Extended Electrochemical Window of Solid Electrolytes Structure for Highâ€Voltage Lithium Metal Batteries

Advanced Materials 31, e1807789 DOI: 10.1002/adma.201807789

Citation Report

#	Article	IF	CITATIONS
1	Nonâ€Newtonian Fluid State K–Na Alloy for a Stretchable Energy Storage Device. Small Methods, 2019, 3, 1900383.	4.6	39
2	Liquid-involved synthesis and processing of sulfide-based solid electrolytes, electrodes, and all-solid-state batteries. Materials Today Nano, 2019, 8, 100048.	2.3	49
3	Ti-Doped Tunnel-Type Na ₄ Mn ₉ O ₁₈ Nanoparticles as Novel Anode Materials for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2019, 11, 28900-28908.	4.0	23
4	Highly Puffed Co ₉ S ₈ /Carbon Nanofibers: A Functionalized S Carrier for Superior Li–S Batteries. ACS Applied Materials & Interfaces, 2019, 11, 26798-26806.	4.0	55
5	Confining Hyperbranched Star Poly(ethylene oxide)-Based Polymer into a 3D Interpenetrating Network for a High-Performance All-Solid-State Polymer Electrolyte. ACS Applied Materials & Interfaces, 2019, 11, 43146-43155.	4.0	38
6	Polymerâ€inâ€â€œQuasiâ€ionic Liquid―Electrolytes for Highâ€Voltage Lithium Metal Batteries. Advanced Energ Materials, 2019, 9, 1902108.	gy _{10.2}	65
7	Pseudocapacitive Li+ storage boosts ultrahigh rate performance of structure-tailored CoFe2O4@Fe2O3 hollow spheres triggered by engineered surface and near-surface reactions. Nano Energy, 2019, 66, 104179.	8.2	45
8	Nanoscaled Lithium Powders with Protection of Ionic Liquid for Highly Stable Rechargeable Lithium Metal Batteries. Advanced Science, 2019, 6, 1901776.	5.6	42
9	Ultrathin, Flexible Polymer Electrolyte for Costâ€Effective Fabrication of Allâ€Solidâ€State Lithium Metal Batteries. Advanced Energy Materials, 2019, 9, 1902767.	10.2	239
10	Study of Dielectric Properties and Ion Transport Parameters in Chitosan-Barium Nitrate Based Solid Polymer Electrolytes. International Journal of Electrochemical Science, 2019, 14, 10580-10595.	0.5	18
11	An in Situ-Formed Mosaic Li ₇ Sn ₃ /LiF Interface Layer for High-Rate and Long-Life Garnet-Based Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2019, 11, 34939-34947.	4.0	66
12	Designing solid-state interfaces on lithium-metal anodes: a review. Science China Chemistry, 2019, 62, 1286-1299.	4.2	86
13	Manganese Carbodiimide Nanoparticles Modified with N-Doping Carbon: A Bifunctional Cathode Electrocatalyst for Aprotic Li–O ₂ Battery. ACS Sustainable Chemistry and Engineering, 2019, 7, 17464-17473.	3.2	25
14	Recent advances in nanostructured electrode-electrolyte design for safe and next-generation electrochemical energy storage. Materials Today Nano, 2019, 8, 100057.	2.3	31
15	Highly Elastic Polyrotaxane Binders for Mechanically Stable Lithium Hosts in Lithiumâ€Metal Batteries. Advanced Materials, 2019, 31, e1901645.	11.1	68
16	Integrated solid electrolyte with porous cathode by facilely one-step sintering for an all-solid-state Liâ€ ^ª O ₂ battery. Nanotechnology, 2019, 30, 364003.	1.3	19
17	Siloxane-based polymer electrolytes for solid-state lithium batteries. Energy Storage Materials, 2019, 23, 466-490.	9.5	114
18	Polar polymer–solvent interaction derived favorable interphase for stable lithium metal batteries. Energy and Environmental Science, 2019, 12, 3319-3327.	15.6	122

#	Article	IF	CITATIONS
19	Asymmetric Structure Design of Electrolytes with Flexibility and Lithium Dendrite-Suppression Ability for Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2019, 11, 46783-46791.	4.0	34
20	Polyoxyethylene (PEO) PEO–Perovskite PEO Composite Electrolyte for All-Solid-State Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2019, 11, 46930-46937.	4.0	116
21	Building Better Batteries in the Solid State: A Review. Materials, 2019, 12, 3892.	1.3	168
22	A supramolecular interaction strategy enabling high-performance all solid state electrolyte of lithium metal batteries. Energy Storage Materials, 2020, 25, 756-763.	9.5	59
23	Selection of best composition of Na+ ion conducting PEO-PEI blend solid polymer electrolyte based on structural, electrical, and dielectric spectroscopic analysis. Ionics, 2020, 26, 745-766.	1.2	36
24	Towards better Li metal anodes: Challenges and strategies. Materials Today, 2020, 33, 56-74.	8.3	404
25	A Game Changer: Functional Nano/Micromaterials for Smart Rechargeable Batteries. Advanced Functional Materials, 2020, 30, 1902499.	7.8	41
26	A Review of Composite Lithium Metal Anode for Practical Applications. Advanced Materials Technologies, 2020, 5, .	3.0	111
27	Construction of advanced 3D Co3S4@PPy nanowire anchored on nickel foam for high-performance electrochemical energy storage. Electrochimica Acta, 2020, 334, 135635.	2.6	16
28	Low-Cost Ni ₂ P/Ni _{0.96} S Heterostructured Bifunctional Electrocatalyst toward Highly Efficient Overall Urea-Water Electrolysis. ACS Applied Materials & Interfaces, 2020, 12, 2225-2233.	4.0	93
29	Lithium Thiosilicophosphate Glassy Solid Electrolytes Synthesized by High-Energy Ball-Milling and Melt-Quenching: Improved Suppression of Lithium Dendrite Growth by Si Doping. ACS Applied Materials & Interfaces, 2020, 12, 2327-2337.	4.0	35
30	Morphological Reversibility of Modified Li-Based Anodes for Next-Generation Batteries. ACS Energy Letters, 2020, 5, 152-161.	8.8	53
31	Facile and Scalable Modification of a Cu Current Collector toward Uniform Li Deposition of the Li Metal Anode. ACS Applied Materials & Interfaces, 2020, 12, 3681-3687.	4.0	28
32	High Voltage Stable Polyoxalate Catholyte with Cathode Coating for Allâ€Solidâ€State Liâ€Metal/NMC622 Batteries. Advanced Energy Materials, 2020, 10, 2002416.	10.2	41
33	Interface Between Solid-State Electrolytes and Li-Metal Anodes: Issues, Materials, and Processing Routes. ACS Applied Materials & Interfaces, 2020, 12, 47181-47196.	4.0	62
34	Biotemplated Nanocomposites of Transition-Metal Oxides/Carbon Nanotubes with Highly Stable and Efficient Electrochemical Interfaces for High-Power Lithium-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 7804-7812.	2.5	11
35	Recent progress and design principles of nanocomposite solid electrolytes. Current Opinion in Electrochemistry, 2020, 22, 195-202.	2.5	9
36	Research progress in Li-argyrodite-based solid-state electrolytes. Journal of Materials Chemistry A, 2020, 8, 25663-25686.	5.2	68

