CITATION REPORT List of articles citing

Acidogenic phosphorus recovery from the wastewater sludge of the membrane bioreactor systems with different iron-dosing modes

DOI: 10.1016/j.biortech.2019.02.060 Bioresource Technology, 2019, 280, 360-370.

Source: https://exaly.com/paper-pdf/73675688/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
28	Influence of aluminium accumulation on biological nitrification and phosphorus removal in an anoxic-oxic membrane bioreactor. <i>Environmental Science and Pollution Research</i> , 2019 , 26, 28127-28134	1 ^{5.1}	8
27	Enhanced 2,4,6-trichlorophenol anaerobic degradation by FeO supported on water hyacinth biochar for triggering direct interspecies electron transfer and its use in coal gasification wastewater treatment. <i>Bioresource Technology</i> , 2020 , 296, 122306	11	24
26	Moving bed biofilm reactor as an alternative wastewater treatment process for nutrient removal and recovery in the circular economy model. <i>Bioresource Technology</i> , 2020 , 299, 122631	11	38
25	A novel micro-ferrous dosing strategy for enhancing biological phosphorus removal from municipal wastewater. <i>Science of the Total Environment</i> , 2020 , 704, 135453	10.2	28
24	Application of polymer-based membranes for nutrient removal and recovery in wastewater. 2020 , 103-	134	
23	Transformation of Fe-P Complexes in Bioreactors and P Recovery from Sludge: Investigation by XANES Spectroscopy. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	12
22	Performance, mechanism and stability of nitrogen-doped sewage sludge based activated carbon supported magnetite in anaerobic degradation of coal gasification wastewater. <i>Science of the Total Environment</i> , 2020 , 737, 140285	10.2	9
21	Phosphorus recovery from the liquid phase of anaerobic digestate using biochar derived from iron-rich sludge: A potential phosphorus fertilizer. <i>Water Research</i> , 2020 , 174, 115629	12.5	58
20	Simultaneous nitrate, nickel ions and phosphorus removal in a bioreactor containing a novel composite material. <i>Bioresource Technology</i> , 2020 , 305, 123081	11	3
19	Iron-enhanced primary sedimentation and acidogenic sludge fermentation to achieve self-sufficient organic carbon supply for enhanced nutrient removal in wastewater treatment?. <i>Resources, Conservation and Recycling,</i> 2021 , 164, 105220	11.9	0
18	Hydrothermal treatment and biorefinery of sewage sludge for waste reduction and production of fungal hyphae fibers and volatile fatty acids. <i>Journal of Cleaner Production</i> , 2021 , 289, 125715	10.3	1
17	Full-scale trials to achieve low total phosphorus in effluents from sewage treatment works. <i>Journal of Water Process Engineering</i> , 2021 , 40, 101981	6.7	1
16	Simultaneous removal of nitrate and diethyl phthalate using a novel sponge-based biocarrier combined modified walnut shell biochar with FeO in the immobilized bioreactor. <i>Journal of Hazardous Materials</i> , 2021 , 414, 125578	12.8	16
15	Relevance of membrane biological reactor in heavy metals recovery: Diminutive review. <i>Environmental Quality Management</i> ,	0.8	
14	Species, fractions, and characterization of phosphorus in sewage sludge: A critical review from the perspective of recovery. <i>Science of the Total Environment</i> , 2021 , 786, 147437	10.2	17
13	Investigation of fouling of surface modified Polyvinyl chloride hollow fiber membrane bioreactor via Zinc oxide-nanoparticles under coagulant for municipal wastewater treatment. <i>Journal of Environmental Chemical Engineering</i> , 2021 , 9, 105835	6.8	4
12	Phosphorus and carbon solubilization strategies for wastewater sludge valorisation. <i>Journal of Environmental Chemical Engineering</i> , 2021 , 9, 106261	6.8	O

CITATION REPORT

11	Response of VFAs and microbial interspecific interaction to primary sludge fermentation temperature. <i>Journal of Cleaner Production</i> , 2021 , 322, 129081	10.3	2
10	Modeling, simulation and control of biological and chemical P-removal processes for membrane bioreactors (MBRs) from lab to full-scale applications: State of the art. <i>Science of the Total Environment</i> , 2021 , 151109	10.2	2
9	Coagulants put phosphate-accumulating organisms at a competitive disadvantage with glycogen-accumulating organisms in biological phosphorus removal system <i>Bioresource Technology</i> , 2021 , 346, 126658	11	1
8	Mechanisms Governing The Dissolution of Phosphorus and Iron In Sewage Sludge By The Bioacidification Process and Its Correlation With Iron Phosphate Speciation. <i>SSRN Electronic Journal</i> ,	1	
7	Removal of phosphorus using biochar derived from Fenton sludge: Mechanism and performance insights. <i>Water Environment Research</i> , 2022 , 94,	2.8	O
6	Phosphate removal from aqueous solutions with a zirconium-loaded magnetic biochar composite: performance, recyclability, and mechanism.		
5	Phosphorus recovery from wastewater and sewage sludge as vivianite. 2022 , 370, 133439		1
4	Mechanisms governing the dissolution of phosphorus and iron in sewage sludge by the bioacidification process and its correlation with iron phosphate speciation. 2022 , 307, 135704		
3	Enhanced phosphorus release from waste activated sludge using ascorbic acid reduction and acid dissolution. 2023 , 229, 119476		O
2	Optimization of the anaerobic fermentation process for phosphate release using food waste. 2023 , 225, 115498		O
1	New insights into the microbial-driven metal reductive dissolution for enhanced phosphorus release from iron-rich sludge. 2023 , 392, 136290		O