Enhancing Electrocatalytic Water Splitting by Strain En

Advanced Materials 31, e1807001 DOI: 10.1002/adma.201807001

Citation Report

#	Article	IF	CITATIONS
1	Confinement Catalysis with 2D Materials for Energy Conversion. Advanced Materials, 2019, 31, e1901996.	11.1	257
2	Double functionalization of N-doped carbon carved hollow nanocubes with mixed metal phosphides as efficient bifunctional catalysts for electrochemical overall water splitting. Nano Energy, 2019, 65, 103995.	8.2	111
3	Self-templated construction of 1D NiMo nanowires <i>via</i> a Li electrochemical tuning method for the hydrogen evolution reaction. Nanoscale, 2019, 11, 19429-19436.	2.8	30
4	Novel Stable 3D Stainless Steelâ€Based Electrodes for Efficient Water Splitting. Advanced Materials Interfaces, 2019, 6, 1900774.	1.9	16
5	p–n tungsten oxide homojunctions for Vis-NIR light-enhanced electrocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2019, 7, 19573-19580.	5.2	31
6	Selfâ€Supportive Mesoporous Ni/Co/Fe Phosphosulfide Nanorods Derived from Novel Hydrothermal Electrodeposition as a Highly Efficient Electrocatalyst for Overall Water Splitting. Small, 2019, 15, e1905201.	5.2	80
7	Modulation of oxygen vacancy in tungsten oxide nanosheets for Vis-NIR light-enhanced electrocatalytic hydrogen production and anticancer photothermal therapy. Nanoscale, 2019, 11, 18183-18190.	2.8	25
8	Bimetallic Composition-Promoted Electrocatalytic Hydrodechlorination Reaction on Silver–Palladium Alloy Nanoparticles. ACS Catalysis, 2019, 9, 10803-10811.	5.5	115
9	Recent Advances and Prospective in Ruthenium-Based Materials for Electrochemical Water Splitting. ACS Catalysis, 2019, 9, 9973-10011.	5.5	491
10	Three-dimensional Fe3S4@NiS hollow nanospheres as efficient electrocatalysts for oxygen evolution reaction. Journal of Electroanalytical Chemistry, 2019, 850, 113436.	1.9	16
11	1T/2H MoSe2-on-MXene heterostructure as bifunctional electrocatalyst for efficient overall water splitting. Electrochimica Acta, 2019, 326, 134976.	2.6	125
12	Negative Charging of Transitionâ€Metal Phosphides via Strong Electronic Coupling for Destabilization of Alkaline Water. Angewandte Chemie, 2019, 131, 11922-11926.	1.6	22
13	Negative Charging of Transitionâ€Metal Phosphides via Strong Electronic Coupling for Destabilization of Alkaline Water. Angewandte Chemie - International Edition, 2019, 58, 11796-11800.	7.2	155
14	Reactive nanotemplates for synthesis of highly efficient electrocatalysts: beyond simple morphology transfer. Nanoscale, 2019, 11, 20392-20410.	2.8	11
15	Compressive Strain in Core–Shell Au–Pd Nanoparticles Introduced by Lateral Confinement of Deformation Twinnings to Enhance the Oxidation Reduction Reaction Performance. ACS Applied Materials & Interfaces, 2019, 11, 46902-46911.	4.0	25
16	Quantifying Entatic States in Photophysical Processes: Applications to Copper Photosensitizers. Inorganic Chemistry, 2019, 58, 16800-16817.	1.9	10
17	CoO-Mo2N hollow heterostructure for high-efficiency electrocatalytic hydrogen evolution reaction. NPG Asia Materials, 2019, 11, .	3.8	65
18	Activating the alkaline hydrogen evolution performance of Mo-incorporated Ni(OH)2 by plasma-induced heterostructure. Applied Catalysis B: Environmental, 2020, 260, 118154.	10.8	70

#	Article	IF	CITATIONS
19	Single cobalt atom anchored on N-doped graphyne for boosting the overall water splitting. Applied Surface Science, 2020, 502, 144155.	3.1	50
20	Fully blossomed WO3/BiVO4 structure obtained via active facet engineering of patterned FTO for highly efficient Water splitting. Applied Catalysis B: Environmental, 2020, 263, 118362.	10.8	44
21	Fabrication of carbon nanotubes encapsulated cobalt phosphide on graphene: Cobalt promoted hydrogen evolution reaction performance. Electrochimica Acta, 2020, 330, 135213.	2.6	19
22	Advanced Bifunctional Oxygen Reduction and Evolution Electrocatalyst Derived from Surfaceâ€Mounted Metal–Organic Frameworks. Angewandte Chemie, 2020, 132, 5886-5892.	1.6	16
23	Advanced Bifunctional Oxygen Reduction and Evolution Electrocatalyst Derived from Surfaceâ€Mounted Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2020, 59, 5837-5843.	7.2	99
24	Unraveling the electrochemical properties of lanthanum cobaltite decorated halloysite nanotube nanocomposite: An advanced electrocatalyst for determination of flutamide in environmental samples. Ecotoxicology and Environmental Safety, 2020, 190, 110098.	2.9	34
25	Light and complex 3D MoS ₂ /graphene heterostructures as efficient catalysts for the hydrogen evolution reaction. Nanoscale, 2020, 12, 2715-2725.	2.8	35
26	Strain effects on Co,N co-decorated graphyne catalysts for overall water splitting electrocatalysis. Physical Chemistry Chemical Physics, 2020, 22, 2457-2465.	1.3	32
27	A hybrid Co NPs@CNT nanocomposite as highly efficient electrocatalyst for oxygen evolution reaction. Applied Surface Science, 2020, 507, 145155.	3.1	34
28	Recent advances in tuning the electronic structures of atomically dispersed M–N–C materials for efficient gas-involving electrocatalysis. Materials Horizons, 2020, 7, 970-986.	6.4	48
29	Nitrogen modification enhances the electrocatalytic overall water splitting of NiFe layered double hydroxides in alkaline media. Materials Letters, 2020, 263, 127162.	1.3	7
30	A facile method to produce MoSe2/MXene hybrid nanoflowers with enhanced electrocatalytic activity for hydrogen evolution. Journal of Electroanalytical Chemistry, 2020, 856, 113727.	1.9	37
31	Self-supported nickel nitride nanosheets as highly efficient electrocatalysts for hydrogen evolution. Applied Surface Science, 2020, 503, 144143.	3.1	13
32	CoP Nanoframes as Bifunctional Electrocatalysts for Efficient Overall Water Splitting. ACS Catalysis, 2020, 10, 412-419.	5.5	361
33	Recent progress of Ni–Fe layered double hydroxide and beyond towards electrochemical water splitting. Nanoscale Advances, 2020, 2, 5555-5566.	2.2	52
34	High-performance hydrogen evolution electrocatalysis using proton-intercalated TiO ₂ nanotube arrays as interactive supports for Ir nanoparticles. Journal of Materials Chemistry A, 2020, 8, 22773-22790.	5.2	29
35	Shedding Light on the Role of Misfit Strain in Controlling Core–Shell Nanocrystals. Advanced Materials, 2020, 32, e2004142.	11.1	89
36	Advanced electrocatalysts based on two-dimensional transition metal hydroxides and their composites for alkaline oxygen reduction reaction. Nanoscale, 2020, 12, 21479-21496.	2.8	39