#	Article	IF	CITATIONS
37	3D Coral-like LLZO/PVDF Composite Electrolytes with Enhanced Ionic Conductivity and Mechanical Flexibility for Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2020, 12, 52652-52659.	4.0	81
38	Horizontal Stress Release for Protuberanceâ€Free Li Metal Anode. Advanced Functional Materials, 2020, 30, 2002522.	7.8	22
39	An ion-conductive separator for high safety Li metal batteries. Journal of Power Sources, 2020, 475, 228687.	4.0	31
40	An interconnected silver coated carbon cloth framework as a host to reduce lithium nucleation over-potential for dendrite-free lithium metal anodes. Journal of Electroanalytical Chemistry, 2020, 878, 114569.	1.9	21
41	Progress and Perspective of All-Solid-State Lithium Batteries with High Performance at Room Temperature. Energy & Fuels, 2020, 34, 13456-13472.	2.5	44
42	Molecular‣cale Interface Engineering of Metal–Organic Frameworks toward Ion Transport Enables Highâ€Performance Solid Lithium Metal Battery. Advanced Functional Materials, 2020, 30, 2003945.	7.8	36
43	Structure Design of Cathode Electrodes for Solid‧tate Batteries: Challenges and Progress. Small Structures, 2020, 1, 2000042.	6.9	73
44	Threeâ€Dimensional Wettable Carbon Felt Host for Stable Lithium Metal Anode. Energy Technology, 2020, 8, 2000604.	1.8	12
45	Interface engineering of inorganic solid-state electrolytes for high-performance lithium metal batteries. Energy and Environmental Science, 2020, 13, 3780-3822.	15.6	96
46	The Optimized Interfacial Compatibility of Metal–Organic Frameworks Enables a High-Performance Quasi-Solid Metal Battery. ACS Energy Letters, 2020, 5, 2919-2926.	8.8	51
47	Integrated Structure of Cathode and Double-Layer Electrolyte for Highly Stable and Dendrite-Free All-Solid-State Li-Metal Batteries. ACS Applied Materials & Interfaces, 2020, 12, 56995-57002.	4.0	32
48	Conformal Prelithiation Nanoshell on LiCoO ₂ Enabling High-Energy Lithium-Ion Batteries. Nano Letters, 2020, 20, 4558-4565.	4.5	92
49	Enabling Solid-State Li Metal Batteries by In Situ Forming Ionogel Interlayers. ACS Applied Energy Materials, 2020, 3, 5712-5721.	2.5	28
50	Recently developed strategies to restrain dendrite growth of Li metal anodes for rechargeable batteries. Rare Metals, 2020, 39, 616-635.	3.6	89
51	A Soft Lithiophilic Graphene Aerogel for Stable Lithium Metal Anode. Advanced Functional Materials, 2020, 30, 2002013.	7.8	60
52	Solid electrolyte interphase formation between the Li _{0.29} La _{0.57} TiO ₃ solid-state electrolyte and a Li-metal anode: an <i>ab initio</i> molecular dynamics study. RSC Advances, 2020, 10, 9000-9015.	1.7	12
53	Selectively Wetted Rigid–Flexible Coupling Polymer Electrolyte Enabling Superior Stability and Compatibility of Highâ€Voltage Lithium Metal Batteries. Advanced Energy Materials, 2020, 10, 1903939.	10.2	123
54	Determining the limiting factor of the electrochemical stability window for PEO-based solid polymer electrolytes: main chain or terminal –OH group?. Energy and Environmental Science, 2020, 13, 1318-1325.	15.6	342

#	Article	IF	CITATIONS
55	Chemical interaction and enhanced interfacial ion transport in a ceramic nanofiber–polymer composite electrolyte for all-solid-state lithium metal batteries. Journal of Materials Chemistry A, 2020, 8, 7261-7272.	5.2	85
56	Multiscale optimization of Li-ion diffusion in solid lithium metal batteries <i>via</i> ion conductive metal–organic frameworks. Nanoscale, 2020, 12, 6976-6982.	2.8	28
57	Facilitating Interfacial Stability Via Bilayer Heterostructure Solid Electrolyte Toward Highâ€energy, Safe and Adaptable Lithium Batteries. Advanced Energy Materials, 2020, 10, 2000709.	10.2	79
58	In Situ Construction of a LiFâ€Enriched Interface for Stable Allâ€Solidâ€State Batteries and its Origin Revealed by Cryoâ€TEM. Advanced Materials, 2020, 32, e2000223.	11.1	278
59	Thin and Flexible Solid Electrolyte Membranes with Ultrahigh Thermal Stability Derived from Solution-Processable Li Argyrodites for All-Solid-State Li-Ion Batteries. ACS Energy Letters, 2020, 5, 718-727.	8.8	126
60	Rational Design of a Laminated Dual-Polymer/Polymer–Ceramic Composite Electrolyte for High-Voltage All-Solid-State Lithium Batteries. , 2020, 2, 317-324.		59
61	Review—Polymer Electrolytes for Rechargeable Batteries: From Nanocomposite to Nanohybrid. Journal of the Electrochemical Society, 2020, 167, 070524.	1.3	135
62	Rechargeable Lithium Metal Batteries with an Inâ€Built Solidâ€State Polymer Electrolyte and a High Voltage/Loading Niâ€Rich Layered Cathode. Advanced Materials, 2020, 32, e1905629.	11.1	140
63	Perovskite LaCo _{<i>x</i>} Mn _{1–<i>x</i>} O _{3â^ïJf} with Tunable Defect and Surface Structures as Cathode Catalysts for Li–O ₂ Batteries. ACS Applied Materials & amp; Interfaces, 2020, 12, 10452-10460.	4.0	23
64	Progress and Perspective of Ceramic/Polymer Composite Solid Electrolytes for Lithium Batteries. Advanced Science, 2020, 7, 1903088.	5.6	403
65	Flexible, high-voltage, ion-conducting composite membranes with 3D aramid nanofiber frameworks for stable all-solid-state lithium metal batteries. Science China Materials, 2020, 63, 703-718.	3.5	32
66	Suppressing lithium dendrite growth by a synergetic effect of uniform nucleation and inhibition. Journal of Materials Chemistry A, 2020, 8, 4300-4307.	5.2	29
67	A Flexible Solid Electrolyte with Multilayer Structure for Sodium Metal Batteries. Advanced Energy Materials, 2020, 10, 1903966.	10.2	94
68	In situ fluorinated solid electrolyte interphase towards long-life lithium metal anodes. Nano Research, 2020, 13, 430-436.	5.8	49
69	<i>In situ</i> thermally polymerized solid composite electrolytes with a broad electrochemical window for all-solid-state lithium metal batteries. Journal of Materials Chemistry A, 2020, 8, 3892-3900.	5.2	59
70	Ceramic-Based Flexible Sheet Electrolyte for Li Batteries. ACS Applied Materials & Interfaces, 2020, 12, 10382-10388.	4.0	47
71	Enabling a Durable Electrochemical Interface via an Artificial Amorphous Cathode Electrolyte Interphase for Hybrid Solid/Liquid Lithiumâ€Metal Batteries. Angewandte Chemie, 2020, 132, 6647-6651.	1.6	26
72	Polymer Electrolyte Membrane with High Ionic Conductivity and Enhanced Interfacial Stability for Lithium Metal Battery. ACS Applied Materials & Interfaces, 2020, 12, 22710-22720.	4.0	23

