Biology, 0, 11, .	3.7	0
650	LINE-1 retrotransposition and its deregulation in cancers: implications for therapeutic opportunities. Genes and Development, 2023, 37, 948-967.	5.9	2
653	Structures, functions, and adaptations of the human LINE-1 ORF2 protein. Nature, 0, , .	27.8	6
654	Changes in Life Span as an Integral Response to the Immune Status of the Organism and the Activity of Mobile Elements. Russian Journal of Genetics, 2023, 59, 1119-1125.	0.6	0
655	Nonâ€canonical nitric oxide signalling and DNA methylation: Inflammation induced epigenetic alterations and potential drug targets. British Journal of Pharmacology, 0, , .	5.4	0
656	ATM-deficiency-induced microglial activation promotes neurodegeneration in ataxia-telangiectasia. Cell Reports, 2024, 43, 113622.	6.4	2
657	Towards targeting transposable elements for cancer therapy. Nature Reviews Cancer, 2024, 24, 123-140.	28.4	0
658	Eternal Youth: A Comprehensive Exploration of Gene, Cellular, and Pharmacological Anti-Aging Strategies. International Journal of Molecular Sciences, 2024, 25, 643.	4.1	0
659	Aging differentially alters the transcriptome and landscape of chromatin accessibility in the male and female mouse hippocampus. Frontiers in Molecular Neuroscience, 0, 17, .	2.9	0
660	Retrotransposon-derived transcripts and their functions in immunity and disease. Genes and Genetic Systems, 2023, 98, 305-319.	0.7	0
661	Emerging epigenetic insights into aging mechanisms and interventions. Trends in Pharmacological Sciences, 2024, 45, 157-172.	8.7	1
662	The hallmarks of aging as a conceptual framework for health and longevity research. Frontiers in Aging, 0, 5, .	2.6	Ο

#	Article	IF	CITATIONS
665	Low-level laser therapy alleviates periodontal age-related inflammation in diabetic mice via the GLUT1/mTOR pathway. Lasers in Medical Science, 2024, 39, .	2.1	0
668	Large Deletions, Cleavage of the Telomeric Repeat Sequence, and Reverse Transcriptase-Mediated DNA Damage Response Associated with Long Interspersed Element-1 ORF2p Enzymatic Activities. Genes, 2024, 15, 143.	2.4	0
669	Transposable Elements: Emerging Therapeutic Targets in Neurodegenerative Diseases. Neurotoxicity Research, 2024, 42, .	2.7	0
670	Snapshots of genetic copy-and-paste machinery in action. Nature, 2024, 626, 40-42.	27.8	0
672	DOLAMA 200: Effectiveness and Safety of a Dual Therapy with Dolutegravir Plus Lamivudine in Treatment-Experienced HIV-1 Infected Real World Participants in Spain. Viruses, 2024, 16, 259.	3.3	0
673	Endothelial Senescence: From Macro- to Micro-Vasculature and Its Implications on Cardiovascular Health. International Journal of Molecular Sciences, 2024, 25, 1978.	4.1	0
674	Pharmacological inhibition of neddylation impairs long interspersed element 1 retrotransposition. Cell Reports, 2024, 43, 113749.	6.4	0
675	<scp>DNA</scp> Damage and Cellular Senescence in Osteoarthritis: An Unexpected Role for Interferon Regulatory Factor 1 in Chondrocyte <scp>DNA</scp> Repair. Arthritis and Rheumatology, 0, , .	5.6	0
677	Long interspersed nuclear elements safeguard neural progenitors from precocious differentiation. Cell Reports, 2024, 43, 113774.	6.4	0
678	Inhibition of Aurora Kinase Induces Endogenous Retroelements to Induce a Type I/III IFN Response via RIG-I. Cancer Research Communications, 2024, 4, 540-555.	1.7	0
680	Type I IFN in Glomerular Disease: Scarring beyond the STING. International Journal of Molecular Sciences, 2024, 25, 2497.	4.1	0
681	Multimodal Omics Approaches to Aging and Age-Related Diseases. Phenomics, 2024, 4, 56-71.	2.9	0
682	Regulation of cellular senescence by innate immunity. Biophysics Reports, 2023, 9, 338.	0.8	0
683	Navigating the brain and aging: exploring the impact of transposable elements from health to disease. Frontiers in Cell and Developmental Biology, 0, 12, .	3.7	0
686	Network of extracellular vesicles surrounding senescent cells. Archives of Biochemistry and Biophysics, 2024, 754, 109953.	3.0	0
687	Neuroimmune modulators as novel pharmacotherapies for substance use disorders. Brain, Behavior, & Immunity - Health, 2024, 36, 100744.	2.5	0
688	Epigenetic dynamics of aging and cancer development: current concepts from studies mapping aging and cancer epigenomes. Current Opinion in Oncology, 2024, 36, 82-92.	2.4	0
689	T-cell immunity against senescence: potential role and perspectives. Frontiers in Immunology, 0, 15, .	4.8	0

#	Article	IF	CITATIONS
690	Age-related disease: Diabetes. , 2024, , 175-193.		0
692	Cell senescence in liver diseases: pathological mechanism and theranostic opportunity. Nature Reviews Gastroenterology and Hepatology, 0, , .	17.8	0
696	Upregulated expression of lamin B receptor increases cell proliferation and suppresses genomic instability: implications for cellular immortalization. FEBS Journal, 0, , .	4.7	0
697	Insights into LINE-1 reverse transcription guide therapy development. Trends in Cancer, 2024, 10, 286-288.	7.4	0
698	Senescence: A DNA damage response and its role in aging and Neurodegenerative Diseases. Frontiers in Aging, 0, 4, .	2.6	0
701	Disassembly of the TRIM56-ATR complex promotes cytoDNA/cGAS/STING axis–dependent intervertebral disc inflammatory degeneration. Journal of Clinical Investigation, 2024, 134, .	8.2	0