#	Article	IF	CITATIONS
37	Simultaneous Piezoelectrocatalytic Hydrogenâ€Evolution and Degradation of Water Pollutants by Quartz Microrods@Few‣ayered MoS ₂ Hierarchical Heterostructures. Advanced Materials, 2020, 32, e2002875.	11.1	79
38	Ultrathin CoTe nanoflakes electrode demonstrating low overpotential for overall water splitting. Fuel, 2020, 280, 118666.	3.4	49
39	Rational Design of Metal–Organic Frameworks towards Efficient Electrocatalysis. , 2020, 2, 1251-1267.		65
40	High performance of multi-layered alternating Ni–Fe–P and Co–P films for hydrogen evolution. Green Energy and Environment, 2022, 7, 75-85.	4.7	10
41	Interfaces modulation strategy to synthesize bifunctional electrocatalyst for highly efficient overall water splitting. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 607, 125452.	2.3	6
42	Non-precious-metal catalysts for alkaline water electrolysis: <i>operando</i> characterizations, theoretical calculations, and recent advances. Chemical Society Reviews, 2020, 49, 9154-9196.	18.7	448
43	Controllable Conversion from Single-Crystal Nanorods to Polycrystalline Nanosheets of NiCoV-LTH for Oxygen Evolution Reaction at Large Current Density. ACS Sustainable Chemistry and Engineering, 2020, 8, 16091-16096.	3.2	25
44	Dislocation‧trained IrNi Alloy Nanoparticles Driven by Thermal Shock for the Hydrogen Evolution Reaction. Advanced Materials, 2020, 32, e2006034.	11.1	148
45	Ru-based electrocatalysts for hydrogen evolution reaction:Recent research advances and perspectives. Materials Today Physics, 2020, 15, 100274.	2.9	92
46	Latticeâ€Strain Engineering of Homogeneous NiS _{0.5} Se _{0.5} Core–Shell Nanostructure as a Highly Efficient and Robust Electrocatalyst for Overall Water Splitting. Advanced Materials, 2020, 32, e2000231.	11.1	158
47	Effects of molecular adsorption on the spin-wave spectrum and magnon relaxation in two-dimensional Cr ₂ Ge ₂ Te ₆ . Physical Chemistry Chemical Physics, 2020, 22, 22047-22054.	1.3	11
48	Template Construction of Porous CoP/COP ₂ Microflowers Threaded with Carbon Nanotubes toward High-Efficiency Oxygen Evolution and Hydrogen Evolution Electrocatalysts. Inorganic Chemistry, 2020, 59, 12232-12239.	1.9	13
49	Optimizing Formic Acid Electro-oxidation Performance by Restricting the Continuous Pd Sites in Pd–Sn Nanocatalysts. ACS Sustainable Chemistry and Engineering, 2020, 8, 12239-12247.	3.2	20
50	Coupled Vacancy Pairs in Niâ€Đoped CoSe for Improved Electrocatalytic Hydrogen Production Through Topochemical Deintercalation. Angewandte Chemie - International Edition, 2020, 59, 22743-22748.	7.2	157
51	Coupled Vacancy Pairs in Niâ€Doped CoSe for Improved Electrocatalytic Hydrogen Production Through Topochemical Deintercalation. Angewandte Chemie, 2020, 132, 22931-22936.	1.6	16
52	Enhancing hydrogen evolution of MoS2 basal planes by combining single-boron catalyst and compressive strain. Frontiers of Physics, 2020, 15, 1.	2.4	20
53	Engineering of Electronic States on Co ₃ O ₄ Ultrathin Nanosheets by Cation Substitution and Anion Vacancies for Oxygen Evolution Reaction. Small, 2020, 16, e2001571.	5.2	98
54	Strain Influences the Hydrogen Evolution Activity and Absorption Capacity of Palladium. Angewandte Chemie, 2020, 132, 12290-12296.	1.6	9

#	Article	IF	CITATIONS
55	Activation strategies of water-splitting electrocatalysts. Journal of Materials Chemistry A, 2020, 8, 10096-10129.	5.2	67
56	Designing Champion Nanostructures of Tungsten Dichalcogenides for Electrocatalytic Hydrogen Evolution. Advanced Materials, 2020, 32, e2002584.	11.1	82
57	Strain effect on the catalytic activities of B- and B/N-doped black phosphorene for electrochemical conversion of CO to valuable chemicals. Journal of Materials Chemistry A, 2020, 8, 11986-11995.	5.2	31
58	Online Electrochemical Mass Spectrometry Combined with the Rotating Disk Electrode Method for Direct Observations of Potential-Dependent Molecular Behaviors in the Electrode Surface Vicinity. Journal of the Electrochemical Society, 2020, 167, 106503.	1.3	8
59	Ni doped Bi2WO6 for electrochemical OER activity. International Journal of Hydrogen Energy, 2020, 45, 18859-18866.	3.8	27
60	Electrochemically Modifying the Electronic Structure of IrO ₂ Nanoparticles for Overall Electrochemical Water Splitting with Extensive Adaptability. Advanced Energy Materials, 2020, 10, 2001600.	10.2	123
61	Compositional engineering of sulfides, phosphides, carbides, nitrides, oxides, and hydroxides for water splitting. Journal of Materials Chemistry A, 2020, 8, 13415-13436.	5.2	124
62	Surface engineering by doping manganese into cobalt phosphide towards highly efficient bifunctional HER and OER electrocatalysis. Applied Surface Science, 2020, 515, 146059.	3.1	126
63	Strain-Engineered Metal-Free h-B ₂ O Monolayer as a Mechanocatalyst for Photocatalysis and Improved Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2020, 124, 7884-7892.	1.5	27
64	Self-Supported Composite of (Ni,Co) ₃ C Mesoporous Nanosheets/N-Doped Carbon as a Flexible Electrocatalyst for pH-Universal Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2020, 8, 5287-5295.	3.2	36
65	Unveiling the Advances of 2D Materials for Li/Na-S Batteries Experimentally and Theoretically. Matter, 2020, 2, 323-344.	5.0	115
66	Efficient Ammonia Electrosynthesis from Nitrate on Strained Ruthenium Nanoclusters. Journal of the American Chemical Society, 2020, 142, 7036-7046.	6.6	542
67	Perspective on Highâ€Energy Carbonâ€Based Supercapacitors. Energy and Environmental Materials, 2020, 3, 286-305.	7.3	124
68	Core–shell nanostructured electrocatalysts for water splitting. Nanoscale, 2020, 12, 15944-15969.	2.8	83
69	Catalytic Nanoframes and Beyond. Advanced Materials, 2020, 32, e2001345.	11.1	57
70	Formation of cobalt phosphide nanodisks as a bifunctional electrocatalyst for enhanced water splitting. Sustainable Energy and Fuels, 2020, 4, 1616-1620.	2.5	14
71	Earthâ€Abundant Transitionâ€Metalâ€Based Bifunctional Electrocatalysts for Overall Water Splitting in Alkaline Media. Chemistry - A European Journal, 2020, 26, 6423-6436.	1.7	66
72	Bimetallic Fe-Ni phosphide carved nanoframes toward efficient overall water splitting and potassium-ion storage. Chemical Engineering Journal, 2020, 390, 124515.	6.6	45

#	Article	IF	CITATIONS
73	Strategies for design of electrocatalysts for hydrogen evolution under alkaline conditions. Materials Today, 2020, 36, 125-138.	8.3	308
74	Gradient phosphorus-doping engineering and superficial amorphous reconstruction in NiFe ₂ O ₄ nanoarrays to enhance the oxygen evolution electrocatalysis. Nanoscale, 2020, 12, 10977-10986.	2.8	24
75	Deformation-induced charge redistribution in ceria thin film at room temperature. Acta Materialia, 2020, 191, 70-80.	3.8	4
76	Recent Advances in Layered Tungsten Disulfide as Electrocatalyst for Water Splitting. ChemCatChem, 2020, 12, 4962-4999.	1.8	39
77	Integrated design for electrocatalytic carbon dioxide reduction. Catalysis Science and Technology, 2020, 10, 2711-2720.	2.1	92
78	Strain Influences the Hydrogen Evolution Activity and Absorption Capacity of Palladium. Angewandte Chemie - International Edition, 2020, 59, 12192-12198.	7.2	28
79	Electronic Modulation between Tungsten Nitride and Cobalt Dopants for Enhanced Hydrogen Evolution Reaction at a Wide Range of pH. ChemCatChem, 2020, 12, 2962-2966.	1.8	20
80	Metallic nanostructures with low dimensionality for electrochemical water splitting. Chemical Society Reviews, 2020, 49, 3072-3106.	18.7	609
81	An account of the strategies to enhance the water splitting efficiency of noble-metal-free electrocatalysts. Journal of Energy Chemistry, 2021, 59, 160-190.	7.1	48
82	Construction of Co3O4/Fe2O3 nanosheets on nickel foam as efficient electrocatalyst for the oxygen evolution reaction. Journal of Physics and Chemistry of Solids, 2021, 148, 109680.	1.9	17
83	Oxygen vacancies engineered self-supported B doped Co3O4 nanowires as an efficient multifunctional catalyst for electrochemical water splitting and hydrolysis of sodium borohydride. Chemical Engineering Journal, 2021, 404, 126474.	6.6	122
84	Destabilizing Alkaline Water with 3dâ€Metal (Oxy)(Hydr)Oxides for Improved Hydrogen Evolution. Chemistry - A European Journal, 2021, 27, 553-564.	1.7	17
85	Ta-doping triggered electronic structural engineering and strain effect in NiFe LDH for enhanced water oxidation. Chemical Engineering Journal, 2021, 403, 126297.	6.6	154
86	Anion-mediated transition metal electrocatalysts for efficient water electrolysis: Recent advances and future perspectives. Coordination Chemistry Reviews, 2021, 427, 213552.	9.5	66
87	Rational design of self-supported Cu@WC core-shell mesoporous nanowires for pH-universal hydrogen evolution reaction. Applied Catalysis B: Environmental, 2021, 280, 119451.	10.8	133
88	Atom migration-trapping towardÂsingle-atom catalysts for energy electrocatalysis. Materials Today Energy, 2021, 19, 100586.	2.5	15
89	Modification strategies on transition metal-based electrocatalysts for efficient water splitting. Journal of Energy Chemistry, 2021, 58, 446-462.	7.1	88
90	Strain engineered gas-consumption electroreduction reactions: Fundamentals and perspectives. Coordination Chemistry Reviews, 2021, 429, 213649.	9.5	6