	CITATION R	CITATION REPORT	
#	Article	IF	CITATIONS
73	Analyzing Energy Materials by Cryogenic Electron Microscopy. Advanced Materials, 2020, 32, e1908293.	11.1	61
74	Lithium Metal Interface Modification for Highâ€Energy Batteries: Approaches and Characterization. Batteries and Supercaps, 2020, 3, 828-859.	2.4	38
75	Investigation on the Copolymer Electrolyte of Poly(1,3â€dioxolaneâ€ <i>co</i> â€formaldehyde). Macromolecular Rapid Communications, 2020, 41, e2000047.	2.0	36
76	Self-Healing Janus Interfaces for High-Performance LAGP-Based Lithium Metal Batteries. ACS Energy Letters, 2020, 5, 1456-1464.	8.8	104
77	Form factor-free, printed power sources. Energy Storage Materials, 2020, 29, 92-112.	9.5	19
78	A stabilized PEO-based solid electrolyte <i>via</i> a facile interfacial engineering method for a high voltage solid-state lithium metal battery. Chemical Communications, 2020, 56, 5633-5636.	2.2	43
79	Ambientâ€Temperature Allâ€Solidâ€State Sodium Batteries with a Laminated Composite Electrolyte. Advanced Functional Materials, 2021, 31, 2002144.	7.8	63
80	3D Ion onducting, Scalable, and Mechanically Reinforced Ceramic Film for High Voltage Solid‣tate Batteries. Advanced Functional Materials, 2021, 31, 2002008.	7.8	13
81	Monoanion-regulated high-voltage nitrile-based solid electrolyte with compatible lithium inertness. Energy Storage Materials, 2021, 34, 640-647.	9.5	18
82	Incorporation of LiF into functionalized polymer fiber networks enabling high capacity and high rate cycling of lithium metal composite anodes. Chemical Engineering Journal, 2021, 404, 126508.	6.6	21
83	Asymmetric Polymer Electrolyte Constructed by Metal–Organic Framework for Solidâ€State, Dendriteâ€Free Lithium Metal Battery. Advanced Functional Materials, 2021, 31, 2007198.	7.8	123
84	A review of composite polymer-ceramic electrolytes for lithium batteries. Energy Storage Materials, 2021, 34, 282-300.	9.5	233
85	Hierarchical Compositeâ€Solidâ€Electrolyte with High Electrochemical Stability and Interfacial Regulation for Boosting Ultraâ€Stable Lithium Batteries. Advanced Functional Materials, 2021, 31, .	7.8	57
86	Reducing the thickness of solid-state electrolyte membranes for high-energy lithium batteries. Energy and Environmental Science, 2021, 14, 12-36.	15.6	236
87	Homogenously dispersed ultrasmall niobium(V) oxide nanoparticles enabling improved ionic conductivity and interfacial compatibility of composite polymer electrolyte. Journal of Colloid and Interface Science, 2021, 586, 855-865.	5.0	21
88	Macromolecular Design of Lithium Conductive Polymer as Electrolyte for Solid‣tate Lithium Batteries. Small, 2021, 17, e2005762.	5.2	85
89	Vertical nanoarrays with lithiophilic sites suppress the growth of lithium dendrites for ultrastable lithium metal batteries. Chemical Engineering Journal, 2021, 405, 126808.	6.6	24
90	Design of thiol–lithium ion interaction in metal–organic framework for high-performance quasi-solid lithium metal batteries. Dalton Transactions, 2021, 50, 2928-2935.	1.6	10

ARTICLE IF CITATIONS Single-ion conducting polymer electrolytes as a key jigsaw piece for next-generation battery 3.7 62 91 applications. Chemical Science, 2021, 12, 13248-13272. Organoboronâ€Containing Polymer Electrolytes for Highâ€Performance Lithium Batteries. Advanced Functional Materials, 2021, 31, 2008632. Recent advances and perspectives on thin electrolytes for high-energy-density solid-state lithium 93 15.6 200 batteries. Energy and Environmental Science, 2021, 14, 643-671. Electrolytes for Lithium-Ion and Lithium Metal Batteries., 2021,,. 94 <i>In situ</i>> generation of a softâ€"tough asymmetric composite electrolyte for dendrite-free lithium 95 5.2 34 metal batteries. Journal of Materials Chemistry A, 2021, 9, 4018-4025. Advanced<i>in situ</i>technology for Li/Na metal anodes: an in-depth mechanistic understanding. Energy and Environmental Science, 2021, 14, 3872-3911. 15.6 A composite solid electrolyte with an asymmetric ceramic framework for dendrite-free all-solid-state 97 5.2 30 Li metal batteries. Journal of Materials Chemistry A, 2021, 9, 9665-9674. Integrated interface between composite electrolyte and cathode with low resistance enables ultra-long cycle-lifetime in solid-state lithium-metal batteries. Science China Chemistry, 2021, 64, 4.2 16 673-680 Strategies in Structure and Electrolyte Design for Highâ€Performance Lithium Metal Batteries. 99 7.8 122 Advanced Functional Materials, 2021, 31, 2009694. Interfacial Atomistic Mechanisms of Lithium Metal Stripping and Plating in Solidâ€State Batteries. 11.1 Advanced Materials, 2021, 33, e2008081. Flexible Nanowire Cathode Membrane with Gradient Interfaces and Rapid Electron/Ion Transport 101 10.2 39 Channels for Solidâ€State Lithium Batteries. Advanced Energy Materials, 2021, 11, 2100026. Symmetry Effect on the Enhancement of Lithium-Ion Mobility in Layered Oxides Li₂A₂B₂TiO₁₀ (A = La, Sr, Ca; B = Ti, Ta). Journal of Physical Chemistry C, 2021, 125, 3689-3697. 1.5 Open-Structured Nanotubes with Three-Dimensional Ion-Accessible Pathways for Enhanced Li⁺ Conductivity in Composite Solid Electrolytes. ACS Applied Materials & amp; Interfaces, 103 4.0 28 2021, 13, 13183-13190. Self-adaptive multiblock-copolymer-based hybrid solid-state electrolyte for safe and stable lithium-metal battery. Electrochimica Acta, 2021, 371, 137702. 104 2.6 Pore-assisted lithium deposition in hierarchically porous and hollow carbon textile for highly stable 105 4.0 17 lithium anode. Journal of Power Sources, 2021, 489, 229464. Electrochemical Compatibility of Solidâ€State Electrolytes with Cathodes and Anodes for Allâ€Solidâ€State 2.8 Lithium Batteries: A Review. Ádvanced Energy and Sustainability Research, 2021, 2, 2000101. Interfacial compatibility issues in rechargeable solid-state lithium metal batteries: a review. Science 107 4.2 28 China Chemistry, 2021, 64, 879-898. Double-Layered Multifunctional Composite Electrolytes for High-Voltage Solid-State Lithium-Metal Batteries. ACS Applied Materials & amp; Interfaces, 2021, 13, 11958-11967.

#	Article	IF	CITATIONS
109	Nanophase-Separated, Elastic Epoxy Composite Thin Film as an Electrolyte for Stable Lithium Metal Batteries. Nano Letters, 2021, 21, 3611-3618.	4.5	47
110	A Decade of Progress on Solid tate Electrolytes for Secondary Batteries: Advances and Contributions. Advanced Functional Materials, 2021, 31, 2100891.	7.8	73
111	Bridging Interparticle Li ⁺ Conduction in a Soft Ceramic Oxide Electrolyte. Journal of the American Chemical Society, 2021, 143, 5717-5726.	6.6	144
112	Strategies to Boost Ionic Conductivity and Interface Compatibility of Inorganic - Organic Solid Composite Electrolytes. Energy Storage Materials, 2021, 36, 291-308.	9.5	82
113	Development, thermal and dielectric investigations of PVDF-Y2O3 polymer nanocomposite films. Journal of Polymer Research, 2021, 28, 1.	1.2	21
114	Solid-State Polymer Electrolyte Solves the Transfer of Lithium Ions between the Solid–Solid Interface of the Electrode and the Electrolyte in Lithium–Sulfur and Lithium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 5101-5112.	2.5	42
115	Polyethylene Oxide-Based Solid-State Composite Polymer Electrolytes for Rechargeable Lithium Batteries. ACS Applied Energy Materials, 2021, 4, 4581-4601.	2.5	59
116	Cyano-reinforced in-situ polymer electrolyte enabling long-life cycling for high-voltage lithium metal batteries. Energy Storage Materials, 2021, 37, 215-223.	9.5	76
117	Tailoring inorganic–polymer composites for the mass production of solid-state batteries. Nature Reviews Materials, 2021, 6, 1003-1019.	23.3	409
118	Lithiophilic MXeneâ€Guided Lithium Metal Nucleation and Growth Behavior. Advanced Functional Materials, 2021, 31, 2101261.	7.8	28
119	Enabling Highâ€Performance NASICONâ€Based Solidâ€State Lithium Metal Batteries Towards Practical Conditions. Advanced Functional Materials, 2021, 31, 2102765.	7.8	32
120	Toward High Performance Allâ€Solidâ€State Lithium Batteries with Highâ€Voltage Cathode Materials: Design Strategies for Solid Electrolytes, Cathode Interfaces, and Composite Electrodes. Advanced Energy Materials, 2021, 11, 2003154.	10.2	65
121	Formulating the Electrolyte Towards Highâ€Energy and Safe Rechargeable Lithium–Metal Batteries. Angewandte Chemie - International Edition, 2021, 60, 16554-16560.	7.2	80
122	Formulating the Electrolyte Towards Highâ€Energy and Safe Rechargeable Lithium–Metal Batteries. Angewandte Chemie, 2021, 133, 16690-16696.	1.6	12
123	Engineering Two-Dimensional Metal–Organic Framework on Molecular Basis for Fast Li ⁺ Conduction. Nano Letters, 2021, 21, 5805-5812.	4.5	31
124	Rationally Designed PEGDA–LLZTO Composite Electrolyte for Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2021, 13, 30703-30711.	4.0	51
125	Multifunctional Enhancement of Proton-Conductive, Stretchable, and Adhesive Performance in Hybrid Polymer Electrolytes by Polyoxometalate Nanoclusters. ACS Applied Materials & Interfaces, 2021, 13, 30039-30050.	4.0	22
126	Electrospun MOF/PAN composite separator with superior electrochemical performances for high energy density lithium batteries. Electrochimica Acta, 2021, 382, 138346.	2.6	42

#	Article	IF	CITATIONS
127	Alloying-triggered heterogeneous nucleation for the flexible sodium metallic batteries. Energy Storage Materials, 2021, 38, 499-508.	9.5	18
128	Amorphous-Carbon-Coated 3D Solid Electrolyte for an Electro-Chemomechanically Stable Lithium Metal Anode in Solid-State Batteries. Nano Letters, 2021, 21, 6163-6170.	4.5	29
129	Fluorinated Polyâ€oxalate Electrolytes Stabilizing both Anode and Cathode Interfaces for Allâ€Solidâ€State Li/NMC811 Batteries. Angewandte Chemie - International Edition, 2021, 60, 18335-18343.	7.2	53
130	Progress and perspective of the cathode/electrolyte interface construction in allâ€solidâ€state lithium batteries. , 2021, 3, 866-894.		59
131	Recent Advances of Composite Solid-State Electrolytes for Lithium-Based Batteries. Energy & Fuels, 2021, 35, 11118-11140.	2.5	16
132	In Situ Chemical Lithiation Transforms Diamondâ€Like Carbon into an Ultrastrong Ion Conductor for Dendriteâ€Free Lithiumâ€Metal Anodes. Advanced Materials, 2021, 33, e2100793.	11.1	82
133	A Sandwich-Structure Composite Polymer Electrolyte Based on Poly(vinyl alcohol)/Poly(4-lithium) Tj ETQq0 0 0 rg 8016-8029.	gBT /Overl 2.5	ock 10 Tf 50 9
134	Study of nanostructured ultra-refractory Tantalum-Hafnium-Carbide electrodes with wide electrodes with wide electrochemical stability window. Chemical Engineering Journal, 2021, 415, 128987.	6.6	4
135	Fluorinated Polyâ€oxalate Electrolytes Stabilizing both Anode and Cathode Interfaces for Allâ€Solidâ€State Li/NMC811 Batteries. Angewandte Chemie, 2021, 133, 18483-18491.	1.6	13
136	Fiberâ€Shaped Electronic Devices. Advanced Energy Materials, 2021, 11, 2101443.	10.2	74
137	Electrochemically-Matched and Nonflammable Janus Solid Electrolyte for Lithium–Metal Batteries. ACS Applied Materials & Interfaces, 2021, 13, 39271-39281.	4.0	16
138	Structural Design of Composite Polymer Electrolytes for Solidâ€state Lithium Metal Batteries. ChemNanoMat, 2021, 7, 1177-1187.	1.5	11
139	Advanced Electrolytes Enabling Safe and Stable Rechargeable Liâ€Metal Batteries: Progress and Prospects. Advanced Functional Materials, 2021, 31, 2105253.	7.8	102
140	Lithium solid-state batteries: State-of-the-art and challenges for materials, interfaces and processing. Journal of Power Sources, 2021, 502, 229919.	4.0	92
141	High Energy Density Solid State Lithium Metal Batteries Enabled by Subâ€5 µm Solid Polymer Electrolytes. Advanced Materials, 2021, 33, e2105329.	11.1	123
142	Recent progress of asymmetric solid-state electrolytes for lithium/sodium-metal batteries. EnergyChem, 2021, 3, 100058.	10.1	47
143	Lithium-Conducting Branched Polymers: New Paradigm of Solid-State Electrolytes for Batteries. Nano Letters, 2021, 21, 7435-7447.	4.5	47
144	Scale-up processing of a safe quasi-solid-state lithium battery by cathode-supported solid electrolyte coating. Materials Today Energy, 2021, 21, 100841.	2.5	13