#	Article	IF	CITATIONS
91	Lattice-strained nanotubes facilitate efficient natural sunlight-driven CO2 photoreduction. Nano Research, 2021, 14, 2558-2567.	5.8	17
92	Formation of porous NiCoV-LTH nanosheet arrays by <i>in situ</i> etching of nickel foam for the hydrogen evolution reaction at large current density. Dalton Transactions, 2021, 50, 72-75.	1.6	12
93	Recent advances in electrocatalysts for neutral and large-current-density water electrolysis. Nano Energy, 2021, 80, 105545.	8.2	187
94	Defects engineering promotes the electrochemical hydrogen evolution reaction property of phosphorene surface. International Journal of Hydrogen Energy, 2021, 46, 1913-1922.	3.8	24
95	Structural and electronic modulation of conductive MOFs for efficient oxygen evolution reaction electrocatalysis. Journal of Materials Chemistry A, 2021, 9, 11248-11254.	5.2	33
96	Deeply reconstructed hierarchical and defective NiOOH/FeOOH nanoboxes with accelerated kinetics for the oxygen evolution reaction. Journal of Materials Chemistry A, 2021, 9, 15586-15594.	5.2	162
97	RhSe ₂ : A Superior 3D Electrocatalyst with Multiple Active Facets for Hydrogen Evolution Reaction in Both Acid and Alkaline Solutions. Advanced Materials, 2021, 33, e2007894.	11.1	205
98	Facilitating electrocatalytic hydrogen evolution <i>via</i> multifunctional tungsten@tungsten disulfide core–shell nanospheres. Journal of Materials Chemistry A, 2021, 9, 9272-9280.	5.2	13
99	Construction of hierarchical IrTe nanotubes with assembled nanosheets for overall water splitting electrocatalysis. Journal of Materials Chemistry A, 2021, 9, 18576-18581.	5.2	24
100	Ga2OSe monolayer: A promising hydrogen evolution photocatalyst screened from two-dimensional gallium chalcogenides and the derived janus. Green Energy and Environment, 2022, 7, 1045-1052.	4.7	12
101	Bridging Structural Inhomogeneity to Functionality: Pair Distribution Function Methods for Functional Materials Development. Advanced Science, 2021, 8, 2003534.	5.6	44
102	Hierarchical molybdenum-doped NiCoP@carbon microspheres: a highly-efficient electrocatalyst for the hydrogen evolution reaction. Chemical Communications, 2021, 57, 9846-9849.	2.2	8
103	Two-dimensional palladium diselenide for the oxygen reduction reaction. Materials Chemistry Frontiers, 2021, 5, 4970-4980.	3.2	5
104	Engineering electrocatalyst nanosurfaces to enrich the activity by inducing lattice strain. Energy and Environmental Science, 2021, 14, 3717-3756.	15.6	98
105	Recent advances in highly active nanostructured NiFe LDH catalyst for electrochemical water splitting. Journal of Materials Chemistry A, 2021, 9, 3180-3208.	5.2	224
106	Ru/Mo ₂ C@NC Schottky junction-loaded hollow nanospheres as an efficient hydrogen evolution electrocatalyst. Journal of Materials Chemistry A, 2021, 9, 20518-20529.	5.2	30
107	Electrochemical oxidation of biomass derived 5-hydroxymethylfurfural (HMF): pathway, mechanism, catalysts and coupling reactions. Green Chemistry, 2021, 23, 4228-4254.	4.6	191
108	Defects tailoring IrO ₂ @TiN _{1+<i>x</i>} nano-heterojunctions for superior water oxidation activity and stability. Materials Chemistry Frontiers, 2021, 5, 8047-8055.	3.2	5

#	Article	IF	CITATIONS
109	Dual modulation of lattice strain and charge polarization induced by Co(OH) ₂ /Ni(OH) ₂ interfaces for efficient oxygen evolution catalysis. Journal of Materials Chemistry A, 2021, 9, 13279-13287.	5.2	32
110	Lattice-strained nickel hydroxide nanosheets for the boosted diluted CO ₂ photoreduction. Environmental Science: Nano, 2021, 8, 2360-2371.	2.2	12
111	Perfecting electrocatalysts <i>via</i> imperfections: towards the large-scale deployment of water electrolysis technology. Energy and Environmental Science, 2021, 14, 1722-1770.	15.6	213
112	High-performance diluted nickel nanoclusters decorating ruthenium nanowires for pH-universal overall water splitting. Energy and Environmental Science, 2021, 14, 3194-3202.	15.6	53
113	Transition metal-based catalysts for electrochemical water splitting at high current density: current status and perspectives. Nanoscale, 2021, 13, 12788-12817.	2.8	142
114	Recent advances in transition-metal-sulfide-based bifunctional electrocatalysts for overall water splitting. Journal of Materials Chemistry A, 2021, 9, 5320-5363.	5.2	322
115	Designing Highâ€Valence Metal Sites for Electrochemical Water Splitting. Advanced Functional Materials, 2021, 31, 2009779.	7.8	195
116	Mutually Enhanced Catalytic Activity of Doped Cobalt in Porous MoS2 for Hydrogen Evolution Reaction. Nano, 2021, 16, 2150027.	0.5	4
117	Interfacial engineering of heterogeneous catalysts for electrocatalysis. Materials Today, 2021, 48, 115-134.	8.3	96
118	Boosting Electrocatalytic Activity of 3dâ€Block Metal (Hydro)oxides by Ligandâ€Induced Conversion. Angewandte Chemie - International Edition, 2021, 60, 10614-10619.	7.2	101
119	Boosting Electrocatalytic Activity of 3dâ€Block Metal (Hydro)oxides by Ligandâ€Induced Conversion. Angewandte Chemie, 2021, 133, 10708-10713.	1.6	2
121	Designing MOF Nanoarchitectures for Electrochemical Water Splitting. Advanced Materials, 2021, 33, e2006042.	11.1	267
122	Bimetallic sulfide interfaces: Promoting destabilization of water molecules for overall water splitting. Journal of Power Sources, 2021, 487, 229408.	4.0	42
123	Theoretical screening of group IIIA-VIIA elements doping to promote hydrogen evolution of MoS2 basal plane. Applied Surface Science, 2021, 542, 148535.	3.1	31
124	Phase evolution of vulcanized Co3O4 catalysts during oxygen evolution reaction. Applied Surface Science, 2021, 546, 148819.	3.1	21
125	Theoretical Insight on Anion Ordering, Strain, and Doping Engineering of the Oxygen Evolution Reaction in BaTaO2N. Chemistry of Materials, 2021, 33, 3297-3303.	3.2	15
126	Bragg Coherent Diffraction Imaging for <i>In Situ</i> Studies in Electrocatalysis. ACS Nano, 2021, 15, 6129-6146.	7.3	24
127	Strain engineering of epitaxial oxide heterostructures beyond substrate limitations. Matter, 2021, 4, 1323-1334.	5.0	21