#	Article	IF	CITATIONS
145	A systems engineering perspective on electrochemical energy technologies and a framework for application driven choice of technology. Renewable and Sustainable Energy Reviews, 2021, 147, 111165.	8.2	7
146	Controlled lithium plating in three-dimensional hosts through nucleation overpotential regulation towardÂhigh-areal-capacity lithium metal anode. Materials Today Energy, 2021, 21, 100770.	2.5	25
147	Functional additives for solid polymer electrolytes in flexible and highâ€energyâ€density solidâ€state lithiumâ€ion batteries. , 2021, 3, 929-956.		63
148	Polymer electrolytes and interfaces in solid-state lithium metal batteries. Materials Today, 2021, 51, 449-474.	8.3	161
149	Recent progress in thin separators for upgraded lithium ion batteries. Energy Storage Materials, 2021, 41, 805-841.	9.5	68
150	Improving the high-voltage performance of LiNi0.6Co0.2Mn0.2O2 by co-doping of zirconium and erbium. Solid State Ionics, 2021, 371, 115757.	1.3	5
151	Dual-interface reinforced flexible solid garnet batteries enabled by in-situ solidified gel polymer electrolytes. Nano Energy, 2021, 90, 106498.	8.2	74
152	Multifunctional Batteries: Flexible, Transient, and Transparent. ACS Central Science, 2021, 7, 231-244.	5.3	45
153	Enabling a Durable Electrochemical Interface via an Artificial Amorphous Cathode Electrolyte Interphase for Hybrid Solid/Liquid Lithiumâ€Metal Batteries. Angewandte Chemie - International Edition, 2020, 59, 6585-6589.	7.2	84
154	Designing solid-state electrolytes for safe, energy-dense batteries. Nature Reviews Materials, 2020, 5, 229-252.	23.3	1,167
155	Mechanical failures in solid-state lithium batteries and their solution. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 226201.	0.2	5
156	Rational design of ultrathin composite solid-state electrolyte for high-performance lithium metal batteries. Journal of Membrane Science, 2022, 642, 119952.	4.1	25
157	Rational design of a heterogeneous double-layered composite solid electrolyte via synergistic strategies of asymmetric polymer matrices and functional additives to enable 4.5â€V all-solid-state lithium batteries with superior performance. Energy Storage Materials, 2022, 45, 1062-1073.	9.5	21
158	Exploring efficient solid electrolyte based on Nd doped BaSnF4 for fluoride-ion batteries at atomic scale. Journal of Power Sources, 2022, 518, 230718.	4.0	6
159	Challenges for Safe Electrolytes Applied in Lithium-Ion Cells—A Review. Materials, 2021, 14, 6783.	1.3	21
160	Freestanding Trilayer Hybrid Solid Electrolyte with Electrospun Interconnected Al-LLZO Nanofibers for Solid-State Lithium-Metal Batteries. ACS Applied Energy Materials, 2021, 4, 14554-14574.	2.5	16
161	Composite polymer electrolyte with three-dimensional ion transport channels constructed by NaCl template for solid-state lithium metal batteries. Energy Storage Materials, 2022, 45, 1212-1219.	9.5	40
162	In situ generated polymer electrolyte coating-based Janus interfaces for long-life LAGP-based NMC811/Li metal batteries. Chemical Engineering Journal, 2022, 433, 133589.	6.6	22

#	Article	IF	CITATIONS
163	3D poly(vinylidene fluoride–hexafluoropropylen) nanofiber-reinforced PEO-based composite polymer electrolyte for high-voltage lithium metal batteries. Electrochimica Acta, 2022, 404, 139769.	2.6	16
164	A high strength asymmetric polymer–inorganic composite solid electrolyte for solid-state Li-ion batteries. Electrochimica Acta, 2022, 404, 139701.	2.6	17
165	Poly (vinylidene fluoride) binder reinforced poly (propylene carbonate)/3D garnet nanofiber composite polymer electrolyte toward dendrite-free lithium metal batteries. Materials Today Energy, 2022, 24, 100952.	2.5	3
166	Hydrogen bonding enhanced SiO ₂ /PEO composite electrolytes for solid-state lithium batteries. Journal of Materials Chemistry A, 2022, 10, 3400-3408.	5.2	54
167	Functional Applications of Polymer Electrolytes in Highâ€Energyâ€Density Lithium Batteries. Macromolecular Chemistry and Physics, 2022, 223, .	1.1	11
168	Elastomeric electrolytes for high-energy solid-state lithium batteries. Nature, 2022, 601, 217-222.	13.7	290
169	Bridging Li ₇ La ₃ Zr ₂ O ₁₂ Nanofibers with Poly(ethylene) Tj ET Batteries. ACS Applied Materials & Interfaces, 2022, 14, 5346-5354.	Qq0 0 0 r 4.0	gBT /Overlock 23
170	Designing Versatile Polymers for Lithium-Ion Battery Applications: A Review. Polymers, 2022, 14, 403.	2.0	19
171	Fabrication of asymmetric bilayer solid-state electrolyte with boosted ion transport enabled by charge-rich space charge layer for â€20~70°C lithium metal battery. Nano Energy, 2022, 95, 107027.	8.2	29
172	Fabrication of Asymmetric Bilayer Solid-State Electrolyte with Boosted Ion Transport Enabled by Charge-Rich Space Charge Layer for -20~70°C Lithium Metal Battery. SSRN Electronic Journal, 0, , .	0.4	0
173	Unveiling and Alleviating Chemical "Crosstalk―of Succinonitrile Molecules in Hierarchical Electrolyte for Highâ€Voltage Solidâ€State Lithium Metal Batteries. Energy and Environmental Materials, 2023, 6, .	7.3	13
174	A Highly Stable Liâ€Organic Allâ€Solidâ€State Battery Based on Sulfide Electrolytes. Advanced Energy Materials, 2022, 12, .	10.2	17
175	Lithium Saltâ€Induced In Situ Polymerizations Enable Double Network Polymer Electrolytes. Macromolecular Rapid Communications, 2022, 43, e2100853.	2.0	1
176	Enabling Stable Interphases via In Situ Two-Step Synthetic Bilayer Polymer Electrolyte for Solid-State Lithium Metal Batteries. Inorganics, 2022, 10, 42.	1.2	4
177	Selfâ€Healing Polymer Electrolyte for Dendriteâ€Free Li Metal Batteries with Ultraâ€Highâ€Voltage Niâ€Rich Layered Cathodes. Small, 2022, 18, e2200891.	5.2	23
178	Asymmetric polymer solid electrolyte constructed by dopamine-modified Li1.4Al0.4Ti1.6(PO4)3 for dendrite-free lithium battery. Ionics, 2022, 28, 2693-2700.	1.2	2
179	Synergistic effect of modest pores and lithiophilic surface on 3D current collectors for stable Li metal anodes. Journal of Alloys and Compounds, 2022, , 164925.	2.8	3
180	Systematic study and effective improvement of voltammetry for accurate electrochemical window measurement of solid electrolytes. Electrochimica Acta, 2022, 414, 140210.	2.6	1