#	Article	IF	CITATIONS
128	Stabilizing Metastable Polymorphs of van der Waals Solid MoS ₂ on Single Crystal Oxide Substrates: Exploring the Possible Role of Surface Chemistry and Structure. Journal of Physical Chemistry C, 2021, 125, 11216-11224.	1.5	10
129	Crystal Splintering of β-MnO ₂ Induced by Interstitial Ru Doping Toward Reversible Oxygen Conversion. Chemistry of Materials, 2021, 33, 4135-4145.	3.2	34
130	Recent Advances in the Understanding of the Surface Reconstruction of Oxygen Evolution Electrocatalysts and Materials Development. Electrochemical Energy Reviews, 2021, 4, 566-600.	13.1	90
131	Mesoporous manganese cobaltate: Colloid assisted ethylene glycol combustion synthesis and application in efficient water oxidation. Journal of Alloys and Compounds, 2021, 865, 158882.	2.8	6
132	3D‧tretched Film Ni ₃ S ₂ Nanosheet/Macromolecule Anthraquinone Derivative Polymers for Electrocatalytic Overall Water Splitting. Small, 2021, 17, e2101003.	5.2	13
133	Ab initio description of oxygen vacancies in epitaxially strained \$\$hbox {SrTiO}_{{3}}\$ at finite temperatures. Scientific Reports, 2021, 11, 11499.	1.6	7
134	Elemental Engineering of High-Charge-Density Boron in Nickel as Multifunctional Electrocatalysts for Hydrogen Oxidation and Water Splitting. ACS Applied Energy Materials, 2021, 4, 5434-5442.	2.5	23
135	Improving the electrocatalytic activity of NiFe bimetal-organic framework toward oxygen evolution reaction by Zr doping. Electrochimica Acta, 2021, 381, 138292.	2.6	22
136	Strengthening nitrogen affinity on CuAu@Cu core–shell nanoparticles with ultrathin Cu skin via strain engineering and ligand effect for boosting nitrogen reduction reaction. Applied Catalysis B: Environmental, 2021, 288, 119999.	10.8	35
137	Fundamental Studies of Planar Single-Crystalline Oxide Model Electrodes (RuO ₂ ,) Tj ETQq1 1 0.784	314 rgBT 5.5	/Overlock 1(128
137 138	Fundamental Studies of Planar Single-Crystalline Oxide Model Electrodes (RuO ₂ ,) Tj ETQq1 1 0.784. Porous Ni Foams Filled by N-Doped Carbon Nanotubes Coated with N-Doped Ni ₃ P and Ni Nanoparticles for Catalytic Water Splitting. ACS Applied Nano Materials, 2021, 4, 7443-7453.	314 rgBT 5.5	/Overlock 10 128 15
	Porous Ni Foams Filled by N-Doped Carbon Nanotubes Coated with N-Doped Ni ₃ P and Ni	0.0	120
138	Porous Ni Foams Filled by N-Doped Carbon Nanotubes Coated with N-Doped Ni ₃ P and Ni Nanoparticles for Catalytic Water Splitting. ACS Applied Nano Materials, 2021, 4, 7443-7453. Ni(OH) ₂ Templated Synthesis of Ultrathin Ni ₃ S ₂ Nanosheets as	2.4	15
138 139	Porous Ni Foams Filled by N-Doped Carbon Nanotubes Coated with N-Doped Ni ₃ P and Ni Nanoparticles for Catalytic Water Splitting. ACS Applied Nano Materials, 2021, 4, 7443-7453. Ni(OH) ₂ Templated Synthesis of Ultrathin Ni ₃ S ₂ Nanosheets as Bifunctional Electrocatalyst for Overall Water Splitting. Small, 2021, 17, e2102097. PdRu/CNTs synthesized by microwaveâ€essisted method for high stable acidic oxygen evolution	2.4 5.2	15 54
138 139 140	Porous Ni Foams Filled by N-Doped Carbon Nanotubes Coated with N-Doped Ni ₃ P and Ni Nanoparticles for Catalytic Water Splitting. ACS Applied Nano Materials, 2021, 4, 7443-7453. Ni(OH) ₂ Templated Synthesis of Ultrathin Ni ₃ S ₂ Nanosheets as Bifunctional Electrocatalyst for Overall Water Splitting. Small, 2021, 17, e2102097. PdRu/CNTs synthesized by microwaveâ€essisted method for high stable acidic oxygen evolution reaction. Electrochemical Science Advances, 0, , e202100111. Highly efficient and robust noble-metal free bifunctional water electrolysis catalyst achieved via	2.4 5.2 1.2	128 15 54 0
138 139 140 141	Porous Ni Foams Filled by N-Doped Carbon Nanotubes Coated with N-Doped Ni ₃ P and Ni Nanoparticles for Catalytic Water Splitting. ACS Applied Nano Materials, 2021, 4, 7443-7453. Ni(OH) ₂ Templated Synthesis of Ultrathin Ni ₃ S ₂ Nanosheets as Bifunctional Electrocatalyst for Overall Water Splitting. Small, 2021, 17, e2102097. PdRu/CNTs synthesized by microwaveâ€assisted method for high stable acidic oxygen evolution reaction. Electrochemical Science Advances, 0, , e202100111. Highly efficient and robust noble-metal free bifunctional water electrolysis catalyst achieved via complementary charge transfer. Nature Communications, 2021, 12, 4606. Modulating oxygen electronic orbital occupancy of Cr-based MXenes via transition metal adsorbing	 2.4 5.2 1.2 5.8 	128 15 54 0 119
 138 139 140 141 142 	Porous Ni Foams Filled by N-Doped Carbon Nanotubes Coated with N-Doped Ni ₃ P and Ni Nanoparticles for Catalytic Water Splitting. ACS Applied Nano Materials, 2021, 4, 7443-7453. Ni(OH) ₂ Templated Synthesis of Ultrathin Ni ₃ S ₂ Nanosheets as Bifunctional Electrocatalyst for Overall Water Splitting. Small, 2021, 17, e2102097. PdRu/CNTs synthesized by microwaveâ€assisted method for high stable acidic oxygen evolution reaction. Electrochemical Science Advances, 0, , e202100111. Highly efficient and robust noble-metal free bifunctional water electrolysis catalyst achieved via complementary charge transfer. Nature Communications, 2021, 12, 4606. Modulating oxygen electronic orbital occupancy of Cr-based MXenes via transition metal adsorbing for optimal HER activity. International Journal of Hydrogen Energy, 2021, 46, 25457-25467. Template-free synthesis of 1D hollow Fe doped CoP nanoneedles as highly activity electrocatalysts for	 2.4 5.2 1.2 5.8 3.8 	128 15 54 0 119 7

#	Article	IF	CITATIONS
146	Highly Conductive Amorphous Pentlandite Anchored with Ultrafine Platinum Nanoparticles for Efficient pHâ€Universal Hydrogen Evolution Reaction. Advanced Functional Materials, 2021, 31, 2105372.	7.8	33
147	Engineering unique Fe(SexS1â^x)2 nanorod bundles for boosting oxygen evolution reaction. Chemical Engineering Journal, 2021, 418, 129426.	6.6	29
148	Strain-induced electronic, stability and enhancement of thermoelectric performance of 2D Si2C3 monolayer: An emerging material for renewable energy. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 132, 114769.	1.3	3
149	Coupling of Thermal and Electrochemical-Activated Stainless-Steel Mesh as a Highly Robust Electrocatalyst for Oxygen Evolution Reaction. ACS Applied Energy Materials, 2021, 4, 10404-10413.	2.5	10
150	Structure–property correlations for analysis of heterogeneous electrocatalysts. Chemical Physics Reviews, 2021, 2, .	2.6	8
151	NiCo-Based Electrocatalysts for the Alkaline Oxygen Evolution Reaction: A Review. ACS Catalysis, 2021, 11, 12485-12509.	5.5	204
152	Morphological-modulated FeNi-based amorphous alloys as efficient alkaline water splitting electrocatalysts. Electrochimica Acta, 2021, 389, 138756.	2.6	13
153	Highly Controllable Hierarchically Porous Ag/Ag ₂ S Heterostructure by Cation Exchange for Efficient Hydrogen Evolution. Small, 2021, 17, e2103064.	5.2	25
154	In situ construction of hybrid Co(OH)2 nanowires for promoting long-term water splitting. Applied Catalysis B: Environmental, 2021, 292, 120063.	10.8	58
155	A general strategy for constructing transition metal Oxide/CeO2 heterostructure with oxygen vacancies toward hydrogen evolution reaction and oxygen evolution reaction. Journal of Power Sources, 2021, 512, 230514.	4.0	32
156	Interfacial heteroâ€phase construction in nickel/molybdenum selenide hybrids to promote the water splitting performance. Applied Materials Today, 2021, 25, 101175.	2.3	12
157	Strawberry-like Co3O4-Ag bifunctional catalyst for overall water splitting. Applied Catalysis B: Environmental, 2021, 299, 120658.	10.8	38
158	Improving oxygen evolution reaction activity by constructing core-shell structure of Co/N-doped carbon polyhedron@NiCo layered double hydroxides. Journal of Alloys and Compounds, 2022, 890, 161805.	2.8	12
159	In situ surface reconstruction on LaCoO3â [~] î [^] leads to enhanced hydrogen evolution reaction. Journal of Alloys and Compounds, 2022, 891, 161754.	2.8	11
160	Rational design of electrospun nanofiber-typed electrocatalysts for water splitting: A review. Chemical Engineering Journal, 2022, 428, 131133.	6.6	42
161	PtRu alloy nanoparticles embedded on C2N nanosheets for efficient hydrogen evolution reaction in both acidic and alkaline solutions. Chemical Engineering Journal, 2022, 428, 131085.	6.6	19
162	A strategy for preparing high-efficiency and economical catalytic electrodes toward overall water splitting. Nanoscale, 2021, 13, 10624-10648.	2.8	53
163	Gd-induced electronic structure engineering of a NiFe-layered double hydroxide for efficient oxygen evolution. Journal of Materials Chemistry A, 2021, 9, 2999-3006.	5.2	133

#	Article	IF	CITATIONS
164	Continuous 3D-nanopatterned Ni–Mo solid solution as a free-standing electrocatalyst for the hydrogen evolution reaction in alkaline medium. Journal of Materials Chemistry A, 2021, 9, 7767-7773.	5.2	17
165	Cyanogroup functionalized sub-2 nm ultrafine Pt nanonetworks reinforce electrocatalytic hydrogen evolution in a broad pH range. CrystEngComm, 2021, 23, 7932-7937.	1.3	3
166	Defect-assisted electronic metal–support interactions: tuning the interplay between Ru nanoparticles and CuO supports for pH-neutral oxygen evolution. Nanoscale, 2021, 13, 71-80.	2.8	4
167	An Mn-doped NiCoP flower-like structure as a highly efficient electrocatalyst for hydrogen evolution reaction in acidic and alkaline solutions with long duration. Nanoscale, 2021, 13, 11069-11076.	2.8	48
168	The mechanism of enhanced photocatalytic activity for water-splitting of ReS ₂ by strain and electric field engineering. RSC Advances, 2021, 11, 23055-23063.	1.7	5
169	Interface chemistry of two-dimensional heterostructures – fundamentals to applications. Chemical Society Reviews, 2021, 50, 4684-4729.	18.7	152
170	Fe-doping induced localized amorphization in ultrathin α-Ni(OH) ₂ nanomesh for superior oxygen evolution reaction catalysis. Journal of Materials Chemistry A, 2021, 9, 14372-14380.	5.2	44
171	Highâ€Voltage Electrolytes for Aqueous Energy Storage Devices. Batteries and Supercaps, 2020, 3, 323-330.	2.4	92
172	Common Pitfalls of Reporting Electrocatalysts for Water Splitting. Chemical Research in Chinese Universities, 2020, 36, 360-365.	1.3	12
173	Modification of Black Phosphorus Nanosheets with a Ni-Containing Carbon Layer as Efficient and Stable Hydrogen Production Electrocatalysts. ACS Applied Materials & Interfaces, 2020, 12, 54619-54626.	4.0	9
174	Strain Engineering of Epitaxial Oxide Heterostructures Beyond Substrate Limitations. SSRN Electronic Journal, 0, , .	0.4	1
175	Design principles of noble metal-free electrocatalysts for hydrogen production in alkaline media: combining theory and experiment. Nanoscale Advances, 2021, 3, 6797-6826.	2.2	23
176	Recent Advances in Layered-Double-Hydroxides Based Noble Metal Nanoparticles Efficient Electrocatalysts. Nanomaterials, 2021, 11, 2644.	1.9	12
177	Structural Regulation of Pdâ€Based Nanoalloys for Advanced Electrocatalysis. Small Science, 2021, 1, 2100061.	5.8	48
178	Ternary VS2/ZnS/CdS hybrids as efficient electrocatalyst for hydrogen evolution reaction: Experimental and theoretical insights. AIP Advances, 2021, 11, .	0.6	13
179	Design Principles for Tungsten Oxide Electrocatalysts for Water Splitting. ChemElectroChem, 2021, 8, 4427-4440.	1.7	15
180	Ultrahighâ€Currentâ€Density and Longâ€Termâ€Durability Electrocatalysts for Water Splitting. Small, 2022, 18, e2104513.	5.2	49
181	Torsion strained iridium oxide for efficient acidic water oxidation in proton exchange membrane electrolyzers. Nature Nanotechnology, 2021, 16, 1371-1377	15.6	197

#	Article	IF	CITATIONS
182	NiFe Layered Double Hydroxide/FeOOH Heterostructure Nanosheets as an Efficient and Durable Bifunctional Electrocatalyst for Overall Seawater Splitting. Inorganic Chemistry, 2021, 60, 17371-17378.	1.9	56
184	CoNiCuMgZn high entropy alloy nanoparticles embedded onto graphene sheets via anchoring and alloying strategy as efficient electrocatalysts for hydrogen evolution reaction. Chemical Engineering Journal, 2022, 430, 132883.	6.6	39
185	Highâ€Entropy Alloys for Electrocatalysis: Design, Characterization, and Applications. Small, 2022, 18, e2104339.	5.2	82
186	Nanoframes of Co ₃ O ₄ –Mo ₂ N Heterointerfaces Enable Highâ€Performance Bifunctionality toward Both Electrocatalytic HER and OER. Advanced Functional Materials, 2022, 32, 2107382.	7.8	153
187	Recent advances in carbon substrate supported nonprecious nanoarrays for electrocatalytic oxygen evolution. Journal of Materials Chemistry A, 2021, 9, 25773-25795.	5.2	71
188	One-step novel synthesis of Co2P/CoP and its hydrogen evolution reaction performance in alkaline media. Materials Chemistry and Physics, 2022, 277, 125419.	2.0	5
189	Modulating the Electronic Properties of MoS ₂ Nanosheets for Electrochemical Hydrogen Production: A Review. ACS Applied Nano Materials, 2021, 4, 11413-11427.	2.4	24
190	Communication—Fe-MOF Exhibits Higher Oxygen Evolution Ability by Electronic Modulation of Sodium Hypochlorite. Journal of the Electrochemical Society, 2021, 168, 126508.	1.3	3
191	Recent Advances in Electrolytes for "Beyond Aqueous―Zincâ€Ion Batteries. Advanced Materials, 2022, 34, e2106409.	11.1	167
192	Facile electrodeposited NiMoSe nanospheres for hydrogen evolution reaction. Materials Letters, 2022, 310, 131409.	1.3	12
193	Quenchâ€Induced Surface Engineering Boosts Alkaline Freshwater and Seawater Oxygen Evolution Reaction of Porous NiCo ₂ O ₄ Nanowires. Small, 2022, 18, e2106187.	5.2	38
194	Advancing Photoelectrochemical Energy Conversion through Atomic Design of Catalysts. Advanced Science, 2022, 9, e2104363.	5.6	21
195	Strain in a platinum plate induced by an ultrahigh energy laser boosts the hydrogen evolution reaction. RSC Advances, 2021, 11, 39087-39094.	1.7	4
196	Wrinkle facilitated hydrogen evolution reaction of vacancy-defected transition metal dichalcogenide monolayers. Nanoscale, 2021, 13, 20576-20582.	2.8	7
197	Effect of support on hydrogen generation over iron oxides in the chemical looping process. RSC Advances, 2021, 11, 37552-37558.	1.7	2
198	Nanoscale Design of Pdâ€Based Electrocatalysts for Oxygen Reduction Reaction Enhancement in Alkaline Media. Small Structures, 2022, 3, .	6.9	40
199	Current understanding of ceria surfaces for CO2 reduction in SOECs and future prospects – A review. Solid State Ionics, 2022, 375, 115833.	1.3	22
200	Zn-VOx-Co nanosheets with amorphous/crystalline heterostructure for highly efficient hydrogen evolution reaction. Chemical Engineering Journal, 2022, 432, 134329.	6.6	26

#	Article	IF	CITATIONS
201	Strain-assisted in-situ formed oxygen defective WO3 film for photothermal-synergistic reverse water gas shift reaction and single-particle study. Chemical Engineering Journal, 2022, 433, 134199.	6.6	10
202	Uniform cobalt grafted on vanadium nitride as a high efficient oxygen evolution reaction catalyst. International Journal of Hydrogen Energy, 2022, 47, 4386-4393.	3.8	15
203	Tailoring the electronic and photocatalytic properties of Mo1â^'xWx S2 monolayers via biaxial strain. Journal of Materials Science, 2022, 57, 4283-4299.	1.7	8
204	rGO decorated semiconductor heterojunction of BiVO4/NiO to enhance PEC water splitting efficiency. International Journal of Hydrogen Energy, 2022, 47, 4375-4385.	3.8	26
205	<i>In situ</i> growth of SeO _{<i>x</i>} films on the surface of Ni–Fe–selenide nanosheets as highly active and stable electrocatalysts for the oxygen evolution reaction. Materials Advances, 2022, 3, 2546-2557.	2.6	8
206	A facile templating fabrication of porous CoP nanoparticles towards electrocatalytic oxygen evolution. Applied Surface Science, 2022, 583, 152402.	3.1	16
207	A freestanding nanoporous NiCoFeMoMn high-entropy alloy as an efficient electrocatalyst for rapid water splitting. Chemical Engineering Journal, 2022, 435, 134898.	6.6	60
208	Au(111)@Ti ₆ O ₁₁ heterostructure composites with enhanced synergistic effects as efficient electrocatalysts for the hydrogen evolution reaction. Nanoscale, 2022, 14, 3878-3887.	2.8	5
209	Layered FeCoNi double hydroxides with tailored surface electronic configurations induced by oxygen and unsaturated metal vacancies for boosting the overall water splitting process. Nanoscale, 2022, 14, 4156-4169.	2.8	10
210	Direct assessment of confinement effect in zeolite-encapsulated subnanometric metal species. Nature Communications, 2022, 13, 821.	5.8	30
211	Strong Oxide‧upport Interaction over IrO ₂ /V ₂ O ₅ for Efficient pHâ€Universal Water Splitting. Advanced Science, 2022, 9, e2104636.	5.6	77
212	MWCNT-modified MXene as cost-effective efficient bifunctional catalyst for overall water splitting. RSC Advances, 2022, 12, 8405-8413.	1.7	29
213	Applications of Nickelâ€Based Electrocatalysts for Hydrogen Evolution Reaction. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	17
214	MXene Nanoarchitectonics: Defectâ€Engineered 2D MXenes towards Enhanced Electrochemical Water Splitting. Advanced Energy Materials, 2022, 12, .	10.2	125
215	Theoretical Insights into the Hydrogen Evolution Reaction on VGe ₂ N ₄ and NbGe ₂ N ₄ Monolayers. ACS Omega, 2022, 7, 7837-7844.	1.6	11
216	Engineering 2D Materials for Photocatalytic Water-Splitting from a Theoretical Perspective. Materials, 2022, 15, 2221.	1.3	43
217	Ambipolar Enhanced Oxygen Evolution Reaction in Flexible van der Waals LaNiO ₃ Membrane. ACS Catalysis, 2022, 12, 4119-4124.	5.5	16
218	Strain Engineering: A Boosting Strategy for Photocatalysis. Advanced Materials, 2022, 34, e2200868.	11.1	82