#	Article	IF	CITATIONS
181	Recent advances of newly designed in-situ polymerized electrolyte for high energy density/safe solid Li metal batteries. Current Opinion in Electrochemistry, 2022, 33, 100962.	2.5	6
182	Hydrogen bonds enhanced composite polymer electrolyte for high-voltage cathode of solid-state lithium battery. Nano Energy, 2022, 96, 107105.	8.2	44
183	Enhanced electrochemical performance of cobalt oxide layers coated LiNi0.8Co0.1Mn0.1O2 by polyvinylpyrrolidone-assisted method cathode for Li-ion batteries. Journal of Colloid and Interface Science, 2022, 616, 520-531.	5.0	16
184	Gradient trilayer solid-state electrolyte with excellent interface compatibility for high-voltage lithium batteries. Chemical Engineering Journal, 2022, 441, 136077.	6.6	22
185	Advances in <scp>host selection</scp> and <scp>interface regulation</scp> of polymer electrolytes. Journal of Polymer Science, 2022, 60, 743-765.	2.0	8
186	Vertically Heterostructured Solid Electrolytes for Lithium Metal Batteries. Advanced Functional Materials, 2022, 32, .	7.8	23
187	8.5Â µ mâ€Thick Flexibleâ€Rigid Hybrid Solid–Electrolyte/Lithium Integration for Airâ€Stable and Interfaceâ€Compatible Allâ€Solidâ€State Lithium Metal Batteries. Advanced Energy Materials, 2022, 12, .	10.2	46
188	PI-LATP-PEO Electrolyte with High Safety Performance in Solid-State Lithium Metal Batteries. ACS Applied Energy Materials, 2022, 5, 5277-5286.	2.5	19
189	Study on Performances of LiNi _{0.8} Co _{0.1} Mn _{0.1} O _{2Cathode Materials Prepared from Different Lithium Sources and Coated Modification of ZnO. Material Sciences, 2022, 12, 386-395.}	>o	0
190	Design and developments in ceramic materials for electrochemical applications. , 2022, , 353-377.		Ο
191	The Plasticizer-Free Composite Block Copolymer Electrolytes for Ultralong Lifespan All-Solid-State Lithium-Metal Batteries. SSRN Electronic Journal, 0, , .	0.4	0
192	Engineering a High-Voltage Durable Cathode/Electrolyte Interface for All-Solid-State Lithium Metal Batteries via <i>In Situ</i> Electropolymerization. ACS Applied Materials & Interfaces, 2022, 14, 21018-21027.	4.0	15
193	Perspectives on Improving the Safety and Sustainability of High Voltage Lithiumâ€ion Batteries Through the Electrolyte and Separator Region. Advanced Energy Materials, 2022, 12, .	10.2	64
194	Interface science in polymerâ€based composite solid electrolytes in lithium metal batteries. SusMat, 2022, 2, 264-292.	7.8	21
195	Advanced inorganic/polymer hybrid electrolytes for all-solid-state lithium batteries. Journal of Advanced Ceramics, 2022, 11, 835-861.	8.9	45
196	Lithium Bromide-Induced Organic-Rich Cathode/Electrolyte Interphase for High-Voltage and Flame-Retardant All-Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2022, 14, 24469-24479.	4.0	13
197	Fabrication of ultra-thin, flexible, dendrite-free, robust and nanostructured solid electrolyte membranes for solid-state Li-batteries. Journal of Materials Chemistry A, 2022, 10, 12196-12212.	5.2	12
198	PEGDA-SN as Both Solid-State Electrolyte and Solid-Solid Interface Material for Li-O ₂ Battery. Journal of the Electrochemical Society, 2022, 169, 060507.	1.3	4

#	Article	IF	CITATIONS
199	Insight into the Integration Way of Ceramic Solid-State Electrolyte Fillers in the Composite Electrolyte for High Performance Solid-State Lithium Metal Battery. SSRN Electronic Journal, 0, , .	0.4	0
200	Transference Number Reinforced-Based Gel Copolymer Electrolyte for Dendrite-Free Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2022, 14, 26612-26621.	4.0	11
201	Janus Electrolyte with Modified Li ⁺ Solvation for Highâ€Performance Solid‣tate Lithium Batteries. Advanced Functional Materials, 2022, 32, .	7.8	30
202	Gradient Design for Highâ€Energy and Highâ€Power Batteries. Advanced Materials, 2022, 34, .	11.1	53
203	Enhancing the Long Cycle Performance of Li–O ₂ Batteries at High Temperatures Using Metal–Organic Framework-Based Electrolytes. ACS Applied Energy Materials, 2022, 5, 7185-7191.	2.5	10
204	In-situ forming lithiophilic-lithiophobic gradient interphases for dendrite-free all-solid-state Li metal batteries. Nano Energy, 2022, 99, 107395.	8.2	10
205	Operando electrochemical pressiometry probing interfacial evolution of electrodeposited thin lithium metal anodes for all-solid-state batteries. Energy Storage Materials, 2022, 50, 543-553.	9.5	16
206	Dendriteâ€Free and Longâ€Cycling Lithium Metal Battery Enabled by Ultrathin, 2D Shieldâ€Defensive, and Single Lithiumâ€Ion Conducting Polymeric Membrane. Advanced Materials, 2022, 34, .	11.1	21
207	Reactivity at the Electrode–Electrolyte Interfaces in Li-Ion and Gel Electrolyte Lithium Batteries for LiNi _{0.6} Mn _{0.2} Co _{0.2} O ₂ with Different Particle Sizes. ACS Applied Materials & Interfaces, 0, , .	4.0	6
208	Insight into the integration way of ceramic solid-state electrolyte fillers in the composite electrolyte for high performance solid-state lithium metal battery. Energy Storage Materials, 2022, 51, 130-138.	9.5	51
209	Ultraâ€ŧhin Asymmetric Composite Electrolyte Addresses the Outâ€ofâ€sync Requirements of Lithium Batteries Interfaces. Batteries and Supercaps, 0, , .	2.4	1
210	The plasticizer-free composite block copolymer electrolytes for ultralong lifespan all-solid-state lithium-metal batteries. Nano Energy, 2022, 100, 107499.	8.2	20
211	Mechanically and thermally robust microporous copolymer separators for lithium ion batteries. Electrochimica Acta, 2022, 425, 140705.	2.6	3
212	Tailoring the surface energy and area surface resistance of solid-electrolyte polymer membrane for dendrite free, high-performance, and safe solid-state Li-batteries. Journal of Power Sources, 2022, 541, 231690.	4.0	1
213	An ion conducting ZIF-8 coating protected PEO based polymer electrolyte for high voltage lithium metal batteries. Chemical Engineering Journal, 2022, 447, 137503.	6.6	25
214	Minimizing the interfacial resistance for a solid-state lithium battery running at room temperature. Chemical Engineering Journal, 2022, 448, 137740.	6.6	27
215	Insights into the enhanced electrochemical performance of MnV ₂ O ₆ nanoflakes as an anode material for advanced lithium storage. Nanoscale, 2022, 14, 10428-10438.	2.8	5
216	Functional Janus Membranes: Promising Platform for Advanced Lithium Batteries and Beyond. Energy and Environmental Materials. 2023. 6.	7.3	3

#	Article	IF	CITATIONS
217	Research progress on space charge layer effect in lithium-ion solid-state battery. Science China Technological Sciences, 2022, 65, 2246-2258.	2.0	4
218	An asymmetric bilayer polymer-ceramic solid electrolyte for high-performance sodium metal batteries. Journal of Energy Chemistry, 2022, 74, 18-25.	7.1	21
219	Effects of Molecular Weight on the Electrochemical Properties of Poly(vinylidene difluoride)-Based Polymer Electrolytes. ACS Applied Materials & Interfaces, 2022, 14, 32075-32083.	4.0	17
220	Are Polymerâ€Based Electrolytes Ready for Highâ€Voltage Lithium Battery Applications? An Overview of Degradation Mechanisms and Battery Performance. Advanced Energy Materials, 2022, 12, .	10.2	70
221	Double-layer solid-state electrolyte enables compatible interfaces for high-performance lithium metal batteries. Journal of Energy Chemistry, 2022, 74, 91-99.	7.1	8
222	"Treeâ€Trunk―Design for Flexible Quasiâ€Solidâ€State Electrolytes with Hierarchical Ionâ€Channels Enabling Ultralongâ€Life Lithiumâ€Metal Batteries. Advanced Materials, 2022, 34, .	⁵ 11.1	29
223	Solid Polymer Electrolytes for Lithium Batteries: A Tribute to Michel Armand. Inorganics, 2022, 10, 110.	1.2	8
224	Cellulose mesh supported ultrathin ceramic-based composite electrolyte for high-performance Li metal batteries. Journal of Membrane Science, 2022, 661, 120907.	4.1	8
225	Strategies for rational design of polymer-based solid electrolytes for advanced lithium energy storage Materials, 2022, 52, 430-464.	9.5	44
226	Dual-Interlayers Constructed by Ti3c2tx/Ionic Liquid Enhance Efficient Performance for Solid Garnet Batteriesinterests. SSRN Electronic Journal, 0, , .	0.4	Ο
227	Optimized functional additive enabled stable cathode and anode interfaces for high-voltage all-solid-state lithium batteries with significantly improved cycling performance. Journal of Materials Chemistry A, 2022, 10, 20331-20342.	5.2	13
228	Coordinating ionic and electronic conductivity on 3D porous host enabling deep dense lithium deposition toward high-capacity lithium metal anodes. Nanoscale, 2022, 14, 13722-13730.	2.8	5
229	A Review on Design Considerations in Polymer and Polymer Composite Solid-State Electrolytes for Solid Li Batteries. SSRN Electronic Journal, 0, , .	0.4	0
230	Insights Into the Interfacial Degradation of High-Voltage All-Solid-State Lithium Batteries. Nano-Micro Letters, 2022, 14, .	14.4	30
231	Bifunctional MOF Doped PEO Composite Electrolyte for Long-Life Cycle Solid Lithium Ion Battery. ACS Applied Materials & Interfaces, 2022, 14, 45476-45483.	4.0	37
232	Recent progress in solid polymer electrolytes with various dimensional fillers: a review. Materials Today Sustainability, 2022, 20, 100224.	1.9	9
233	Melamine-Regulated Ceramic/Polymer Electrolyte Interface Promotes High Stability in Lithium-Metal Battery. ACS Applied Materials & amp; Interfaces, 2022, 14, 47822-47830.	4.0	7
234	Opportunities of Flexible and Portable Electrochemical Devices for Energy Storage: Expanding the Spotlight onto Semi-solid/Solid Electrolytes. Chemical Reviews, 2022, 122, 17155-17239.	23.0	67