#	Article	IF	CITATIONS
219	Iron doped mesoporous cobalt phosphide with optimized electronic structure for enhanced hydrogen evolution. International Journal of Hydrogen Energy, 2022, 47, 14767-14776.	3.8	17
220	Double Hypercrosslinked Porous Organic Polymer-Derived Electrocatalysts for a Water Splitting Device. ACS Applied Energy Materials, 2022, 5, 3269-3274.	2.5	6
221	Direct Synthesis of Stable 1Tâ€MoS ₂ Doped with Ni Single Atoms for Water Splitting in Alkaline Media. Small, 2022, 18, e2107238.	5.2	58
222	Modulation of the B4N monolayer as an efficient electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 11511-11519.	3.8	1
223	Transition metal dichalcogenides as catalysts for the hydrogen evolution reaction: The emblematic case of "inert―ZrSe ₂ as catalyst for electrolyzers. Nano Select, 2022, 3, 1069-1081.	1.9	6
224	Praseodymium-doped Sr2TiFeO6-δ double perovskite as a bi-functional electrocatalyst for hydrogen production through water splitting. Journal of Environmental Chemical Engineering, 2022, 10, 107609.	3.3	17
225	Review of the Hydrogen Evolution Reaction—A Basic Approach. Energies, 2021, 14, 8535.	1.6	22
226	Strain Engineering in Electrocatalysts: Fundamentals, Progress, and Perspectives. Advanced Energy Materials, 2022, 12, .	10.2	72
227	In Situ Electronic Redistribution Tuning of NiCo ₂ S ₄ Nanosheets for Enhanced Electrocatalysis. Advanced Functional Materials, 2022, 32, .	7.8	108
228	Bimetallic Ir _{<i>x</i>} Pb nanowire networks with enhanced electrocatalytic activity for the oxygen evolution reaction. Journal of Materials Chemistry A, 2022, 10, 11196-11204.	5.2	6
229	Laser-ablation assisted strain engineering of gold nanoparticles for selective electrochemical CO ₂ reduction. Nanoscale, 2022, 14, 7702-7710.	2.8	8
230	<i>In situ</i> phosphating of Zn-doped bimetallic skeletons as a versatile electrocatalyst for water splitting. Energy and Environmental Science, 2022, 15, 2425-2434.	15.6	50
231	MXene-supported NiMn-LDHs as efficient electrocatalysts towards enhanced oxygen evolution reactions. Materials Advances, 2022, 3, 4359-4368.	2.6	12
232	Rational Design of Better Hydrogen Evolution Electrocatalysts for Water Splitting: A Review. Advanced Science, 2022, 9, e2200307.	5.6	121
233	Surface and Interface Engineering Strategies for MoS ₂ Towards Electrochemical Hydrogen Evolution. Chemistry - an Asian Journal, 2022, 17, .	1.7	6
234	Recent progress on mixed transition metal nanomaterials based on metal–organic frameworks for energy-related applications. Journal of Materials Chemistry A, 2022, 10, 9788-9820.	5.2	28
235	Facile synthesis of Co ₃ O ₄ nanoparticles with different morphology for efficient water oxidation in alkaline media. Journal of Physics: Conference Series, 2022, 2263, 012013.	0.3	1
236	Improving catalytic efficiency via tailoring macroscopic elasticity of nanoporous materials. Journal of Materials Science, 2022, 57, 8648-8657.	1.7	1

#	Article	IF	CITATIONS
237	Biaxially Strained MoS ₂ Nanoshells with Controllable Layers Boost Alkaline Hydrogen Evolution. Advanced Materials, 2022, 34, e2202195.	11.1	43
238	Structure–Property Relationship of Oxygen-Doped Two-Dimensional Gallium Selenide for Hydrogen Evolution Reaction Revealed from Density Functional Theory. ACS Applied Energy Materials, 2022, 5, 6070-6079.	2.5	2
239	Outlining Key Perspectives for the Advancement of Electrocatalytic Remediation of Nitrate from Polluted Waters. ACS ES&T Engineering, 2022, 2, 746-768.	3.7	22
240	Heterostructures of tin and tungsten selenides for robust overall water splitting. Journal of Colloid and Interface Science, 2022, 623, 561-573.	5.0	17
241	Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chemical Society Reviews, 2022, 51, 4583-4762.	18.7	453
242	Hierarchical Metal Sulfides Heterostructure as Superior Bifunctional Electrode for Overall Water Splitting. ChemSusChem, 2022, 15, .	3.6	27
243	Activating ruthenium dioxide via compressive strain achieving efficient multifunctional electrocatalysis for Znâ€air batteries and overall water splitting. InformaÄnÃ-Materiály, 2022, 4, .	8.5	25
244	Fe-doped Co9S8@CoO aerogel with core-shell nanostructures for boosted oxygen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 21182-21190.	3.8	16
245	Influence of Monolayered RuO ₂ Nanosheets and Co ²⁺ Ion Linkers in Improving the Electrocatalytic Performance of MoS ₂ Nanoflowers. Energy & Fuels, 2022, 36, 11609-11618.	2.5	4
247	Recent strategies for activating the basal planes of transition metal dichalcogenides towards hydrogen production. Journal of Materials Chemistry A, 2022, 10, 19067-19089.	5.2	27
248	The impacts of molecular adsorption on antiferromagnetic MnPS ₃ monolayers: enhanced magnetic anisotropy and intralayer Dzyaloshinskii–Moriya interaction. Materials Horizons, 2022, 9, 2384-2392.	6.4	11
249	Fe–Ni–Co trimetallic oxide hierarchical nanospheres as high-performance bifunctional electrocatalysts for water electrolysis. New Journal of Chemistry, 2022, 46, 13296-13302.	1.4	6
250	Tensile‣trained RuO ₂ Loaded on Antimonyâ€Tin Oxide by Fast Quenching for Protonâ€Exchange Membrane Water Electrolyzer. Advanced Science, 2022, 9, .	5.6	28
251	High performance transition metal-based electrocatalysts for green hydrogen production. Chemical Communications, 2022, 58, 7874-7889.	2.2	14
252	Enhanced electrocatalytic hydrogen evolution by molybdenum disulfide nanodots anchored on MXene under alkaline conditions. Nanoscale Advances, 2022, 4, 3398-3406.	2.2	6
253	Electronic structure modification and N-doped carbon shell nanoarchitectonics of Ni ₃ FeN@NC for overall water splitting performance evaluation. Journal of Materials Chemistry A, 2022, 10, 16704-16713.	5.2	21
254	Surface engineering of superhydrophilic Ni2P@NiFe LDH heterostructure toward efficient water splitting electrocatalysis. Applied Surface Science, 2022, 602, 154287.	3.1	25
255	Engineering Nonprecious Metal Oxides Electrocatalysts for Twoâ€Electron Water Oxidation to H ₂ O ₂ . Advanced Energy Materials, 2022, 12, .	10.2	39

#	Article	IF	Citations
256	Amorphous molybdenum sulfide and its Mo-S motifs: Structural characteristics, synthetic strategies, and comprehensive applications. Nano Research, 2022, 15, 8613-8635.	5.8	28
257	Unfolding essence of nanoscience for improved water splitting hydrogen generation in the light of newly emergent nanocatalysts. International Journal of Hydrogen Energy, 2022, 47, 26915-26955.	3.8	16
258	First-principles studies of monolayers MoSi2N4 decorated with transition metal single-atom for visible light-driven high-efficient CO2 reduction by strain and electronic engineering. Chemical Engineering Journal, 2022, 450, 138198.	6.6	11
259	In-plane strain engineering in ultrathin noble metal nanosheets boosts the intrinsic electrocatalytic hydrogen evolution activity. Nature Communications, 2022, 13, .	5.8	93
260	Synergy of heterojunction and interfacial strain for boosting photocatalytic H2 evolution of black phosphorus nanosheets. Journal of Colloid and Interface Science, 2022, 627, 969-977.	5.0	14
261	Strain Modified Oxygen Evolution Reaction Performance in Epitaxial, Freestanding, and Van Der Waals Manganite Thin Films. Nano Letters, 2022, 22, 7066-7072.	4.5	9
262	Constructing Heterogeneous Photocatalysts Based on Carbon Nitride Nanosheets and Graphene Quantum Dots for Highly Efficient Photocatalytic Hydrogen Generation. Materials, 2022, 15, 5390.	1.3	1
263	Recent Advances of Singleâ€Atomâ€Alloy for Energy Electrocatalysis. Advanced Energy Materials, 2022, 12,	10.2	50
264	Strategies of Anode Design for Seawater Electrolysis: Recent Development and Future Perspective. Small Science, 2022, 2, .	5.8	31
265	Function of Internal and External Fe in a Ni-Based Precatalyst System Toward Oxygen Evolution Reaction. Inorganic Chemistry, 2022, 61, 12772-12780.	1.9	6
266	A core-satellite structured type II heterojunction photocatalyst with enhanced CO2 reduction under visible light. Nano Research, 2022, 15, 8880-8889.	5.8	16
267	Operando Monitoring of Local pH Value Changes at the Carbon Electrode Surface in Neutral Sulfate-Based Aqueous Electrochemical Capacitors. ACS Applied Materials & Interfaces, 2022, 14, 37782-37792.	4.0	8
268	Two-dimensional AuSe/SnSe heterostructure for solar photocatalytic hydrogen evolution reaction with Z-scheme. Solar Energy Materials and Solar Cells, 2022, 247, 111940.	3.0	8
269	Efficient photoreduction of diluted CO2 using lattice-strained Ni1â^'xSe nanoflowers. Journal of CO2 Utilization, 2022, 64, 102193.	3.3	3
270	Emerging electrocatalytic activities in transition metal selenides: synthesis, electronic modulation, and structure-performance correlations. Chemical Engineering Journal, 2023, 451, 138514.	6.6	28
271	Deconvoluting Photoelectrochemical Activity in Monoclinic–Scheelite BiVO ₄ Facet Selected Thin Films. Journal of Physical Chemistry C, 2022, 126, 16477-16491.	1.5	3
272	Value-added formate production from selective ethylene glycol oxidation based on cost-effective self-supported MOF nanosheet arrays. Rare Metals, 2022, 41, 3654-3661.	3.6	24
273	The correlation of the nickel (1 1 1) facet with the hydrogen evolution performance of Ni electrodes in alkaline solutions. Journal of Electroanalytical Chemistry, 2022, 923, 116833.	1.9	4

#	Article	IF	CITATIONS
274	Vacancy and strain engineering of Co3O4 for efficient water oxidation. Journal of Colloid and Interface Science, 2023, 629, 346-354.	5.0	7
275	Electronic structure engineering for electrochemical water oxidation. Journal of Materials Chemistry A, 2022, 10, 20218-20241.	5.2	75
276	Alkali metal-mediated interfacial charge redistribution toward near-optimal water oxidation. Journal of Materials Chemistry A, 0, , .	5.2	0
277	Challenges and prospects of high-voltage aqueous electrolytes for energy storage applications. Physical Chemistry Chemical Physics, 2022, 24, 20674-20688.	1.3	3
278	Strain-mediated oxygen evolution reaction on magnetic two-dimensional monolayers. Nanoscale Horizons, 2022, 7, 1404-1410.	4.1	6
279	A solvent-induced crystal-facet effect of nickel–cobalt layered double hydroxides for highly efficient overall water splitting. Inorganic Chemistry Frontiers, 2022, 9, 5527-5537.	3.0	5
280	Hollow Mo-doped NiS _{<i>x</i>} nanoarrays decorated with NiFe layered double-hydroxides for efficient and stable overall water splitting. Journal of Materials Chemistry A, 2022, 10, 18989-18999.	5.2	32
281	Modulating coordination structures and metal environments of MOFs-Engineered electrocatalysts for water electrolysis. Chemical Engineering Journal, 2023, 452, 139475.	6.6	19
282	Recent Advances in Engineered Ruâ€Based Electrocatalysts for the Hydrogen/Oxygen Conversion Reactions. Advanced Energy Materials, 2022, 12, .	10.2	58
283	Atomically Dispersed Fe–N ₅ Sites Anchored in Porous N-Doped Carbon Nanofibers for Effective Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2022, 10, 13505-13513.	3.2	1
284	Sub-2 nm IrO2/Ir nanoclusters with compressive strain and metal vacancies boost water oxidation in acid. Nano Research, 2023, 16, 334-342.	5.8	11
285	Interfacial Carbon Makes Nanoâ€Particulate RuO ₂ an Efficient, Stable, pHâ€Universal Catalyst for Splitting of Seawater. Small, 2022, 18, .	5.2	18
286	Linking Lattice Strain and Electron Transfer Kinetics in Crystalline Layered Double Hydroxides. ACS Catalysis, 2022, 12, 12419-12431.	5.5	1
287	Vacancy Defects in 2D Transition Metal Dichalcogenide Electrocatalysts: From Aggregated to Atomic Configuration. Advanced Materials, 2023, 35, .	11.1	27
288	Recent Development of Nanostructured Nickel Metal-Based Electrocatalysts for Hydrogen Evolution Reaction: A Review. Topics in Catalysis, 2023, 66, 149-181.	1.3	4
289	Ni ₂ Se ₃ â^'CuSe _{<i>x</i>} Heterostructure as a Highly Efficient Bifunctional Electrocatalyst for Ureaâ€Assisted Hydrogen Generation. ChemSusChem, 2022, 15, .	3.6	4
290	Two-dimensional materials for photoelectrochemical water splitting. Energy Advances, 2023, 2, 34-53.	1.4	9
291	Local structure analysis and structure mining for design of photocatalytic metal oxychloride intergrowths. Journal of Materials Chemistry A, 2022, 10, 23212-23221.	5.2	1

#	Article	IF	CITATIONS
292	Orbital Occupancy and Spin Polarization: From Mechanistic Study to Rational Design of Transition Metal-Based Electrocatalysts toward Energy Applications. ACS Nano, 2022, 16, 17847-17890.	7.3	48
293	Paired electrocatalysis in 5-hydroxymethylfurfural valorization. Frontiers in Chemistry, 0, 10, .	1.8	8
294	2D Transition Metal Dichalcogenidesâ€Based Electrocatalysts for Hydrogen Evolution Reaction. Advanced Functional Materials, 2022, 32, .	7.8	54
295	Strain related new sciences and devices in low-dimensional binary oxides. Nano Energy, 2022, 104, 107917.	8.2	4
296	Recent progress of aqueous and organic/aqueous hybrid electrolytes for low-temperature rechargeable metal-ion batteries and supercapacitors. Energy Storage Materials, 2023, 54, 382-402.	9.5	19
297	Oxygen Evolution Electrocatalysts for the Proton Exchange Membrane Electrolyzer: Challenges on Stability. Small Methods, 2022, 6, .	4.6	20
298	Co(OH)2 Nanoflowers Decorated α-NiMoO4 Nanowires as a Bifunctional Electrocatalyst for Efficient Overall Water Splitting. Catalysts, 2022, 12, 1417.	1.6	9
299	Realizing a strong visible-light absorption band in piezoelectric 2D carbon nitride sheets for enhanced piezocatalysis. Nano Energy, 2022, 104, 107983.	8.2	14
300	Recent advances in understanding and design of efficient hydrogen evolution electrocatalysts for water splitting: A comprehensive review. Advances in Colloid and Interface Science, 2023, 311, 102811.	7.0	17
301	Porous carbon foam loaded CoSe2 nanoparticles based on inkjet-printing technology as self-supporting electrodes for efficient water splitting. Electrochimica Acta, 2023, 438, 141594.	2.6	0
302	A robust octahedral NiCoOxSy core-shell structure decorated with NiWO4 nanoparticles for enhanced electrocatalytic hydrogen evolution reaction. Electrochimica Acta, 2023, 439, 141618.	2.6	9
303	Impact of Ligand in Bimetallic Co, Ni-Metal-Organic Framework towards Oxygen Evolution Reaction. Electrochimica Acta, 2023, 439, 141714.	2.6	8
304	Electroshock synthesis of a bifunctional nonprecious multiâ€element alloy for alkaline hydrogen oxidation and evolution. Exploration, 2022, 2, .	5.4	11
305	In-situ imaging of strain-induced enhancement of hydrogen evolution activity on the extruded MoO2 sheets. Nano Research, 2023, 16, 5419-5426.	5.8	3
306	Dual-metal hydroxide@oxide heterojunction catalyst constructed via corrosion engineering for large-current oxygen evolution reaction. Applied Catalysis B: Environmental, 2023, 325, 122311.	10.8	11
307	Application of HTS in Green Hydrogen and Fuel Cells. Nanostructure Science and Technology, 2023, , 13-54.	0.1	0
308	Review on Metals and Metal Oxides in Sustainable Energy Production: Progress and Perspectives. Energy & Fuels, 2023, 37, 1577-1632.	2.5	23
309	Recent advances in Ru-based electrocatalysts for oxygen evolution reaction. Journal of Materials Chemistry A, 2023, 11, 1634-1650.	5.2	33