#	Article	IF	Citations
235	An integrated polymer/electrode interface for high performance ceramic/polymer electrolyte-based solid-state lithium batteries. Applied Physics Letters, 2022, 121, .	1.5	2
236	Multi-component solid PVDF-HFP/PPC/LLTO-nanorods composite electrolyte enabling advanced solid-state lithium metal batteries. Electrochimica Acta, 2022, 435, 141384.	2.6	7
237	A review on design considerations in polymer and polymer composite solid-state electrolytes for solid Li batteries. Journal of Power Sources, 2023, 553, 232267.	4.0	18
238	Effective transport network driven by tortuosity gradient enables high-electrochem-active solid-state batteries. National Science Review, 2023, 10, .	4.6	11
239	Single-Ion Conducting Polymeric Protective Interlayer for Stable Solid Lithium-Metal Batteries. ACS Applied Materials & Interfaces, 2022, 14, 56110-56119.	4.0	11
240	Solidâ€State Li Ion Batteries with Oxide Solid Electrolytes: Progress and Perspective. Energy Technology, 2023, 11, .	1.8	14
241	Enhanced Performance of Lithium Polymer Batteries Based on the Nickel-Rich LiNi _{0.8} Mn _{0.1} Co _{0.1} O ₂ Cathode Material and Dual Salts. ACS Applied Energy Materials, 2022, 5, 15768-15779.	2.5	4
242	Novel quasi-solid-state composite electrolytes boost interfacial Li+ transport for long-cycling and dendrite-free lithium metal batteries. Energy Storage Materials, 2023, 56, 258-266.	9.5	3
243	Challenges of polymer electrolyte with wide electrochemical window for high energy solidâ€state lithium batteries. InformaÄnÃ-Materiály, 2023, 5, .	8.5	37
244	Recent Progress of Polymer Electrolytes for Solid-State Lithium Batteries. ACS Sustainable Chemistry and Engineering, 2023, 11, 1253-1277.	3.2	15
245	Regulating Naâ€ion Solvation in Quasiâ€5olid Electrolyte to Stabilize Na Metal Anode. Advanced Functional Materials, 2023, 33, .	7.8	9
246	Ionic Conduction in Polymerâ \in Based Solid Electrolytes. Advanced Science, 2023, 10, .	5.6	66
247	Synergistic effect of 1D bismuth Nanowires/2D graphene composites for high performance flexible anodes in sodium-ion batteries. Journal of Materials Chemistry A, 2023, 11, 8081-8090.	5.2	5
248	Highly Elastic, Healable, and Durable Anhydrous Highâ€Temperature Proton Exchange Membranes Crossâ€Linked with Highly Dense Hydrogen Bonds. Macromolecular Rapid Communications, 2023, 44, .	2.0	0
249	Achieving stable interface for lithium metal batteries using fluoroethylene carbonate-modified garnet-type Li6.4La3Zr1.4Ta0.6O12 composite electrolyte. Electrochimica Acta, 2023, 446, 142063.	2.6	5
250	Multi-chain hydrophobic polymer protective layer with high elasticity for stable lithium metal anode. Journal of Materials Science, 2023, 58, 2713-2720.	1.7	1
251	4.2V polymer all-solid-state lithium batteries enabled by high-concentration PEO solid electrolytes. Energy Storage Materials, 2023, 57, 171-179.	9.5	31
252	Designing Bidirectionally Functional Polymer Electrolytes for Stable Solid Lithium Metal Batteries. Advanced Energy Materials, 2023, 13, .	10.2	14

#	Article	IF	CITATIONS
253	A review of all-solid-state electrolytes for lithium batteries: high-voltage cathode materials, solid-state electrolytes and electrode–electrolyte interfaces. Materials Chemistry Frontiers, 2023, 7, 1268-1297.	3.2	13
254	Research Progress of Stable Lithium Metal Anodes. Advances in Analytical Chemistry, 2023, 13, 11-26.	0.1	0
255	12µmâ€Thick Sintered Garnet Ceramic Skeleton Enabling Highâ€Energyâ€Density Solidâ€State Lithium Metal Batteries. Advanced Energy Materials, 2023, 13, .	10.2	35
256	Elastomeric Electrolyte for High Capacity and Longâ€Cycle‣ife Solidâ€&tate Lithium Metal Battery. Small Methods, 2023, 7, .	4.6	10
257	Durable and Adjustable Interfacial Engineering of Polymeric Electrolytes for Both Stable Niâ€Rich Cathodes and Highâ€Energy Metal Anodes. Advanced Materials, 2023, 35, .	11.1	6
258	Solid-state lithium-ion batteries for grid energy storage: opportunities and challenges. Science China Chemistry, 2024, 67, 43-66.	4.2	15
259	Tailoring Vertically Aligned Inorganicâ€Polymer Nanocomposites with Abundant Lewis Acid Sites for Ultra‣table Solid‣tate Lithium Metal Batteries. Advanced Energy Materials, 2023, 13, .	10.2	17
260	Self-shutdown function and uniform Li-ion flux enabled by a double-layered polymer electrolyte for high-performance Li metal batteries. Journal of Solid State Electrochemistry, 0, , .	1.2	0
261	Anode Interfacial Issues in <scp>Solid‣tate</scp> Li Batteries: Mechanistic Understanding and Mitigating Strategies. Energy and Environmental Materials, 2023, 6, .	7.3	20
262	Liâ€lon Transfer Mechanism of Ambientâ€Temperature Solid Polymer Electrolyte toward Lithium Metal Battery. Advanced Energy Materials, 2023, 13, .	10.2	11
263	Achieving high-energy and high-safety lithium metal batteries with high-voltage-stable solid electrolytes. Matter, 2023, 6, 1096-1124.	5.0	26
264	High-Voltage Solid-State Lithium Metal Batteries with Stable Anodic and Cathodic Interfaces by a Laminated Solid Polymer Electrolyte. ACS Applied Materials & Interfaces, 2023, 15, 17144-17151.	4.0	4
265	Enhanced rate capability and cycling stability of conductive oxide-coated LiNi0.8Co0.1Mn0.1O2 for lithium-ion batteries. Ionics, 2023, 29, 1711-1720.	1.2	0
266	Covalent Organic Framework with Multiâ€Cationic Molecular Chains for Gate Mechanism Controlled Superionic Conduction in Allâ€Solidâ€State Batteries. Angewandte Chemie - International Edition, 2023, 62,	7.2	8
267	Covalent Organic Framework with Multiâ€Cationic Molecular Chains for Gate Mechanism Controlled Superionic Conduction in Allâ€Solidâ€State Batteries. Angewandte Chemie, 2023, 135, .	1.6	3
268	Interfacial Modification, Electrode/Solid-Electrolyte Engineering, and Monolithic Construction of Solid-State Batteries. Electrochemical Energy Reviews, 2023, 6, .	13.1	26
269	Organoboron- and Cyano-Grafted Solid Polymer Electrolytes Boost the Cyclability and Safety of High-Voltage Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2023, 15, 21112-21122.	4.0	6
270	A Composite of Hierarchical Porous MOFs and Halloysite Nanotubes as Singleâ€Ion onducting Electrolyte Toward Highâ€Performance Solidâ€State Lithiumâ€Ion Batteries. Advanced Materials, 2023, 35, .	11.1	11

#	Article	IF	CITATIONS
271	Metal–organic frameworks for solid-state electrolytes: A mini review. Electrochemistry Communications, 2023, 150, 107491.	2.3	18
301	A review of solid-state lithium metal batteries through in-situ solidification. Science China Chemistry, 0, , .	4.2	1
306	The significance of fillers in composite polymer electrolytes for optimizing lithium battery. Ionics, 2024, 30, 647-675.	1.2	0
316	Roadmap for rechargeable batteries: present and beyond. Science China Chemistry, 0, , .	4.2	0
327	Solid Polymer Electrolytes-Based Composite Cathodes for Advanced Solid-State Lithium Batteries. Korean Journal of Chemical Engineering, 2024, 41, 385-402.	1.2	0
331	Lithium batteries - Secondary systems – All-solid state systems Lithium-ion polymer battery. , 2024, , .		0