# 310	ARTICLE Flattening bent Janus nanodiscs expands lattice parameters. CheM, 2023, 9, 948-962.	IF 5.8	CITATIONS 3
311	Latticeâ€&train Engineering for Heterogenous Electrocatalytic Oxygen Evolution Reaction. Advanced Materials, 2023, 35, .	11.1	34
312	Metallic Metastable Hybrid 1T′/1T Phase Triggered Co,PSnS ₂ Nanosheets for High Efficiency Trifunctional Electrocatalyst. Small, 2023, 19, .	5.2	15
313	Functionalized MOFâ€Based Photocatalysts for CO ₂ Reduction. Chemistry - A European Journal, 2023, 29, .	1.7	2
314	Non-thermal plasma assisted catalytic water splitting for clean hydrogen production at near ambient conditions. Journal of Cleaner Production, 2023, 387, 135913.	4.6	5
315	Efficient Hydrogen and Oxygen Evolution Catalysis Using 3D-Structured Nickel Phosphosulfide Nanosheets in Alkaline Media. Molecules, 2023, 28, 315.	1.7	2
316	A review on electrocatalysis for alkaline oxygen evolution reaction (OER) by Fe-based catalysts. Journal of Materials Science, 0, , .	1.7	3
317	Janus Ga2SeTe and In2SeTe nanosheets: Excellent photocatalysts for hydrogen production under neutral pH. International Journal of Hydrogen Energy, 2023, 48, 16358-16369.	3.8	7
318	2D Metal–Organic Frameworks as Competent Electrocatalysts for Water Splitting. Small, 2023, 19, .	5.2	31
319	Facile synthesis of flexible and scalable Cu/Cu2O/CuO nanoleaves photoelectrodes with oxidation-induced self-initiated charge-transporting platform for photoelectrochemical water splitting enhancement. Journal of Alloys and Compounds, 2023, 942, 169094.	2.8	11
320	An inclusive review and perspective on Cu-based materials for electrochemical water splitting. RSC Advances, 2023, 13, 4963-4993.	1.7	20
321	Nickel oxide nanocatalyst obtained by a combined sol-gel and hydrothermal method for oxygen evolution reaction. MRS Communications, 2023, 13, 276-282.	0.8	2
322	ZIF-67 derived Mo-CoS2 nanoparticles embedded in hierarchically porous carbon hollow sphere for efficient overall water splitting. Applied Surface Science, 2023, 623, 157030.	3.1	7
323	Non-precious metal single-atom loading and further strain engineering on SrTiO3 (100) surface for optimizing hydrogen evolution reaction. Applied Catalysis A: General, 2023, 656, 119131.	2.2	2
324	Understanding the hydrogen evolution reaction activity of doped single-atom catalysts on two-dimensional GaPS4 by DFT and machine learning. Journal of Energy Chemistry, 2023, 81, 93-100.	7.1	17
325	Sulphur vacancy defects engineered metal sulfides for amended photo(electro)catalytic water splitting: A review. Journal of Materials Science and Technology, 2023, 152, 50-64.	5.6	24
326	Recent Advancements in the Synthetic Mechanism and Surface Engineering of Transition Metal Selenides for Energy Storage and Conversion Applications. Energy Technology, 2023, 11, .	1.8	5
327	Facet Engineering of Advanced Electrocatalysts Toward Hydrogen/Oxygen Evolution Reactions. Nano-Micro Letters, 2023, 15, .	14.4	55

#	Article	IF	CITATIONS
328	Ambient Electrosynthesis toward Singleâ€Atom Sites for Electrocatalytic Green Hydrogen Cycling. Advanced Materials, 2023, 35, .	11.1	26
329	Visualizing Catalytic Dynamics Process via Synchrotron Radiation Multiâ€Techniques. Advanced Materials, 0, , 2205346.	11.1	7
330	Rhenium-Based Electrocatalysts for Water Splitting. ACS Materials Au, 2023, 3, 177-200.	2.6	11
331	Unlocking the Ultrahigh urrentâ€Density Hydrogen Evolution on 2Hâ€MoS ₂ via Simultaneous Structural Control across Seven Orders of Magnitude. Advanced Energy Materials, 2023, 13, .	10.2	14
332	Metal-organic frameworks derived interfacing Fe2O3/ZnCo2O4 multimetal oxides as a bifunctional electrocatalyst for overall water splitting. Electrochimica Acta, 2023, 449, 142242.	2.6	7
333	Trends and Prospects of Bulk and Singleâ€Atom Catalysts for the Oxygen Evolution Reaction. Advanced Energy Materials, 2023, 13, .	10.2	25
334	Direct Laser Writing of Multimetal Bifunctional Catalysts for Overall Water Splitting. ACS Applied Energy Materials, 2023, 6, 3756-3768.	2.5	4
335	A descriptor of IB alloy catalysts for hydrogen evolution reaction. SmartMat, 0, , .	6.4	2
336	Fluorine-regulated binary cobalt nickel phosphides nanoarrays on nickel foam for enhanced hydrogen evolution reaction. Journal of Materials Science, 2023, 58, 6407-6418.	1.7	4
337	Atomic understanding of the strain-induced electrocatalysis from DFT calculation: progress and perspective. Physical Chemistry Chemical Physics, 2023, 25, 12565-12586.	1.3	9
338	Self-supporting electrocatalyst constructed from in-situ transformation of Co(OH)2 to metal-organic framework to Co/CoP/NC nanosheets for high-current-density water splitting. Journal of Colloid and Interface Science, 2023, 645, 513-524.	5.0	7
340	Recent advances in interface engineering of Fe/Co/Ni-based heterostructure electrocatalysts for water splitting. Materials Horizons, 2023, 10, 2312-2342.	6.4	13
352	Engineering Iridium-Based Oxygen Evolution Reaction Electrocatalysts for Proton Exchange Membrane Water Electrolyzers. ACS Catalysis, 2023, 13, 8670-8691.	5.5	8
354	Heterojunction Engineering for Electrocatalytic Applications. ACS Applied Energy Materials, 2023, 6, 7737-7784.	2.5	5
392	Magnon–phonon coupling: from fundamental physics to applications. Physical Chemistry Chemical Physics, 2023, 25, 21802-21815.	1.3	7
408	Research Progress of transition-metal dichalcogenides for hydrogen evolution reaction. Journal of Materials Chemistry A, 0, , .	5.2	0
415	Water electrolysis for hydrogen production: from hybrid systems to self-powered/catalyzed devices. Energy and Environmental Science, 2024, 17, 49-113.	15.6	10
419	Recent progress and perspective for oxygen evolution reaction under acidic environments. Materials Chemistry Frontiers, 2024, 8, 986-1014.	3.2	0

#	Article	IF	Citations
427	Unlocking single-atom catalysts via amorphous substrates. Nano Research, O, , .	5.8	0
427		5.6	0
432	Recent advances on three-dimensional ordered macroporous metal oxide-based photoelectrodes for photoelectrochemical water splitting. Materials Chemistry Frontiers, 2024, 8, 1230-1249.	3.2	0
443	Surpassing water-splitting potential in aqueous redox flow batteries: insights from kinetics and thermodynamics. , 2024, 2, 522-544.		0
452	Strain engineering in electrocatalysis: Strategies, characterization, and insights. Nano Research, 2024, 17, 3603-3621.	5.8	0